51
|
Santos Rosalem G, Gonzáles Torres LA, de Las Casas EB, Mathias FAS, Ruiz JC, Carvalho MGR. Microfluidics and organ-on-a-chip technologies: A systematic review of the methods used to mimic bone marrow. PLoS One 2020; 15:e0243840. [PMID: 33306749 PMCID: PMC7732112 DOI: 10.1371/journal.pone.0243840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/29/2020] [Indexed: 12/15/2022] Open
Abstract
Bone marrow (BM) is an organ responsible for crucial processes in living organs, e. g., hematopoiesis. In recent years, Organ-on-a-Chip (OoC) devices have been used to satisfy the need for in vitro systems that better mimic the phenomena occurring in the BM microenvironment. Given the growing interest in these systems and the diversity of developed devices, an integrative systematic literature review is required. We have performed this review, following the PRISMA method aiming to identify the main characteristics and assess the effectiveness of the devices that were developed to represent the BM. A search was performed in the Scopus, PubMed, Web of Science and Science Direct databases using the keywords (("bone marrow" OR "hematopoietic stem cells" OR "haematopoietic stem cells") AND ("organ in a" OR "lab on a chip" OR "microfluidic" OR "microfluidic*" OR ("bioreactor" AND "microfluidic*"))). Original research articles published between 2009 and 2020 were included in the review, giving a total of 21 papers. The analysis of these papers showed that their main purpose was to study BM cells biology, mimic BM niches, model pathological BM, and run drug assays. Regarding the fabrication protocols, we have observed that polydimethylsiloxane (PDMS) material and soft lithography method were the most commonly used. To reproduce the microenvironment of BM, most devices used the type I collagen and alginate. Peristaltic and syringe pumps were mostly used for device perfusion. Regarding the advantages compared to conventional methods, there were identified three groups of OoC devices: perfused 3D BM; co-cultured 3D BM; and perfused co-cultured 3D BM. Cellular behavior and mimicking their processes and responses were the mostly commonly studied parameters. The results have demonstrated the effectiveness of OoC devices for research purposes compared to conventional cell cultures. Furthermore, the devices have a wide range of applicability and the potential to be explored.
Collapse
Affiliation(s)
- Gabriel Santos Rosalem
- Mechanical Engineering Graduate Program, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Jeronimo Conceição Ruiz
- Biosystems and Genomics Group, René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
- Graduate Program in Computational and Systems Biology of the Institute Oswaldo Cruz (PGBCS/IOC/Fiocruz), Rio de Janeiro, Brazil
| | | |
Collapse
|
52
|
Nikolakopoulou P, Rauti R, Voulgaris D, Shlomy I, Maoz BM, Herland A. Recent progress in translational engineered in vitro models of the central nervous system. Brain 2020; 143:3181-3213. [PMID: 33020798 PMCID: PMC7719033 DOI: 10.1093/brain/awaa268] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
The complexity of the human brain poses a substantial challenge for the development of models of the CNS. Current animal models lack many essential human characteristics (in addition to raising operational challenges and ethical concerns), and conventional in vitro models, in turn, are limited in their capacity to provide information regarding many functional and systemic responses. Indeed, these challenges may underlie the notoriously low success rates of CNS drug development efforts. During the past 5 years, there has been a leap in the complexity and functionality of in vitro systems of the CNS, which have the potential to overcome many of the limitations of traditional model systems. The availability of human-derived induced pluripotent stem cell technology has further increased the translational potential of these systems. Yet, the adoption of state-of-the-art in vitro platforms within the CNS research community is limited. This may be attributable to the high costs or the immaturity of the systems. Nevertheless, the costs of fabrication have decreased, and there are tremendous ongoing efforts to improve the quality of cell differentiation. Herein, we aim to raise awareness of the capabilities and accessibility of advanced in vitro CNS technologies. We provide an overview of some of the main recent developments (since 2015) in in vitro CNS models. In particular, we focus on engineered in vitro models based on cell culture systems combined with microfluidic platforms (e.g. 'organ-on-a-chip' systems). We delve into the fundamental principles underlying these systems and review several applications of these platforms for the study of the CNS in health and disease. Our discussion further addresses the challenges that hinder the implementation of advanced in vitro platforms in personalized medicine or in large-scale industrial settings, and outlines the existing differentiation protocols and industrial cell sources. We conclude by providing practical guidelines for laboratories that are considering adopting organ-on-a-chip technologies.
