51
|
Plasma-activated interfaces for biomedical engineering. Bioact Mater 2021; 6:2134-2143. [PMID: 33511312 PMCID: PMC7810626 DOI: 10.1016/j.bioactmat.2021.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/16/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
As an important phenomenon to monitor disease development, cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials. Therefore, finding a strategy to build the specific biomedical interfaces will help regulate information transmission and produce better therapeutic results to benefit patients. In the past decades, plasmas containing energetic and active species have been employed to construct various interfaces to meet biomedical demands such as bacteria inactivation, tissue regeneration, cancer therapy, and so on. Based on the potent functions of plasma modified surfaces, this mini-review is aimed to summarize the state-of-art plasma-activated interfaces and provide guidance to researchers to select the proper plasma and processing conditions to design and prepare interfaces with the optimal biological and related functions. After a brief introduction, plasma-activated interfaces are described and categorized according to different criteria including direct plasma-cells interfaces and indirect plasma-material-cells interfaces and recent research activities on the application of plasma-activated interfaces are described. The authors hope that this mini-review will spur interdisciplinary research efforts in this important area and expedite associated clinical applications. The Interfaces between organisms/cells and abiotic materials are crucial for cell signaling. Plasmas containing energetic and active species are potent tool to construct biomedical interfaces. The objective here is to summarize recent plasma-activated interfaces to spur interdisciplinary efforts for clinical applications.
Collapse
|
52
|
Facile Method for Surface-Grafted Chitooligosaccharide on Medical Segmented Poly(ester-urethane) Film to Improve Surface Biocompatibility. MEMBRANES 2021; 11:membranes11010037. [PMID: 33406798 PMCID: PMC7824666 DOI: 10.3390/membranes11010037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 12/18/2022]
Abstract
In the paper, the chitooligosaccharide (CHO) was surface-grafted on the medical segmented poly(ester-urethane) (SPU) film by a facile two-step procedure to improve the surface biocompatibility. By chemical treatment of SPU film with hexamethylene diisocyanate under mild reaction condition, free -NCO groups were first introduced on the surface with high grafting density, which were then coupled with -NH2 groups of CHO to immobilize CHO on the SPU surface (SPU-CHO). The CHO-covered surface was characterized by FT-IR and water contact angle test. Due to the hydrophilicity of CHO, the SPU-CHO possessed higher surface hydrophilicity and faster hydrolytic degradation rate than blank SPU. The almost overlapping stress-strain curves of SPU and SPU-CHO films demonstrated that the chemical treatments had little destruction on the intrinsic properties of the substrate. In addition, the significant inhibition of platelet adhesion and protein adsorption on CHO-covered surface endowed SPU-CHO an outstanding surface biocompatibility (especially blood compatibility). These results indicated that the CHO-grafted SPU was a promising candidate as blood-contacting biomaterial for biomedical applications.
Collapse
|
53
|
Fibroblast cell derived extracellular matrix containing electrospun scaffold as a hybrid biomaterial to promote in vitro endothelial cell expansion and functionalization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111659. [DOI: 10.1016/j.msec.2020.111659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 01/19/2023]
|
54
|
Li X, Ye F, Wang J, Chen Z, Yang X. The synthesis of polyurethane with mechanical properties that are responsive to water retention states. Polym Chem 2021. [DOI: 10.1039/d0py01559h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Water-retention-state-responsive polyurethane was designed and synthesized via introducing zwitterionic sulfobetaine onto its polymer chains.
Collapse
Affiliation(s)
- Xuemin Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Feng Ye
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Jie Wang
- Polymer Composites Engineering Laboratory
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Zhaobin Chen
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
55
|
Lu WC, Chuang FS, Venkatesan M, Cho CJ, Chen PY, Tzeng YR, Yu YY, Rwei SP, Kuo CC. Synthesis of Water Resistance and Moisture-Permeable Nanofiber Using Sodium Alginate-Functionalized Waterborne Polyurethane. Polymers (Basel) 2020; 12:E2882. [PMID: 33271805 PMCID: PMC7761416 DOI: 10.3390/polym12122882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
The development of nontoxic and biodegradable alginate-based materials has been a continual goal in biological applications. However, their hydrophilic nature and lack of spinnability impart water instability and poor mechanical strength to the nanofiber. To overcome these limitations, sodium alginate (SA) and waterborne polyurethane (WPU) were blended and crosslinked with calcium chloride; 30 wt % of SA exhibited good compatibility. Further addition of 10 wt % calcium chloride improved the water stability to an extremely humid region. Furthermore, the stress-strain curve revealed that the initial modulus and the elongation strength of the WPU/SA and WPU/CA blends increased with SA content, and the crosslinker concentration clearly indicated the dressing material hardness resulted from this simple blend strategy. The WPU/SA30 electrospun nanofibrous blend contained porous membranes; it exhibited good mechanical strength with water-stable, water-absorbable (37.5 wt %), and moisture-permeable (25.1 g/m2-24 h) characteristics, suggesting our cost-effective material could function as an effective wound dressing material.
Collapse
Affiliation(s)
- Wen-Chi Lu
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
- Department of Applied Cosmetology, Lee-Ming Institute of Technology, New Taipei City 243083, Taiwan
| | - Fu-Sheng Chuang
- Department of Fashion and Design, Lee-Ming Institute of Technology, New Taipei City 243083, Taiwan;
| | - Manikandan Venkatesan
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Chia-Jung Cho
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Po-Yun Chen
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Yung-Ru Tzeng
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan;
| | - Syang-Peng Rwei
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| | - Chi-Ching Kuo
- Research and Development Center of Smart Textile Technology, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan; (W.-C.L.); (M.V.); (P.-Y.C.); (Y.-R.T.); (S.-P.R.)
| |
Collapse
|
56
|
Liu Y, Zou Y, Wang J, Wang S, Liu X. A novel cationic waterborne polyurethane coating modified by chitosan biguanide hydrochloride with application potential in medical catheters. J Appl Polym Sci 2020. [DOI: 10.1002/app.50290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuxing Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin China
| | - Yalu Zou
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin China
| | - Jing Wang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin China
| | - Shuo Wang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin China
| | - Xiaofei Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Tianjin University Tianjin China
| |
Collapse
|
57
|
A Novel Method to Construct Dual-targeted Magnetic Nanoprobes by Modular Assembling. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
58
|
Kim S, Ye SH, Adamo A, Orizondo RA, Jo J, Cho SK, Wagner WR. A biostable, anti-fouling zwitterionic polyurethane-urea based on PDMS for use in blood-contacting medical devices. J Mater Chem B 2020; 8:8305-8314. [PMID: 32785384 PMCID: PMC7530005 DOI: 10.1039/d0tb01220c] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polydimethylsiloxane (PDMS) is commonly used in medical devices because it is non-toxic and stable against oxidative stress. Relatively high blood platelet adhesion and the need for chemical crosslinking through curing, however, limit its utility. In this research, a biostable PDMS-based polyurethane-urea bearing zwitterion sulfobetaine (PDMS-SB-UU) was synthesized for potential use in the fabrication or coating of blood-contacting devices, such as a conduits, artificial lungs, and microfluidic devices. The chemical structure and physical properties of synthesized PDMS-SB-UU were confirmed by 1H-nuclear magnetic resonance (1H-NMR), X-ray diffraction (XRD), and uniaxial stress-strain curve. In vitro stability of PDMS-SB-UU was confirmed against lipase and 30% H2O2 for 8 weeks, and PDMS-SB-UU demonstrated significantly higher resistance to fibrinogen adsorption and platelet deposition compared to control PDMS. Moreover, PDMS-SB-UU showed a lack of hemolysis and cytotoxicity with whole ovine blood and rat vascular smooth muscle cells (rSMCs), respectively. The PDMS-SB-UU was successfully processed into small-diameter (0.80 ± 0.05 mm) conduits by electrospinning and coated onto PDMS- and polypropylene-based blood-contacting biomaterials due to its unique physicochemical characteristics from its soft- and hard- segments.
