51
|
Lv Y, Hou ZW, Wang Y, Li P, Wang L. Electrochemical monofluoroalkylation cyclization of N-arylacrylamides to construct monofluorinated 2-oxindoles. Org Biomol Chem 2023; 21:1014-1020. [PMID: 36602181 DOI: 10.1039/d2ob01883g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An electrochemical monofluoroalkylation cyclization of N-arylacrylamides to synthesize monofluorinated 2-oxindoles has been developed, which employs common dimethyl 2-fluoromalonate as a monofluoroalkyl radical precursor and obviates the use of prefunctionalized monofluoroalkylation reagents and sacrificial oxidants. A variety of monofluorinated nitrogen-containing heterocyclic compounds were efficiently obtained with satisfactory yields from readily available materials.
Collapse
Affiliation(s)
- Yanxia Lv
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China.
| | - Yi Wang
- The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, P. R. China. .,Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,The Second Hospital of Anhui Medical University, Heifei, Anhui 230601, P. R. China
| |
Collapse
|
52
|
Vopálenská A, Dočekal V, Petrželová S, Císařová I, Veselý J. Access to Spirooxindole-Fused Cyclopentanes via a Stereoselective Organocascade Reaction Using Bifunctional Catalysis. J Org Chem 2023. [PMID: 36705518 DOI: 10.1021/acs.joc.2c02478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study reports an asymmetric organocascade reaction of oxindole-derived alkenes with 3-bromo-1-nitropropane efficiently catalyzed by the bifunctional catalyst. Spirooxindole-fused cyclopentanes were produced in moderate-to-good isolated yields (15-69%) with excellent stereochemical outcomes. The synthetic utility of the protocol was exemplified on a set of additional transformations of the corresponding spirooxindole compounds.
Collapse
Affiliation(s)
- Andrea Vopálenská
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Vojtěch Dočekal
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Simona Petrželová
- Department of Teaching and Didactics of Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| | - Jan Veselý
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43Prague 2, Czech Republic
| |
Collapse
|
53
|
Liu WK, Wang BL, Zhou SS, Shen JH, Wang Z, Wang XW. COAP/Pd-Catalyzed Linear Asymmetric Allylic Alkylation for Optically Active 3,3-Disubstituted Oxindole Derivatives with a Four-Carbon Amino Side Chain. Org Lett 2023; 25:104-108. [PMID: 36583996 DOI: 10.1021/acs.orglett.2c03902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An asymmetric linear selective allylic alkylation of vinylaziridines with 3-aryl oxindoles has been developed by using a chiral oxamide-phosphine (COAP-Bn-OMe-p)/palladium complex in methanol, which furnished a wide variety of 3,3-disubstituted oxindole derivatives in good yields with excellent regio- and enantioselectivities.
Collapse
Affiliation(s)
- Wen-Kai Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Sheng-Suo Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Jun-Hao Shen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
54
|
Green Synthesis of Spirooxindoles via Lipase-Catalyzed One-Pot Tandem Reaction in Aqueous Media. Catalysts 2023. [DOI: 10.3390/catal13010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The development of non-natural enzymatic catalysis is important for multicomponent tandem organic transformations. However, the delicate acting environments of biological enzymes still present some challenges in the synthesis of spirooxindole skeleton via enzymatic catalysis. To address these issues, a lipase-catalyzed method was developed for the synthesis of spirooxindole frameworks. Using easily available isatins, cycloketones, and malononitriles as substrates, mild reaction conditions, and a reasonable reaction time, moderate to good yields (67–92%) and excellent functional group tolerance were accomplished via this protocol. The related mechanism explanation is also speculated in this paper.
Collapse
|
55
|
Jeon HJ, Park SM, Lee YL, Lee SG. Divergent Asymmetric Synthesis of Chiral Spiroheterocycles through Pd-Catalyzed Enantio- and Diastereoselective [3 + 2] Spiroannulation. Org Lett 2022; 24:9189-9193. [PMID: 36508499 DOI: 10.1021/acs.orglett.2c03643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The palladium-catalyzed divergent asymmetric synthesis of chiral spiro-furanindoline derivatives is described. The zwitterionic alkoxy π-allyl Pd(II) intermediate, generated catalytically from vinyl ethylene carbonate (VEC), could undergo ligand-controlled enantio- and diastereoselective dipolar [3 + 2] spiroannulation with indole-based azadienes to afford the optically active spiro-furanindolines embedding an all-carbon quaternary stereocenter in high yields (up to 99%) with good to excellent stereoselectivities (up to 99% ee and up to >94:6 dr).