Collapse
Affiliation(s)
- Polyxeni Nikolakopoulou
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Rossana Rauti
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Dimitrios Voulgaris
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Iftach Shlomy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ben M Maoz
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Anna Herland
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
53
|
Rodrigues RO, Sousa PC, Gaspar J, Bañobre-López M, Lima R, Minas G. Organ-on-a-Chip: A Preclinical Microfluidic Platform for the Progress of Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003517. [PMID: 33236819 DOI: 10.1002/smll.202003517] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Despite the progress achieved in nanomedicine during the last decade, the translation of new nanotechnology-based therapeutic systems into clinical applications has been slow, especially due to the lack of robust preclinical tissue culture platforms able to mimic the in vivo conditions found in the human body and to predict the performance and biotoxicity of the developed nanomaterials. Organ-on-a-chip (OoC) platforms are novel microfluidic tools that mimic complex human organ functions at the microscale level. These integrated microfluidic networks, with 3D tissue engineered models, have been shown high potential to reduce the discrepancies between the results derived from preclinical and clinical trials. However, there are many challenges that still need to be addressed, such as the integration of biosensor modules for long-time monitoring of different physicochemical and biochemical parameters. In this review, recent advances on OoC platforms, particularly on the preclinical validation of nanomaterials designed for cancer, as well as the current challenges and possible future directions for an end-use perspective are discussed.
Collapse
Affiliation(s)
- Raquel O Rodrigues
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Patrícia C Sousa
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - João Gaspar
- Microfabrication and Exploratory Nanotechnology, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Manuel Bañobre-López
- Advanced (magnetic) Theranostic Nanostructures Lab, Nanomedicine Unit, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga, 4715-330, Portugal
| | - Rui Lima
- Transport Phenomena Research Center (CEFT), Faculdade de Engenharia da Universidade do Porto (FEUP), R. Dr. Roberto Frias, Porto, 4200-465, Portugal
- Mechanical Engineering and Resource Sustainability Center (MEtRICs), Mechanical Engineering Department, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
| |
Collapse
|
54
|
Li W, Sun X, Ji B, Yang X, Zhou B, Lu Z, Gao X. PLGA Nanofiber/PDMS Microporous Composite Membrane-Sandwiched Microchip for Drug Testing. MICROMACHINES 2020; 11:mi11121054. [PMID: 33260653 PMCID: PMC7760955 DOI: 10.3390/mi11121054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Lung-on-a-chip devices could provide new strategies for a biomimetic lung cell microenvironment and construction of lung disease models in vitro, and are expected to greatly promote the development of drug evaluation, toxicological detection, and disease model building. In this study, we developed a novel poly (lactic-co-glycolic acid) (PLGA) nanofiber/polydimethylsiloxane (PDMS) microporous composite membrane-sandwiched lung-on-a-chip to perform anti-tumor drug testing. The composite membrane was characterized, and the results showed that it was permeable to molecules and thus could be used to study small-molecule drug diffusion. In addition, the microchip could apply perfusion fluids to simulate blood flow under extremely low fluid shear stress, and could also simulate the spherical-like shape of the alveoli by deformation of the composite membrane. Using this chip, we evaluated the anti-tumor drug efficacy of gefitinib in two kinds of non-small cell lung cancer cells, the lung adenocarcinoma NCI-H1650 cell line and the large cell lung cancer NCI-H460 cell line. We further probed the resistance of NCI-H460 cells to gefitinib under normoxic and hypoxic conditions. The established composite membrane-sandwiched lung chip can simulate more biochemical and biophysical factors in the lung physiological and pathological microenvironment, and it has important applications in the personalized treatment of lung tumors. It is expected to play a potential role in clinical diagnosis and drug screening.
Collapse
Affiliation(s)
- Wei Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
| | - Xindi Sun
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
| | - Bing Ji
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China; (B.J.); (B.Z.)
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China; (B.J.); (B.Z.)
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Correspondence: (Z.L.); (X.G.)
| | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China; (W.L.); (X.S.); (X.Y.)
- Correspondence: (Z.L.); (X.G.)
| |
Collapse
|
55
|
Pamies D, Zurich MG, Hartung T. Organotypic Models to Study Human Glioblastoma: Studying the Beast in Its Ecosystem. iScience 2020; 23:101633. [PMID: 33103073 PMCID: PMC7569333 DOI: 10.1016/j.isci.2020.101633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is a very aggressive primary brain tumor in adults, with very low survival rates and no curative treatments. The high failure rate of drug development for this cancer is linked to the high-cost, time-consuming, and inefficient models used to study the disease. Advances in stem cell and in vitro cultures technologies are promising, however, and here we present the advantages and limitations of available organotypic culture models and discuss their possible applications for studying glioblastoma.