Collapse
Affiliation(s)
- Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Arianna Adamo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. and Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Ryan A Orizondo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. and Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA and Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaehyuk Jo
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sung Kwon Cho
- Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. and Departments of Surgery, University of Pittsburgh, Pittsburgh, PA, USA and Departments of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA and Departments of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
59
|
Zilla P, Deutsch M, Bezuidenhout D, Davies NH, Pennel T. Progressive Reinvention or Destination Lost? Half a Century of Cardiovascular Tissue Engineering. Front Cardiovasc Med 2020; 7:159. [PMID: 33033720 PMCID: PMC7509093 DOI: 10.3389/fcvm.2020.00159] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
The concept of tissue engineering evolved long before the phrase was forged, driven by the thromboembolic complications associated with the early total artificial heart programs of the 1960s. Yet more than half a century of dedicated research has not fulfilled the promise of successful broad clinical implementation. A historical account outlines reasons for this scientific impasse. For one, there was a disconnect between distinct eras each characterized by different clinical needs and different advocates. Initiated by the pioneers of cardiac surgery attempting to create neointimas on total artificial hearts, tissue engineering became fashionable when vascular surgeons pursued the endothelialisation of vascular grafts in the late 1970s. A decade later, it were cardiac surgeons again who strived to improve the longevity of tissue heart valves, and lastly, cardiologists entered the fray pursuing myocardial regeneration. Each of these disciplines and eras started with immense enthusiasm but were only remotely aware of the preceding efforts. Over the decades, the growing complexity of cellular and molecular biology as well as polymer sciences have led to surgeons gradually being replaced by scientists as the champions of tissue engineering. Together with a widening chasm between clinical purpose, human pathobiology and laboratory-based solutions, clinical implementation increasingly faded away as the singular endpoint of all strategies. Moreover, a loss of insight into the healing of cardiovascular prostheses in humans resulted in the acceptance of misleading animal models compromising the translation from laboratory to clinical reality. This was most evident in vascular graft healing, where the two main impediments to the in-situ generation of functional tissue in humans remained unheeded–the trans-anastomotic outgrowth stoppage of endothelium and the build-up of an impenetrable surface thrombus. To overcome this dead-lock, research focus needs to shift from a biologically possible tissue regeneration response to one that is feasible at the intended site and in the intended host environment of patients. Equipped with an impressive toolbox of modern biomaterials and deep insight into cues for facilitated healing, reconnecting to the “user needs” of patients would bring one of the most exciting concepts of cardiovascular medicine closer to clinical reality.
Collapse
Affiliation(s)
- Peter Zilla
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa.,Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Manfred Deutsch
- Karl Landsteiner Institute for Cardiovascular Surgical Research, Vienna, Austria
| | - Deon Bezuidenhout
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Neil H Davies
- Cardiovascular Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tim Pennel
- Christiaan Barnard Division for Cardiothoracic Surgery, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
60
|
Hajzamani D, Shokrollahi P, Najmoddin N, Shokrolahi F. Effect of engineered PLGA‐gelatin‐chitosan/
PLGA‐gelatin
/
PLGA‐gelatin‐graphene
three‐layer scaffold on adhesion/proliferation of
HUVECs. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4915] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dorfam Hajzamani
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| | - Parvin Shokrollahi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research BranchIslamic Azad University Tehran Iran
| | - Fatemeh Shokrolahi
- Department of BiomaterialsIran Polymer and Petrochemical Institute Tehran Iran
| |
Collapse
|
61
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
62
|
Ghorbani F, Sahranavard M, Zamanian A. Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02263-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
63
|
Naureen B, Haseeb ASMA, Basirun WJ, Muhamad F. Recent advances in tissue engineering scaffolds based on polyurethane and modified polyurethane. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111228. [PMID: 33254956 DOI: 10.1016/j.msec.2020.111228] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Organ repair, regeneration, and transplantation are constantly in demand due to various acute, chronic, congenital, and infectious diseases. Apart from traditional remedies, tissue engineering (TE) is among the most effective methods for the repair of damaged tissues via merging the cells, growth factors, and scaffolds. With regards to TE scaffold fabrication technology, polyurethane (PU), a high-performance medical grade synthetic polymer and bioactive material has gained significant attention. PU possesses exclusive biocompatibility, biodegradability, and modifiable chemical, mechanical and thermal properties, owing to its unique structure-properties relationship. During the past few decades, PU TE scaffold bioactive properties have been incorporated or enhanced with biodegradable, electroactive, surface-functionalised, ayurvedic products, ceramics, glass, growth factors, metals, and natural polymers, resulting in the formation of modified polyurethanes (MPUs). This review focuses on the recent advances of PU/MPU scaffolds, especially on the biomedical applications in soft and hard tissue engineering and regenerative medicine. The scientific issues with regards to the PU/MPU scaffolds, such as biodegradation, electroactivity, surface functionalisation, and incorporation of active moieties are also highlighted along with some suggestions for future work.
Collapse
Affiliation(s)
- Bushra Naureen
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - A S M A Haseeb
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - W J Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Nanotechnology and catalyst (NANOCAT), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Farina Muhamad
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
64
|
Kalinin RE, Suchkov IA, Mzhavanadze ND, Korotkova NV, Nikiforov AA, Surov IY, Ivanova PY, Bozhenova AD, Strelnikova EA. Comparison of cytotoxicity of vascular prostheses in vitro. I.P. PAVLOV RUSSIAN MEDICAL BIOLOGICAL HERALD 2020; 28:183-192. [DOI: 10.23888/pavlovj2020282183-192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Aim. To study and compare cytotoxicity of the main types of synthetic prostheses used in arterial reconstructive surgery, including polytetrafluoroethylene (PTFE) and polyethylene-terephthalate (Dacron).
Materials and Methods. On the culture of human umbilical vein endothelial cells (HUVEC) of the 3rd passage, MTS test was conducted that is used in laboratory examinations with attraction of cellular technologies to study cytotoxicity of medical drugs and medical products. The test implies use of MTS reagent that is 3-(4,5-dimethylthiazol-2-il)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium; additionally phenazine methosulfate (PMS) was used that plays the role of electron-binding reagent. In the experiment, cells were incubated with PTFE and Dacron within 24 hours at 37ᵒC with 5% CO2. For control, HUVEC cultured in the standard growth medium, were used. In the presence of PMS, MTS was reduced by mitochondrial dehydrogenases of endothelial cells to formazan staining blue. Supernatant of cell cultures was evaluated by photocolorimetric method on Stat Fax 3200 analyzer (microplate reader) of Awareness technology Inc. Palm City Fl. (USA).
Results. The lowest mean values were noted in Dacron group 0.21 (0.20-0.22) optical density units, the highest values were noted in the control group 0.36 (0.35-0.38); parameters in PTFE group were 0.35 (0.33-0.36). In comparison of the groups statistically significant differences were found between the control group and Dacron group (р0.001), control and PTFE group (р=0.037), Dacron and PTFE (р0.001). Incubation with Dacron led to suppression of metabolic activity of cells by 41.7% as compared to the control group (р0.001). Metabolic activity of cells exposed to PTFE, approached that of the control group, that is, it corresponded to the optimal conditions of culturing of endothelial cells in vitro.
