51
|
Hernández Vera R, Schwan E, Fatsis-Kavalopoulos N, Kreuger J. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics. PLoS One 2016; 11:e0167583. [PMID: 28002463 PMCID: PMC5176263 DOI: 10.1371/journal.pone.0167583] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
Time-lapse imaging is a powerful tool for studying cellular dynamics and cell behavior over long periods of time to acquire detailed functional information. However, commercially available time-lapse imaging systems are expensive and this has limited a broader implementation of this technique in low-resource environments. Further, the availability of time-lapse imaging systems often present workflow bottlenecks in well-funded institutions. To address these limitations we have designed a modular and affordable time-lapse imaging and incubation system (ATLIS). The ATLIS enables the transformation of simple inverted microscopes into live cell imaging systems using custom-designed 3D-printed parts, a smartphone, and off-the-shelf electronic components. We demonstrate that the ATLIS provides stable environmental conditions to support normal cell behavior during live imaging experiments in both traditional and evaporation-sensitive microfluidic cell culture systems. Thus, the system presented here has the potential to increase the accessibility of time-lapse microscopy of living cells for the wider research community.
Collapse
Affiliation(s)
- Rodrigo Hernández Vera
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (RHV); (JK)
| | - Emil Schwan
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nikos Fatsis-Kavalopoulos
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Gradientech AB, Uppsala Science Park, Uppsala, Sweden
| | - Johan Kreuger
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
- * E-mail: (RHV); (JK)
| |
Collapse
|
52
|
Zhang YS, Yu C. Towards engineering integrated cardiac organoids: beating recorded. J Thorac Dis 2016; 8:E1683-E1687. [PMID: 28149613 PMCID: PMC5227195 DOI: 10.21037/jtd.2016.12.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Cunjiang Yu
- Department of Mechanical Engineering, University of Houston, Houston, TX, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
- Program of Materials Science and Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
53
|
Shin SR, Zhang YS, Kim DJ, Manbohi A, Avci H, Silvestri A, Aleman J, Hu N, Kilic T, Keung W, Righi M, Assawes P, Alhadrami HA, Li RA, Dokmeci MR, Khademhosseini A. Aptamer-Based Microfluidic Electrochemical Biosensor for Monitoring Cell-Secreted Trace Cardiac Biomarkers. Anal Chem 2016; 88:10019-10027. [PMID: 27617489 PMCID: PMC5844853 DOI: 10.1021/acs.analchem.6b02028] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Continual monitoring of secreted biomarkers from organ-on-a-chip models is desired to understand their responses to drug exposure in a noninvasive manner. To achieve this goal, analytical methods capable of monitoring trace amounts of secreted biomarkers are of particular interest. However, a majority of existing biosensing techniques suffer from limited sensitivity, selectivity, stability, and require large working volumes, especially when cell culture medium is involved, which usually contains a plethora of nonspecific binding proteins and interfering compounds. Hence, novel analytical platforms are needed to provide noninvasive, accurate information on the status of organoids at low working volumes. Here, we report a novel microfluidic aptamer-based electrochemical biosensing platform for monitoring damage to cardiac organoids. The system is scalable, low-cost, and compatible with microfluidic platforms easing its integration with microfluidic bioreactors. To create the creatine kinase (CK)-MB biosensor, the microelectrode was functionalized with aptamers that are specific to CK-MB biomarker secreted from a damaged cardiac tissue. Compared to antibody-based sensors, the proposed aptamer-based system was highly sensitive, selective, and stable. The performance of the sensors was assessed using a heart-on-a-chip system constructed from human embryonic stem cell-derived cardiomyocytes following exposure to a cardiotoxic drug, doxorubicin. The aptamer-based biosensor was capable of measuring trace amounts of CK-MB secreted by the cardiac organoids upon drug treatments in a dose-dependent manner, which was in agreement with the beating behavior and cell viability analyses. We believe that, our microfluidic electrochemical biosensor using aptamer-based capture mechanism will find widespread applications in integration with organ-on-a-chip platforms for in situ detection of biomarkers at low abundance and high sensitivity.