Collapse
Affiliation(s)
- David Pamies
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Marie-Gabrielle Zurich
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT) Europe, University of Konstanz, Konstanz, Germany
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
56
|
3D In Vitro Human Organ Mimicry Devices for Drug Discovery, Development, and Assessment. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6187048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past few decades have shown significant advancement as complex in vitro humanized systems have substituted animal trials and 2D in vitro studies. 3D humanized platforms mimic the organs of interest with their stimulations (physical, electrical, chemical, and mechanical). Organ-on-chip devices, including in vitro modelling of 3D organoids, 3D microfabrication, and 3D bioprinted platforms, play an essential role in drug discovery, testing, and assessment. In this article, a thorough review is provided of the latest advancements in the area of organ-on-chip devices targeting liver, kidney, lung, gut, heart, skin, and brain mimicry devices for drug discovery, development, and/or assessment. The current strategies, fabrication methods, and the specific application of each device, as well as the advantages and disadvantages, are presented for each reported platform. This comprehensive review also provides some insights on the challenges and future perspectives for the further advancement of each organ-on-chip device.
Collapse
|
57
|
Ramadan Q, Zourob M. Organ-on-a-chip engineering: Toward bridging the gap between lab and industry. BIOMICROFLUIDICS 2020; 14:041501. [PMID: 32699563 PMCID: PMC7367691 DOI: 10.1063/5.0011583] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Organ-on-a-chip (OOC) is a very ambitious emerging technology with a high potential to revolutionize many medical and industrial sectors, particularly in preclinical-to-clinical translation in the pharmaceutical arena. In vivo, the function of the organ(s) is orchestrated by a complex cellular structure and physiochemical factors within the extracellular matrix and secreted by various types of cells. The trend in in vitro modeling is to simplify the complex anatomy of the human organ(s) to the minimal essential cellular structure "micro-anatomy" instead of recapitulating the full cellular milieu that enables studying the absorption, metabolism, as well as the mechanistic investigation of drug compounds in a "systemic manner." However, in order to reflect the human physiology in vitro and hence to be able to bridge the gap between the in vivo and in vitro data, simplification should not compromise the physiological relevance. Engineering principles have long been applied to solve medical challenges, and at this stage of organ-on-a-chip technology development, the work of biomedical engineers, focusing on device engineering, is more important than ever to accelerate the technology transfer from the academic lab bench to specialized product development institutions and to the increasingly demanding market. In this paper, instead of presenting a narrative review of the literature, we systemically present a synthesis of the best available organ-on-a-chip technology from what is found, what has been achieved, and what yet needs to be done. We emphasized mainly on the requirements of a "good in vitro model that meets the industrial need" in terms of the structure (micro-anatomy), functions (micro-physiology), and characteristics of the device that hosts the biological model. Finally, we discuss the biological model-device integration supported by an example and the major challenges that delay the OOC technology transfer to the industry and recommended possible options to realize a functional organ-on-a-chip system.
Collapse
Affiliation(s)
- Qasem Ramadan
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| | - Mohammed Zourob
- Alfaisal University, Al Zahrawi Street, Riyadh 11533, Kingdom of Saudi Arabia
| |
Collapse
|
58
|
Azizipour N, Avazpour R, Rosenzweig DH, Sawan M, Ajji A. Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip. MICROMACHINES 2020; 11:E599. [PMID: 32570945 PMCID: PMC7345732 DOI: 10.3390/mi11060599] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Following the advancements in microfluidics and lab-on-a-chip (LOC) technologies, a novel biomedical application for microfluidic based devices has emerged in recent years and microengineered cell culture platforms have been created. These micro-devices, known as organ-on-a-chip (OOC) platforms mimic the in vivo like microenvironment of living organs and offer more physiologically relevant in vitro models of human organs. Consequently, the concept of OOC has gained great attention from researchers in the field worldwide to offer powerful tools for biomedical researches including disease modeling, drug development, etc. This review highlights the background of biochip development. Herein, we focus on applications of LOC devices as a versatile tool for POC applications. We also review current progress in OOC platforms towards body-on-a-chip, and we provide concluding remarks and future perspectives for OOC platforms for POC applications.