Conclusion. In comparison with polyethylene-terephthalate (Dacron), polytetrafluoro-ethylene (PTFE) showed the least suppression of metabolic activity of endothelial cells in vitro.
Collapse
|
65
|
Lutzweiler G, Ndreu Halili A, Engin Vrana N. The Overview of Porous, Bioactive Scaffolds as Instructive Biomaterials for Tissue Regeneration and Their Clinical Translation. Pharmaceutics 2020; 12:E602. [PMID: 32610440 PMCID: PMC7407612 DOI: 10.3390/pharmaceutics12070602] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Porous scaffolds have been employed for decades in the biomedical field where researchers have been seeking to produce an environment which could approach one of the extracellular matrixes supporting cells in natural tissues. Such three-dimensional systems offer many degrees of freedom to modulate cell activity, ranging from the chemistry of the structure and the architectural properties such as the porosity, the pore, and interconnection size. All these features can be exploited synergistically to tailor the cell-material interactions, and further, the tissue growth within the voids of the scaffold. Herein, an overview of the materials employed to generate porous scaffolds as well as the various techniques that are used to process them is supplied. Furthermore, scaffold parameters which modulate cell behavior are identified under distinct aspects: the architecture of inert scaffolds (i.e., pore and interconnection size, porosity, mechanical properties, etc.) alone on cell functions followed by comparison with bioactive scaffolds to grasp the most relevant features driving tissue regeneration. Finally, in vivo outcomes are highlighted comparing the accordance between in vitro and in vivo results in order to tackle the future translational challenges in tissue repair and regeneration.
Collapse
Affiliation(s)
- Gaëtan Lutzweiler
- Institut National de la Santé et de la Recherche Medicale, UMR_S 1121, 11 rue Humann, 67085 Strasbourg CEDEX, France
| | - Albana Ndreu Halili
- Department of Information Technology, Aleksander Moisiu University, 2001 Durres, Albania;
| | | |
Collapse
|
66
|
Li P, Li X, Cai W, Chen H, Chen H, Wang R, Zhao Y, Wang J, Huang N. Phospholipid-based multifunctional coating via layer-by-layer self-assembly for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111237. [PMID: 32806322 DOI: 10.1016/j.msec.2020.111237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 11/28/2022]
Abstract
As an important class of biomaterials,bionics inspired materials has been widely used in creating extracorporeal and implantable medical devices. However, specific service environment is often faced with multiple requirements rather than single function. Herein, we designed a phospholipid-based multifunctional coating with phospholipids-based polymers, type I collagen (Col-I) and Arg-Glu-Asp-Val (REDV) peptide, via layer-by-layer assembly. The successful synthesis of the polymers and the coating is proved by a series of characterization methods including Fourier transforming infrared spectra (FTIR), proton nuclear magnetic resonance (1H NMR), ultraviolet-visible spectra (UV) and X-ray photoelectron spectroscopy (XPS), while the assembly process and quality change of the coating were monitored via quartz crystal microbalance (QCM). Besides, hydrophilicity and roughness of this coating was analyzed via water contact angle (WCA) and atomic force microscope (AFM), respectively. Finally, results from platelet adhesion, activation assay, smooth muscle cells (SMCs) and endothelial cells (ECs) cultures indicated that the multifunctional coating could strongly inhibit platelet adhesion and SMCs proliferation, hence provide practical application of the coating with good biocompatibility, especially the anticoagulant property and cell compatibility. It is expected that this coating may be used in blood-contacting fields such as cardiovascular stent or other devices in the future.
Collapse
Affiliation(s)
- Peichuang Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaojing Li
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wanhao Cai
- Institute of Physical Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstraße 23a, 79104 Freiburg, Germany
| | - Huiqing Chen
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Hang Chen
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Rui Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuancong Zhao
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jin Wang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Nan Huang
- Key Lab. of Advanced Technology for Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
67
|
Roth Y, Y. Lewitus D. The Grafting of Multifunctional Antithrombogenic Chemical Networks on Polyurethane Intravascular Catheters. Polymers (Basel) 2020; 12:E1131. [PMID: 32429046 PMCID: PMC7284597 DOI: 10.3390/polym12051131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 01/02/2023] Open
Abstract
Intravascular catheters (IVCs) and other medical tubing are commonly made of polymeric materials such as polyurethane (PU). Polymers tend to be fouled by surface absorption of proteins and platelets, often resulting in the development of bacterial infections and thrombosis during catheterization, which can lead to embolism and death. Existing solutions to fouling are based on coating the IVCs with hydrophilic, anti-thrombogenic, or antimicrobial materials. However, the delamination of the coatings themselves is associated with significant morbidity, as reported by the United States Food and Drug Administration (FDA). We developed a lubricious, antimicrobial, and antithrombogenic coating complex, which can be covalently attached to the surface of industrial PU catheters. The coating complex is pre-synthesized and comprises 2-methacryloyloxyethyl phosphorylcholine (MPC) as an antifouling agent, covalently attached to branched polyethyleneimine (bPEI) as a lubricating agent. The two-step coating procedure involves PU-amine surface activation using a diisocyanate, followed by chemical grafting of the bPEI-S-MPC complex. Compared with neat PU, the coating was found to reduce the coefficient of friction of the IVC surface by 30% and the hemolysis ratio by more than 50%. Moreover, the coating exhibited a significant antimicrobial activity under JIS Z2801:2000 standard compared with neat PU. Finally, in in-vivo acute rabbit model studies, the coating exhibited significant antithrombogenic properties, reducing the thrombogenic potential to a score of 1.3 on coated surfaces compared with 3.3 on uncoated surfaces. The materials and process developed could confer lubricious, antithrombogenic, and antimicrobial properties on pre-existing PU-based catheters.
Collapse
Affiliation(s)
| | - Dan Y. Lewitus
- Department of Plastics and Polymer Engineering, Shenkar Engineering, Design, Art, Ramat Gan 52526, Israel;
| |
Collapse
|
68
|
Yang L, Li L, Wu H, Zhang B, Luo R, Wang Y. Catechol-mediated and copper-incorporated multilayer coating: An endothelium-mimetic approach for blood-contacting devices. J Control Release 2020; 321:59-70. [DOI: 10.1016/j.jconrel.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/25/2020] [Accepted: 02/02/2020] [Indexed: 10/25/2022]
|
69
|
Bongiovanni Abel S, Montini Ballarin F, Abraham GA. Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions. NANOTECHNOLOGY 2020; 31:172002. [PMID: 31931493 DOI: 10.1088/1361-6528/ab6ab4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The development of three-dimensional (3D) scaffolds with physical and chemical topological cues at the macro-, micro-, and nanometer scale is urgently needed for successful tissue engineering applications. 3D scaffolds can be manufactured by a wide variety of techniques. Electrospinning technology has emerged as a powerful manufacturing technique to produce non-woven nanofibrous scaffolds with very interesting features for tissue engineering products. However, electrospun scaffolds have some inherent limitations that compromise the regeneration of thick and complex tissues. By integrating electrospinning and other fabrication technologies, multifunctional 3D fibrous assemblies with micro/nanotopographical features can be created. The proper combination of techniques leads to materials with nano and macro-structure, allowing an improvement in the biological performance of tissue-engineered constructs. In this review, we focus on the most relevant strategies to produce electrospun polymer/composite scaffolds with 3D architecture. A detailed description of procedures involving physical and chemical agents to create structures with large pores and 3D fiber assemblies is introduced. Finally, characterization and biological assays including in vitro and in vivo studies of structures intended for the regeneration of functional tissues are briefly presented and discussed.
