51
|
Sun B, Sun Z, Yang Y, Huang XL, Jun SC, Zhao C, Xue J, Liu S, Liu HK, Dou SX. Covalent Organic Frameworks: Their Composites and Derivatives for Rechargeable Metal-Ion Batteries. ACS NANO 2024; 18:28-66. [PMID: 38117556 DOI: 10.1021/acsnano.3c08240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.
Collapse
Affiliation(s)
- Bowen Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Yi Yang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiang Long Huang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Chongchong Zhao
- Henan Key Laboratory of Energy Storage Materials and Processes, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450003, People's Republic of China
| | - Jiaojiao Xue
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Hua Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| | - Shi Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
- Institute for Superconducting and Electronic Materials, University of Wollongong,Wollongong, New South Wales 2522, Australia
| |
Collapse
|
52
|
Pakulski D, Montes-García V, Czepa W, Marcinkowski D, Peng H, Chudziak T, Gorczyński A, Kukułka W, Valentini C, Patroniak V, Samorì P, Ciesielski A. MOF (UiO-66-NH 2)@COF (TFP-TABQ) hybrids via on-surface condensation reactions for sustainable energy storage. Chem Commun (Camb) 2024; 60:412-415. [PMID: 38084050 DOI: 10.1039/d3cc05187k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Core-shell MOF@COF hybrids were synthesized via subsequent modification of MOF UiO-66-NH2 with 1,3,5-triformylphloroglucinol (TFP) and 2,3,5,6-tetraaminobenzoquinone (TABQ). The hybrids exhibited significant surface area (236 m2 g-1) and outstanding electrochemical performance (103 F g-1 at 0.5 A g-1), surpassing both COFs and MOFs, thereby showcasing the potential of on-surface condensation reactions for developing high-performance energy storage devices.
Collapse
Affiliation(s)
- Dawid Pakulski
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland.
- Adam Mickiewicz University Foundation, Poznań Science and Technology Park, Rubież 46, Poznań 61-612, Poland
| | | | - Włodzimierz Czepa
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Dawid Marcinkowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Haijun Peng
- Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge, Strasbourg 67000, France.
| | - Tomasz Chudziak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Adam Gorczyński
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Wojciech Kukułka
- Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge, Strasbourg 67000, France.
| | - Cataldo Valentini
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland.
| | - Violetta Patroniak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge, Strasbourg 67000, France.
| | - Artur Ciesielski
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań 61-614, Poland.
- Université de Strasbourg, CNRS, ISIS 8 allée Gaspard Monge, Strasbourg 67000, France.
| |
Collapse
|
53
|
Zheng CY, Qian HL, Yang C, Ran XQ, Yan XP. Pure Covalent-Organic Framework Membrane as a Label-Free Biomimetic Nanochannel for Sensitive and Selective Sensing of Chiral Flavor Substances. ACS Sens 2023; 8:4747-4755. [PMID: 38054443 DOI: 10.1021/acssensors.3c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chiral flavor substances play an important role in the human perception of different tastes. Here, we report a pure covalent-organic framework (COF) membrane nanochannel in combination with a chiral gold nanoparticles (AuNPs) selector for sensing chiral flavor substances. The pure COF membrane with a proper pore size is selected as the nanochannel, while l-cysteine-modified AuNPs (l-Cys-AuNPs) are used as the chiral selector. l-Cys-AuNPs show stronger binding to the S-enantiomer than the R-enantiomer, causing current reduction to different degrees for the R- and S-enantiomer to achieve chiral sensing due to the synergistic effect of the size exclusion of the COF nanochannel and the chiral selectivity of l-Cys-AuNPs. The developed COF membrane nanochannel sensing platform not only allows an easy balance of the permeability and selectivity, which is difficult to achieve in traditional polymer membrane nanochannel sensors, but also exhibits better chiral performance than commercial artificial anodic aluminum oxide (AAO) nanochannel sensors. The developed nanochannel sensor is successfully applied for sensing flavor enantiomers such as limonene, propanediol, methylbutyric acid, and butanol with the enantiomer excess values of 55.2% (propanediol) and 72.4% (limonene) and the low detection limits of 36 (limonene) and 71 (propanediol) ng L-1. This study provides a new idea for the construction of nanochannel platforms based on the COF for sensitive and selective chiral sensing.
Collapse
Affiliation(s)
- Chen-Yan Zheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
54
|
Dantas R, Ribeiro C, Souto M. Organic electrodes based on redox-active covalent organic frameworks for lithium batteries. Chem Commun (Camb) 2023; 60:138-149. [PMID: 38051115 DOI: 10.1039/d3cc04322c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Electroactive organic materials have received much attention as alternative electrodes for metal-ion batteries due to their high theoretical capacity, resource availability, and environmental friendliness. In particular, redox-active covalent organic frameworks (COFs) have recently emerged as promising electrodes due to their tunable electrochemical properties, insolubility in electrolytes, and structural versatility. In this Highlight, we review some recent strategies to improve the energy density and power density of COF electrodes for lithium batteries from the perspective of molecular design and electrode optimisation. Some other aspects such as stability and scalability are also discussed. Finally, the main challenges to improve their performance and future prospects for COF-based organic batteries are highlighted.
Collapse
Affiliation(s)
- Raquel Dantas
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Catarina Ribeiro
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
| | - Manuel Souto
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-393, Portugal.
- CIQUS, Centro Singular de Investigación en Química Bioloxica e Materiais Moleculares, Departamento de Química-Física, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
55
|
Ajnsztajn A, Harikrishnan VVJ, Alahakoon SB, Zhu D, Barnes M, Daum J, Gayle J, Tomur G, Lowenstein J, Roy S, Ajayan PM, Verduzco R. Synthesis and Additive Manufacturing of Hydrazone-Linked Covalent Organic Framework Aerogels. Chemistry 2023; 29:e202302304. [PMID: 37665636 DOI: 10.1002/chem.202302304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Covalent Organic Frameworks (COFs) are crystalline, porous organic materials. Recent studies have demonstrated novel processing strategies for COFs to form adaptable architectures, but these have focused primarily on imine-linked COFs. This work presents a new synthesis and processing route to produce crystalline hydrazone-linked COF gels and aerogels with hierarchical porosity. The method was implemented to produce a series of hydrazone-linked COFs with different alkyl side-chain substituents, achieving control of the hydrophilicity of the final aerogel. Variation in the length of the alkyl substituents yielded materials with controllable form factors that can preferentially adsorb water or nonpolar organic solvents. Additionally, a method for additive manufacturing of hydrazone-linked COFs using hydroxymethylcellulose as a sacrificial additive is presented. This work demonstrates an effective and simple approach to the fabrication of hydrazone COF aerogels and additive manufacturing to produce hydrazone COFs of desired shape.
Collapse
Affiliation(s)
- Alec Ajnsztajn
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | | | - Sampath B Alahakoon
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Institute for Combinatorial Advanced Research and Education, General Sir John Kotelawala Defence University, Kandawala Rd, Ratmalana, 10390, Sri Lanka
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| | - Morgan Barnes
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jeremy Daum
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jessica Gayle
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Gulnihal Tomur
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Jacob Lowenstein
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
| | - Rafael Verduzco
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX-77005, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX-77005, USA
| |
Collapse
|
56
|
Wang M, Jin Y, Zhang W, Zhao Y. Single-crystal polymers (SCPs): from 1D to 3D architectures. Chem Soc Rev 2023; 52:8165-8193. [PMID: 37929665 DOI: 10.1039/d3cs00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Single-crystal polymers (SCPs) with unambiguous chemical structures at atomic-level resolutions have attracted great attention. Obtaining precise structural information of these materials is critical as it enables a deeper understanding of the potential driving forces for specific packing and long-range order, secondary interactions, and kinetic and thermodynamic factors. Such information can ultimately lead to success in controlling the synthesis or engineering of their crystal structures for targeted applications, which could have far-reaching impact. Successful synthesis of SCPs with atomic level control of the structures, especially for those with 2D and 3D architectures, is rare. In this review, we summarize the recent progress in the synthesis of SCPs, including 1D, 2D, and 3D architectures. Solution synthesis, topochemical synthesis, and extreme condition synthesis are summarized and compared. Around 70 examples of SCPs with unambiguous structure information are presented, and their synthesis methods and structural analysis are discussed. This review offers critical insights into the structure-property relationships, providing guidance for the future rational design and bottom-up synthesis of a variety of highly ordered polymers with unprecedented functions and properties.
Collapse
Affiliation(s)
- Mingsen Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266000, China.
| |
Collapse
|
57
|
Bai Y, Wang C, Lu W, Xie C, Song W, Zhang Z, Wang J. Exploration of the Performance and Mechanism of Uranium Adsorption by a Covalent Organic Framework Possessing the Thiazole Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16163-16173. [PMID: 37922413 DOI: 10.1021/acs.langmuir.3c02448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
This study prepared an active 2-D covalent organic skeleton (HDU-27) with a network structure, high crystallinity, considerable specific surface area, excellent pore structure, and excellent stability. Kinetic studies manifested that HDU-27 could effectively capture uranium as monolayer chemisorption within a very short kinetic equilibrium time (10 min). In particular, the temperature significantly and positively impacted the uranium adsorption performance of HDU-27. At 298, 313, and 328 K, the adsorption capacity reached 269.2, 488.8, and 576.2 mg g-1, respectively, suggesting the potential to treat high-temperature industrial wastewater containing uranium. HDU-27 had high stability and recoverability with an adsorption efficiency of 98.5% after five adsorption-desorption cycles. According to X-ray photoelectron spectroscopy, the mechanism of interaction between U(VI) and HDU-27 was mainly the chelation of UO22+ by the N atom in the thiazole structure and the strong coordination of the O atom in the keto structure with UO22+. More excitingly, HDU-27 could chemically reduce soluble U(VI) to insoluble U(IV) and release binding sites for the adsorption of additional U(VI). In conclusion, HDU-27 has outstanding potential for uranium adsorption from industrial wastewater containing uranium.