Collapse
Affiliation(s)
- Neda Azizipour
- Institut de Génie Biomédical, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
| | - Rahi Avazpour
- Department of Chemical Engineering, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
| | - Derek H. Rosenzweig
- Department of Surgery, McGill University, Montreal, QC H3G 1A4, Canada;
- Injury, Repair and Recovery Program, Research Institute of McGill University Health Centre, Montreal, QC H3H 2R9, Canada
| | - Mohamad Sawan
- Polystim Neurotech Laboratory, Electrical Engineering Department, Polytechnique Montreal, QC H3T 1J4, Canada
- CenBRAIN Laboratory, School of Engineering, Westlake Institute for Advanced Study, Westlake University, Hangzhou 310024, China
| | - Abdellah Ajji
- Institut de Génie Biomédical, Polytechnique Montréal, Montreal, QC H3C 3A7, Canada;
- NSERC-Industry Chair, CREPEC, Chemical Engineering Department, Polytechnique Montreal, Montreal, QC H3C 3A7, Canada
| |
Collapse
|
59
|
Nichols K, Koppes R, Koppes A. Recent advancements in microphysiological systems for neural development and disease. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
60
|
|
61
|
Abstract
High-throughput in vitro models lack human-relevant complexity, which undermines their ability to accurately mimic in vivo biologic and pathologic responses. The emergence of microphysiological systems (MPS) presents an opportunity to revolutionize in vitro modeling for both basic biomedical research and applied drug discovery. The MPS platform has been an area of interdisciplinary collaboration to develop new, predictive, and reliable in vitro methods for regulatory acceptance. The current MPS models have been developed to recapitulate an organ or tissue on a smaller scale. However, the complexity of these models (ie, including all cell types present in the in vivo tissue) with appropriate structural, functional, and biochemical attributes are often not fully characterized. Here, we provide an overview of the capabilities and limitations of the microfluidic MPS model (aka organs-on-chips) within the scope of drug development. We recommend the engagement of pathologists early in the MPS design, characterization, and validation phases, because this will enable development of more robust and comprehensive MPS models that can accurately replicate normal biology and pathophysiology and hence be more predictive of human responses.
Collapse
Affiliation(s)
| | - Terry Van Vleet
- Global Preclinical Safety, AbbVie Inc, North Chicago, IL, USA
| | - Brian R Berridge
- National Toxicology Program, The National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
62
|
Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The Fabrication and Application Mechanism of Microfluidic Systems for High Throughput Biomedical Screening: A Review. MICROMACHINES 2020; 11:E297. [PMID: 32168977 PMCID: PMC7143183 DOI: 10.3390/mi11030297] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/01/2020] [Accepted: 03/10/2020] [Indexed: 01/15/2023]
Abstract
Microfluidic systems have been widely explored based on microfluidic technology, and it has been widely used for biomedical screening. The key parts are the fabrication of the base scaffold, the construction of the matrix environment in the 3D system, and the application mechanism. In recent years, a variety of new materials have emerged, meanwhile, some new technologies have been developed. In this review, we highlight the properties of high throughput and the biomedical application of the microfluidic chip and focus on the recent progress of the fabrication and application mechanism. The emergence of various biocompatible materials has provided more available raw materials for microfluidic chips. The material is not confined to polydimethylsiloxane (PDMS) and the extracellular microenvironment is not limited by a natural matrix. The mechanism is also developed in diverse ways, including its special physical structure and external field effects, such as dielectrophoresis, magnetophoresis, and acoustophoresis. Furthermore, the cell/organ-based microfluidic system provides a new platform for drug screening due to imitating the anatomic and physiologic properties in vivo. Although microfluidic technology is currently mostly in the laboratory stage, it has great potential for commercial applications in the future.
Collapse
Affiliation(s)
- Kena Song
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Guoqiang Li
- College of Physics, Chongqing University, Chongqing 401331, China; (G.L.); (L.L.)
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Zhe Du
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China; (G.L.); (L.L.)
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, He’nan 471023, China; (K.S.); (X.Z.); (Z.D.)
| |
Collapse
|
63
|
Unprecedented Potential for Neural Drug Discovery Based on Self-Organizing hiPSC Platforms. Molecules 2020; 25:molecules25051150. [PMID: 32143423 PMCID: PMC7179160 DOI: 10.3390/molecules25051150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have transformed conventional drug discovery pathways in recent years. In particular, recent advances in hiPSC biology, including organoid technologies, have highlighted a new potential for neural drug discovery with clear advantages over the use of primary tissues. This is important considering the financial and social burden of neurological health care worldwide, directly impacting the life expectancy of many populations. Patient-derived iPSCs-neurons are invaluable tools for novel drug-screening and precision medicine approaches directly aimed at reducing the burden imposed by the increasing prevalence of neurological disorders in an aging population. 3-Dimensional self-assembled or so-called ‘organoid’ hiPSCs cultures offer key advantages over traditional 2D ones and may well be gamechangers in the drug-discovery quest for neurological disorders in the coming years.