Collapse
Affiliation(s)
- Hyun Ji Jeon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Su Min Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yu Lim Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Sang-Gi Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
56
|
Portolani C, Centonze G, Righi P, Bencivenni G. Role of Cinchona Alkaloids in the Enantio- and Diastereoselective Synthesis of Axially Chiral Compounds. Acc Chem Res 2022; 55:3551-3571. [PMID: 36475607 PMCID: PMC9774690 DOI: 10.1021/acs.accounts.2c00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric synthesis using organic catalysts has evolved since it was first realized and defined. Nowadays, it can be considered a valid alternative to transition metal catalysis for synthesizing chiral molecules. According to the literature, the number of asymmetric organocatalytic processes associated with atropisomer synthesis has rapidly increased over the past 10 years because organocatalysis addresses the challenges posed by the most widespread strategies used for preparing axially chiral molecules with satisfactory results.These strategies, useful to prepare a wide range of C-C, C-heteroatom, and N-N atropisomers, vary from kinetic resolution to direct arylation, desymmetrization, and central-to-axial chirality conversion. In this field, our contribution focuses on determining novel methods for synthesizing atropisomers, during which, in most cases, the construction of one or more stereogenic centers other than the stereogenic axis occurred. To efficiently address this challenge, we exploited the ability of catalysts based on a cinchona alkaloid scaffold to realize enantioselective organic transformations. Desymmetrization of N-(2-tert-butylphenyl) maleimides was one of the first strategies that we pursued for preparing C-N atropisomers. The main principle is based on the presence of a rotationally hindered C-N single bond owing to the presence of a large tert-butyl group. Following the peculiar reactivity of this type of substrate as a powerful electrophile and dienophile, we realized several transformations.First, we investigated the vinylogous Michael addition of 3-substituted cyclohexenones, where a stereogenic axis and two contiguous stereocenters were concomitantly and remotely formed and stereocontrolled using a primary amine catalyst. Subsequently, we realized desymmetrization via an organocatalytic Diels-Alder reaction of activated unsaturated ketones that enabled highly atropselective transformation with efficient diastereoselectivity, thereby simultaneously controlling four stereogenic elements. Employing chiral organic bases allowed us to realize efficient desymmetrizations using carbon nucleophiles, such as 1,3-dicarbonyl compounds, cyanoacetates, and oxindoles. These reactions, performed with different types of catalysts, highlighted the versatility of organocatalysis as a powerful strategy for atropselective desymmetrization of pro-axially chiral maleimides.Hereafter, we studied the Friedel-Crafts alkylation of naphthols with indenones, a powerful method for enantioselective synthesis of conformationally restricted diastereoisomeric indanones. We realized the first axially chiral selective Knoevenagel condensation using cinchona alkaloid primary amine as the catalyst. This reaction provided a powerful method to access enantioenriched olefins containing the oxindole core. Subsequently, we initiated an intense program for the computational investigation of the reaction mechanism of our atropselective processes. An understanding of the catalytic activity for vinylogous atropselective desymmetrization as well as of the role played by the acidic cocatalyst used for the experimental work was achieved.Recently, we have garnered interest in the novel frontiers of atropselective synthesis. As observed in recent publications, there is considerable interest in the development of methods for preparing N-N atropisomers, an emerging topic in the field of atropselective synthesis. We focused on the synthesis of hydrazide atropisomers by developing a one-pot sequential catalysis protocol based on two sequential organocatalytic reactions that provided high stereocontrol of two contiguous stereogenic elements.
Collapse
Affiliation(s)
- Chiara Portolani
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giovanni Centonze
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Paolo Righi
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giorgio Bencivenni
- Department
of Industrial Chemistry “Toso Montanari,” Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,Centre
for the Chemical Catalysis−C3, Alma Mater Studiorum−University of Bologna, viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
57
|
Pramanik S, Saha P, Ghosh P, Mukhopadhyay C. Substrate specific ring opening annulations of donor-acceptor cyclopropanes with 3-phenacylidene-2-oxindoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
58
|
Chen H, Peng J, Pang Q, Du H, Huang L, Gao L, Lan Y, Yang C, Song Z. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes. Angew Chem Int Ed Engl 2022; 61:e202212889. [DOI: 10.1002/anie.202212889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ju Peng
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
59
|
Phukon J, Jyoti Borah A, Gogoi S. Transition‐Metal‐Catalyzed Synthesis of Spiro Compounds through Activation and Cleavage of C−H Bonds. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Arun Jyoti Borah
- Department of Chemistry Gauhati University Guwahati 781014 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006, Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
60
|
Luo Z, Cao B, Song T, Xing Z, Ren J, Wang Z. Visible-Light Organophotoredox-Mediated [3 + 2] Cycloaddition of Arylcyclopropylamine with Structurally Diverse Olefins for the Construction of Cyclopentylamines and Spiro[4. n] Skeletons. J Org Chem 2022; 87:15511-15529. [PMID: 36318193 DOI: 10.1021/acs.joc.2c02061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We developed a visible-light-mediated [3 + 2] cycloaddition of arylcyclopropylamine with structurally diverse olefins using QXPT-NPh as a highly efficient organic photoredox catalyst. We first achieved the use of various alkyl-substituted alkenes in intermolecular [3 + 2] cycloadditions with cyclopropylamine. We also developed a general and efficient strategy for the construction of structurally diverse cyclopentane-based spiro[4.n] skeletons with 1,3-difunctional groups, which broadly exist in natural products and synthetic molecules. Furthermore, we proposed a hydrogen-bond mode between the arylcyclopropylamine and the photocatalyst QXPT-NPh.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Bowen Cao
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Tianhang Song
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Zequn Xing
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Jun Ren
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| | - Zhongwen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94# Weijin Road, Tianjin 300071, China
| |
Collapse
|
61
|
Czajkowska-Szczykowska D, Olchowik-Grabarek E, Sękowski S, Żarkowski J, Morzycki JW. Concise synthesis of E/F ring spiroethers from tigogenin. Carbaanalogs of steroidal sapogenins and their biological activity. J Steroid Biochem Mol Biol 2022; 224:106174. [PMID: 36055516 DOI: 10.1016/j.jsbmb.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 10/31/2022]
Abstract
A four-step synthesis of five- and six-membered E/F ring spiroethers from tigogenin has been developed. An efficient strategy that features bis-Grignard reaction of dinorcholanic lactone with appropriate bis(bromomagnesio)alkanes followed by acid-mediated spirocyclization was employed to construct a new class of steroid compounds having E and F ring junction as an oxa-carbacyclic system. The synthesized carbaanalogs interact with liposomes and albumin, and also exhibit antibacterial and antifungal activity, demonstrating their pharmacological potential.