Collapse
Affiliation(s)
- Yuxuan Bai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chen Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wen Lu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chengde Xie
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Wenhui Song
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhixiong Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jianjun Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| |
Collapse
|
58
|
Guo H, Fang C, Li F, Cui W, Xiong R, Yang X, Zhu L. Tailor-made β-ketoenamine-linked covalent organic polymer nanofilms for precise molecular sieving. MATERIALS HORIZONS 2023; 10:5133-5142. [PMID: 37697817 DOI: 10.1039/d3mh00957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The membranes that accurately separate solutes with close molecular weights in harsh solvents are of crucial importance for the development of highly-precise organic solvent nanofiltration (OSN). The physicochemical structures of the membrane need to be rationally designed to achieve this goal, such as customized crosslinked networks, thickness, and pore size. Herein, we synthesize a type of covalent organic polymer (COP) nanofilms with tailor-made thickness and pore structure using a cyclic deposition strategy for precise molecular sieving. By elaborately designing monomer structures and controlling deposition cycle numbers, the COP nanofilms linked by robust β-ketoenamine blocks were endowed with sub-nanometer micropores and a linearly tunable thickness of 10-40 nm. The composite membranes integrating COP nanofilms exhibited adjustable solvent permeance. The membranes further demonstrated steep and finely-regulated rejection curves within the molecular weight range of 200 to 400 Da, where the difference value was as low as 40 Da. The efficient purification and concentration of the antibacterial drug and its intermediate was well achieved. Therefore, the exploited COP nanofilms markedly facilitate the application of microporous organic polymers for precise molecular separation in OSN.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Fupeng Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Wenshou Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Ruiyan Xiong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, P. R. China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, P. R. China
| |
Collapse
|
59
|
Mao Y, Davis S, Pu L. Regio- and Enantioselective Macrocyclization from Dynamic Imine Formation: Chemo- and Enantioselective Fluorescent Recognition of Lysine. Org Lett 2023; 25:7639-7644. [PMID: 37843813 DOI: 10.1021/acs.orglett.3c02949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The dynamic covalent chemistry of imines is utilized to conduct a regioselective as well as enantioselective synthesis of an unsymmetric (C1) chiral macrocycle from the reaction of an unsymmetric (C1) chiral dialdehyde, (S)-4, that contains a salicylaldehyde unit and a benzaldehyde unit, with lysine, an unsymmetric (C1) chiral diamine. The enantioselectivity is further enhanced in the presence of Zn2+. Compound (S)-4 in combination with Zn2+ is found to be a highly chemoselective as well as enantioselective fluorescent probe for lysine. It can be used to detect specific enantiomers of this amino acid.
Collapse
Affiliation(s)
- Yifan Mao
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Stephanie Davis
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Lin Pu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
60
|
Xu HB, Chen HY, Lv J, Chen BB, Zhou ZR, Chang S, Gao YT, Huang WF, Ye MJ, Cheng ZJ, Hafez ME, Qian RC, Li DW. Schiff Base Reaction in a Living Cell: In Situ Synthesis of a Hollow Covalent Organic Polymer To Regulate Biological Functions. Angew Chem Int Ed Engl 2023; 62:e202311002. [PMID: 37714815 DOI: 10.1002/anie.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/17/2023]
Abstract
Artificially performing chemical reactions in living biosystems to attain various physiological aims remains an intriguing but very challenging task. In this study, the Schiff base reaction was conducted in cells using Sc(OTf)3 as a catalyst, enabling the in situ synthesis of a hollow covalent organic polymer (HCOP) without external stimuli. The reversible Schiff base reaction mediated intracellular Oswald ripening endows the HCOP with a spherical, hollow porous structure and a large specific surface area. The intracellularly generated HCOP reduced cellular motility by restraining actin polymerization, which consequently induced mitochondrial deactivation, apoptosis, and necroptosis. The presented intracellular synthesis system inspired by the Schiff base reaction has strong potential to regulate cell fate and biological functions, opening up a new strategic possibility for intervening in cellular behavior.
Collapse
Affiliation(s)
- Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Bin-Bin Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen City, Guangdong, 518172, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shuai Chang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ya-Ting Gao
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wen-Fei Huang
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ming-Jie Ye
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zi-Jian Cheng
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
61
|
Qin Y, Zhu X, Huang R. Covalent organic frameworks: linkage types, synthetic methods and bio-related applications. Biomater Sci 2023; 11:6942-6976. [PMID: 37750827 DOI: 10.1039/d3bm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Covalent organic frameworks (COFs) are composed of small organic molecules linked via covalent bonds, which have tunable mesoporous structure, good biocompatibility and functional diversities. These excellent properties make COFs a promising candidate for constructing biomedical nanoplatforms and provide ample opportunities for nanomedicine development. A systematic review of the linkage types and synthesis methods of COFs is of indispensable value for their biomedical applications. In this review, we first summarize the types of various linkages of COFs and their corresponding properties. Then, we highlight the reaction temperature, solvent and reaction time required by different synthesis methods and show the most suitable synthesis method by comparing the merits and demerits of various methods. To appreciate the cutting-edge research on COFs in bioscience technology, we also summarize the bio-related applications of COFs, including drug delivery, tumor therapy, bioimaging, biosensing and antimicrobial applications. We hope to provide insight into the interdisciplinary research on COFs and promote the development of COF nanomaterials for biomedical applications and their future clinical translations.
Collapse
Affiliation(s)
- Yanhui Qin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Xinran Zhu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
62
|
Song F, Ma L, Gao L, Han Y, Zong S, He L, Zhang S, Zhao W. Green preparation of magnetic pyrene-based hyper-cross-linked polymer using dual-purpose ferric chloride reagent for extraction of polycyclic aromatic hydrocarbons from natural water bodies. J Chromatogr A 2023; 1711:464462. [PMID: 39491081 DOI: 10.1016/j.chroma.2023.464462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/26/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2024]
Abstract
A magnetic hyper-cross-linked polymer Fe3O4/HCPPYR was prepared using pyrene as the monomer and formaldehyde dimethyl acetal (FDA) as the cross-linking agent. The objective of green chemistry was achieved by employing FeCl3 during the synthesis, as it played a dual role of a catalyst for the Friedel-Crafts reaction and an iron source for the synthesis of magnetic Fe3O4, thus maximizing efficiency and minimizing waste. Fe3O4/HCPPYR was applied as a sorbent for magnetic solid-phase extraction (MSPE) to extract fifteen polycyclic aromatic hydrocarbons (PAHs) from water. The effects of different parameters such as the quantity of adsorbent, the extraction time, the desorption conditions, the pH value and the effect of the salt concentration on the extraction efficiency were optimized. A simple and efficient method in combination with gas chromatography-mass spectrometry (GC-MS) (Fe3O4/HCPPYR-MSPE/GC-MS) was developed and successfully applied for the detection of PAHs in environmental water samples The analytical method showed LODs in the range of 0.004-0.06 µg L-1, which proved to be adequate for the detection all 15 PAHs at trace concentration. Spiked recoveries of PAHs in actual water samples ranged from 85.2 % to 118.5 % with relative standard deviations (RSDs) below 10.2%. These results indicate that the method has a good potential for reusability and possesses excellent sensitivity. This study showcased the potential of Fe3O4/HCPPYR composites in effectively removing organic pollutants from the aqueous environments, demonstrating their ability for water treatment applications.
Collapse
Affiliation(s)
- Fang Song
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Li Ma
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Li Gao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Yiwen Han
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuai Zong
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shusheng Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
63
|
Zhong B, Chen F, Ge Y, Liu D. Developing a fast and catalyst-free protocol to form C=N double bond with high functional group tolerance. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231263. [PMID: 37800155 PMCID: PMC10548102 DOI: 10.1098/rsos.231263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The carbon-nitrogen double bond (C=N) is a fundamentally important functional group in organic chemistry. This is largely due to the fact that C=N acts as electrophilic synthon to give nitrogen-containing compounds. Here, we report the condensation of primary amine or hydrazine with very electron-deficient aldehyde to form C=N bond in the absence of any catalysts (metals and acids). The protocol performs at room temperature and applies water as co-solvent. Two hundred examples are presented here. With its intrinsic advantages of wide substrate scopes, excellent efficiency (high yields and short reaction time), operational simplicity, mild condition (room temperature as reaction temperature, no catalysts, no additions, water as co-solvent and opening to air) and available starting materials, the protocol can be compatible with various drugs, prodrugs, dyes and pharmacophores containing primary amino group. In addition, we also successfully apply this protocol to rapidly synthesize the core scaffolds of bioactive molecules.
Collapse
Affiliation(s)
- Bin Zhong
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Feng Chen
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Yushu Ge
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Dan Liu
- Heifei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, People's Republic of China
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230001, People's Republic of China
| |
Collapse
|
64
|
Xia W, Wang Q, Liu M, Lu S, Yu H, Yin H, You M, Chen Q, Wang B, Lin F. Antifouling and Injectable Granular Hydrogel for the Prevention of Postoperative Intrauterine Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44676-44688. [PMID: 37721504 DOI: 10.1021/acsami.3c07846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Postoperative intrauterine adhesion (IUA), caused by endometrial basal layer injury, is one of the main causes of female infertility. The excessive deposition of fibrin as well as fibroblast is considered the root cause of IUA. However, few clinical strategies are effective in preventing extracellular matrix (ECM) deposition at endometrial wounds that include protein and cell deposits. Herein, the injectable granular poly(N-(2-hydroxyethyl) acrylamide) (PHEAA) hydrogel (granular PHEAA gel), which presents excellent antifouling properties and remarkably prevents protein and cell adhesions, is used to prevent postoperative IUA. The granular PHEAA gel with a jammed network structure exhibits outstanding injectability and superior stability. Compared with the IUA group, the granular PHEAA gel can promote regeneration of the endometrium while reducing the area of endometrial fibrosis. Immunohistochemical staining experiments indicate that the granular PHEAA gel can improve the proliferation of the endometrium, promote vascularization, and enhance anti-inflammatory effect in IUA rats. And the granular PHEAA gel can effectively slow down the fibrosis of uterine tissue. Importantly, the number of embryos is significantly increased after injecting granular PHEAA gel, inferring that there is an obvious reproductive function recovery of injured endometrium.