Collapse
|
64
|
Raimondi I, Izzo L, Tunesi M, Comar M, Albani D, Giordano C. Organ-On-A-Chip in vitro Models of the Brain and the Blood-Brain Barrier and Their Value to Study the Microbiota-Gut-Brain Axis in Neurodegeneration. Front Bioeng Biotechnol 2020; 7:435. [PMID: 31998702 PMCID: PMC6965718 DOI: 10.3389/fbioe.2019.00435] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
We are accumulating evidence that intestinal microflora, collectively named gut microbiota, can alter brain pathophysiology, but researchers have just begun to discover the mechanisms of this bidirectional connection (often referred to as microbiota-gut-brain axis, MGBA). The most noticeable hypothesis for a pathological action of gut microbiota on the brain is based on microbial release of soluble neurotransmitters, hormones, immune molecules and neuroactive metabolites, but this complex scenario requires reliable and controllable tools for its causal demonstration. Thanks to three-dimensional (3D) cultures and microfluidics, engineered in vitro models could improve the scientific knowledge in this field, also from a therapeutic perspective. This review briefly retraces the main discoveries linking the activity of gut microbiota to prevalent brain neurodegenerative disorders, and then provides a deep insight into the state-of-the-art for in vitro modeling of the brain and the blood-brain barrier (BBB), two key players of the MGBA. Several brain and BBB microfluidic devices have already been developed to implement organ-on-a-chip solutions, but some limitations still exist. Future developments of organ-on-a-chip tools to model the MGBA will require an interdisciplinary approach and the synergy with cutting-edge technologies (for instance, bioprinting) to achieve multi-organ platforms and support basic research, also for the development of new therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Luca Izzo
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Marta Tunesi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Manola Comar
- SSD of Advanced Translational Microbiology, IRCCS “Burlo Garofolo”, Department of Medical Sciences (DMS), University of Trieste, Trieste, Italy
| | - Diego Albani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmen Giordano
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| |
Collapse
|
65
|
Caballero D, Reis RL, Kundu SC. Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:43-64. [PMID: 32285364 DOI: 10.1007/978-3-030-36588-2_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditional in vitro and in vivo models typically used in cancer research have demonstrated a low predictive power for human response. This leads to high attrition rates of new drugs in clinical trials, which threaten cancer patient prognosis. Tremendous efforts have been directed towards the development of a new generation of highly predictable pre-clinical models capable to reproduce in vitro the biological complexity of the human body. Recent advances in nanotechnology and tissue engineering have enabled the development of predictive organs-on-a-chip models of cancer with advanced capabilities. These models can reproduce in vitro the complex three-dimensional physiology and interactions that occur between organs and tissues in vivo, offering multiple advantages when compared to traditional models. Importantly, these models can be tailored to the biological complexity of individual cancer patients resulting into biomimetic and personalized cancer patient-on-a-chip platforms. The individualized models provide a more accurate and physiological environment to predict tumor progression on patients and their response to drugs. In this chapter, we describe the latest advances in the field of cancer patient-on-a-chip, and discuss about their main applications and current challenges. Overall, we anticipate that this new paradigm in cancer in vitro models may open up new avenues in the field of personalized - cancer - medicine, which may allow pharmaceutical companies to develop more efficient drugs, and clinicians to apply patient-specific therapies.
Collapse
Affiliation(s)
- David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal. .,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.,ICVS 3Bs PT Government Associate Lab, Braga, Guimarães, Portugal
| |
Collapse
|
66
|
Mofazzal Jahromi MA, Abdoli A, Rahmanian M, Bardania H, Bayandori M, Moosavi Basri SM, Kalbasi A, Aref AR, Karimi M, Hamblin MR. Microfluidic Brain-on-a-Chip: Perspectives for Mimicking Neural System Disorders. Mol Neurobiol 2019; 56:8489-8512. [PMID: 31264092 PMCID: PMC6842047 DOI: 10.1007/s12035-019-01653-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases (NDDs) include more than 600 types of nervous system disorders in humans that impact tens of millions of people worldwide. Estimates by the World Health Organization (WHO) suggest NDDs will increase by nearly 50% by 2030. Hence, development of advanced models for research on NDDs is needed to explore new therapeutic strategies and explore the pathogenesis of these disorders. Different approaches have been deployed in order to investigate nervous system disorders, including two-and three-dimensional (2D and 3D) cell cultures and animal models. However, these models have limitations, such as lacking cellular tension, fluid shear stress, and compression analysis; thus, studying the biochemical effects of therapeutic molecules on the biophysiological interactions of cells, tissues, and organs is problematic. The microfluidic "organ-on-a-chip" is an inexpensive and rapid analytical technology to create an effective tool for manipulation, monitoring, and assessment of cells, and investigating drug discovery, which enables the culture of various cells in a small amount of fluid (10-9 to 10-18 L). Thus, these chips have the ability to overcome the mentioned restrictions of 2D and 3D cell cultures, as well as animal models. Stem cells (SCs), particularly neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) have the capability to give rise to various neural system cells. Hence, microfluidic organ-on-a-chip and SCs can be used as potential research tools to study the treatment of central nervous system (CNS) and peripheral nervous system (PNS) disorders. Accordingly, in the present review, we discuss the latest progress in microfluidic brain-on-a-chip as a powerful and advanced technology that can be used in basic studies to investigate normal and abnormal functions of the nervous system.