Collapse
Affiliation(s)
- Dorota Czajkowska-Szczykowska
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland.
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1 J, Białystok 15-245, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1 J, Białystok 15-245, Poland
| | - Jacek Żarkowski
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland
| | - Jacek W Morzycki
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland
| |
Collapse
|
62
|
Yang L, Pi C, Wu Y, Cui X. Lewis Acid-Catalyzed [3 + 2]-Cyclization of Iodonium Ylides with Azadienes: Access to Spiro[benzofuran-2,2'-furan]-3-ones. Org Lett 2022; 24:7502-7506. [PMID: 36218222 DOI: 10.1021/acs.orglett.2c02660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective synthesis of spiro[benzofuran-2,2'-furan]-3-ones has been explored via Lewis acid-catalyzed [3 + 2] cyclization of iodonium ylides with azadienes. The acidity of the Lewis acid was significantly strengthened with strong hydrogen bond donors, thereby promoting the enolization isomerization of iodonium ylides for the subsequent cycloaddition. This reaction was compatible with a broad range of substrates under the mild reaction conditions, and efficiently delivered spiro-heterocycles with excellent stereoselectivity.
Collapse
Affiliation(s)
- Liu Yang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiuling Cui
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
63
|
Zhang K, Li C, Jia Y, Zhao W. Asymmetric Oxidative Lactonization of Enynyl Boronates. Angew Chem Int Ed Engl 2022; 61:e202209004. [DOI: 10.1002/anie.202209004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kezhuo Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| | - Chenchen Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| | - Yining Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics Advanced Catalytic Engineering Research Center of the Ministry of Education College of Chemistry and Chemical Engineering Hunan University 410082 Changsha Hunan P. R. China
| |
Collapse
|
64
|
Alves AJS, Alves NG, Bártolo I, Fontinha D, Caetano S, Prudêncio M, Taveira N, Pinho E Melo TMVD. Unveiling a family of spiro-β-lactams with anti-HIV and antiplasmodial activity via phosphine-catalyzed [3+2] annulation of 6-alkylidene-penicillanates and allenoates. Front Chem 2022; 10:1017250. [PMID: 36277353 PMCID: PMC9585939 DOI: 10.3389/fchem.2022.1017250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/02/2023] Open
Abstract
The molecular architecture of spirocyclic compounds has been widely explored within the medicinal chemistry field to obtain new compounds with singular three-dimensional pharmacophoric features and improved bioactivity. Herein, the synthesis of 68 new spirocyclopentene-β-lactams is described, resulting from a rational drug design and structural modulation of a highly promising lead compound BSS-730A, previously identified as having dual antimicrobial activity associated with a novel mechanism of action. Among this diverse library of new compounds, 22 were identified as active against HIV-1, with eight displaying an IC50 lower than 50 nM. These eight compounds also showed nanomolar activity against HIV-2, and six of them displayed micromolar antiplasmodial activity against both the hepatic and the blood stages of infection by malaria parasites, in agreement with the lead molecule’s bioactivity profile. The spirocyclopentene-β-lactams screened also showed low cytotoxicity against TZM-bl and Huh7 human cell lines. Overall, a family of new spirocyclopentene penicillanates with potent activity against HIV and/or Plasmodium was identified. The present structure–activity relationship open avenues for further development of spirocyclopentene-β-lactams as multivalent, highly active broad spectrum antimicrobial agents.
Collapse
Affiliation(s)
- Américo J S Alves
- Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Nuno G Alves
- Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Inês Bártolo
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Fontinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Soraia Caetano
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Nuno Taveira
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Caparica, Portugal
| | - Teresa M V D Pinho E Melo
- Coimbra Chemistry Centre-Institute of Molecular Sciences and Department of Chemistry, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
65
|
Zhong X, Huang M, Xiong H, Liang Y, Zhou W, Cai Q. Asymmetric Synthesis of Spiro[Azetidine‐3,3′‐Indoline]‐2,2′‐Diones via Copper(I)‐Catalyzed Kinugasa/C−C Coupling Cascade Reaction. Angew Chem Int Ed Engl 2022; 61:e202208323. [DOI: 10.1002/anie.202208323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xianqiang Zhong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 China
| | - Meirong Huang
- Shenzhen Bay Laboratory State Key Laboratory of Chemical Oncogenomics Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Huilan Xiong
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 China
| | - Yuzhen Liang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 China
| | - Wei Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 China
| | - Qian Cai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE) College of Pharmacy Jinan University No. 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
66
|
Shi Z, Wang WZ, Li N, Yuan Y, Ye KY. Electrochemical Dearomative Spirocyclization of N-Acyl Thiophene-2-sulfonamides. Org Lett 2022; 24:6321-6325. [PMID: 35993566 DOI: 10.1021/acs.orglett.2c02536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Friedel-Crafts type alkylation of C2-tethered thiophenes has been reported to be nonregioselective. Taking advantage of the highly regioselective 5-exo-trig spirocyclization of an electrochemically generated amidyl radical, we have unraveled an electrochemical dearomative spirocyclization of N-acyl thiophene-2-sulfonamides. Various nucleophilic agents, including carboxylates, alcohols, and fluoride, are readily incorporated to afford the remotely functionalized spirocyclic dihydrothiophenes, and their novel spirocyclic scaffolds have been shown to exhibit promising antitumor activities.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| |
Collapse
|
67
|
Zhong X, Huang M, Xiong H, Liang Y, Zhou W, Cai Q. Asymmetric Synthesis of Spiro[Azetidine‐3,3'‐Indoline]‐2,2'‐Diones via Copper(I)‐Catalyzed Kinugasa/C‐C Coupling Cascade Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Meirong Huang
- Peking University Shenzhen Graduate School School of Advanced Materials CHINA
| | | | | | - Wei Zhou
- Jinan University College of Pharmacy CHINA
| | - Qian Cai
- Jinan University College of Pharmacy No. 601 Huangpu Avenue West 510530 Guangzhou CHINA
| |
Collapse
|
68
|
Mo NF, Zhang Y, Guan ZH. Highly Enantioselective Three-Component Povarov Reaction for Direct Construction of Azaspirocycles. Org Lett 2022; 24:6397-6401. [PMID: 36018318 DOI: 10.1021/acs.orglett.2c02421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An asymmetric organocatalyzed three-component Povarov reaction to construct azaspirocycles has been developed. A chiral phosphoric acid OCF-CPA bearing o-CF3-aryl on the H8-BINOL-framework is highly efficient in the reaction. The reaction was carried out under mind conditions for synthesis of a range of azaspirocycles in high yields and high to excellent enantioselectivities, thus expending the substrate scope of the traditional Povarov reaction.