Collapse
Affiliation(s)
- Su Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Duck-Jin Kim
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ahmad Manbohi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Huseyin Avci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Eskisehir Osmangazi University, Faculty of Engineering and Architecture, Metallurgical and Materials Engineering Department, 26480 Eskisehir, Turkey
| | - Antonia Silvestri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Politecnico di Torino, Department of Electronics and Telecommunications (DET), Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ning Hu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Tugba Kilic
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Izmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, 35620 Izmir, Turkey
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Martina Righi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Pribpandao Assawes
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hani A. Alhadrami
- Faculty of Applied Medical Sciences, Department of Medical Technology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Hong Kong
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Mehmet R. Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
- College of Animal Bioscience and Technology, Department of Bioindustrial Technologies, Konkuk University, Hwayang-dong, Kwangjin-gu, Seoul, Republic of Korea
| |
Collapse
|
54
|
Akkilic N, Molenaar R, Claessens MMAE, Blum C, de Vos WM. Monitoring the Switching of Single BSA-ATTO 488 Molecules Covalently End-Attached to a pH-Responsive PAA Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8803-8811. [PMID: 27525503 DOI: 10.1021/acs.langmuir.6b01064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe a novel combination of a responsive polymer brush and a fluorescently labeled biomolecule, where the position of the biomolecule can be switched from inside to outside the brush and vice versa by a change in pH. For this, we grafted ultrathin, amino-terminated poly(acrylic acid) brushes to glass and silicon substrates. Individual bovine serum albumin (BSA) molecules labeled with fluorophore ATTO 488 were covalently end-attached to the polymers in this brush using a bis-N-succinimidyl-(pentaethylene glycol) linker. We investigated the dry layer properties of the brush-protein ensemble, and it is swelling behavior using spectroscopic ellipsometry. Total internal reflection fluorescence (TIRF) microscopy enabled us to study the distance-dependent switching of the fluorescently labeled protein molecules. The fluorescence emission from the labeled proteins ceased (out-state) when the polymer chains stretched away from the interface under basic pH conditions, and fluorescence recurred (in-state) when the chains collapsed under acidic conditions. Moreover, TIRF allowed us to study the fluorescence switching behavior of fluorescently labeled BSA molecules down to the single-molecule level, and we demonstrate that this switching is fast but that the exact intensity during the in-state is the result of a more random process. Control experiments verify that the switching behavior is directly correlated to the responsive behavior of the polymer brush. We propose this system as a platform for switchable sensor applications but also as a method to study the swelling and collapse of individual polymer chains in a responsive polymer brush.
Collapse
Affiliation(s)
- Namik Akkilic
- Membrane Science and Technology, and ‡Nanobiophysics, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Robert Molenaar
- Membrane Science and Technology, and ‡Nanobiophysics, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mireille M A E Claessens
- Membrane Science and Technology, and ‡Nanobiophysics, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Christian Blum
- Membrane Science and Technology, and ‡Nanobiophysics, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wiebe M de Vos
- Membrane Science and Technology, and ‡Nanobiophysics, Mesa+ Institute for Nanotechnology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
55
|
Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 2016; 110:45-59. [PMID: 27710832 DOI: 10.1016/j.biomaterials.2016.09.003] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/30/2016] [Accepted: 09/03/2016] [Indexed: 02/06/2023]
Abstract
Engineering cardiac tissues and organ models remains a great challenge due to the hierarchical structure of the native myocardium. The need of integrating blood vessels brings additional complexity, limiting the available approaches that are suitable to produce integrated cardiovascular organoids. In this work we propose a novel hybrid strategy based on 3D bioprinting, to fabricate endothelialized myocardium. Enabled by the use of our composite bioink, endothelial cells directly bioprinted within microfibrous hydrogel scaffolds gradually migrated towards the peripheries of the microfibers to form a layer of confluent endothelium. Together with controlled anisotropy, this 3D endothelial bed was then seeded with cardiomyocytes to generate aligned myocardium capable of spontaneous and synchronous contraction. We further embedded the organoids into a specially designed microfluidic perfusion bioreactor to complete the endothelialized-myocardium-on-a-chip platform for cardiovascular toxicity evaluation. Finally, we demonstrated that such a technique could be translated to human cardiomyocytes derived from induced pluripotent stem cells to construct endothelialized human myocardium. We believe that our method for generation of endothelialized organoids fabricated through an innovative 3D bioprinting technology may find widespread applications in regenerative medicine, drug screening, and potentially disease modeling.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA.