Collapse
Affiliation(s)
| | - Qilin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | | | - Shaoping Lu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Hui Yu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Haiyan Yin
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, China
| | - Bujun Wang
- Department of Obstetrics, Pingyang People's Hospital of Wenzhou Medical University, Wenzhou 325499, China
| | | |
Collapse
|
65
|
Li J, Wei D, Fu Q. Anatase TiO 2-x and zwitterionic porphyrin polymer-based nanocomposite for enhanced cancer photodynamic therapy. NANOSCALE 2023; 15:14790-14799. [PMID: 37642471 DOI: 10.1039/d3nr03012a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Photodynamic therapy has been used as a treatment option for cancer; however, the existing TiO2 photosensitizer does not have the ability to specifically target cancer cells. This lack of selectivity reduces its effectiveness in overcoming cancer resistance. To improve photodynamic therapy outcomes, an innovative solution is proposed. In this study, we report on the compounding of a zwitterionic covalent organic polymer (COP) with a TiO2 photosensitizer for the first time. The aim is to overcome cancer cellular resistance. A one-pot synthetic strategy, which includes the construction of a porphyrin-based COP has been employed. This strategy has also been applied to the rapid preparation of anatase defective TiO2 (TiO2-x). To improve the hydrophilic and antifouling properties of the polymer, zwitterion L-cysteine has been conjugated with a porphyrin-based COP using a thiol-ene "click chemistry" reaction. The novel zwitterionic porphyrin-based COP has the ability to trigger biodegradation under the acid microenvironment due to the presence of acid-sensitive β-thioether esters. When combined with TiO2-x, the resultant nanocomposite produces an enhanced photodynamic therapy effect for drug-resistant cancer cells under NIR laser irradiation. This is due to the strong mutual sensitization of zwitterionic porphyrin-based COP and TiO2-x. Importantly, the nanocomposite delivery system exhibits excellent cytocompatibility in the dark and has the potential to improve the accuracy of cancer diagnosis through fluorescence imaging. The results of this study demonstrate the potential application of this alternative nanocomposite delivery system for remote-controllable photodynamic therapy of tumors.
Collapse
Affiliation(s)
- Jiaxu Li
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Graduate School, Nanning Normal University, Nanning 530001, People's Republic of China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, People's Republic of China.
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, People's Republic of China.
| |
Collapse
|
66
|
Lee J, Lee J, Kim JY, Kim M. Covalent connections between metal-organic frameworks and polymers including covalent organic frameworks. Chem Soc Rev 2023; 52:6379-6416. [PMID: 37667818 DOI: 10.1039/d3cs00302g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Hybrid composite materials combining metal-organic frameworks (MOFs) and polymers have emerged as a versatile platform for a broad range of applications. The crystalline, porous nature of MOFs and the flexibility and processability of polymers are synergistically integrated in MOF-polymer composite materials. Covalent bonds, which form between two distinct materials, have been extensively studied as a means of creating strong molecular connections to facilitate the dispersion of "hard" MOF particles in "soft" polymers. Numerous organic transformations have been applied to post-synthetically connect MOFs with polymeric species, resulting in a variety of covalently connected MOF-polymer systems with unique properties that are dependent on the characteristics of the MOFs, polymers, and connection modes. In this review, we provide a comprehensive overview of the development and strategies involved in preparing covalently connected MOFs and polymers, including recently developed MOF-covalent organic framework composites. The covalent bonds, grafting strategies, types of MOFs, and polymer backbones are summarized and categorized, along with their respective applications. We highlight how this knowledge can serve as a basis for preparing macromolecular composites with advanced functionality.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jin Yeong Kim
- Department of Chemistry Education, Seoul National University, Seoul 08826, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
67
|
Li Y, Wu X, Zhang J, Han C, Cao M, Li X, Wan J. Vinylene-Linked Emissive Covalent Organic Frameworks for White-Light-Emitting Diodes. Polymers (Basel) 2023; 15:3704. [PMID: 37765558 PMCID: PMC10535042 DOI: 10.3390/polym15183704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their highly conjugated π-skeletons, rendering them promising candidates for the design of light-emitting materials. In this study, we present two vinylene-linked COFs, namely, VL-COF-1 and VL-COF-2, which were synthesized through the Knoevenagel condensation of 2,4,6-trimethyl-1,3,5-triazine with terephthalaldehyde or 4,4'-biphenyldicarboxaldehyde. Both VL-COF-1 and VL-COF-2 exhibited excellent chemical and thermal stability. The presence of vinylene linkages between the constituent building blocks in these COFs resulted in broad excitation and emission properties. Remarkably, the designed VL-COFs demonstrated bright emission, fast fluorescence decay, and high stability, making them highly attractive for optoelectronic applications. To assess the potential of these VL-COFs in practical devices, we fabricated white-light-emitting diodes (WLEDs) coated with VL-COF-1 and VL-COF-2. Notably, the WLEDs coated with VL-COF-1 achieved high-quality white light emission, closely approximating standard white light. The promising performance of VL-COF-coated WLEDs suggests the feasibility of utilizing COF materials for stable and efficient lighting applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jieqiong Wan
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; (Y.L.)
| |
Collapse
|
68
|
Ye L, Cen W, Chu Y, Sun D. Interfacial chemistries in metal-organic framework (MOF)/covalent-organic framework (COF) hybrids. NANOSCALE 2023; 15:13187-13201. [PMID: 37539693 DOI: 10.1039/d3nr02868b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been attracting tremendous attention in various applications due to their unique structural properties. Recent interest has been focused on their combination as hybrids to enable the engineering of new classes of frameworks with complementary properties. This review gives a comprehensive summary on the interfacial chemistries in MOF/COF hybrids, which play critical roles in their hybridization. The challenges and perspectives in the field of MOF/COF hybrids are also provided to inspire more efforts in diversifying this hybrid family and their cross-disciplinary applications.
Collapse
Affiliation(s)
- Lin Ye
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Wanglai Cen
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University, Chengdu, P. R. China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu, P. R. China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| | - Dengrong Sun
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu, P. R. China.
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu, P. R. China
| |
Collapse
|
69
|
Kumar De S, Won DI, Kim J, Kim DH. Integrated CO 2 capture and electrochemical upgradation: the underpinning mechanism and techno-chemical analysis. Chem Soc Rev 2023; 52:5744-5802. [PMID: 37539619 DOI: 10.1039/d2cs00512c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Coupling post-combustion CO2 capture with electrochemical utilization (CCU) is a quantum leap in renewable energy science since it eliminates the cost and energy involved in the transport and storage of CO2. However, the major challenges involved in industrial scale implementation are selecting an appropriate solvent/electrolyte for CO2 capture, modeling an appropriate infrastructure by coupling an electrolyser with a CO2 point source and a separator to isolate CO2 reduction reaction (CO2RR) products, and finally selection of an appropriate electrocatalyst. In this review, we highlight the major difficulties with detailed mechanistic interpretation in each step, to find out the underpinning mechanism involved in the integration of electrochemical CCU to achieve higher-value products. In the past decades, most of the studies dealt with individual parts of the integration process, i.e., either selecting a solvent for CO2 capture, designing an electrocatalyst, or choosing an ideal electrolyte. In this context, it is important to note that solvents such as monoethanolamine, bicarbonate, and ionic liquids are often used as electrolytes in CO2 capture media. Therefore, it is essential to fabricate a cost-effective electrolyser that should function as a reversible binder with CO2 and an electron pool capable of recovering the solvent to electrolyte reversibly. For example, reversible ionic liquids, which are non-ionic in their normal forms, but produce ionic forms after CO2 capture, can be further reverted back to their original non-ionic forms after CO2 release with almost 100% efficiency through the chemical or thermal modulations. This review also sheds light on a focused techno-economic evolution for converting the electrochemically integrated CCU process from a pilot-scale project to industrial-scale implementation. In brief, this review article will summarize a state-of-the-art argumentation of challenges and outcomes over the different segments involved in electrochemically integrated CCU to stimulate urgent progress in the field.
Collapse
Affiliation(s)
- Sandip Kumar De
- Department of Chemistry, UPL University of Sustainable Technology, 402, Ankleshwar - Valia Rd, Vataria, Gujarat 393135, India
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
70
|
Vardhan H, Rummer G, Deng A, Ma S. Large-Scale Synthesis of Covalent Organic Frameworks: Challenges and Opportunities. MEMBRANES 2023; 13:696. [PMID: 37623757 PMCID: PMC10456518 DOI: 10.3390/membranes13080696] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
Connecting organic building blocks by covalent bonds to design porous crystalline networks has led to covalent organic frameworks (COFs), consequently transferring the flexibility of dynamic linkages from discrete architectures to extended structures. By virtue of the library of organic building blocks and the diversity of dynamic linkages and topologies, COFs have emerged as a novel field of organic materials that propose a platform for tailor-made complex structural design. Progress over the past two decades in the design, synthesis, and functional exploration of COFs in diverse applications successively established these frameworks in materials chemistry. The large-scale synthesis of COFs with uniform structures and properties is of profound importance for commercialization and industrial applications; however, this is in its infancy at present. An innovative designing and synthetic approaches have paved novel ways to address future hurdles. This review article highlights the fundamental of COFs, including designing principles, coupling reactions, topologies, structural diversity, synthetic strategies, characterization, growth mechanism, and activation aspects of COFs. Finally, the major challenges and future trends for large-scale COF fabrication are outlined.
Collapse
Affiliation(s)
- Harsh Vardhan
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Grace Rummer
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Angela Deng
- Department of Chemistry and Fermentation Sciences, Appalachian State University, 525 Rivers Street, Boone, NC 28608, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
71
|
Xue R, Liu YS, Huang SL, Yang GY. Recent Progress of Covalent Organic Frameworks Applied in Electrochemical Sensors. ACS Sens 2023; 8:2124-2148. [PMID: 37276465 DOI: 10.1021/acssensors.3c00269] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As an emerging porous crystalline organic material, the covalent organic frameworks (COFs) are given more and more attention in many fields, such as gas storage and separation, catalysis, energy storage and conversion, luminescent devices, drug delivery, pollutant adsorption and removal, analysis and detection due to their special advantages of high crystallinity, flexible designability, controllable porosities and topologies, intrinsic chemical and thermal stability. In recent years, the COFs are applied in analytical chemistry, for instance, chromatography, solid-phase microextraction, luminescent and colorimetric sensing, surface-enhanced Raman scattering and electroanalytical chemistry. The COFs decorated electrodes show high performance for detecting trace substances with remarkable selectivity and sensitivity, such as heavy metal ions, glucose, hydrogen peroxide, drugs, antibiotics, explosives, phenolic compounds, pesticides, disease metabolites and so on. This review mainly summarized the application of COF based electrochemical sensor according to different target analytes.