Collapse
Affiliation(s)
- Nan-Fang Mo
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Ying Zhang
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P.R. China
| |
Collapse
|
69
|
Zhang K, Li C, Jia Y, Zhao W. Asymmetric Oxidative Lactonization of Enynyl Boronates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Wanxiang Zhao
- Hunan University chemistry Yuelushan, Changsha 410082 changsha CHINA
| |
Collapse
|
70
|
Liu B, Duan XY, Li J, Wu Y, Li Y, Qi J. N-Heterocyclic Carbene-Catalyzed [3 + 2] Annulation of 3,3'-Bisoxindoles with α-Bromoenals: Enantioselective Construction of Contiguous Quaternary Stereocenters. Org Lett 2022; 24:5929-5934. [PMID: 35947030 DOI: 10.1021/acs.orglett.2c02180] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An NHC-catalyzed enantio- and diastereoselective [3 + 2] annulation of α-bromoenals with bisoxindoles is developed, affording efficient access to various spirocyclic bisoxindole alkaloids. This protocol tolerates a broad substrates scope, with various spirocyclic bisoxindoles obtained in generally excellent enantioselectivities. More importantly, two contiguous sterically congested all-carbon quaternary stereocenters are successfully created during this process.
Collapse
Affiliation(s)
- Binghao Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Xiao-Yong Duan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| | - Jiahan Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yatong Wu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Yanting Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China
| | - Jing Qi
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, People's Republic of China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, People's Republic of China
| |
Collapse
|
71
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207202. [DOI: 10.1002/anie.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
72
|
Straminelli L, Vicentini F, Di Sabato A, Montone CM, Cavaliere C, Rissanen K, Leonelli F, Vetica F. Stereoselective Synthesis of Spiro-Decalin Oxindole Derivatives via Sequential Organocatalytic Michael-Domino Michael/Aldol Reaction. J Org Chem 2022; 87:10454-10461. [PMID: 35875873 PMCID: PMC9365295 DOI: 10.1021/acs.joc.2c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Indexed: 11/30/2022]
Abstract
A highly stereoselective procedure for the synthesis of spiro-polycyclic oxindoles bearing five contiguous stereogenic centers including two tetrasubstituted carbons has been developed. Under sequential organocatalysis performed by a pyrrolidine-based organocatalyst and DBU, a highly atom-economical Michael-domino Michael/aldol reaction sequence was optimized, yielding variously functionalized spiro-decalin oxindoles with excellent stereoselectivity (>99:1 dr, up to 92% ee).
Collapse
Affiliation(s)
- Leonardo Straminelli
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Vicentini
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonio Di Sabato
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Carmela Maria Montone
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Kari Rissanen
- Department
of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Francesca Leonelli
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Vetica
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
73
|
Zhu G, Lin N, Wu X, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Multicomponent Spiropolymerization of Diisocyanides, Activated Alkynes, and Bis-Anhydrides. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guinan Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Na Lin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinghui Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
74
|
Sambasiva Rao YN, Ghosh P, Mainkar PS, Chandrasekhar S. Access to Spiroindanolactones/lactams through an Aryne Insertion/Spirocyclization Strategy. Org Lett 2022; 24:5372-5375. [DOI: 10.1021/acs.orglett.2c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Y. N. Sambasiva Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
75
|
Tian X, Zhang Y, Dong H, Ren W, Wang Y. Asymmetric α-Regioselective [3 + 2] Annulation of Morita-Baylis-Hillman Carbonates: Construction of Three Contiguous Stereocenters with Vicinal Quaternary Carbon Centers. J Org Chem 2022; 87:9593-9606. [PMID: 35833878 DOI: 10.1021/acs.joc.2c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Asymmetric α-regioselective annulation of MBH carbonates with 4-arylmethylisoxazol-5-ones has been developed to afford spirocyclic oxindole derivatives containing three contiguous stereogenic centers and vicinal all-carbon quaternary chiral centers. This reaction exhibits a broad substrate scope and excellent functional group tolerance. Excellent yields with high diastereo- and enantioselectivities were obtained in this efficient organocatalytic reaction.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Hao Dong
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
76
|
Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci Rep 2022; 12:12004. [PMID: 35835941 PMCID: PMC9283471 DOI: 10.1038/s41598-022-16384-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Lanthanoid-containing polyoxometalates (Ln-POMs) have been developed as effective and robust catalysts due to their Lewis acid–base active sites including the oxygen-enriched surfaces of POM and the unique 4f. electron configuration of Ln. As an extension of our interest in Ln-POMs, a series of as-synthesized nanocatalysts K15[Ln(BW11O39)2] (Ln-B2W22, Ln = La, Ce, Nd, Sm, Gd, and Er) synthesized and fully characterized using different techniques. The Ln3+ ion with a big ionic radius was chosen as the Lewis acid center which is sandwiched by two mono-lacunary Keggin [BW11O39]9− units to form Ln-containing sandwiched type cluster. Consequently, the catalytic activity of nanocatalysts with different Ln was examined in the synthesis of bioactive isatin derivatives and compared under the same optimized reaction conditions in terms of yields of obtained products, indicating the superiority of the nano-Gd-B2W22 in the aforementioned simple one-pot reaction. The effects of different dosages of nanocatalyst, type of solvent, reaction time, and reaction temperature in this catalytic system were investigated and the best results were obtained in the presence of 10 mol% of nano-Gd-B2W22 in water for 12 min at the reflux condition.