Collapse
Affiliation(s)
- Silvestre Bongiovanni Abel
- Research Institute for Materials Science and Technology, INTEMA (UNMdP-CONICET). Av. Colón 10850, B7606BWV, Mar del Plata, Argentina
| | | | | |
Collapse
|
70
|
Promising electrodeposited biocompatible coatings for steel obtained from polymerized microemulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
71
|
Li J, Gao Q, Chen Z, Yang X. Small diameter blood vessels with controllable micropore structure induced by centrifugal force for improved endothelialization. Eng Life Sci 2020; 20:181-185. [PMID: 32874181 PMCID: PMC7447902 DOI: 10.1002/elsc.201900123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/03/2019] [Accepted: 12/19/2019] [Indexed: 11/11/2022] Open
Abstract
The micropore structure is prerequisite for fast and durable endothelialization of artificial small diameter blood vessels (ASDBVs). Although some methods, such as salt leaching, coagulation, and electrospinning, have been developed to construct micropores for ASDBVs, the uncontrollability of the structure and the complicated procedures of the process are still the issues to be concerned about. In this study, a compact device based on the principle of centrifugal force is established and used to prepare polyurethane (PU) ASDBVs with micropore structures by blasting different porogens. It is found that the glass beads could construct micropores with regular round shape, uniform distribution, and controllable size (60-350 µm), which significantly improves the endothelialization of PU-based ASDBVs, especially when the pore size is about 60 µm. This method is easy-accessible and wide-applicable, which provides a new pathway for the research and development of ASDBVs.
Collapse
Affiliation(s)
- Jinge Li
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinP. R. China
| | - Qinwei Gao
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinP. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Zhaobin Chen
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinP. R. China
| | - Xiaoniu Yang
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinP. R. China
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinP. R. China
| |
Collapse
|
72
|
Amirian J, Sultana T, Joo GJ, Park C, Lee BT. In vitro endothelial differentiation evaluation on polycaprolactone-methoxy polyethylene glycol electrospun membrane and fabrication of multilayered small-diameter hybrid vascular graft. J Biomater Appl 2020; 34:1395-1408. [DOI: 10.1177/0885328220907775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jhaleh Amirian
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Ssangyoung-Dong, Chungnam, Cheonan City, Republic of Korea
| | - Tamanna Sultana
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Ssangyoung-Dong, Chungnam, Cheonan City, Republic of Korea
| | - Gyeong J Joo
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Ssangyoung-Dong, Chungnam, Cheonan City, Republic of Korea
| | - Chanmi Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Ssangyoung-Dong, Chungnam, Cheonan City, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Ssangyoung-Dong, Chungnam, Cheonan City, Republic of Korea
| |
Collapse
|
73
|
Modification of thermoplastic polyurethane through the grafting of well-defined polystyrene and preparation of its polymer/clay nanocomposite. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02773-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
74
|
Shan L, Sun Y, Shan F, Li L, Xu ZP. Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. J Mater Chem B 2020; 8:878-894. [PMID: 31956883 DOI: 10.1039/c9tb02515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Continuous blood purification technology such as hemodiafiltration has been used worldwide for saving patients suffering from severe diseases or organ function failure, especially in the intensive care unit and emergency setting. The filters as core devices are commonly made of polymer materials as hollow fiber membranes. However, the membrane is often inductively blocked by blood clot formation due to its interactions with blood components. Heparin is the anticoagulant often used in clinical practice for anti-coagulation. Recently, heparin is also employed to modify the hollow fiber membranes either chemically or physically to improve the filtration performance. This review summarizes recent advances in methodology for surface heparinization of such hollow fiber membranes, and their filtration performance improvement. The review also provides expert opinions for further research in this rapidly expanding field.
Collapse
Affiliation(s)
- Liang Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Yunbo Sun
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Feng Shan
- Intensive Care Unit, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
75
|
Peng X, Wang X, Cheng C, Zhou X, Gu Z, Li L, Liu J, Yu X. Bioinspired, Artificial, Small-Diameter Vascular Grafts with Selective and Rapid Endothelialization Based on an Amniotic Membrane-Derived Hydrogel. ACS Biomater Sci Eng 2020; 6:1603-1613. [PMID: 33455393 DOI: 10.1021/acsbiomaterials.9b01493] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clinical application of the amniotic membrane (AM) in vascular reconstruction was limited by poor processability, rapid biodegradation, and insufficient hemocompatibility. In this work, decellularized AM was digested to a thermosensitive hydrogel and densely cross-linked in the nanoscale as "enhanced" collagenous fibers. Via N-(3-dimehylaminopropyl)-N'-ethylcarbodiimide and N-hydroxysuccinimide (EDC/NHS) catalysis, REDV was further grafted to simulate anticoagulant substances on naturally derived blood vessels. This modification approach endowed AM with rapid endothelialization and rare vascular restenosis. Through adjusting the fixation condition, the pore size and mechanical stability of the fiber network were approximate to those of natural tissues and precisely designed to fit for cell adhesion. AM was synchronously fixed by alginate dialdehyde (ADA) and EDC/NHS, forming a "double-cross-linked" stable structure with significantly improved mechanical strength and resistance against enzymic degradation. The hemolytic and platelet adhesion test indicated that ADA/REDV-AM could inhibit hemolysis and coagulation. It also exhibited excellent cytocompatibility. It selectively accelerated adsorption and migration of endothelial cells (ECs) while impeding adhesion and proliferation of smooth muscle cells (SMCs). It maintained EC superiority in competitive growth and avoided thrombosis in vivo. Furthermore, its property of promoting reconstruction and repair of blood vessels was proved in an animal experiment. Overall, the present study demonstrates that ADA/REDV-AM has potential application as a small-diameter artificial vascular intima with rapid endothelialization and reduced SMC/platelet adhesion.
Collapse
Affiliation(s)
- Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.,Laboratory Animal Center, Sichuan University, Chengdu 610065, China
| | - Xu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China.,College of Acupuncture and Massage College, Chengdu University of TCM, Chengdu 610065, China
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiong Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zhipeng Gu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Li Li
- Department of Oncology, The 452 Hospital of Chinese PLA, Chengdu, Sichuan 610021, China
| | - Jun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
76
|
Effect of linking arm hydrophilic/hydrophobic nature, length and end-group on the conformation and the RGD accessibility of surface-immobilized fibronectin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110335. [DOI: 10.1016/j.msec.2019.110335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 06/03/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
|
77
|
Hussein KH, Park KM, Yu L, Song SH, Woo HM, Kwak HH. Vascular reconstruction: A major challenge in developing a functional whole solid organ graft from decellularized organs. Acta Biomater 2020; 103:68-80. [PMID: 31887454 DOI: 10.1016/j.actbio.2019.12.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Bioengineering a functional organ holds great potential to overcome the current gap between the organ need and shortage of available organs. Whole organ decellularization allows the removal of cells from large-scale organs, leaving behind extracellular matrices containing different growth factors, structural proteins, and a vascular network with a bare surface. Successful application of decellularized tissues as transplantable organs is hampered by the inability to completely reline the vasculature by endothelial cells (ECs), leading to blood coagulation, loss of vascular patency, and subsequent death of reseeded cells. Therefore, an intact, continuous layer of endothelium is essential to maintain proper functioning of the vascular system, which includes the transfer of nutrients to surrounding tissues and protecting other types of cells from shear stress. Here, we aimed to summarize the available cell sources that can be used for reendothelialization in addition to different trials performed by researchers to reconstruct vascularization of decellularized solid organs. Additionally, different techniques for enhancing reendothelialization and the methods used for evaluating reendothelialization efficiency along with the future prospective applications of this field are discussed. STATEMENT OF SIGNIFICANCE: Despite the great progress in whole organ decellularization, reconstruction of vasculature within the engineered constructs is still a major roadblock. Reconstructed endothelium acts as a multifunctional barrier of vessels, which can reduce thrombosis and help delivering of oxygen and nutrients throughout the whole organ. Successful reendothelialization can be achieved through reseeding of appropriate cell types on the naked vasculature with or without modification of its surface. Here, we present the current research milestones that so far established to reconstruct the vascular network in addition to the methods used for evaluating the efficiency of reendotheilization. Thus, this review is quite significant and will aid the researchers to know where we stand toward biofabricating a transplantable organ from decellularizd extracellular matrix.