Collapse
Affiliation(s)
- Rui Xue
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yin-Sheng Liu
- Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, Key Lab of Eco-Environments Related Polymer Materials of MOE, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
72
|
Wołczański G, Gil W, Cichos J, Lisowski M, Stefanowicz P. Alkyl Thiocyanurates as Thioester Mimetics. Transthioesterification and Ligation Reactions with High Potential in Dynamic Covalent Chemistry. J Org Chem 2023. [PMID: 37329497 DOI: 10.1021/acs.joc.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alkyl thiocyanurates, the compounds formed in the SN reaction of thiocyanuric acid and alkyl halides, are susceptible to transthioesterification and ligation with molecules containing cysteamine, analogous to native chemical ligation of thioesters with peptides with an N-terminal cysteine moiety. The ligation is irreversible and results in the formation of mono- and disubstituted products dominantly. Transthioesterification, in contrast, is fully reversible and may be used in constructing dynamic systems. The application of this reactivity in dynamic covalent chemistry has been exemplified by the preparation of a library of mixed thiocyanurates of glutathione and thioglycolic acid with self-assembly abilities and metathesis between thiocyanurates of tris(carboxymethyl) and tris(carboxamidomethyl) catalyzed by MESNa (sodium 2-mercaptoethylsulphonate) or MPAA (4-mercaptophenylacetic acid). Differences in reactivity of thiocyanurates toward cysteamines and thiols has been explained based on conceptual DFT.
Collapse
Affiliation(s)
- Grzegorz Wołczański
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Wojciech Gil
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Jakub Cichos
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Marek Lisowski
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| | - Piotr Stefanowicz
- Faculty of Chemsitry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Lower Silesia District, Poland
| |
Collapse
|
73
|
Li BN, Zhang XL, Bai XH, Liang ZJ, Li J, Fan XY. Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater. Molecules 2023; 28:4785. [PMID: 37375340 DOI: 10.3390/molecules28124785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Conjugated microporous polymers (CMP) as porous functional materials have received considerable attention due to their unique structures and fascinating properties for the adsorption and degradation of dyes. Herein, a triazine-conjugated microporous polymer material with rich N-donors at the skeleton itself was successfully synthesized via the Sonogashira-Hagihara coupling by a one-pot reaction. These two polymers had Brunauer-Emmett-Teller (BET) surface areas of 322 and 435 m2g-1 for triazine-conjugated microporous polymers (T-CMP) and T-CMP-Me, respectively. Due to the porous effects and the rich N-donor at the framework, it displayed a higher removal efficiency and adsorption performance compared to cationic-type dyes and selectivity properties for (methylene blue) MB+ from a mixture solution of cationic-type dyes. Furthermore, the T-CMP-Me could quickly and drastically separate MB+ and (methyl orange) MO- from the mixed solution within a short time. Their intriguing absorption behaviors are supported by 13C NMR, UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies. This work will not only improve the development of porous material varieties, but also demonstrate the adsorption or selectivity of porous materials for dyes from wastewater.
Collapse
Affiliation(s)
- Bao-Ning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xing-Long Zhang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xiao-Hui Bai
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Zhen-Jie Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jian Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xiao-Yong Fan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| |
Collapse
|
74
|
Wang T, Fernandes SPS, Araújo J, Li X, Salonen LM, Espiña B. A carboxyl-functionalized covalent organic polymer for the efficient adsorption of saxitoxin. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131247. [PMID: 36963199 DOI: 10.1016/j.jhazmat.2023.131247] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Saxitoxin (STX), the most widely distributed neurotoxin in marine waters and emerging cyanotoxin of concern in freshwaters, causes paralytic shellfish poisoning in humans upon consumption of contaminated shellfish. To allow for the efficient monitoring of this biotoxin, it is of high importance to find high-affinity materials for its adsorption. Herein, we report the design and synthesis of a covalent organic polymer for the efficient adsorption of STX. Two β-keto-enamine-based materials were prepared by self-assembly of 2,4,6-triformylphloroglucinol (Tp) with 2,5-diaminobenzoic acid (Pa-COOH) to give TpPa-COOH and with 2,5-diaminotoluene (Pa-CH3) to give TpPa-CH3. The carboxylic acid functionalized TpPa-COOH outperformed the methyl-bearing counterpart TpPa-CH3 by an order of magnitude despite the higher long-range order and surface area of the latter. The adsorption of STX by TpPa-COOH was fast with equilibrium reached within 1 h, and the Langmuir adsorption model gave a calculated maximum adsorption capacity, Qm, of 5.69 mg g-1, making this material the best reported adsorbent for this toxin. More importantly, the prepared TpPa-COOH also showed good reusability and high recovery rates for STX in natural freshwater, thereby highlighting the material as a good candidate for the extraction and pre-concentration of STX from aquatic environments.
Collapse
Affiliation(s)
- Tianxing Wang
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Soraia P S Fernandes
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal; Associate Laboratory for Green Chemistry-Network of Chemistry and Technology (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Joana Araújo
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal
| | - Xiaoxi Li
- Ministry of Education Engineering Research Center of Starch and Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Laura M Salonen
- CINBIO, Universidade de Vigo, Department of Organic Chemistry, 36310 Vigo, Spain; Nanochemistry Research Group, International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal.
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Avenida Mestre José Veiga, 4715-330 Braga, Portugal.
| |
Collapse
|
75
|
Rao Z, Zhu D, Xu Y, Lan M, Jiang L, Wang Z, Tang B, Liu H. Enhanced Proton Transfer in Proton-Exchange Membranes with Interconnected and Zwitterion-Functionalized Covalent Porous Material Structures. CHEMSUSCHEM 2023; 16:e202202279. [PMID: 36811282 DOI: 10.1002/cssc.202202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/17/2023] [Indexed: 06/10/2023]
Abstract
Excellent proton-conductive accelerators are indispensable for efficient proton-exchange membranes (PEMs). Covalent porous materials (CPMs), with adjustable functionalities and well-ordered porosities, show much promise as effective proton-conductive accelerators. In this study, an interconnected and zwitterion-functionalized CPM structure based on carbon nanotubes and a Schiff-base network (CNT@ZSNW-1) is constructed as a highly efficient proton-conducting accelerator by in situ growth of SNW-1 onto carbon nanotubes (CNTs) and subsequent zwitterion functionalization. A composite PEM with enhanced proton conduction is acquired by integrating CNT@ZSNW-1 with Nafion. Zwitterion functionalization offers additional proton-conducting sites and promotes the water retention capacity. Moreover, the interconnected structure of CNT@ZSNW-1 induces a more consecutive arrangement of ionic clusters, which significantly relieves the proton transfer barrier of the composite PEM and increases its proton conductivity to 0.287 S cm-1 under 95 % RH at 90 °C (about 2.2 times that of the recast Nafion, 0.131 S cm-1 ). Furthermore, the composite PEM displays a peak power density of 39.6 mW cm-2 in a direct methanol fuel cell, which is significantly higher than that of the recast Nafion (19.9 mW cm-2 ). This study affords a potential reference for devising and preparing functionalized CPMs with optimized structures to expedite proton transfer in PEMs.
Collapse
Affiliation(s)
- Zhuang Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Deyu Zhu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - You Xu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Minqiu Lan
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Lipei Jiang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhengyun Wang
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Beibei Tang
- Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Hongfang Liu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
76
|
Khojastehnezhad A, Moeinpour F, Jafari M, Shehab MK, Samih ElDouhaibi A, El-Kaderi HM, Siaj M. Postsynthetic Modification of Core-Shell Magnetic Covalent Organic Frameworks for the Selective Removal of Mercury. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37276585 DOI: 10.1021/acsami.3c02914] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Core-shell magnetic covalent organic framework (COF) materials were prepared, followed by shell material functionalization with different organic ligands, including thiosemicarbazide, through a postsynthetic modification approach. The structures of the prepared samples were characterized with various techniques, including powder X-ray diffraction (PXRD), Brunauer-Emmett-Teller (BET) method, thermogravimetric analysis (TGA), photoinduced force microscopy (PiFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and solid 13C NMR. PXRD and BET studies revealed that the crystalline and porous nature of the functionalized COFs was well maintained after three steps of postsynthetic modification. On the other hand, solid 13C NMR, TGA, and PiFM analyses confirmed the successful functionalization of COF materials with good covalent linkage connectivity. The use of the resulting functionalized magnetic COF for selective and ultrafast adsorption of Hg(II) has been investigated. The observations displayed rapid kinetics with adsorption dynamics conforming to the quasi-second-order kinetic model and the Langmuir adsorption model. Furthermore, this prepared crystalline magnetic material demonstrated a high Langmuir Hg(II) uptake capacity, reaching equilibrium in only 5 min. Thermodynamic calculations proved that the adsorption process is endothermic and spontaneous.