Collapse
|
77
|
Chitti S, Nandikolla A, Khetmalis YM, Van Calster K, Kumar BVS, Kumar BK, Murugesan S, Cappoen D, Kondapalli CSVG. Design, Synthesis and Biological Evaluation of Novel Spiro-[chroman-2,4'-piperidin]-4-one Analogues as Anti-Tubercular Agents. Chem Biodivers 2022; 19:e202200304. [PMID: 35821618 DOI: 10.1002/cbdv.202200304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
A series of novel spiro-[chromane-2,4'-piperidine]-4(3 H )-one derivatives were designed, synthesized and structures were confirmed by analytical methods viz., 1 H NMR, 13 C NMR and Mass spectrometry. Synthesized derivatives were evaluated for their anti-mycobacterial activity against Mycobacterium tuberculosis ( Mtb ) H37Ra strain. Among all the evaluated compounds, PS08 exhibited significant inhibition with MIC value of 3.72 μM while MIC values of the remaining compounds ranged from 7.68 to 230.42 μM in comparison to the standard drug INH (MIC 0.09 μM). The two most active compounds however showed acute cytotoxicity towards the human MRC-5 lung fibroblast cell line. The in-silico ADMET profiles of the titled compounds were predicted and found within the prescribed limits of the Lipinski and Jorgenson rules. Molecular docking study of the significantly active compound ( PS08 ) was also carried out after performing validation in order to understand the putative binding position of the test ligand at the active site of selected target protein Mtb tyrosine phosphatase (PtpB).
Collapse
Affiliation(s)
- Surendar Chitti
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, Alwal, hyderabad, INDIA
| | - Adinarayana Nandikolla
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, VYAS Bhavan, V169, Jawaha, 500078, Hyderabad, INDIA
| | - Yogesh Mahadu Khetmalis
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, jawahar nagar, hyderabad, INDIA
| | - Kevin Van Calster
- University of Antwerp - City campus: Universiteit Antwerpen, Department of Pharmaceutical Sciences, Wilrijk, Wilrijk, BELGIUM
| | - Boddupalli Venkata Siva Kumar
- Birla Institute of Technology & Science Pilani - Hyderabad Campus, Department of chemistry, nacharam, hyderabad, INDIA
| | - Banoth Karan Kumar
- Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Department of Pharmacy, nacharam, hyderabad, INDIA
| | - Sankaranarayanan Murugesan
- Birla Institute of Technology and Science - Pilani Campus: Birla Institute of Technology & Science Pilani, Department of Pharmacy, pilani, Pilani, INDIA
| | - Davie Cappoen
- University of Antwerp - City campus: Universiteit Antwerpen, Department of Pharmaceutical Sciences, Wilrijk, Wilrijk, BELGIUM
| | - Chandra Sekhar Venkata Gowri Kondapalli
- Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Chemistry Department, Jawahar Nagar, Shamirpet Mandal, Ranga Reddy District, 500 078, Hyderabad, INDIA
| |
Collapse
|
78
|
Wang J, Chen J, Tian R, Duan Z. Activation of CS 2 with the 2 H-Phosphindole Complex to Construct P,S-Polycycles. Org Lett 2022; 24:6117-6121. [PMID: 35796494 DOI: 10.1021/acs.orglett.2c01987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activation of CS2 by the 2H-phosphindole complex with a low-coordinate phosphadiene moiety is reported. The successive hetero-Diels-Alder reaction between 2H-phosphindoles and CS2 constructs two bridged rings and one spirocycle simultaneously, affording structurally complex P,S-polycyclic products. The two 2H-phosphindoles approach the C═S bond in a head-to-head disposition to minimize steric hindrance. This work reveals the unique reactivity of low-coordinate organophosphorus species and their potential applications in small molecule activation.