Collapse
|
78
|
The effect of oxygen plasma pretreatment on the properties of mussel-inspired polydopamine-decorated polyurethane nanofibers. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractIn this study, polyurethane (PU) scaffolds were fabricated by electrospinning technology and modified through the deposition of polydopamine (PDA) on the activated surface under oxygen plasma treatment. Herein, the effect of the modification process on the homogeneous surface coating and the changes in the physicochemical and biological properties were evaluated. Morphological observations demonstrated decoration of the nanofibrous microstructure with PDA, while the uniformity and homogeneity of the deposited layer increased after plasma oxygen treatment. Hydrophilicity measurements and swelling ratio indicated a remarkable improvement in the interaction of scaffolds with water molecules when the PDA coating is applied on the surface of the treated nanofibers. The biomineralization of the samples was characterized using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) images. It was found that PDA has the capability for mineralization, and the amount of deposited hydroxyapatite increased as a function of PDA content. The in vitro evaluation of constructs indicated great improvement in cell-scaffold interactions, biocompatibility, and alkaline phosphatase activity after coating the PDA on the plasma-modified matrix. These results suggest that PDA coating, especially after oxygen plasma treatment, improves the physicochemical and in vitro properties of PU scaffolds for bone tissue engineering application.
Collapse
|
79
|
Yao Y, Ding J, Wang Z, Zhang H, Xie J, Wang Y, Hong L, Mao Z, Gao J, Gao C. ROS-responsive polyurethane fibrous patches loaded with methylprednisolone (MP) for restoring structures and functions of infarcted myocardium in vivo. Biomaterials 2019; 232:119726. [PMID: 31901502 DOI: 10.1016/j.biomaterials.2019.119726] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/03/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) play an important role in the pathogenesis of numerous diseases including atherosclerosis, diabetes, inflammation and myocardial infarction (MI). In this study, a ROS-responsive biodegradable elastomeric polyurethane containing thioketal (PUTK) linkages was synthesized from polycaprolactone diol (PCL-diol ), 1,6-hexamethylene diisocyanate (HDI), and ROS-cleavable chain extender. The PUTK was electrospun into fibrous patches with the option to load glucocorticoid methylprednisolone (MP), which were then used to treat MI of rats in vivo. The fibrous patches exhibited suitable mechanical properties and high elasticity. The molecular weight of PUTK was decreased significantly after incubation in 1 mM H2O2 solution for 2 weeks due to the degradation of thioketal bonds on the polymer backbone. Both the PUTK and PUTK/MP fibrous patches showed good antioxidant property in an oxidative environment in vitro. Implantation of the ROS-responsive polyurethane patches in MI of rats in vivo could better protect cardiomyocytes from death in the earlier stage (24 h) than the non ROS-responsive ones. Implantation of the PUTK/MP fibrous patches for 28 days could effectively improve the reconstruction of cardiac functions including increased ejection fraction, decreased infarction size, and enhanced revascularization of the infarct myocardium.
Collapse
Affiliation(s)
- Yuejun Yao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jie Ding
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhaoyi Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haolan Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jieqi Xie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yingchao Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Jianqing Gao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
80
|
Kang IG, Park CI, Seong YJ, Lee H, Kim HE, Han CM. Bioactive and mechanically stable hydroxyapatite patterning for rapid endothelialization of artificial vascular graft. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110287. [PMID: 31753339 DOI: 10.1016/j.msec.2019.110287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 07/26/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022]
Abstract
Polymeric vascular grafts have been widely used in the vascular regeneration field because of their ease of application. However, synthetic polymer grafts have the severe problem of low biocompatibility, which may cause delayed endothelialization and hyperplasia. In this study, we fabricated a linear hydroxyapatite (HA) pattern on a silicon wafer and then transferred the pattern to a poly(L-lactic)-acid (PLLA) film for use as a tubular vascular graft. The HA pattern with its characteristic needle-like shape was successfully embedded into the PLLA. The HA-patterned PLLA film exhibited superior mechanical stability compared with that of a HA-coated PLLA film under bending, elongation, and in vitro circulation conditions, suggesting its suitability for use as a tubular vascular graft. In addition, the HA pattern guided rapid endothelialization by promoting proliferation of endothelial cells and their migration along the pattern. The hemocompatibility of the HA-patterned PLLA was also confirmed, with substantially fewer platelets adhered on its surface. Overall, in addition to good mechanical stability, the HA-patterned PLLA exhibited enhanced biocompatibility and hemocompatibility compared with pure PLLA.
Collapse
Affiliation(s)
- In-Gu Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheon-Il Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Seong
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon-si, Gyeonggi-do, 16629, Republic of Korea
| | - Cheol-Min Han
- Department of Carbon and Nano Materials Engineering, Jeonju University, Jeonju-si, Jeollabuk-do, 55069, Republic of Korea.
| |
Collapse
|
81
|
Qu B, Yuan L, Yang L, Li J, Lv H, Yang X. Polyurethane End-Capped by Tetramethylpyrazine-Nitrone for Promoting Endothelialization Under Oxidative Stress. Adv Healthc Mater 2019; 8:e1900582. [PMID: 31529779 DOI: 10.1002/adhm.201900582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Thrombus and restenosis are two main factors that cause the failure of vascular implants. Constructing a functional and confluent layer of endothelial cells (ECs) is considered an ideal method to prevent these problems. However, oxidative stress induced by the disease and implantation can damage ECs and hinder the endothelialization of implants. Thus, developing biomaterials that can protect ECs adhesion and proliferation from oxidative stress is urgently needed for the rapid endothelialization of vascular implants. In this work, a novel polyurethane (PU-TBN) is synthesized by employing tetramethylpyrazine-nitrone (TBN) as end-group to endow polymers with dual functions of antioxidant activity and promoting endothelialization. Common PU without TBN is also prepared to be control. Compared to PU, PU-TBN significantly promotes human umbilical vein endothelial cells (HUVECs) adhesion and proliferation, where cells spread well and a confluent endothelial layer is formed. PU-TBN also shows obvious free radical scavenging activity, and thus effectively attenuates oxidative stress to protect HUVECs from oxidative apoptosis. Moreover, PU-TBN exhibits enhanced antiplatelets effect, excellent biocompatibility, and similar mechanical properties to PU. These characteristics can endow PU-TBN with great potential to be used as vascular implants or coatings of other materials for rapid endothelialization under complex oxidative stress environment.