Collapse
Affiliation(s)
- Amir Khojastehnezhad
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas 7915893144, Iran
| | - Maziar Jafari
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| | - Mohammad K Shehab
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Ahmad Samih ElDouhaibi
- Department of Chemistry, Lebanese University, College of Science III, Campus Mont Michel, Tripoli 1352, Lebanon
| | - Hani M El-Kaderi
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Mohamed Siaj
- Department of Chemistry, University of Quebec at Montreal, Montreal, QC H3C3P8, Canada
| |
Collapse
|
77
|
López-Magano A, Daliran S, Oveisi AR, Mas-Ballesté R, Dhakshinamoorthy A, Alemán J, Garcia H, Luque R. Recent Advances in the Use of Covalent Organic Frameworks as Heterogenous Photocatalysts in Organic Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209475. [PMID: 36563668 DOI: 10.1002/adma.202209475] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Organic photochemistry is intensely developed in the 1980s, in which the nature of excited electronic states and the energy and electron transfer processes are thoroughly studied and finally well-understood. This knowledge from molecular organic photochemistry can be transferred to the design of covalent organic frameworks (COFs) as active visible-light photocatalysts. COFs constitute a new class of crystalline porous materials with substantial application potentials. Featured with outstanding structural tunability, large porosity, high surface area, excellent stability, and unique photoelectronic properties, COFs are studied as potential candidates in various research areas (e.g., photocatalysis). This review aims to provide the state-of-the-art insights into the design of COF photocatalysts (pristine, functionalized, and hybrid COFs) for organic transformations. The catalytic reaction mechanism of COF-based photocatalysts and the influence of dimensionality and crystallinity on heterogenous photocatalysis performance are also discussed, followed by perspectives and prospects on the main challenges and opportunities in future research of COFs and COF-based photocatalysts.
Collapse
Affiliation(s)
- Alberto López-Magano
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Saba Daliran
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Ali Reza Oveisi
- Department of Chemistry, Faculty of Sciences, University of Zabol, Zabol, 98615-538, Iran
| | - Rubén Mas-Ballesté
- Inorganic Chemistry Department, Módulo 7, Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, 625021, India
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - José Alemán
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid, 28049, Spain
- Instituto de Tecnología Química CSIC-UPV, Universitat Politècnica de València, Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, Valencia, 46022, Spain
| | - Hermenegildo Garcia
- Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Rafael Luque
- Department of Organic Chemistry, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, Cordoba, E14014, Spain
- Department of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| |
Collapse
|
78
|
Li X, Lin W, Sharma V, Gorecki R, Ghosh M, Moosa BA, Aristizabal S, Hong S, Khashab NM, Nunes SP. Polycage membranes for precise molecular separation and catalysis. Nat Commun 2023; 14:3112. [PMID: 37253741 DOI: 10.1038/s41467-023-38728-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 06/01/2023] Open
Abstract
The evolution of the chemical and pharmaceutical industry requires effective and less energy-intensive separation technologies. Engineering smart materials at a large scale with tunable properties for molecular separation is a challenging step to materialize this goal. Herein, we report thin film composite membranes prepared by the interfacial polymerization of porous organic cages (POCs) (RCC3 and tren cages). Ultrathin crosslinked polycage selective layers (thickness as low as 9.5 nm) are obtained with high permeance and strict molecular sieving for nanofiltration. A dual function is achieved by combining molecular separation and catalysis. This is demonstrated by impregnating the cages with highly catalytically active Pd nanoclusters ( ~ 0.7 nm). While the membrane promotes a precise molecular separation, its catalytic activity enables surface self-cleaning, by reacting with any potentially adsorbed dye and recovering the original performance. This strategy opens opportunities for the development of other smart membranes combining different functions and well-tailored abilities.
Collapse
Affiliation(s)
- Xiang Li
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Weibin Lin
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
- Chemistry Program, Chemical Engineering, Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Vivekanand Sharma
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
- Chemistry Program, Chemical Engineering, Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Radoslaw Gorecki
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Munmun Ghosh
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
- Chemistry Program, Chemical Engineering, Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Basem A Moosa
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
- Chemistry Program, Chemical Engineering, Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia
| | - Sandra Aristizabal
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Shanshan Hong
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia
| | - Niveen M Khashab
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia.
- Chemistry Program, Chemical Engineering, Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia.
| | - Suzana P Nunes
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division (BESE), Thuwal, Saudi Arabia.
- Advanced Membranes and Porous Materials (AMPM) Center, Thuwal, Saudi Arabia.
- Chemistry Program, Chemical Engineering, Physical Science and Engineering Division (PSE), Thuwal, Saudi Arabia.
- King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| |
Collapse
|
79
|
Nayab S, Alam A, Ahmad N, Khan SW, Khan W, Shams DF, Shah MI, Ateeq M, Shah SK, Lee H. Thiophene-Derived Schiff Base Complexes: Synthesis, Characterization, Antimicrobial Properties, and Molecular Docking. ACS OMEGA 2023; 8:17620-17633. [PMID: 37251197 PMCID: PMC10210233 DOI: 10.1021/acsomega.2c08266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Novel thiophene-derived Schiff base ligand DE, where DE is (E)-N1,N1-diethyl-N2-(thiophen-2-ylmethylene)ethane-1,2-diamine, and the corresponding M(II) complexes, [M(DE)X2] (M = Cu or Zn, X = Cl; M = Cd, X = Br), were prepared and structurally characterized. X-ray diffraction studies revealed that the geometry around the center of the M(II) complexes, [Zn(DE)Cl2] and [Cd(DE)Br2], could be best described as a distorted tetrahedral. In vitro antimicrobial screening of DE and its corresponding M(II) complexes, [M(DE)X2], was performed. The complexes were more potent and showed higher activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, fungi Candida albicans, and protozoa Leishmania major compared to the ligand. Among the studied complexes, [Cd(DE)Br2] exhibited the most promising antimicrobial activity against all the tested microbes compared to its analogs. These results were further supported by molecular docking studies. We believe that these complexes may significantly contribute to the efficient designing of metal-derived agents to treat microbial infections.
Collapse
Affiliation(s)
- Saira Nayab
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Aftab Alam
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Nasir Ahmad
- Department
of Chemistry Islamia College University
Peshawar, Peshawar 25000, Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Sher Wali Khan
- Department
of Chemistry, Shaheed Benazir Bhutto University
(SBBU), Sheringal
Upper Dir 18050, Khyber
Pakhtunkhwa, Islamic Republic of Pakistan
| | - Waliullah Khan
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Dilawar Farhan Shams
- Department
of Environmental Sciences, Abdul Wali Khan
University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ishaq
Ali Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Muhammad Ateeq
- Department
of Chemistry, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Said Karim Shah
- Department
of Physics, Abdul Wali Khan University, Mardan 23200, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department
of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| |
Collapse
|
80
|
Arumugam A, Shanmugam R, Munusamy S, Muhammad S, Algarni H, Sekar M. Study of the Crystal Architecture, Optoelectronic Characteristics, and Nonlinear Optical Properties of 4-Amino Antipyrine Schiff Bases. ACS OMEGA 2023; 8:15168-15180. [PMID: 37151560 PMCID: PMC10157849 DOI: 10.1021/acsomega.2c08305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Two Schiff bases, (E)-4-((2-chlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (4AAPOCB) and (E)-4-((4-chlorobenzylidene)amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (4AAPPCB), have been synthesized and grown as single crystals. Single-crystal X-ray diffraction analysis was employed to determine the crystal structure of the compounds, and the results suggest that the compounds crystallized into an orthorhombic crystal system having P212121 and Pbca space groups, respectively. Further, the crystallinity of the compounds was analyzed by the PXRD technique. The UV-vis-NIR spectra of the compounds demonstrate excellent transmittance in the entire visible region. The lower cutoff wavelengths of the compounds were determined to be 338 and 333 nm, respectively; additionally, optical band gaps of the compounds found were 4.60 and 4.35 eV. FTIR and NMR (1H and 13C) spectral techniques were utilized to analyze the molecular structure of the compounds. The compounds emit photoluminescence with broad emission bands with centers at 401 and 418 nm. The thermal stability and phase transitions were assessed through thermogravimetric methods. The phase transition prior to melting was indicated by the endothermic event at around 190 °C in the DTA curves of both crystals, and the same was observed in the DSC curves. The second harmonic efficiencies of the powdered compounds I and II were found to be 3.52 and 1.13 times better than that of the standard reference KDP. The 4AAPOCB and 4AAPPCB compounds showed isotropic polarizability amplitudes of 46.02 × 10-24 and 46.52 × 10-24 esu, respectively. The calculation of linear polarizability and NLO second-order polarizability (β) along with other optical parameters was performed for optimized geometries. The nonzero amplitudes of the average β values for compounds 4AAPOCB and 4AAPPCB were found to be 14.74 × 10-30 and 8.10 × 10-30 esu, respectively, which show a decent potential of the synthesized molecules for NLO applications. The calculated β amplitudes were further explained based on calculated electronic parameters like molecular electrostatic potentials, frontier molecular orbitals, molecular orbital energies, transition energies, oscillator strengths, and unit spherical representation of NLO polarizability. The current analysis emphasizes the significance of synthesized compounds as prospective candidates for optical and NLO applications through the use of experiments and quantum computations.
Collapse
Affiliation(s)
- Amsaveni Arumugam
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
| | - Ramesh Shanmugam
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
- Department
of Chemistry, Adithya Institute of Technology, Coimbatore 641 107, Tamil Nadu, India
| | - Saravanabhavan Munusamy
- Department
of Chemistry, KPR Institute of Engineering
and Technology, Coimbatore 641407, Tamil Nadu, India
| | - Shabbir Muhammad
- Department
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413,Saudi Arabia
| | - Hamed Algarni
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413,Saudi Arabia
| | - Marimuthu Sekar
- Department
of Chemistry, Sri Ramakrishna Mission Vidyalaya
College of Arts and Science, Coimbatore 641 020, Tamil Nadu, India
| |
Collapse
|
81
|
Zhu J, Wen W, Tian Z, Zhang X, Wang S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023; 260:124613. [PMID: 37146454 DOI: 10.1016/j.talanta.2023.124613] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
Covalent organic framework (COF), a kind of porous polymer with crystalline properties, is a periodic porous framework material with precise regulation at atomic level, which can be formed by the orderly connection of pre-designed organic construction units through covalent bonds. Compared with metal-organic frameworks, COFs exhibit unique performance, including tailor-made functions, stronger load ability, structural diversity, ordered porosity, intrinsic stability and excellent adsorption features, are more conducive to the expansion of electrochemical sensing applications and the universality of applications. In addition, COFs can accurately integrate organic structural units with atomic precision into ordered structures, so that the structural diversity and application of COFs can be greatly enriched by designing new construction units and adopting reasonable functional strategies. In this review, we mainly summarized state-of-the-art recent advances of the classification and synthesis strategy of COFs, the design of functionalized COF for electrochemical sensors and COFs-based electrochemical sensing. Then, an overview of the considerable recent advances made in applying outstanding COFs to establish electrochemical sensing platform, including electrochemical sensor based on voltammetry, amperometry, electrochemical impedance spectroscopy, electrochemiluminescence, photoelectrochemical sensor and others. Finally, we discussed the positive outlooks, critical challenges and bright directions of COFs-based electrochemical sensing in the field of disease diagnosis, environmental monitoring, food safety, drug analysis, etc.