Collapse
Affiliation(s)
- Junjian Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingrong Chen
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
79
|
Breuers CBJ, Daniliuc CG, Studer A. Dearomatizing Cyclization of 2-Iodoindoles by Oxidative NHC Catalysis to Access Spirocyclic Indolenines and Oxindoles Bearing an All Carbon Quaternary Stereocenter. Org Lett 2022; 24:4960-4964. [PMID: 35787026 DOI: 10.1021/acs.orglett.2c01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An intramolecular dearomatizing spirocyclization of indoles by oxidative N-heterocyclic carbene catalysis is reported. C2-iodinated indoles are used as substrates in combination with aroyl azolium ions as acceptors, which provides C2-iodinated indolenines containing an all carbon quaternary stereocenter. The products are readily further C2-functionalized and give access to valuable oxindoles by simple hydrolysis in very good overall yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Christian B J Breuers
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
80
|
Kar S, Sarkar T, Maharana PK, Guha AK, Punniyamurthy T. Bi-Catalyzed 1,2-Reactivity of Spirocyclopropyl Oxindoles with Dithianediol: Access to Spiroheterocycles. Org Lett 2022; 24:4965-4970. [PMID: 35770789 DOI: 10.1021/acs.orglett.2c01928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient Bi-catalyzed 1,2-reactivity of spirocyclopropyl oxindoles has been disclosed with dithianediols as the sulfur surrogate to furnish spiroheterocycles at moderate temperature. The procedure provides a potential approach for the construction of spirotetrahydrothiophene scaffolds with functional group diversity. The catalytic 1,2-reactivity of cyclopropanes, mechanistic studies using density functional theory studies, diastereoselectivity, and additive-free mild conditions are the important practical features.
Collapse
Affiliation(s)
- Subhradeep Kar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prabhat K Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati 781001, India
| | | |
Collapse
|
81
|
Wang N, Xiao X, Liu CX, Yao H, Huang N, Zou K. Recent Advances in the Total Synthesis of <i>Aspidosperma</i> and <i>Kopsia</i> Alkaloids Using Tetracyclic Pyridocarbazoles as Versatile Building Blocks. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiao Xiao
- Zhejiang University of Technology CHINA
| | | | - Hui Yao
- China Three Gorges University CHINA
| | | | - Kun Zou
- China Three Gorges University CHINA
| |
Collapse
|
82
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
83
|
Pramanik S, Jagadeesh C, Chatterjee A, Debnath SC, Saha J. Access to densely functionalized spirocyclopentenonyl oxindole frameworks via aza- and carbo-Piancatelli rearrangement. Org Biomol Chem 2022; 20:5249-5253. [PMID: 35730444 DOI: 10.1039/d2ob00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for access to spirocyclopentenonyl oxindole frameworks is disclosed. Suitably anchored furfuryl alcohol at C3 of an oxindole was used for the aza-Piancatelli rearrangement, which furnished spirocyclic aminocyclopentenone frameworks with catalytic phosphomolybdic acid. The scope of the transformation was extended to the carbo-Piancatelli rearrangement with various indole derivatives.
Collapse
Affiliation(s)
- Sourav Pramanik
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India. .,Department of Chemistry, University of Kalyani, Nadia, W.B-741235, India
| | - Chenna Jagadeesh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| | - Ayan Chatterjee
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| | | | - Jaideep Saha
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| |
Collapse
|
84
|
Ning C, Rui KH, Wei Y, Shi M. Rh(i)-catalyzed dimerization of ene-vinylidenecyclopropanes for the construction of spiro[4,5]decanes and mechanistic studies. Chem Sci 2022; 13:7310-7317. [PMID: 35799819 PMCID: PMC9214856 DOI: 10.1039/d1sc06986a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/31/2022] [Indexed: 07/22/2023] Open
Abstract
Rh(i) complex catalyzed dimerization of ene-vinylidenecyclopropanes took place smoothly to construct a series of products containing spiro[4,5]decane skeletons featuring a simple operation procedure, mild reaction conditions, and good functional group tolerance. In this paper, the combination of experimental and computational studies reveals a counterion-assisted Rh(i)-Rh(iii)-Rh(v)-Rh(iii)-Rh(i) catalytic cycle involving tandem oxidative cyclometallation/reductive elimination/selective oxidative addition/selective reductive elimination/reductive elimination steps; in addition, a pentavalent spiro-rhodium intermediate is identified as the key intermediate in this dimerization reaction upon DFT calculation.
Collapse
Affiliation(s)
- Chao Ning
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Kang-Hua Rui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology Meilong Road No. 130 Shanghai 200237 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
85
|
Gugkaeva Z, Panova M, Smolyakov A, Medvedev M, Tsaloev A, Godovikov I, Maleev VI, Larionov V. Asymmetric Metal‐Templated Route to Amino Acids with 3‐Spiropyrrolidine Oxindole Core via a 1,3‐Dipolar Addition of Azomethine Ylides to a Chiral Dehydroalanine Ni(II) Complex. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Zalina Gugkaeva
- A N Nesmeyanov Institute of Organoelement Compounds RAS RUSSIAN FEDERATION
| | - Maria Panova
- Zelinsky Institute of Organic Chemistry RAS RUSSIAN FEDERATION
| | | | | | - Alan Tsaloev
- Chemical Diversity Research Institute RUSSIAN FEDERATION
| | - Ivan Godovikov
- A N Nesmeyanov Institute of Organoelement Compounds RAS RUSSIAN FEDERATION
| | - Victor I. Maleev
- A.N. Nesmeyanov Institute of Oranoelement Cmpds. RUSSIAN FEDERATION
| | - Vladimir Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS) RUSSIAN FEDERATION
| |
Collapse
|
86
|
Hoshikawa S, Yanai H, Matsumoto T. Synthesis of Spirocyclic Cyclobutenes through Desulfinative Spirocyclisation of
gem
‐Bis(triflyl)cyclobutenes. Chemistry 2022; 28:e202200704. [DOI: 10.1002/chem.202200704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Shoki Hoshikawa
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Hikaru Yanai
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| | - Takashi Matsumoto
- School of Pharmacy Tokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi, Hachioji Tokyo 192-0392 Japan
| |
Collapse
|
87
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
88
|
Song X, Li YX, Zhou L, Liu N, Wu ZQ. Controlled Synthesis of One-Handed Helical Polymers Carrying Achiral Organoiodine Pendants for Enantioselective Synthesis of Quaternary All-Carbon Stereogenic Centers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yan-Xiang Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
89
|
Hu Y, Zhang S, Yu X, Feng X, Yamaguchi M, Bao M. Spirocarbocycle Synthesis from Chloromethylarenes via Transition-Metal-Catalyzed Allylative Dearomatization and Ring Closure Metathesis. J Org Chem 2022; 87:8229-8236. [PMID: 35658456 DOI: 10.1021/acs.joc.2c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy for the synthesis of spirocarbocycles by using chloromethyl arenes as starting materials is described in this paper. The palladium-catalyzed allylative dearomatization and the subsequent ruthenium-catalyzed ring closure metathesis proceeded smoothly under mild conditions to produce the corresponding spirocarbocycle products with moderate to high yields. Benzene-ring-, naphthalene-ring-, and anthracene-ring-containing substrates can be easily transformed into spirocarbocycles by using the proposed method.
