51
|
Delbianco M, Kononov A, Poveda A, Yu Y, Diercks T, Jiménez-Barbero J, Seeberger PH. Well-Defined Oligo- and Polysaccharides as Ideal Probes for Structural Studies. J Am Chem Soc 2018; 140:5421-5426. [PMID: 29624385 DOI: 10.1021/jacs.8b00254] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polysaccharides are the most abundant organic materials in nature, yet correlations between their three-dimensional structure and macroscopic properties have not been established. Automated glycan assembly enables the preparation of well-defined oligo- and polysaccharides resembling natural as well as unnatural structures. These synthetic glycans are ideal probes for the fundamental study of polysaccharides. According to molecular modeling simulations and NMR analysis, different classes of polysaccharides adopt fundamentally different conformations that are drastically altered by single-site substitutions. Larger synthetic polysaccharides are obtained via a "LEGO"-like approach as a first step toward the production of tailor-made carbohydrate-based materials.
Collapse
Affiliation(s)
- Martina Delbianco
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Andrew Kononov
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Ana Poveda
- CIC bioGUNE , Bizkaia Science and Technology Park bld 801 A , 48160 Derio , Bizkaia , Spain
| | - Yang Yu
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| | - Tammo Diercks
- CIC bioGUNE , Bizkaia Science and Technology Park bld 801 A , 48160 Derio , Bizkaia , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Science and Technology Park bld 801 A , 48160 Derio , Bizkaia , Spain
| | - Peter H Seeberger
- Department of Biomolecular Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany.,Institute of Chemistry and Biochemistry , Freie Universität Berlin , Arnimallee 22 , 14195 Berlin , Germany
| |
Collapse
|
52
|
Ito Y. Exploring Future Perspective of Glycochemistry by Japanese Researchers. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
53
|
Synthetic heparin and heparan sulfate: probes in defining biological functions. Curr Opin Chem Biol 2017; 40:152-159. [DOI: 10.1016/j.cbpa.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022]
|
54
|
Zhang X, Pagadala V, Jester HM, Lim AM, Pham TQ, Goulas AMP, Liu J, Linhardt RJ. Chemoenzymatic synthesis of heparan sulfate and heparin oligosaccharides and NMR analysis: paving the way to a diverse library for glycobiologists. Chem Sci 2017; 8:7932-7940. [PMID: 29568440 PMCID: PMC5849142 DOI: 10.1039/c7sc03541a] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 09/20/2017] [Indexed: 12/14/2022] Open
Abstract
A library of diverse heparan sulfate (HS) oligosaccharides was chemoenzymatically synthesized and systematically studied using NMR.
Heparan sulfate (HS) is a member of the glycosaminoglycans (GAG) family that plays essential roles in biological processes from animal sources. Heparin, a highly sulfated form of HS, is widely used as anticoagulant drug worldwide. The high diversity and complexity of HS and heparin represent a roadblock for structural characterization and biological activity studies. Access to structurally defined oligosaccharides is critical for the successful development of HS and heparin structure–activity relationships. In this study, a library of 66 HS and heparin oligosaccharides covering different sulfation patterns and sizes was prepared through an efficient method of chemoenzymatic synthesis. A systematic nuclear magnetic resonance spectroscopy study was firstly undertaken for every oligosaccharide in the library. In addition to the availability of different oligosaccharides, this work also provides spectroscopic data helpful for characterizing more complicated polysaccharide structures providing a safeguard to ensure the quality of the drug heparin. This HS/heparin library will be useful for activity screening and facilitate future structure–activity relationship studies.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , USA .
| | | | - Hannah M Jester
- Glycan Therapeutics , LLC , Chapel Hill , North Carolina 27599 , USA
| | - Andrew M Lim
- Glycan Therapeutics , LLC , Chapel Hill , North Carolina 27599 , USA
| | - Truong Quang Pham
- Division of Chemical Biology and Medicinal Chemistry , Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , USA .
| | | | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry , Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , USA .
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , USA .
| |
Collapse
|
55
|
Abstract
31+30+31: Ye and colleagues have synthesized a branched 92-mer of arabinogalactan-a major component of the cell wall of M. tuberculosis-by linking a linear oligogalactan 30-mer with two d-arabinofuranose 31-mers. Their approach capitalizes on sequential, one-pot glycosylation reactions that result in a rapid increase in molecular complexity and efficient synthesis of a branched oligosaccharide.
Collapse
Affiliation(s)
- Maciej A Walczak
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO, 80309, USA
| | - Feng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, CO, 80309, USA
| |
Collapse
|
56
|
Arlov Ø, Skjåk-Bræk G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017; 22:E778. [PMID: 28492485 PMCID: PMC6154561 DOI: 10.3390/molecules22050778] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/03/2017] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Heparin is widely recognized for its potent anticoagulating effects, but has an additional wide range of biological properties due to its high negative charge and heterogeneous molecular structure. This heterogeneity has been one of the factors in motivating the exploration of functional analogues with a more predictable modification pattern and monosaccharide sequence, that can aid in elucidating structure-function relationships and further be structurally customized to fine-tune physical and biological properties toward novel therapeutic applications and biomaterials. Alginates have been of great interest in biomedicine due to their inherent biocompatibility, gentle gelling conditions, and structural versatility from chemo-enzymatic engineering, but display limited interactions with cells and biomolecules that are characteristic of heparin and the other glycosaminoglycans (GAGs) of the extracellular environment. Here, we review the chemistry and physical and biological properties of sulfated alginates as structural and functional heparin analogues, and discuss how they may be utilized in applications where the use of heparin and other sulfated GAGs is challenging and limited.