Collapse
Affiliation(s)
- Junlun Zhu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Zhengfang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
82
|
Omar AZ, Alazmi ML, Alsubaie MS, Hamed EA, Ahmed HA, El-Atawy MA. Synthesis of New Liquid-Crystalline Compounds Based on Terminal Benzyloxy Group: Characterization, DFT and Mesomorphic Properties. Molecules 2023; 28:molecules28093804. [PMID: 37175214 PMCID: PMC10179744 DOI: 10.3390/molecules28093804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The effect of the terminal benzyloxy group on the mesomorphic properties of liquid crystalline materials developed from rod-like Schiff base has been described. For this objective, a novel Schiff base liquid crystal family, specifically new series of Schiff base liquid crystals, namely, (E)-4-(alkyloxy)-N-(4-(benzyloxy)benzylidene)aniline, In, are prepared and investigated in detail. The length of the terminal alkyloxy chain (n) varies amongst the compounds in the series. Where n varies between 6, 8 and 16 carbons. At the other end of the compounds, benzyloxy moiety was attached. The molecular structures of all synthesized compounds were established using different spectroscopic techniques. The molecular self-assembly was explored using differential scanning calorimetry (DSC) and polarized optical microscope (POM). Depending on the length of the terminal alkyloxy chain, only one type of SmA phase with different stability was observed. The previously reported para-substituted systems and the present investigated compounds were compared and discussed. The calculated quantum chemical parameters were computationally correlated using the DFT method via the B3LYP 6-311G(d,p) basis set. The theoretical computations revealed that the length of the alkyl side chain influences the zero-point energy, reactivity and other estimated thermodynamic parameters of benzoyloxy/azomethine derivatives. Furthermore, the FMO energy analysis shows that molecule I16 have higher HOMO energies than the other compounds, and I6 has a much lower LUMO level than the rest.
Collapse
Affiliation(s)
- Alaa Z Omar
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt
| | - Mohammed L Alazmi
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt
| | - Mai S Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt
| | - Ezzat A Hamed
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt
| | - Hoda A Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, P.O. Box 12613, Giza 12613, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, P.O. Box 426 Ibrahemia, Alexandria 21321, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| |
Collapse
|
83
|
Fan H, Wang H, Peng M, Meng H, Mundstock A, Knebel A, Caro J. Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation. ACS NANO 2023; 17:7584-7594. [PMID: 37026681 PMCID: PMC10134499 DOI: 10.1021/acsnano.2c12774] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic framework (COF) membranes have emerged as a promising candidate for energy-efficient separations, but the angstrom-precision control of the channel size in the subnanometer region remains a challenge that has so far restricted their potential for gas separation. Herein, we report an ultramicropore-in-nanopore concept of engineering matreshka-like pore-channels inside a COF membrane. In this concept, α-cyclodextrin (α-CD) is in situ encapsulated during the interfacial polymerization which presumably results in a linear assembly (LA) of α-CDs in the 1D nanochannels of COF. The LA-α-CD-in-TpPa-1 membrane shows a high H2 permeance (∼3000 GPU) together with an enhanced selectivity (>30) of H2 over CO2 and CH4 due to the formation of fast and selective H2-transport pathways. The overall performance for H2/CO2 and H2/CH4 separation transcends the Robeson upper bounds and ranks among the most powerful H2-selective membranes. The versatility of this strategy is demonstrated by synthesizing different types of LA-α-CD-in-COF membranes.
Collapse
Affiliation(s)
- Hongwei Fan
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Haoran Wang
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Manhua Peng
- Key
Laboratory of Power Station Energy Transfer Conversion and System,
Ministry of Education, School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Hong Meng
- College
of Chemical Engineering, Beijing University
of Chemical Technology, Beijing 100029, PR China
| | - Alexander Mundstock
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| | - Alexander Knebel
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, Fraunhoferstraße 6, 07743 Jena, Germany
| | - Jürgen Caro
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167 Hannover, Germany
| |
Collapse
|
84
|
Zhang C, Li Y, Yuan H, Lu Z, Zhang Q, Zhao L. Methacrylate bonded covalent organic framework monolithic column online coupling with high-performance liquid chromatography for analysis of trace estrogens in food. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123697. [PMID: 37059013 DOI: 10.1016/j.jchromb.2023.123697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Covalent organic frameworks (COFs) are a burgeoning class of crystalline porous materials with unique properties and have been considered as a promising functional extraction medium in sample pretreatment. In this study, a new methacrylate-bonded COF (TpTh-MA) was well designed and synthesized via the aldehyde-amine condensation reaction, and the TpTh-MA was incorporated into poly (ethylene dimethacrylate) porous monolith by a facile polymerization reaction inside capillary to prepare a novel TpTh-MA monolithic column. The fabricated TpTh-MA monolithic column was characterized with scanning electron microscope, Fourier transform infrared spectrometer, X-ray diffraction, and N2 adsorption-desorption experiments. Then, the homogeneous porous structure, good permeability and high mechanical stability of TpTh-MA monolithic column was used as separation and enrichment media of capillary microextraction, which was coupled with high-performance liquid chromatography fluorescence detection for online enrichment and analysis of trace estrogens. The main experimental parameters influencing the extraction efficiency were systematically investigated. The adsorption mechanism for three estrogens was also explored and discussed based on hydrophobic effect, π-π affinity and hydrogen bonding interaction, which contributed to its strong recognition affinity to target compounds. The enrichment factors of the TpTh-MA monolithic column micro extraction method for the three estrogens were 107-114, indicating a significant preconcentration ability. Under optimal conditions, a new online analysis method was developed and exhibited good sensitivity and wide linearity range of 0.25-100.0 µg·L-1 with a coefficient of determination (R2) higher than 0.9990 and a low limit of detection with 0.05-0.07 µg·L-1. The method was successfully applied for online analysis of three estrogens of milk and shrimp samples and the recoveries obtained from spiking experiments were in range of 81.4-113% and 77.9-111%, with the relative standard deviations of 2.6-7.9% and 2.1-8.3% (n = 5), respectively. The results revealed the great potential for the application of the COFs-bonded monolithic column in the field of sample pretreatment.
Collapse
Affiliation(s)
- Chengjiang Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Yuhuang Li
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Hongmei Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Zeyi Lu
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Qi Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lirong Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
85
|
Zhong Y, Li C, Yang F, Guan L, Jin S. Covalent Pyrimidine Frameworks via a Tandem Polycondensation Method for Photocatalytic Hydrogen Production and Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204515. [PMID: 36635041 DOI: 10.1002/smll.202204515] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The development of heteroaromatic conjugated porous polymers (H-CPPs) have received enormous research interests, because of the important functional roles of the heteroatoms in photocatalysis and proton conduction. However, due to the synthetic challenges deriving from the stable structures, the structural diversity and synthetic methods of them are still limited. Herein, a new type of H-CPPs, covalent pyrimidine frameworks (CPFs), via an efficient tandem polycondensation reaction between aldehyde, acetyl, and amidine monomers is reported. The resulting CPFs are bridged by pyrimidine units, rich of nitrogen atoms and can be structurally regulated on demand. The CPFs are shown to be active photocatalysts for hydrogen evolution from methanol via a photo-thermo-catalysis process, achieving an excellent hydrogen evolution rate of 5282.8 µmol h-1 g-1 . The CPFs can be further processed into a mixed matrix membrane, displaying an excellent proton conductivity of 1.30 × 10-2 S cm-1 at 413 K under anhydrous condition.
Collapse
Affiliation(s)
- Yifei Zhong
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Chao Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Fan Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Lijiang Guan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| | - Shangbin Jin
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xianning Road 28, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
86
|
Haldar S, Bhauriyal P, Ramuglia AR, Khan AH, De Kock S, Hazra A, Bon V, Pastoetter DL, Kirchhoff S, Shupletsov L, De A, Isaacs MA, Feng X, Walter M, Brunner E, Weidinger IM, Heine T, Schneemann A, Kaskel S. Sulfide-Bridged Covalent Quinoxaline Frameworks for Lithium-Organosulfide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210151. [PMID: 36719245 DOI: 10.1002/adma.202210151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Indexed: 06/18/2023]
Abstract
The chelating ability of quinoxaline cores and the redox activity of organosulfide bridges in layered covalent organic frameworks (COFs) offer dual active sites for reversible lithium (Li)-storage. The designed COFs combining these properties feature disulfide and polysulfide-bridged networks showcasing an intriguing Li-storage mechanism, which can be considered as a lithium-organosulfide (Li-OrS) battery. The experimental-computational elucidation of three quinoxaline COFs containing systematically enhanced sulfur atoms in sulfide bridging demonstrates fast kinetics during Li interactions with the quinoxaline core. Meanwhile, bilateral covalent bonding of sulfide bridges to the quinoxaline core enables a redox-mediated reversible cleavage of the sulfursulfur bond and the formation of covalently anchored lithium-sulfide chains or clusters during Li-interactions, accompanied by a marked reduction of Li-polysulfide (Li-PS) dissolution into the electrolyte, a frequent drawback of lithium-sulfur (Li-S) batteries. The electrochemical behavior of model compounds mimicking the sulfide linkages of the COFs and operando Raman studies on the framework structure unravels the reversibility of the profound Li-ion-organosulfide interactions. Thus, integrating redox-active organic-framework materials with covalently anchored sulfides enables a stable Li-OrS battery mechanism which shows benefits over a typical Li-S battery.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Preeti Bhauriyal
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Anthony R Ramuglia
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Arafat H Khan
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sunel De Kock
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Arpan Hazra
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Dominik L Pastoetter
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Sebastian Kirchhoff
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Mark A Isaacs
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Laboratories, Didcot, OX11 0FA, UK
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Inez M Weidinger
- Chair of Electrochemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Thomas Heine
- Chair of Theoretical Chemistry, Technische Universität Dresden, 01069, Dresden, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, 01069, Dresden, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Winterbergstraße 28, 01277, Dresden, Germany
| |
Collapse
|
87
|
Rodríguez-Carríllo C, Benítez M, El Haskouri J, Amorós P, Ros-Lis JV. Novel Microwave-Assisted Synthesis of COFs: 2020–2022. Molecules 2023; 28:molecules28073112. [PMID: 37049875 PMCID: PMC10096173 DOI: 10.3390/molecules28073112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Covalent organic frameworks (COFs) have emerged as a new type of crystalline porous polymers of great interest. However, their preparation requires long reaction times. Microwave-assisted synthesis (MAS) offers an interesting approach to increasing the reaction rate of chemical processes. Thus, microwaves can be a key tool for the fast and scalable synthesis of COFs. Since our previous review on the topic, the preparation of COFs with microwaves has been evolving. Herein, we present a compilation of COFs studies and experiments published in the last three years on the synthesis of COFs using microwave-assisted synthesis as a source of energy. The articles include imine, triazine, and other 2D COFs synthesized using MAS. The 3D COFs have also been compiled. The chemical structure of the monomers and the COFs and their main parameters of synthesis and application are summarized for each article.