Collapse
Affiliation(s)
- Yanzhao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Masahiko Yamaguchi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.,Department of Organic Chemistry, Graduate School of Pharmaceutical Science, Tohoku University, Sendai 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
90
|
Benaglia M, Greco SJ, Westphal R, Venturini Filho E, Medici F. Stereoselective Domino Reactions in the Synthesis of Spiro Compounds. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1771-0641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AbstractThis review summarizes the latest developments in asymmetric domino reactions, with the emphasis on the preparation of spiro compounds. Discussions on the stereoselectivity of the transformations, the reaction mechanisms, the rationalization of the stereochemical outcome, and the applications of domino reactions to the synthesis of biologically active molecules and natural products are included when appropriate.1 Introduction2 Asymmetric Domino Reactions2.1 Domino Reactions Initiated by Michael Reactions2.2 Domino Reactions Initiated by Mannich Reactions2.3 Domino Reactions Initiated by Knoevenagel Reactions2.4 Domino Reactions Initiated by Cycloaddition Reactions2.5 Domino Reactions Initiated by Metal Insertion2.6 Other Mechanisms3 Conclusion
Collapse
|
91
|
Zhou JW, Chen BH, Zhang FH, Xue J, He XH, Peng C, Huang W, Zhao Q. Enantioselective Synthesis of Spirocyclopentane Oxindoles Bearing Five Consecutive Stereocenters via Secondary Amine‐Catalyzed [3+2] Cycloaddition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jing-Wei Zhou
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Ben-Hong Chen
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Feng-Hua Zhang
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine School of Basic Medical Sciences CHINA
| | - Jing Xue
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Xiang-Hong He
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Cheng Peng
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | - Wei Huang
- Chengdu University of Traditional Chinese Medicine Wenjiang Campus: Chengdu University of Traditional Chinese Medicine State Key Laboratory of Southwestern Chinese Medicine Resources CHINA
| | | |
Collapse
|
92
|
Mori T, Nakashima Y, Chen H, Hoshino S, Mitsuhashi T, Abe I. Structure-based redesign of Fe(II)/2-oxoglutarate-dependent oxygenase AndA to catalyze spiro-ring formation. Chem Commun (Camb) 2022; 58:5510-5513. [PMID: 35420093 DOI: 10.1039/d2cc00736c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Structure- and mechanism-based redesign of the Fe(II)/2-oxoglutarate-dependent oxygenase AndA was performed. The function of AndA was expanded to catalyze a spiro-ring formation reaction from an isomerization reaction. The redesigned AndA variants produced two unnatural novel spiro-ring containing compounds through two and three consecutive oxidation reactions.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.,PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Heping Chen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Shotaro Hoshino
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takaaki Mitsuhashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
93
|
Borah B, Bora J, Ramesh P, Chowhan LR. Sonochemistry in an organocatalytic domino reaction: an expedient multicomponent access to structurally functionalized dihydropyrano[3,2- b]pyrans, spiro-pyrano[3,2- b]pyrans, and spiro-indenoquinoxaline-pyranopyrans under ambient conditions. RSC Adv 2022; 12:12843-12857. [PMID: 35496344 PMCID: PMC9048984 DOI: 10.1039/d2ra01917e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
A highly convenient and sustainable one-pot approach for the diversely-oriented synthesis of a variety of medicinally privileged amino-substituted 4,8-dihydropyrano[3,2-b]pyran-3-carbonitriles, and spiro[indoline-3,4'-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylate derivatives on the basis of a domino three-component reaction of readily available carbonyl compounds including aryl aldehydes or isatins, active methylene compounds, and kojic acid as a Michael donor using secondary amine catalyst l-proline under ultrasound irradiation in aqueous ethanolic solution at ambient temperature has been developed. This methodology can involve the assembly of C-C, C[double bond, length as m-dash]C, C-O, C-N bonds via a one-pot operation, and following this protocol, a series of novel amino-substituted spiro[indeno[1,2-b]quinoxaline-11,4-pyrano[3,2-b]pyran]-3-carbonitrile/carboxylates have been synthesized. The practical utility of this method was found to be very efficient for scale-up reaction and other useful transformations. The methodology provides significant advantages including mild reaction conditions, energy-efficiency, short reaction time, fast reaction, simple work-up procedure, broad functional group tolerances, utilization of reusable catalyst, green solvent system, being metal-free, ligand-free, waste-free, inexpensive, etc. Excellent chemical yields have been achieved without using column chromatography. To address the issues of green and more sustainable chemistry, several metrics including Atom Economy (AE), Reaction Mass Efficiency (RME), Atom efficiency, E-factor, Process Mass Intensity (PMI), and Carbon Efficiency (CE) have been quantified for the present methodology that indicates the greenness of the present protocol.