| | - Andrea Arneri
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Simone Bersini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy
| | - Su-Ryon Shin
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Kai Zhu
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zahra Goli-Malekabadi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 64540, Iran
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cristina Colosi
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemistry, Sapienza Università di Roma, Rome 00185, Italy
| | - Fabio Busignani
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
| | - Valeria Dell'Erba
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biomedical Engineering, Politecnico di Torino, Torino 10129, Italy
| | - Colin Bishop
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino 10129, Italy
| | - Matteo Moretti
- Cell and Tissue Engineering Lab, IRCCS Istituto Ortopedico Galeazzi, Milan 20161, Italy; Swiss Institute for Regnerative Medicine, Lugano 6900, Switzerland; Cardiocentro Ticino, Lugano 6900, Switzerland
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan 20133, Italy
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27101, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02139, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
56
|
Boyd-Moss M, Baratchi S, Di Venere M, Khoshmanesh K. Self-contained microfluidic systems: a review. LAB ON A CHIP 2016; 16:3177-92. [PMID: 27425637 DOI: 10.1039/c6lc00712k] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Microfluidic systems enable rapid diagnosis, screening and monitoring of diseases and health conditions using small amounts of biological samples and reagents. Despite these remarkable features, conventional microfluidic systems rely on bulky expensive external equipment, which hinders their utility as powerful analysis tools outside of research laboratories. 'Self-contained' microfluidic systems, which contain all necessary components to facilitate a complete assay, have been developed to address this limitation. In this review, we provide an in-depth overview of self-contained microfluidic systems. We categorise these systems based on their operating mechanisms into three major groups: passive, hand-powered and active. Several examples are provided to discuss the structure, capabilities and shortcomings of each group. In particular, we discuss the self-contained microfluidic systems enabled by active mechanisms, due to their unique capability for running multi-step and highly controllable diagnostic assays. Integration of self-contained microfluidic systems with the image acquisition and processing capabilities of smartphones, especially those equipped with accessory optical components, enables highly sensitive and quantitative assays, which are discussed. Finally, the future trends and possible solutions to expand the versatility of self-contained, stand-alone microfluidic platforms are outlined.
Collapse
Affiliation(s)
| | - Sara Baratchi
- School of Health & Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia.
| | - Martina Di Venere
- School of Civil & Industrial Engineering, Sapienza University, Rome, Italy
| | | |
Collapse
|
57
|
Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 2016; 21:1399-1411. [PMID: 27422270 DOI: 10.1016/j.drudis.2016.07.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
In recent years, advances in tissue engineering and microfabrication technologies have enabled rapid growth in the areas of in vitro organoid development as well as organoid-on-a-chip platforms. These 3D model systems often are able to mimic human physiology more accurately than traditional 2D cultures and animal models. In this review, we describe the progress that has been made to generate organ-on-a-chip platforms and, more recently, more complex multi-organoid body-on-a-chip platforms and their applications. Importantly, these systems have the potential to dramatically impact biomedical applications in the areas of drug development, drug and toxicology screening, disease modeling, and the emerging area of personalized precision medicine.
Collapse
Affiliation(s)
- Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
| | - Thomas Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Wake Forest Baptist Health, Medical Center Boulevard, Winston-Salem, NC 27157, USA; Department of Urology, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
58
|
Mousavi Shaegh SA, De Ferrari F, Zhang YS, Nabavinia M, Binth Mohammad N, Ryan J, Pourmand A, Laukaitis E, Banan Sadeghian R, Nadhman A, Shin SR, Nezhad AS, Khademhosseini A, Dokmeci MR. A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. BIOMICROFLUIDICS 2016; 10:044111. [PMID: 27648113 PMCID: PMC5001973 DOI: 10.1063/1.4955155] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/17/2016] [Indexed: 05/05/2023]
Abstract
There is a growing interest to develop microfluidic bioreactors and organ-on-chip platforms with integrated sensors to monitor their physicochemical properties and to maintain a well-controlled microenvironment for cultured organoids. Conventional sensing devices cannot be easily integrated with microfluidic organ-on-chip systems with low-volume bioreactors for continual monitoring. This paper reports on the development of a multi-analyte optical sensing module for dynamic measurements of pH and dissolved oxygen levels in the culture medium. The sensing system was constructed using low-cost electro-optics including light-emitting diodes and silicon photodiodes. The sensing module includes an optically transparent window for measuring light intensity, and the module could be connected directly to a perfusion bioreactor without any specific modifications to the microfluidic device design. A compact, user-friendly, and low-cost electronic interface was developed to control the optical transducer and signal acquisition from photodiodes. The platform enabled convenient integration of the optical sensing module with a microfluidic bioreactor. Human dermal fibroblasts were cultivated in the bioreactor, and the values of pH and dissolved oxygen levels in the flowing culture medium were measured continuously for up to 3 days. Our integrated microfluidic system provides a new analytical platform with ease of fabrication and operation, which can be adapted for applications in various microfluidic cell culture and organ-on-chip devices.
Collapse
|
59
|
Chow EKH. Congratulations to the 2016 JALA Ten! SLAS Technol 2016; 21:227-33. [DOI: 10.1177/2211068216628788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Indexed: 11/15/2022]
|
60
|
Zhang YS, Chang JB, Alvarez MM, Trujillo-de Santiago G, Aleman J, Batzaya B, Krishnadoss V, Ramanujam AA, Kazemzadeh-Narbat M, Chen F, Tillberg PW, Dokmeci MR, Boyden ES, Khademhosseini A. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Sci Rep 2016; 6:22691. [PMID: 26975883 PMCID: PMC4792139 DOI: 10.1038/srep22691] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/18/2016] [Indexed: 11/08/2022] Open
Abstract
To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.