Collapse
Affiliation(s)
- Mirza Ali Mofazzal Jahromi
- Department of Advanced Medical Sciences & Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Rahmanian
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Anesthesiology, Critical Care, and Pain Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehrdad Bayandori
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amir Reza Aref
- Department of Cancer Biology, Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Department of Genetics, Harvard Medical School, Boston, MA, 02215, USA
| | - Mahdi Karimi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
67
|
Miccoli B, Braeken D, Li YCE. Brain-on-a-chip Devices for Drug Screening and Disease Modeling Applications. Curr Pharm Des 2019; 24:5419-5436. [PMID: 30806304 DOI: 10.2174/1381612825666190220161254] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/12/2019] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders are related to the progressive functional loss of the brain, often connected to emotional and physical disability and, ultimately, to death. These disorders, strongly connected to the aging process, are becoming increasingly more relevant due to the increase of life expectancy. Current pharmaceutical treatments poorly tackle these diseases, mainly acting only on their symptomology. One of the main reasons of this is the current drug development process, which is not only expensive and time-consuming but, also, still strongly relies on animal models at the preclinical stage. Organ-on-a-chip platforms have the potential to strongly impact and improve the drug screening process by recreating in vitro the functionality of human organs. Patient-derived neurons from different regions of the brain can be directly grown and differentiated on a brain-on-a-chip device where the disease development, progression and pharmacological treatments can be studied and monitored in real time. The model reliability is strongly improved by using human-derived cells, more relevant than animal models for pharmacological screening and disease monitoring. The selected cells will be then capable of proliferating and organizing themselves in the in vivo environment thanks to the device architecture, materials selection and bio-chemical functionalization. In this review, we start by presenting the fundamental strategies adopted for brain-on-a-chip devices fabrication including e.g., photolithography, micromachining and 3D printing technology. Then, we discuss the state-of-theart of brain-on-a-chip platforms including their role in the study of the functional architecture of the brain e.g., blood-brain barrier, or of the most diffuse neurodegenerative diseases like Alzheimer's and Parkinson's. At last, the current limitations and future perspectives of this approach for the development of new drugs and neurodegenerative diseases modeling will be discussed.
Collapse
Affiliation(s)
- Beatrice Miccoli
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium.,Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Dries Braeken
- Imec, Department of Life Sciences and Imaging, 3001 Heverlee, Belgium
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung City, Taiwan
| |
Collapse
|
68
|
Wan H, Gu C, Gan Y, Wei X, Zhu K, Hu N, Wang P. Sensor-free and Sensor-based Heart-on-a-chip Platform: A Review of Design and Applications. Curr Pharm Des 2019; 24:5375-5385. [PMID: 30734671 DOI: 10.2174/1381612825666190207170004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/09/2023]
Abstract
Drug efficacy and toxicity are key factors of drug development. Conventional 2D cell models or animal models have their limitations for the efficacy or toxicity assessment in preclinical assays, which induce the failure of candidate drugs or withdrawal of approved drugs. Human organs-on-chips (OOCs) emerged to present human-specific properties based on their 3D bioinspired structures and functions in the recent decade. In this review, the basic definition and superiority of OOCs will be introduced. Moreover, a specific OOC, heart-on-achip (HOC) will be focused. We introduce HOC modeling in the sensor-free and sensor-based way and illustrate the advantages of sensor-based HOC in detail by taking examples of recent studies. We provide a new perspective on the integration of HOC technology and biosensing to develop a new sensor-based HOC platform.
Collapse
Affiliation(s)
- Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Chenlei Gu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Gan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Ning Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
69
|
Li Y, Mao X, Zhou X, Su Y, Zhou X, Shi K, Zhao S. An optimized method for neuronal differentiation of embryonic stem cells in vitro. J Neurosci Methods 2019; 330:108486. [PMID: 31706928 DOI: 10.1016/j.jneumeth.2019.108486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Neural differentiation from embryonic stem cells (ESCs) is an excellent model for elucidating the key mechanisms involved in neurogenesis, and also provides an unlimited source of progenitors for cell-based nerve regeneration. However, the existing protocols such as small molecule substances, 3D matrix, co-culture technique and transgenic method, are complicated and difficult to operate, thus are limited by laboratory conditions. Looking for an easy-to-operate protocol with easily gained material and high induction efficiency has always been a hot issue in neuroscience research. NEW METHODS This paper established an optimized method for embryonic neurogenesis using a strategy of "combinatorial screening". In our study, the whole process of embryonic neurogenesis was divided into two phases, and the differentiation efficiency of seven experimental protocols in phase I and three protocols in phase II were systematically evaluated in A2lox and 129 ESCs. RESULTS In phase I differentiation, "2-day embryoid bodies formation + 6-day retinoic acid induction" (Phase I-protocol 3) could effectively induce the differentiation of ESCs into neural precursor cells (NPCs). Furthermore, in phase II, N2B27 medium II (Phase II-protocol 3) could better support the subsequent differentiation from NPCs into neurons. COMPARISON WITH EXISTING METHOD(S) Such a combinational method (phase I-protocol 3 and phase II-protocol 3) can realize embryonic neurogenesis with high efficiency, easy implementation and low-cost, and is suitable for promotion in most laboratories. CONCLUSIONS Through "combinatorial screening" strategy, we established an optimized method for embryonic neurogenesis in vitro, which is expected to be a powerful tool for neuroscience research.