Collapse
Affiliation(s)
- Øystein Arlov
- Department of Biotechnology and Nanomedicine, SINTEF Materials and Chemistry, Richard Birkelands vei 3B, 7034 Trondheim, Norway.
| | - Gudmund Skjåk-Bræk
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7034 Trondheim, Norway.
| |
Collapse
|
57
|
Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units. Nat Commun 2017; 8:14851. [PMID: 28300074 PMCID: PMC5357306 DOI: 10.1038/ncomms14851] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 02/07/2017] [Indexed: 01/21/2023] Open
Abstract
Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains. Due to the vast number of potential isomers, the chemical synthesis of large carbohydrates is challenging. Here the authors report the synthesis of mycobacterial arabinogalactan, a biologically important natural product composed of 92 monosaccharide units, the largest synthetic polysaccharide to date.
Collapse
|
58
|
Naresh K, Schumacher F, Hahm HS, Seeberger PH. Pushing the limits of automated glycan assembly: synthesis of a 50mer polymannoside. Chem Commun (Camb) 2017; 53:9085-9088. [DOI: 10.1039/c7cc04380e] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A 102 step automated synthesis produces a 50mer glycan and provides a basis for investigations into carbohydrate materials.
Collapse
Affiliation(s)
- K. Naresh
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| | - F. Schumacher
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| | - H. S. Hahm
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| | - P. H. Seeberger
- Max Planck Institute of Colloids and Interfaces
- Department of Biomolecular Systems
- 14476 Potsdam-Golm
- Germany
- Freie Universität Berlin
| |
Collapse
|
59
|
Castañar L. Pure shift 1 H NMR: what is next? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2017; 55:47-53. [PMID: 27761957 DOI: 10.1002/mrc.4545] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
Currently, pure shift nuclear magnetic resonance (NMR) is an area of high interest. The aim of this contribution is to describe briefly how this technique has evolved, where it is now and what could be the next challenges in the amazing adventure of the development and application of pure shift NMR experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Castañar
- School of Chemistry, University of Manchester, Manchester, UK
| |
Collapse
|
60
|
Yang W, Yoshida K, Yang B, Huang X. Obstacles and solutions for chemical synthesis of syndecan-3 (53-62) glycopeptides with two heparan sulfate chains. Carbohydr Res 2016; 435:180-194. [PMID: 27810711 PMCID: PMC5110403 DOI: 10.1016/j.carres.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022]
Abstract
Proteoglycans play critical roles in many biological events. Due to their structural complexities, strategies towards synthesis of this class of glycopeptides bearing well-defined glycan chains are urgently needed. In this work, we give the full account of the synthesis of syndecan-3 glycopeptide (53-62) containing two different heparan sulfate chains. For assembly of glycans, a convergent 3+2+3 approach was developed producing two different octasaccharide amino acid cassettes, which were utilized towards syndecan-3 glycopeptides. The glycopeptides presented many obstacles for post-glycosylation manipulation, peptide elongation, and deprotection. Following screening of multiple synthetic sequences, a successful strategy was finally established by constructing partially deprotected single glycan chain containing glycopeptides first, followed by coupling of the glycan-bearing fragments and cleavage of the acyl protecting groups.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Keisuke Yoshida
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Bo Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
61
|
Malineni J, Singh S, Tillmann S, Keul H, Möller M. Aliphatic Polyethers with Sulfate, Carboxylate, and Hydroxyl Side Groups-Do They Show Anticoagulant Properties? Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/30/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Jagadeesh Malineni
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| | - Smriti Singh
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| | - Sabine Tillmann
- Department for Anaesthesiology; University Hospital RWTH Aachen; Pauwelsstraße 30 D-52074 Aachen Germany
| | - Helmut Keul
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| | - Martin Möller
- DWI-Leibniz Institute for Interactive Materials; Institute of Technical and Macromolecular Chemistry; RWTH Aachen University; Forckenbeckstraße 50 D-52074 Aachen Germany
| |
Collapse
|
62
|
Zong C, Huang R, Condac E, Chiu Y, Xiao W, Li X, Lu W, Ishihara M, Wang S, Ramiah A, Stickney M, Azadi P, Amster IJ, Moremen KW, Wang L, Sharp JS, Boons GJ. Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. J Am Chem Soc 2016; 138:13059-13067. [PMID: 27611601 PMCID: PMC5068570 DOI: 10.1021/jacs.6b08161] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An integrated methodology is described to establish ligand requirements for heparan sulfate (HS) binding proteins based on a workflow in which HS octasaccharides are produced by partial enzymatic degradation of natural HS followed by size exclusion purification, affinity enrichment using an immobilized HS-binding protein of interest, putative structure determination of isolated compounds by a hydrophilic interaction chromatography-high-resolution mass spectrometry platform, and chemical synthesis of well-defined HS oligosaccharides for structure-activity relationship studies. The methodology was used to establish the ligand requirements of human Roundabout receptor 1 (Robo1), which is involved in a number of developmental processes. Mass spectrometric analysis