Collapse
Affiliation(s)
- Cristina Rodríguez-Carríllo
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| | - Miriam Benítez
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071 Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071 Valencia, Spain
| | - Jose V. Ros-Lis
- REDOLI Research Group, Instituto Interuniversitario de Investigación de Reconocimiento Moleculary Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, 46100 Valencia, Spain
| |
Collapse
|
88
|
Lin Y, Cui H, Liu C, Li R, Wang S, Qu G, Wei Z, Yang Y, Wang Y, Tang Z, Li H, Zhang H, Zhi C, Lv H. A Covalent Organic Framework as a Long-life and High-Rate Anode Suitable for Both Aqueous Acidic and Alkaline Batteries. Angew Chem Int Ed Engl 2023; 62:e202218745. [PMID: 36705089 DOI: 10.1002/anie.202218745] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Aqueous rechargeable batteries are prospective candidates for large-scale grid energy storage. However, traditional anode materials applied lack acid-alkali co-tolerance. Herein, we report a covalent organic framework containing pyrazine (C=N) and phenylimino (-NH-) groups (HPP-COF) as a long-cycle and high-rate anode for both acidic and alkaline batteries. The HPP-COF's robust covalent linkage and the hydrogen bond network between -NH- and water molecules collectively improve the acid-alkaline co-tolerance. More importantly, the hydrogen bond network promotes the rapid transport of H+ /OH- by the Grotthuss mechanism. As a result, the HPP-COF delivers a superior capacity and cycle stability (66.6 mAh g-1 @ 30 A g-1 , over 40000 cycles in 1 M H2 SO4 electrolyte; 91.7 mAh g-1 @ 100 A g-1 , over 30000 cycles @ 30 A g-1 in 1 M NaOH electrolyte). The work opens a new direction for the structural design and application of COF materials in acidic and alkaline batteries.
Collapse
Affiliation(s)
- Yilun Lin
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Huilin Cui
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.,Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chao Liu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Ran Li
- Yan'an Key Laboratory of Green Chemical Energy, Key Laboratory of New Energy & New Functional Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi, 716000, P. R. China
| | - Shipeng Wang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China.,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Guangmeng Qu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yihan Yang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Yaxin Wang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Zijie Tang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Hongfei Li
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Haiyan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chunyi Zhi
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China.,Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Haiming Lv
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| |
Collapse
|
89
|
Cui J, Fu Y, Song J, Meng B, Zhou J, Zhou Z, Su Z. A Cu I Cluster-Based Covalent Metal-Organic Framework as a Photocatalyst for Efficient Visible-Light-Driven Reduction of CO 2. CHEMSUSCHEM 2023; 16:e202202079. [PMID: 36583284 DOI: 10.1002/cssc.202202079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The application of solar energy to convert CO2 into high-value chemicals and fuels has been considered a highly desirable approach to relieving the greenhouse effect and energy crisis. However, the exploration of appropriate photocatalysts remains a major challenge. Combining the respective advantages of covalent organic frameworks and metal-organic frameworks to construct covalent metal-organic frameworks (CMOFs) can be a valid strategy to provide efficient, reliable, and eco-friendly photocatalysts. In this study, a CuI cluster-based CMOF (JNM-2) is used as a photocatalyst for CO2 photoreduction under visible-light irradiation. JNM-2 exhibits remarkable efficiency in photocatalytic CO2 reduction with high production rates of HCOOH (9019 μmol g-1 h-1 ) and CO (835 μmol g-1 h-1 ). The active center, reaction intermediates, and product generation pathways are elucidated by in situ DRIFTS and DFT calculations. This work demonstrates the tremendous possibilities of CMOFs as photocatalysts for CO2 reduction and provides profound insights into the mechanism of CO2 conversion into HCOOH/CO by using a molecularly accurate structural model.
Collapse
Affiliation(s)
- Jinxian Cui
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Yaomei Fu
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemicals, Weifang University of Science and Technology Shouguang, Shandong, 262700, China
| | - Jian Song
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Bo Meng
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
| | - Jie Zhou
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, 510006, China
| | - Ziyan Zhou
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong, 255000, China
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemicals, Weifang University of Science and Technology Shouguang, Shandong, 262700, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
90
|
Ruidas S, Chowdhury A, Ghosh A, Ghosh A, Mondal S, Wonanke ADD, Addicoat M, Das AK, Modak A, Bhaumik A. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4071-4081. [PMID: 36905363 DOI: 10.1021/acs.langmuir.2c03379] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Modak
- Amity Institute of Applied Sciences, Amity University, Noida, Amity Rd, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
91
|
Zhai Y, Bao Y, Ning T, Chen P, Di S, Zhu S. Room temperature fabrication of magnetic covalent organic frameworks for efficient enrichment of parabens in water. J Chromatogr A 2023; 1692:463850. [PMID: 36773400 DOI: 10.1016/j.chroma.2023.463850] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023]
Abstract
A novel 4 + 2 covalent magnetic organic framework (COF) with core-shell structure was synthesized for the first time with N, N, N', N'-Tetrakis (4-aminophenyl)-1, 4- benzenediamine (TPDA) and 2, 6-Pyridinedicarboxaldehyde (PCBA) at room temperature. The synthesized magnetic TPDA-PCBA-COF has a large specific surface area and superparamagnetism, which makes it an ideal sorbent for trace analytes enrichment. To this end, we combined it with magnetic solid phase extraction (MSPE) to enrich trace parabens in environmental water. The parameters affecting the enrichment efficiency of magnetic solid phase extraction, such as the amount of Fe3O4@TPDA-PCBA-COF, extraction time, pH of samples, salt concentration, desorption solvent volume and desorption time, were optimized. A simple method for extraction and determination of parabens in water samples by MSPE combined with high performance liquid chromatography (HPLC) was established under optimized conditions. The validation results revealed that the linear ranges were at 1.0-5.0 × 102 ng mL-1 with R value between 0.9915 and 0.9999, the spiked recoveries were in the range of 82.8% to 99.9% and RSDs were lower than 10%. The method was further applied to the determination of parabens in water samples, with recoveries in the range of 82.2% to 110.0% and RSDs ≤ 7.7%. These results suggest that the magnetic TPDA-PCBA-COF could be used as a promising adsorbent for efficient extraction and quantitation of parabens in environmental water samples.
Collapse
Affiliation(s)
- Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
92
|
Musikavanhu B, Zhu D, Tang M, Xue Z, Wang S, Zhao L. A naphthol hydrazone Schiff base bearing benzothiadiazole unit for fluorescent detection of Fe 3+ in PC3 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122242. [PMID: 36542920 DOI: 10.1016/j.saa.2022.122242] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Naphthol hydrazone derivatives are recognized as efficient chelating agents for both qualitative and quantitative detection of metal ions. Here we design a naphthol hydrazine-based chemosensor with covalently linking a strong electron-withdrawing benzothiadiazole group to modulate the molecular electronic structure, nominated as NtHzBtd. The fluorescent probe performs excellent selectivity and sensitivity towards Fe3+ with 1:1 binding stoichiometry, while exhibiting a quick response at 55 s with a relatively low limit of detection of 0.036 µM. A series of spectroscopic measurements in tandem with theoretical calculations suggest that the probe undergoes both intramolecular charge transfer (ICT) and chelation enhanced quenching (CHEQ) processes. Successful color rendering of paper strips and bioimaging in PC3 cells demonstrate the promising applicability of NtHzBtd for portable Fe3+ detection in real samples and biosystems.
Collapse
Affiliation(s)
- Brian Musikavanhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongwei Zhu
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Mengran Tang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoli Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212013, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
93
|
Wang L, Zhao J, Chen J, Jiang T, Zhang Q, Zhong S, Dmytro S. Phenediamine bridging phthalocyanine-based covalent organic framework polymers used as anode materials for lithium-ion batteries. Phys Chem Chem Phys 2023; 25:8050-8063. [PMID: 36876636 DOI: 10.1039/d3cp00007a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In this study, phenediamine bridging phthalocyanine-based covalent organic framework materials (CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA) with increasingly-widening pore sizes are prepared by reacting cobalt octacarboxylate phthalocyanine with p-phenylenediamine (PDA), benzidine (BDA) and 4,4''-diamino-p-terphenyl (TDA), respectively. The effects of frame size on the morphology structure and its electrochemical properties were explored. X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and transmission electron microscopy (TEM) images show that the pore sizes of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are about 1.7 nm, 2.0 nm and 2.3 nm, respectively, which are close to the simulated results after geometric conformation optimization using Material Studio software. In addition, the specific surface areas of CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA are 62, 81 and 137 m2 g-1, respectively. With increase in the frame size, the specific surface area of the corresponding material increases, which is bound to produce different electrochemical behaviors. Consequently, the initial capacities of the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes in lithium-ion batteries (LIBs) are 204, 251 and 382 mA h g-1, respectively. As the charge and discharge processes continue, the active points in the electrode material are continuously activated, leading to a continuous increase in charge and discharge capacities. After 300 cycles, the CoTAPc-PDA, CoTAPc-BDA and CoTAPc-TDA electrodes exhibit capacities of 519, 680 and 826 mA h g-1, respectively, and after 600 cycles, the capacities are maintained at 602, 701 and 865 mA h g-1, respectively, with a stable capacity retention rate at a current density of 100 mA g-1. The results show that the large-size frame structure materials have a larger specific surface area and more favorable lithium ion transmission channels, which produce greater active point utilization and smaller charge transmission impedance, thus showing larger charge and discharge capacity and superior rate capability. This study fully confirms that frame size is a key factor affecting the properties of organic frame electrodes, providing design ideas for the development of high-performance organic frame electrode materials.