Collapse
Affiliation(s)
- Baoliu Qu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liguang Yuan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- College of Applied Chemistry and EngineeringUniversity of Science and Technology of China 96 Jinzhai Road Hefei 230026 P. R. China
| | - Jinge Li
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
82
|
Copes F, Chevallier P, Loy C, Pezzoli D, Boccafoschi F, Mantovani D. Heparin-Modified Collagen Gels for Controlled Release of Pleiotrophin: Potential for Vascular Applications. Front Bioeng Biotechnol 2019; 7:74. [PMID: 31024906 PMCID: PMC6465514 DOI: 10.3389/fbioe.2019.00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/18/2019] [Indexed: 01/14/2023] Open
Abstract
A fast re-endothelialization, along with the inhibition of neointima hyperplasia, are crucial to reduce the failure of vascular bypass grafts. Implants modifications with molecules capable of speeding up the re-endothelialization process have been proposed over the last years. However, clinical trials of angiogenic factor delivery have been mostly disappointing, underscoring the need to investigate a wider array of angiogenic factors. In this work, a drug release system based on a type I collagen hydrogel has been proposed for the controlled release of Pleiotrophin (PTN), a cytokine known for its pro-angiogenetic effects. Heparin, in virtue of its ability to sequester, protect and release growth factors, has been used to better control the release of PTN. Performances of the PTN drug delivery system on endothelial (ECs) and smooth muscle cells (SMCs) have been investigated. Structural characterization (mechanical tests and immunofluorescent analyses of the collagen fibers) was performed on the gels to assess if heparin caused changes in their mechanical behavior. The release of PTN from the different gel formulations has been analyzed using a PTN-specific ELISA assay. Cell viability was evaluated with the Alamar Blue Cell Viability Assay on cells directly seeded on the gels (direct test) and on cells incubated with supernatant, containing the released PTN, obtained from the gels (indirect test). The effects of the different gels on the migration of both ECs and SMCs have been evaluated using a Transwell migration assay. Hemocompatibility of the gel has been assessed with a clotting/hemolysis test. Structural analyses showed that heparin did not change the structural behavior of the collagen gels. ELISA quantification demonstrated that heparin induced a constant release of PTN over time compared to other conditions. Both direct and indirect viability assays showed an increase in ECs viability while no effects were noted on SMCs. Cell migration results evidenced that the heparin/PTN-modified gels significantly increased ECs migration and decreased the SMCs one. Finally, heparin significantly increased the hemocompatibility of the collagen gels. In conclusion, the PTN-heparin-modified collagen here proposed can represent an added value for vascular medicine, able to ameliorate the biological performance, and integration of vascular grafts.
Collapse
Affiliation(s)
- Francesco Copes
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Caroline Loy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Daniele Pezzoli
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Francesca Boccafoschi
- Laboratory of Human Anatomy, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy.,Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair Tier I for the Innovation in Surgery, Department of Min-Met-Materials Engineering, CHU de Quebec Research Center, Laval University, Quebec, QC, Canada
| |
Collapse
|
83
|
Marine psychrophile-derived cold-active polygalacturonase: Enhancement of productivity in Thalassospira frigidphilosprofundus S3BA12 by whole cell immobilization. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
84
|
Li J, Chen Z, Yang X. State of the Art of Small-Diameter Vessel-Polyurethane Substitutes. Macromol Biosci 2019; 19:e1800482. [PMID: 30840365 DOI: 10.1002/mabi.201800482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Indexed: 12/31/2022]
Abstract
Cardiovascular diseases are a severe threat to human health. Implantation of small-diameter vascular substitutes is a promising therapy in clinical operations. Polyurethane (PU) is considered one of the most suitable materials for this substitution due to its good mechanical properties, controlled biostability, and proper biocompatibility. According to biodegradability and biostability, in this review, PU small-diameter vascular substitutes are divided into two groups: biodegradable scaffolds and biostable prostheses, which are applied to the body for short- and long-term, respectively. Following this category, the degradation principles and mechanisms of different kinds of PUs are first discussed; then the chemical and physical methods for adjusting the properties and the research advances are summarized. On the basis of these discussions, the problems remaining at present are addressed, and the contour of future research and development of PU-based small-diameter vascular substitutes toward clinical applications is outlined.
Collapse
Affiliation(s)
- Jinge Li
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Ave., Changchun, 130022, China
| | - Zhaobin Chen
- Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Ave., Changchun, 130022, China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Ave., Changchun, 130022, China
| |
Collapse
|
85
|
Lee SJ, Kim ME, Nah H, Seok JM, Jeong MH, Park K, Kwon IK, Lee JS, Park SA. Vascular endothelial growth factor immobilized on mussel-inspired three-dimensional bilayered scaffold for artificial vascular graft application: In vitro and in vivo evaluations. J Colloid Interface Sci 2019; 537:333-344. [DOI: 10.1016/j.jcis.2018.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 01/01/2023]
|
86
|
Abstract
OBJECTIVE Shunt-related adverse events are frequent in infants after modified Blalock-Taussig despite use of acetylsalicylic acid prophylaxis. A higher incidence of acetylsalicylic acid-resistance and sub-therapeutic acetylsalicylic acid levels has been reported in infants. We evaluated whether using high-dose acetylsalicylic acid can decrease shunt-related adverse events in infants after modified Blalock-Taussig. METHODS In this single-centre retrospective cohort study, we included infants ⩽1-year-old who underwent modified Blalock-Taussig placement and received acetylsalicylic acid in the ICU. We defined acetylsalicylic acid treatment groups as standard dose (⩽7 mg/kg/day) and high dose (⩾8 mg/kg/day) based on the initiating dose. RESULTS There were 34 infants in each group. Both groups were similar in age, gender, cardiac defect type, ICU length of stay, and time interval to second stage or definitive repair. Shunt interventions (18 versus 32%, p=0.16), shunt thrombosis (14 versus 17%, p=0.74), and mortality (9 versus 12%, p=0.65) were not significantly different between groups. On multiple logistic regression analysis, single-ventricle morphology (odds ratio 5.2, 95% confidence interval of 1.2-23, p=0.03) and post-operative red blood cells transfusion ⩾24 hours [odds ratio 15, confidence interval of (3-71), p<0.01] were associated with shunt-related adverse events. High-dose acetylsalicylic acid treatment [odds ratio 2.6, confidence interval of (0.7-10), p=0.16] was not associated with decrease in these events. CONCLUSIONS High-dose acetylsalicylic acid may not be sufficient in reducing shunt-related adverse events in infants after modified Blalock-Taussig. Post-operative red blood cells transfusion may be a modifiable risk factor for these events. A randomised trial is needed to determine appropriate acetylsalicylic acid dosing in infants with modified Blalock-Taussig.
Collapse
|
87
|
Pleiotrophin: Analysis of the endothelialisation potential. Adv Med Sci 2019; 64:144-151. [PMID: 30660899 DOI: 10.1016/j.advms.2018.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022]
Abstract
PURPOSE Endothelialisation of vascular substitutes, in fact, remains one of the most unsolved problems in cardiovascular diseases treatment. Stromal Derived Factor 1 (SDF-1) has been largely investigated as an endothelialisation promoter and Pleiotrophin is a promising alternative. Although it has been known to exert beneficial effects on different cell types, its potential as an inducer of proliferation and migration of endothelial cells was not investigated. Therefore, this work is aimed to compare the effects of Pleiotrophin on proliferation and migration of endothelial cells with respect to SDF-1. MATERIALS/METHODS Endothelial cell line EA.hy926 was treated with Pleiotrophin (50 ng/ml) or SDF-1 (50 ng/ml). Cell viability was evaluated by MTT assay and migration assays were performed in Transwell chambers. Wound healing potential was evaluated by scratch wound assay. CXCR4, RPTP β/ζ, PCNA and Rac1 expression was detected by Western Blot. RESULTS Interestingly, Pleiotrophin significantly increased the viability of the treated endothelial cells with respects to SDF-1. The migratory ability of the endothelial cells was also improved in the presence of Pleiotrophin with reference to the SDF-1 treatment. Moreover, Western Blot analysis showed how the treatment with Pleiotrophin can induce an increase in the expression of RPTP β/ζ, PCNA and Rac1 compared to SDF-1. CONCLUSION Due to the significant effects exerted on viability, migration and repair ability of endothelial cells compared to SDF-1, Pleiotrophin can be considered as an interesting molecule to promote re-endothelialisation.