Collapse
Affiliation(s)
- Yuan Li
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, PR China
| | - Xiang Mao
- Wuhan Centres for Disease Prevention and Control, 24# Jianghan N. Road, Wuhan, Hubei, 430015, PR China
| | - Xianyi Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, PR China
| | - Yuting Su
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, PR China
| | - Xiangyu Zhou
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, PR China
| | - Kaituo Shi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, PR China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, 430065, PR China.
| |
Collapse
|
70
|
Behura SK, Dhakal P, Kelleher AM, Balboula A, Patterson A, Spencer TE. The brain-placental axis: Therapeutic and pharmacological relevancy to pregnancy. Pharmacol Res 2019; 149:104468. [PMID: 31600597 PMCID: PMC6944055 DOI: 10.1016/j.phrs.2019.104468] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/23/2019] [Accepted: 09/27/2019] [Indexed: 12/22/2022]
Abstract
The placenta plays a critical role in mammalian reproduction. Although it is a transient organ, its function is indispensable to communication between the mother and fetus, and supply of nutrients and oxygen to the growing fetus. During pregnancy, the placenta is vulnerable to various intrinsic and extrinsic conditions which can result in increased risk of fetal neurodevelopmental disorders as well as fetal death. The placenta controls the neuroendocrine secretion in the brain as a means of adaptive processes to safeguard the fetus from adverse programs, to optimize fetal development and other physiological changes necessary for reproductive success. Although a wealth of information is available on neuroendocrine functions in pregnancy, they are largely limited to the regulation of hypothalamus-pituitary-adrenal/gonad (HPA/ HPG) axis, particularly the oxytocin and prolactin system. There is a major gap in knowledge on systems-level functional interaction between the brain and placenta. In this review, we aim to outline the current state of knowledge about the brain-placental axis with description of the functional interactions between the placenta and the maternal and fetal brain. While describing the brain-placental interactions, a special emphasis has been given on the therapeutics and pharmacology of the placental receptors to neuroligands expressed in the brain during gestation. As a key feature of this review, we outline the prospects of integrated pharmacogenomics, single-cell sequencing and organ-on-chip systems to foster priority areas in this field of research. Finally, we remark on the application of precision genomics approaches to study the brain-placental axis in order to accelerate personalized medicine and therapeutics to treat placental and fetal brain disorders.
Collapse
Affiliation(s)
- Susanta K Behura
- Division of Animal Sciences, University of Missouri, United States; Informatics Institute, University of Missouri, United States.
| | - Pramod Dhakal
- Division of Animal Sciences, University of Missouri, United States
| | | | - Ahmed Balboula
- Division of Animal Sciences, University of Missouri, United States
| | - Amanda Patterson
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, United States; Department of Obstetrics, Gynecology and Women's Health, University of Missouri, United States
| |
Collapse
|
71
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
72
|
Ndyabawe K, Kisaalita WS. Engineering microsystems to recapitulate brain physiology on a chip. Drug Discov Today 2019; 24:1725-1730. [PMID: 31226433 DOI: 10.1016/j.drudis.2019.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/17/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
The structural and functional organization of the human brain consists of 52 regions with distinct cellular organization. In vitro models for normal and pathological states using isolated brain-region-specific 3D engineered tissues fail to recapitulate information integration and/or transfer that arises from connectivity among neuroanatomical structures. Therefore, development of brain-on-a-chip microsystems must shift to multiple region neuron network designs to be relevant in brain functionality and deficit modeling. However, in vitro formation of multiregional networks on microdevices presents several challenges that we illustrate using a few neurological disorders; and we offer guidance, depending on objectives (HTS, disease modeling, etc.) for rational design of microfluidic systems and better emulation of in vivo conditions.