Collapse
Affiliation(s)
- Yu Shrike Zhang
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
| | | | - Mario Moisés Alvarez
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
| | - Grissel Trujillo-de Santiago
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey at Monterrey, CP 64849, Monterrey, Nuevo León, México
- Microsystems Technologies Laboratories, MIT, Cambridge, 02139, MA, USA
| | - Julio Aleman
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
| | - Byambaa Batzaya
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
| | - Vaishali Krishnadoss
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- School of Chemical & Biotechnology, SASTRA University, Tamil Nadu 613401, India
| | - Aishwarya Aravamudhan Ramanujam
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- School of Chemical & Biotechnology, SASTRA University, Tamil Nadu 613401, India
| | - Mehdi Kazemzadeh-Narbat
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
| | - Fei Chen
- Department of Biological Engineering, MIT, Cambridge 02139, MA, USA
| | - Paul W. Tillberg
- Department of Electrical Engineering and Computer Science, MIT, Cambridge 02139, MA, USA
| | - Mehmet Remzi Dokmeci
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
| | - Edward S. Boyden
- Media Lab, MIT, Cambridge 02139, MA, USA
- Department of Biological Engineering, MIT, Cambridge 02139, MA, USA
- McGovern Institute, MIT, Cambridge 02139, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge 02139, MA, USA
- Center for Neurobiological Engineering, MIT, Cambridge 02139, MA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston 02139, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge 02139, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, MA, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
61
|
Google Glass-Directed Monitoring and Control of Microfluidic Biosensors and Actuators. Sci Rep 2016; 6:22237. [PMID: 26928456 PMCID: PMC4772091 DOI: 10.1038/srep22237] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/09/2016] [Indexed: 11/08/2022] Open
Abstract
Google Glass is a recently designed wearable device capable of displaying information in a smartphone-like hands-free format by wireless communication. The Glass also provides convenient control over remote devices, primarily enabled by voice recognition commands. These unique features of the Google Glass make it useful for medical and biomedical applications where hands-free experiences are strongly preferred. Here, we report for the first time, an integral set of hardware, firmware, software, and Glassware that enabled wireless transmission of sensor data onto the Google Glass for on-demand data visualization and real-time analysis. Additionally, the platform allowed the user to control outputs entered through the Glass, therefore achieving bi-directional Glass-device interfacing. Using this versatile platform, we demonstrated its capability in monitoring physical and physiological parameters such as temperature, pH, and morphology of liver- and heart-on-chips. Furthermore, we showed the capability to remotely introduce pharmaceutical compounds into a microfluidic human primary liver bioreactor at desired time points while monitoring their effects through the Glass. We believe that such an innovative platform, along with its concept, has set up a premise in wearable monitoring and controlling technology for a wide variety of applications in biomedicine.
Collapse
|
62
|
Compact Wireless Microscope for In-Situ Time Course Study of Large Scale Cell Dynamics within an Incubator. Sci Rep 2015; 5:18483. [PMID: 26681552 PMCID: PMC4683435 DOI: 10.1038/srep18483] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022] Open
Abstract
Imaging of live cells in a region of interest is essential to life science research. Unlike the traditional way that mounts CO2 incubator onto a bulky microscope for observation, here we propose a wireless microscope (termed w-SCOPE) that is based on the “microscope-in-incubator” concept and can be easily housed into a standard CO2 incubator for prolonged on-site observation of the cells. The w-SCOPE is capable of tunable magnification, remote control and wireless image transmission. At the same time, it is compact, measuring only ~10 cm in each dimension, and cost-effective. With the enhancement of compressive sensing computation, the acquired images can achieve a wide field of view (FOV) of ~113 mm2 as well as a cellular resolution of ~3 μm, which enables various forms of follow-up image-based cell analysis. We performed 12 hours time-lapse study on paclitaxel-treated MCF-7 and HEK293T cell lines using w-SCOPE. The analytic results, such as the calculated viability and therapeutic window, from our device were validated by standard cell detection assays and imaging-based cytometer. In addition to those end-point detection methods, w-SCOPE further uncovered the time course of the cell’s response to the drug treatment over the whole period of drug exposure.
Collapse
|
63
|
Patabadige DEW, Jia S, Sibbitts J, Sadeghi J, Sellens K, Culbertson CT. Micro Total Analysis Systems: Fundamental Advances and Applications. Anal Chem 2015; 88:320-38. [DOI: 10.1021/acs.analchem.5b04310] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Damith E. W. Patabadige
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Shu Jia
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Jay Sibbitts
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Jalal Sadeghi
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
- Laser & Plasma Research Institute, Shahid Beheshti University, Evin, Tehran, 1983963113, Iran
| | - Kathleen Sellens
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| | - Christopher T. Culbertson
- Department
of Chemistry, Kansas State University, 213 CBC Building, Manhattan, Kansas 66506, United States
| |
Collapse
|