Collapse
|
88
|
Xu C, Kuriakose AE, Truong D, Punnakitikashem P, Nguyen KT, Hong Y. Enhancing anti-thrombogenicity of biodegradable polyurethanes through drug molecule incorporation. J Mater Chem B 2018; 6:7288-7297. [PMID: 30906556 PMCID: PMC6424506 DOI: 10.1039/c8tb01582a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sufficient and sustained anti-thrombogenicity is essential for blood-contacting materials, because blood coagulation and thrombosis caused by platelet adhesion and activation on material surfaces may lead to functional failure and even fatal outcomes. Covalently conjugating antithrombogenic moieties into polymer, instead of surface modifying or blending, can maintain the anti-thrombogenicity of polymer at a high level over a time range. In this study, series of randomly crosslinked, elastic, biodegradable polyurethanes (PU-DPA) were synthesized through a one-pot and one-step method from polycaprolactone (PCL) diol, hexamethylene diisocyanate (HDI) and anti-thrombogenic drug, dipyridamole (DPA). The mechanical properties, hydrophilicity, in vitro degradation, and anti-thrombogenicity of the resultant PU-DPA polymers can be tuned by altering the incorporated DPA amount. The surface and bulk hydrophilicity of the polyurethanes decreased with increasing hydrophobic DPA amount. All PU-DPA polymers exhibited strong mechanical properties and good elasticity. The degradation rates of the PU-DPAs decreased with increasing DPA content in both PBS and lipase/PBS solutions. Covalently incorporating DPA into the polyurethane significantly reduced the platelet adhesion and activation compared to the polyurethane without DPA, and also can achieve sustained anti-thrombogenicity. The PU-DPA films also supported the growth of human umbilical vein endothelial cells. The attractive mechanical properties, blood compatibility, and cell compatibility of this anti-thrombogenic biodegradable polyurethane indicate that it has a great potential to be utilized for blood-contacting devices, and cardiovascular tissue repair and regeneration.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aneetta E. Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Danh Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Primana Punnakitikashem
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
89
|
Zhou J, Ying H, Wang M, Su D, Lu G, Chen J. Dual layer collagen-GAG conduit that mimic vascular scaffold and promote blood vessel cells adhesion, proliferation and elongation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:447-452. [DOI: 10.1016/j.msec.2018.06.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/23/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023]
|
90
|
Liao S, He Q, Yang L, Liu S, Zhang Z, Guidoin R, Fu Q, Xie X. Toward endothelialization via vascular endothelial growth factor immobilization on cell-repelling functional polyurethanes. J Biomed Mater Res B Appl Biomater 2018; 107:965-977. [PMID: 30265778 DOI: 10.1002/jbm.b.34190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 06/04/2018] [Accepted: 06/12/2018] [Indexed: 02/05/2023]
Abstract
We screened a family of nonspecific cell-repelling polyurethanes (PUs) whose backbones are attached with epoxy group-terminated polyethylene glycol (PEG) side chains. Water incubation of the PU films (with 9.2-31.1 wt % PEG) caused a surface enrichment of PEG chains where vascular endothelial growth factor (VEGF) was grafted by forming secondary amine linkages between VEGF molecules and the PEG spacer. These linkages are still ionizable similar to original primary amines in VEGF, thereby retaining the original charge distribution on VEGF macromolecules. This charge conservation together with PEG steric repulsion helped to preserve VEGF conformation and bioactivity. The PU substrates with suitable hard segments contents and VEGF surface densities can selectively induce endothelial cells (ECs) adhesion and proliferation toward endothelialization. Moreover, the PU substrates, even grafted with fibrinogen (Fg), cannot trigger platelet adhesion and deformation, suggesting an inactive conformation of the grafted Fg. Thus enough antithrombogenicity of the PU substrates could be expected before full endothelialization. These PU materials might be applied onto the lumens of vascular grafts, potentially stimulating luminal endothelialization in vivo. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 965-977, 2019.
Collapse
Affiliation(s)
- Shurui Liao
- Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qiang He
- Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuai Liu
- Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ze Zhang
- Division of Regenerative Medicine, CHU de Québec Research Centre, Quebec City, Quebec G1L 3L5, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Robert Guidoin
- Division of Regenerative Medicine, CHU de Québec Research Centre, Quebec City, Quebec G1L 3L5, Canada.,Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec G1V 0A6, Canada
| | - Qiang Fu
- Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xingyi Xie
- Department of Polymeric Biomaterials and Artificial Organs, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
91
|
Cao YN, Baiyisaiti A, Wong CW, Hsu SH, Qi R. Polyurethane Nanoparticle-Loaded Fenofibrate Exerts Inhibitory Effects on Nonalcoholic Fatty Liver Disease in Mice. Mol Pharm 2018; 15:4550-4557. [PMID: 30188729 DOI: 10.1021/acs.molpharmaceut.8b00548] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyurethane (PU) nanoparticles are potential drug carriers. We aimed to study the in vitro and in vivo efficacy of biodegradable PU nanoparticles loaded with fenofibrate (FNB-PU) on nonalcoholic fatty liver disease (NAFLD). FNB-PU was prepared by a green process, and its preventive effects on NAFLD were investigated on HepG2 cells and mice. FNB-PU showed sustained in vitro FNB release profile. Compared to FNB crude drug, FNB-PU significantly decreased triglyceride content in HepG2 cells incubated with oleic acid and in livers of mice with NAFLD induced by a methionine choline deficient diet, and increased plasma FNB concentration of the mice. FNB-PU increased absorption of FNB and therefore enhanced the inhibitory effects of FNB on NAFLD.
Collapse
Affiliation(s)
- Yi-Ni Cao
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| | - Asiya Baiyisaiti
- School of Pharmacy , Shihezi University , Shihezi , Xinjiang , China
| | - Chui-Wei Wong
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering , National Taiwan University , Taipei , Taiwan
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences , Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Health Science Center , Beijing , China.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems , Beijing , China
| |
Collapse
|
92
|
Integrated antibacterial and antifouling surfaces via cross-linking chitosan- g -eugenol/zwitterionic copolymer on electrospun membranes. Colloids Surf B Biointerfaces 2018; 169:151-159. [DOI: 10.1016/j.colsurfb.2018.04.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 12/16/2022]
|
93
|
Hielscher D, Kaebisch C, Braun BJV, Gray K, Tobiasch E. Stem Cell Sources and Graft Material for Vascular Tissue Engineering. Stem Cell Rev Rep 2018; 14:642-667. [DOI: 10.1007/s12015-018-9825-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
94
|
Xu W, Xiao M, Yuan L, Zhang J, Hou Z. Preparation, Physicochemical Properties and Hemocompatibility of Biodegradable Chitooligosaccharide-Based Polyurethane. Polymers (Basel) 2018; 10:E580. [PMID: 30966614 PMCID: PMC6404008 DOI: 10.3390/polym10060580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to develop a process to achieve biodegradable chitooligosaccharide-based polyurethane (CPU) with improved hemocompatibility and mechanical properties. A series of CPUs with varying chitooligosaccharide (COS) content were prepared according to the conventional two-step method. First, the prepolymer was synthesized from poly(ε-caprolactone) (PCL) and uniform-size diurethane diisocyanates (HBH). Then, the prepolymer was chain-extended by COS in N,N-dimethylformamide (DMF) to obtain the weak-crosslinked CPU, and the corresponding films were obtained from the DMF solution by the solvent evaporation method. The uniform-size hard segments and slight crosslinking of CPU were beneficial for enhancing the mechanical properties, which were one of the essential requirements for long-term implant biomaterials. The chemical structure was characterized by FT-IR, and the influence of COS content in CPU on the physicochemical properties and hemocompatibility was extensively researched. The thermal stability studies indicated that the CPU films had lower initial decomposition temperature and higher maximum decomposition temperature than pure polyurethane (CPU-1.0) film. The ultimate stress, initial modulus, and surface hydrophilicity increased with the increment of COS content, while the strain at break and water absorption decreased, which was due to the increment of crosslinking density. The results of in vitro degradation signified that the degradation rate increased with the increasing content of COS in CPU, demonstrating that the degradation rate could be controlled by adjusting COS content. The surface hemocompatibility was examined by protein adsorption and platelet adhesion tests. It was found that the CPU films had improved resistance to protein adsorption and possessed good resistance to platelet adhesion. The slow degradation rate and good hemocompatibility of the CPUs showed great potential in blood-contacting devices. In addition, many active amino and hydroxyl groups contained in the structure of CPU could carry out further modification, which made it an excellent candidate for wide application in biomedical field.