Collapse
Affiliation(s)
- Biplob Borah
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| | - Jahnu Bora
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| | - Pambala Ramesh
- CSIR-Indian Institute of Chemical Technology Hyderabad-50007 India
| | - L Raju Chowhan
- School of Applied Material Sciences, Centre for Applied Chemistry, Central University of Gujarat Sector-30 Gandhinagar-382030 Gujarat India
| |
Collapse
|
94
|
Warghude PK, Bhowmick A, Bhat RG. Direct Access to Spirooxindole Dihydropyrrole Fused Pyrazolones and Bis-Spiropyrazolone Derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
95
|
Vila J, Solà M, Pla-Quintana A, Roglans A. Highly Selective Synthesis of Seven-Membered Azaspiro Compounds by a Rh(I)-Catalyzed Cycloisomerization/Diels-Alder Cascade of 1,5-Bisallenes. J Org Chem 2022; 87:5279-5286. [PMID: 35324177 PMCID: PMC9016767 DOI: 10.1021/acs.joc.2c00065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The synthesis of
spiro compounds featuring seven- and six-membered
rings in the spirobicyclic motif is successfully achieved through
a cascade process encompassing a rhodium(I)-catalyzed cycloisomerization
followed by a highly selective Diels–Alder homodimerization.
The scope of the reaction is analyzed based on a series of synthetic
substrates, and control experiments and DFT calculations led us to
justify the exquisite degree of selectivity observed.
Collapse
Affiliation(s)
- Jordi Vila
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Anna Pla-Quintana
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| | - Anna Roglans
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Facultat de Ciències, Universitat de Girona (UdG), C/ Maria Aurèlia Capmany, 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
96
|
Roy TK, Gorad SS, Ghorai P. Chiral Squaramide Catalyzed Asymmetric Spiroketalization toward Aromatic [6,5] Spiroketals. Org Lett 2022; 24:1889-1894. [PMID: 35238574 DOI: 10.1021/acs.orglett.2c00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein is disclosed an efficient enantio- and diastereoselective spiroketalization of aromatic ketone tethered to ortho-homoformyl and enone moiety via in situ enol formation using quinine derived squaramide organocatalyst to access aromatic [6,5] spiroketals with complete atom economy. Furthermore, aromatic spiroketals undergo Brønsted acid catalyzed Piancatelli type rearrangement to provide dihydronaphtho[1,2-b]furans with retention of the enantioselectivities.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Sachin S Gorad
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| | - Prasanta Ghorai
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, India
| |
Collapse
|
97
|
Yao WB, Xie XS, Liu JN, Xie JW. Diversity-oriented and diastereoselective synthesis of diverse polycyclic thieno(2,3- b)-quinoline derivatives using a synergistic strategy. Org Biomol Chem 2022; 20:1982-1993. [PMID: 35179157 DOI: 10.1039/d2ob00020b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cascade spiroannulation of 2-mercaptoquinoline-3-carbaldehydes with α,α-dicyanoalkenes as well as a cascade spiroannulation of 2-mercaptoquinoline-3-carbaldehydes aldehydes with α-bromocarbonyl compounds was investigated based on a synergistic strategy, providing a series of diverse spiro-fused heterocyclic compounds containing more different functional groups. The features of this strategy directed towards molecular complexity and diversity include step economy, mild conditions, and high bond-forming efficiency, but important polycyclic heterocyclic products, which could be transformed into potential biologically interesting heterocyclic structures.
Collapse
Affiliation(s)
- Wen-Bo Yao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| | - Xuan-Sheng Xie
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| | - Jun-Nan Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| | - Jian-Wu Xie
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an710021, P. R. China.
| |
Collapse
|
98
|
Davies C, Shaaban S, Waldmann H. Asymmetric catalysis with chiral cyclopentadienyl complexes to access privileged scaffolds. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
99
|
Shikari A, Mandal K, Chopra D, Pan SC. Organocatalytic Asymmetric Synthesis of Cyclic Acetals with Spirooxindole Skeleton. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Amit Shikari
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| | - Koushik Mandal
- Department of Chemistry Indian Institute of Science Education and Research Bhopal 462066 India
| | - Deepak Chopra
- Department of Chemistry Indian Institute of Science Education and Research Bhopal 462066 India
| | - Subhas Chandra Pan
- Department of Chemistry Indian Institute of Technology Guwahati Assam 781039 India
| |
Collapse
|
100
|
Pan BW, Shi Y, Dong SZ, He JX, Mu BS, Wu WB, Zhou Y, Zhou F, Zhou J. Highly stereoselective synthesis of spirocyclopropylthiooxindoles and biological evaluation. Org Chem Front 2022. [DOI: 10.1039/d2qo00300g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We present a novel highly stereoselective Rh-catalyzed cyclopropanation of diazothiooxindoles with a broad range of α-functionalized styrenes, enabling facile access of chiral spirocyclopropylthiooxindoles in high to excellent enantiomeric excess.
Collapse
Affiliation(s)
- Bo-Wen Pan
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yang Shi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Su-Zhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Jun-Xiong He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Bo-Shuai Mu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Ying Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, China
| |
Collapse
|