Collapse
Affiliation(s)
- Luyi Wang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jianjun Zhao
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Jun Chen
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Tingting Jiang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Qian Zhang
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China. .,Yichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shengwen Zhong
- Jiangxi Key Laboratory of Power Batteries and Materials, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Sciences and Technology, Ganzhou 341000, China.
| | - Sydorov Dmytro
- Joint Department of Electrochemical Energy Systems, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 38A Vernadsky Ave, Kiev, 03142, Ukraine
| |
Collapse
|
94
|
Li Z, Deng T, Ma S, Zhang Z, Wu G, Wang J, Li Q, Xia H, Yang SW, Liu X. Three-Component Donor-π-Acceptor Covalent-Organic Frameworks for Boosting Photocatalytic Hydrogen Evolution. J Am Chem Soc 2023. [PMID: 36917067 DOI: 10.1021/jacs.2c11893] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Two-dimensional covalent-organic frameworks (2D COFs) have recently emerged as great prospects for their applications as new photocatalytic platforms in solar-to-hydrogen conversion; nevertheless, their inefficient solar energy capture and fast charge recombination hinder the improvement of photocatalytic hydrogen production performance. Herein, two photoactive three-component donor-π-acceptor (TCDA) materials were constructed using a multicomponent synthesis strategy by introducing electron-deficient triazine and electron-rich benzotrithiophene moieties into frameworks through sp2 carbon and imine linkages, respectively. Compared with two-component COFs, the novel TCDA-COFs are more convenient in regulating the inherent photophysical properties, thereby realizing outstanding photocatalytic activity for hydrogen evolution from water. Remarkably, the first sp2 carbon-linked TCDA-COF displays an impressive hydrogen evolution rate of 70.8 ± 1.9 mmol g-1 h-1 with excellent reusability in the presence of 1 wt % Pt under visible-light illumination (420-780 nm). Utilizing the combination of diversified spectroscopy and theoretical prediction, we show that the full π-conjugated linkage not only effectively broadens the visible-light harvesting of COFs but also enhances charge transfer and separation efficiency.
Collapse
Affiliation(s)
- Ziping Li
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Tianqi Deng
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Si Ma
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhenwei Zhang
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Gang Wu
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Jiaao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Qizhen Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun 130012, P. R. China
| | - Shuo-Wang Yang
- Institute of High Performance Computing, Agency for Science, Technology and Research, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
95
|
Martínez-Visus Í, Ulcuango M, Zornoza B, Coronas J, Téllez C. Green and Fast Strategies for Energy-Efficient Preparation of the Covalent Organic Framework TpPa-1. Chemistry 2023; 29:e202203907. [PMID: 36652540 DOI: 10.1002/chem.202203907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
Three synthesis procedures for the covalent-organic framework (COF) TpPa-1 are studied with the purpose of setting up the most promising one in a fast and green way, leading to a more environmentally friendly and sustainable process. With conventional heating, good crystallinity and a high BET specific surface area (SSA) of up to 1007 m2 ⋅ g-1 are achieved at 170 °C for 3 days using water as the quintessential green solvent. However, the application of microwave radiation in the synthesis for this crystalline porous polymer allows reaction times to be shortened to 30 min while maintaining structural and textural properties (BET SSA of 928 m2 ⋅ g-1 ) and obtaining yields close to 98 % (vs. 90 % in the hydrothermal synthesis). The water-assisted mechanochemical synthesis is also an environmentally friendly synthetic approach; with heating at 170 °C in a two-step process (10+10 min), high crystallinity is achieved, a BET SSA of 960 m2 ⋅ g-1 and a yield of 98 % for TpPa-1.
Collapse
Affiliation(s)
- Íñigo Martínez-Visus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza, Zaragoza, 50009, Spain.,Chemical and Environmental Engineering Department, Universidad de Zaragoza Zaragoza, Zaragoza, 50018, Spain
| | - Matías Ulcuango
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza, Zaragoza, 50009, Spain.,Chemical and Environmental Engineering Department, Universidad de Zaragoza Zaragoza, Zaragoza, 50018, Spain
| | - Beatriz Zornoza
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza, Zaragoza, 50009, Spain.,Chemical and Environmental Engineering Department, Universidad de Zaragoza Zaragoza, Zaragoza, 50018, Spain
| | - Joaquín Coronas
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza, Zaragoza, 50009, Spain.,Chemical and Environmental Engineering Department, Universidad de Zaragoza Zaragoza, Zaragoza, 50018, Spain
| | - Carlos Téllez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza, Zaragoza, 50009, Spain.,Chemical and Environmental Engineering Department, Universidad de Zaragoza Zaragoza, Zaragoza, 50018, Spain
| |
Collapse
|
96
|
Yang C, Mao C, Deng Q, Yang Y, Zhou Y, Zhang Y. One-Pot Synthesis of Flavones Catalyzed by an Au-mediated Covalent Organic Framework. J Colloid Interface Sci 2023; 642:283-291. [PMID: 37004262 DOI: 10.1016/j.jcis.2023.03.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Covalent organic frameworks (COFs) are excellent candidates for rationally designed metal-coordinated catalysts due to their porous structures and adjustable organic building blocks. In this work, a two-dimensional (2D) COF with novel fxt topology was synthesized. The newly devised COF had been fully characterized by a range of spectroscopic and microscopic techniques. The COF was further metallized by the gold species to form a heterogeneous catalyst that enabled the one-pot synthesis of flavone and its derivatives. The Au@COF catalyst showed high catalytic activity and good recyclability. This work demonstrates the great potential of metallized COFs with unique well-defined pores in organic catalysis.
Collapse
|
97
|
Zheng Z, Xu K, Lu F, Zhong B, You L, Xiong W, Tang T, Wang S. Magnetic covalent organic framework for the adsorption of silver nanoparticles and recycled as surface-enhanced Raman substrate and high-efficiency catalysts for 4-nitrophenol degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34636-34648. [PMID: 36515884 DOI: 10.1007/s11356-022-24720-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
A magnetic covalent organic framework Fe3O4@BM was prepared with melamine and 4-4'-biphenyldialdehyde as monomers and used as adsorbent for Ag NP removal. Fe3O4@BM was characterized by zeta potential analysis, transform infrared spectrometry, X-ray diffraction, thermogravimetric analysis, contact angle, and N2 adsorption-desorption. Fe3O4@BM possessed plentiful amino groups, positive potential, and rapid separation performance, making it a promising adsorbent for silver nanoparticles. The adsorption process followed the pseudo-second-order kinetic equation and Langmuir isotherm model. The maximum adsorption capacity of Ag NPs calculated by the Langmuir isotherm model was 544.9 mg/g. The adsorption product Fe3O4@BM@Ag could be recycled and efficiently catalyze the degradation of 4-nitrophenol within 6 min. Meanwhile, the recycled Fe3O4@BM@Ag could also be used as a surface-enhanced Raman substrate for DTNB detection, and the limit of detection of DTNB reached as low as 10-7 mol/L. This work prepared a promising adsorbent Fe3O4@BM for Ag NP adsorption and provided a sustainable approach for the recycling of the adsorption product Fe3O4@BM@Ag.
Collapse
Affiliation(s)
- Zhijuan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Ke Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Feifei Lu
- Fujian Key Laboratory of Quality and Safety of Agri-Products, Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Baohua Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China.
| | - Weijie Xiong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Ting Tang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
98
|
Yang HC, Chen YY, Suen SY, Lee RH. Triazine-based covalent organic framework/carbon nanotube fiber nanocomposites for high-performance supercapacitor electrodes. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
99
|
Gutiérrez L, Martin-Diaconescu V, Casadevall C, Oropeza F, de la Peña O’Shea VA, Meng J, Ortuño MA, Lloret-Fillol J. Low Oxidation State Cobalt Center Stabilized by a Covalent Organic Framework to Promote Hydroboration of Olefins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Luis Gutiérrez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Vlad Martin-Diaconescu
- ALBA Synchrotron Light Source, Carretera BP 1413, Km. 3.3, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Freddy Oropeza
- Photoactivated Processes Unit, IMDEA Energy, 28935 Móstoles, Spain
| | | | - JingJing Meng
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Manuel A. Ortuño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
100
|
Wang M, Fan T, Fang L, Gou G, Yin Y, Liu M, Li L. Building N-hydroxyphthalimide organocatalytic sites into a covalent organic framework for metal-free and selective oxidation of silanes. Chem Commun (Camb) 2023; 59:2019-2022. [PMID: 36723104 DOI: 10.1039/d2cc06446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A novel crystalline covalent organic framework COF-NHPI was built by a bottom-up strategy to guarantee highly ordered embedment of the N-hydroxyphthalimide (NHPI) units as nitroxyl radical organocatalytic sites. The COF-NHPI was demonstrated to be a metal-free, highly selective and heterogeneous catalyst for the efficient oxidation of various silanes to the corresponding silanols. Mechanistic studies revealed that the critical phthalimido N-oxyl radical was generated in situ to govern the catalysis.
Collapse
Affiliation(s)
- Man Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Tao Fan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Lei Fang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Gaozhang Gou
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Ying Yin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.
| |
Collapse
|