Collapse
Affiliation(s)
- Weiwei Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Minghui Xiao
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Litong Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Jun Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
95
|
Shan Y, Jia B, Ye M, Shen H, Chen W, Zhang H. Application of Heparin/Collagen-REDV Selective Active Interface on ePTFE Films to Enhance Endothelialization and Anticoagulation. Artif Organs 2018; 42:824-834. [PMID: 29667205 DOI: 10.1111/aor.13131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
Expanded polytetrafluoroethylene (ePTFE) prosthetic valves have been widely used in clinical applications in Asian countries. However, these valves still have limits with regard to thrombosis, neointimal hyperplasia, restenosis, and valvar vegetation. The achievement of in situ endothelialization on implant materials is a promising way to overcome those limits. Here, heparin/collagen multilayers were fabricated on ePTFE films via a layer-by-layer (LBL) self-assembly technique, and then, the endothelial cell (EC) adhesive peptide sequence Arg-Glu-Asp-Val (REDV) was immobilized on the multilayers. After modification with the heparin/collagen multilayers with or without REDV peptide, less platelet activation and aggregation were observed, the blood coagulation time was increased, and the hemolysis rate was decreased compared to that on pristine ePTFE films. The REDV-functionalized ePTFE films positively impacted early EC adhesion, later cell proliferation and cell activity. The EC barrier was confirmed to be successfully achieved on the functionalized ePTFE film surface in vitro. The successful assembly of the REDV-functionalized heparin/collagen multilayer on ePTFE films improved the blood compatibility, anticoagulant properties, and cell compatibility of the films in vitro, and thus, represents a candidate approach for applications requiring quick in situ endothelialization in vivo.
Collapse
Affiliation(s)
- Yaping Shan
- Department of Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Bing Jia
- Department of Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Ming Ye
- Department of Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Hua Shen
- Department of Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Weicheng Chen
- Department of Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| | - Huifeng Zhang
- Department of Cardiovascular Center, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
96
|
Zhang J, Wang Y, Liu C, Feng F, Wang D, Mo H, Si L, Wei G, Shen J. Polyurethane/polyurethane nanoparticle-modified expanded poly(tetrafluoroethylene) vascular patches promote endothelialization. J Biomed Mater Res A 2018; 106:2131-2140. [DOI: 10.1002/jbm.a.36419] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 02/04/2023]
Affiliation(s)
- Jun Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| | - Yutong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
- College of Materials Science and Engineering; Nanjing Forestry University; Nanjing 210037 People's Republic of China
| | - Cheng Liu
- Medical School, Nanjing University; Nanjing 210093 People's Republic of China
| | - Fuling Feng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| | - Dawei Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| | - Hong Mo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| | - Ling Si
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| | - Guo Wei
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University; Nanjing 210023 People's Republic of China
| |
Collapse
|
97
|
Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y, Yuan X. Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:37-46. [DOI: 10.1016/j.msec.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
98
|
Lee SY, Lee Y, Le Thi P, Oh DH, Park KD. Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices. Biomater Res 2018; 22:3. [PMID: 29449959 PMCID: PMC5808389 DOI: 10.1186/s40824-017-0113-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Zwitterionic molecules have been widely studied as coating materials for preparing anti-fouling surfaces because they possess strong hydration properties that can resist non-specific protein adsorption. Numerous studies on surface modification using zwitterionic molecules have been investigated, such as electrochemically mediated and photoinitiated radical polymerization. However, these methods have some limitations, including multi-step process, difficulties in producing thick and dense layers as well as the requirement of extra facilities. In this study, we report a novel zwitterionic hydrogel-coating method via Fenton reaction for the preparation of anti-fouling surfaces. METHODS Sulfobetaine methacrylate (SBMA) hydrogel was coated on polyurethane (PU) by polymerization of SBMA molecules via the Fenton reaction. The coated surfaces were characterized by the measurements of water contact angle, SEM and XPS. The anti-fouling properties of the modified surfaces were evaluated by reductions of fibrinogen absorption and cell (human dermal fibroblasts, hDFBs) adhesion. RESULTS SBMA hydrogel layers were coated on the PU substrates and these layers have a high affinity for water. The hydrogel coatings were highly stable for 7 days, without a significant change in surface wettability. Importantly, the hydrogel-coated PU substrates decrease 80% of surface-adsorbed fibrinogen and surface-attached hDFBs (compared with uncoated PU substrates), indicating the excellent anti-fouling activities of modified surfaces. CONCLUSIONS The hydrogel-coated PU surfaces prepared by Fenton reaction with anti-fouling properties could have potential uses for implantable biomedical devices.
Collapse
Affiliation(s)
- Se Yeong Lee
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeongtong, Suwon, 16499 Republic of Korea
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeongtong, Suwon, 16499 Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeongtong, Suwon, 16499 Republic of Korea
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeongtong, Suwon, 16499 Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, San 5, Woncheon, Yeongtong, Suwon, 16499 Republic of Korea
| |
Collapse
|
99
|
Kerch G. Polymer hydration and stiffness at biointerfaces and related cellular processes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:13-25. [DOI: 10.1016/j.nano.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 01/15/2023]
|
100
|
Endothelialization of Polyethylene Terephthalate Treated in SO2 Plasma Determined by the Degree of Material Cytotoxicity. PLASMA 2017. [DOI: 10.3390/plasma1010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Improving the biocompatibility of polyethylene terephthalate (PET) vascular grafts is an important task for avoiding thrombus formation. Therefore, SO2 plasma at various treatment periods were used to modify PET surface properties by forming sulfate functional groups. These groups were shown to act antithrombogenically, ensuring good hemocompatibility of the materials, although the biocompatibility of such materials still remains a mystery. For this reason, the adhesion and viability of HUVEC cells on SO2 plasma-modified PET surfaces were studied, and the possible toxicity of the tested material was determined using two different assays, MTT (metabolic activity assay) and SRB (in-vitro toxicology assay). Changes in chemical composition, morphology and wettability were determined as well. Improved endothelialization was observed for all plasma-treated samples, with the most optimal being the sample treated for 80 s, which can be explained by it having the best combination of surface functionalization, roughness and morphology. Furthermore, toxicity was observed to some extent on the sample treated for 160 s, indicating the lowest cell density among the plasma-treated samples. X-ray photoelectron spectroscopy showed increased oxygen and sulfur content on the surface, which was independent on treatment time. Surface roughness of the plasma-treated samples increased, reaching its maximum after 80 s of treatment, and decreased thereafter.
Collapse
|