of the starting octasaccharide mixture and the Robo1-bound fraction indicated that Robo1 has a preference for a specific set of structures. Further analysis was performed by sequential permethylation, desulfation, and pertrideuteroacetylation followed by online separation and structural analysis by MS/MS. Sequences of tetrasaccharides could be deduced from the data, and by combining the compositional and sequence data, a putative octasaccharide ligand could be proposed (GlA-GlcNS6S-IdoA-GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S). A modular synthetic approach was employed to prepare the target compound, and binding studies by surface plasmon resonance (SPR) confirmed it to be a high affinity ligand for Robo1. Further studies with a number of tetrasaccharides confirmed that sulfate esters at C-6 are critical for binding, whereas such functionalities at C-2 substantially reduce binding. High affinity ligands were able to reverse a reduction in endothelial cell migration induced by Slit2-Robo1 signaling.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Eduard Condac
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Yulun Chiu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Wenyuan Xiao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Morgan Stickney
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lianchun Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
63
|
Dalton CE, Quinn SD, Rafferty A, Morten MJ, Gardiner JM, Magennis SW. Single-Molecule Fluorescence Detection of a Synthetic Heparan Sulfate Disaccharide. Chemphyschem 2016; 17:3442-3446. [PMID: 27538128 PMCID: PMC5111599 DOI: 10.1002/cphc.201600750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 11/11/2022]
Abstract
The first single-molecule fluorescence detection of a structurally-defined synthetic carbohydrate is reported: a heparan sulfate (HS) disaccharide fragment labeled with Alexa488. Single molecules have been measured whilst freely diffusing in solution and controlled encapsulation in surface-tethered lipid vesicles has allowed extended observations of carbohydrate molecules down to the single-molecule level. The diverse and dynamic nature of HS-protein interactions means that new tools to investigate pure HS fragments at the molecular level would significantly enhance our understanding of HS. This work is a proof-of-principle demonstration of the feasibility of single-molecule studies of synthetic carbohydrates which offers a new approach to the study of pure glycosaminoglycan (GAG) fragments.
Collapse
Affiliation(s)
- Charlotte E Dalton
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven D Quinn
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Aidan Rafferty
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Michael J Morten
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| | - John M Gardiner
- The School of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Steven W Magennis
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
64
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
65
|
Solera C, Macchione G, Maza S, Kayser MM, Corzana F, de Paz JL, Nieto PM. Chondroitin Sulfate Tetrasaccharides: Synthesis, Three-Dimensional Structure and Interaction with Midkine. Chemistry 2016; 22:2356-69. [DOI: 10.1002/chem.201504440] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Cristina Solera
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Giuseppe Macchione
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Susana Maza
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - M. Mar Kayser
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Francisco Corzana
- Departamento de Química; Centro de Investigación en Síntesis Química; Universidad de La Rioja; Madre de Dios, 51 26006 Logroño Spain
| | - José L. de Paz
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| | - Pedro M. Nieto
- Glycosystems Laboratory; Instituto de Investigaciones Químicas (IIQ); cicCartuja, CSIC and Universidad de Sevilla; Americo Vespucio, 49 41092 Sevilla Spain
| |
Collapse
|
66
|
Xu P, Laval S, Guo Z, Yu B. Microwave-assisted simultaneous O,N-sulfonation in the synthesis of heparin-like oligosaccharides. Org Chem Front 2016. [DOI: 10.1039/c5qo00320b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous O,N-sulfonation of heparin-like saccharides was achieved in short reaction times and excellent yields (>90%) under microwave irradiation.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Stephane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Zheng Guo
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
67
|
Dulaney S, Xu Y, Wang P, Tiruchinapally G, Wang Z, Kathawa J, El-Dakdouki MH, Yang B, Liu J, Huang X. Divergent Synthesis of Heparan Sulfate Oligosaccharides. J Org Chem 2015; 80:12265-79. [PMID: 26574650 PMCID: PMC4685427 DOI: 10.1021/acs.joc.5b02172] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/01/2022]
Abstract
Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis.
Collapse
Affiliation(s)
- Steven
B. Dulaney
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Yongmei Xu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peng Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gopinath Tiruchinapally
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhen Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jolian Kathawa
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| | - Bo Yang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jian Liu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
68
|
Mechanistic and therapeutic overview of glycosaminoglycans: the unsung heroes of biomolecular signaling. Glycoconj J 2015; 33:1-17. [DOI: 10.1007/s10719-015-9642-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022]
|