Collapse
Affiliation(s)
- Kenneth Ndyabawe
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA
| | - William S Kisaalita
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, Driftmier Engineering Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
73
|
Frimat JP, Luttge R. The Need for Physiological Micro-Nanofluidic Systems of the Brain. Front Bioeng Biotechnol 2019; 7:100. [PMID: 31134196 PMCID: PMC6514106 DOI: 10.3389/fbioe.2019.00100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
In this article, we review brain-on-a-chip models and associated underlying technologies. Micro-nanofluidic systems of the brain can utilize the entire spectrum of organoid technology. Notably, there is an urgent clinical need for a physiologically relevant microfluidic platform that can mimic the brain. Brain diseases affect millions of people worldwide, and this number will grow as the size of elderly population increases, thus making brain disease a serious public health problem. Brain disease modeling typically involves the use of in vivo rodent models, which is time consuming, resource intensive, and arguably unethical because many animals are required for a single study. Moreover, rodent models may not accurately predict human diseases, leading to erroneous results, thus rendering animal models poor predictors of human responses to treatment. Various clinical researchers have highlighted this issue, showing that initial physiological descriptions of animal models rarely encompass all the desired human features, including how closely the model captures what is observed in patients. Consequently, such animal models only mimic certain disease aspects, and they are often inadequate for studying how a certain molecule affects various aspects of a disease. Thus, there is a great need for the development of the brain-on-a-chip technology based on which a human brain model can be engineered by assembling cell lines to generate an organ-level model. To produce such a brain-on-a-chip device, selection of appropriate cells lines is critical because brain tissue consists of many different neuronal subtypes, including a plethora of supporting glial cell types. Additionally, cellular network bio-architecture significantly varies throughout different brain regions, forming complex structures and circuitries; this needs to be accounted for in the chip design process. Compartmentalized microenvironments can also be designed within the microphysiological cell culture system to fulfill advanced requirements of a given application. On-chip integration methods have already enabled advances in Parkinson's disease, Alzheimer's disease, and epilepsy modeling, which are discussed herein. In conclusion, for the brain model to be functional, combining engineered microsystems with stem cell (hiPSC) technology is specifically beneficial because hiPSCs can contribute to the complexity of tissue architecture based on their level of differentiation and thereby, biology itself.
Collapse
Affiliation(s)
- Jean-Philippe Frimat
- Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Eindhoven, Netherlands
| | - Regina Luttge
- Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
74
|
Kilic O, Yoon A, Shah SR, Yong HM, Ruiz-Valls A, Chang H, Panettieri RA, Liggett SB, Quiñones-Hinojosa A, An SS, Levchenko A. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng 2019; 3:532-544. [PMID: 31150010 PMCID: PMC6653686 DOI: 10.1038/s41551-019-0366-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/07/2019] [Indexed: 01/08/2023]
Abstract
In asthma, airway smooth muscle (ASM) contraction and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of ASM, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator YAP (Yes-associated protein). A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, including pathognomonic features of severe, difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Arum Yoon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alejandro Ruiz-Valls
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hao Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Reynold A Panettieri
- Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Stephen B Liggett
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA. .,Yale Systems Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
75
|
Lee SH, Jun BH. Advances in dynamic microphysiological organ-on-a-chip: Design principle and its biomedical application. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
76
|
Schwerdtfeger LA, Tobet SA. From organotypic culture to body-on-a-chip: A neuroendocrine perspective. J Neuroendocrinol 2019; 31:e12650. [PMID: 30307079 DOI: 10.1111/jne.12650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 12/22/2022]
Abstract
The methods used to study neuroendocrinology have been as diverse as the discoveries to come out of the field. Maintaining live neurones outside of a body in vitro was important from the beginning, building on methods that dated back to at least the first decade of the 20th Century. Neurosecretion defines an essential foundation of neuroendocrinology based on work that began in the 1920s and 1930s. Throughout the first half of the 20th Century, many paradigms arose for studying everything from single neurones to whole organs in vitro. Two of these survived as preeminent systems for use throughout the second half of the century: cell cultures and explant systems. Slice cultures and explants that emerged as organotypic technologies included such neuroendocrine organs such as the brain, pituitary, adrenals and intestine. The vast majority of these studies were carried out in static cultures for which media were changed over a time scale of days. Tissues were used for experimental techniques such as electrical recording of neuronal physiology in single cells and observation by live microscopy. When maintained in vitro, many of these systems only partially capture the in vivo physiology of the organ system of interest, often because of a lack of cellular diversity (eg, neuronal cultures lacking glia). Modern microfluidic methodologies show promise for organ systems, ranging from the reproductive to the gastrointestinal to the brain. Moving forward and striving to understand the mechanisms that drive neuroendocrine signalling centrally and peripherally, there will always be a need to consider the heterogeneous cellular compositions of organs in vivo.
Collapse
Affiliation(s)
- Luke A Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Stuart A Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
77
|
De Jong E, Williams DS, Abdelmohsen LK, Van Hest JC, Zuhorn IS. A filter-free blood-brain barrier model to quantitatively study transendothelial delivery of nanoparticles by fluorescence spectroscopy. J Control Release 2018; 289:14-22. [DOI: 10.1016/j.jconrel.2018.09.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/15/2018] [Accepted: 09/18/2018] [Indexed: 01/21/2023]
|
78
|
Sosa-Hernández JE, Villalba-Rodríguez AM, Romero-Castillo KD, Aguilar-Aguila-Isaías MA, García-Reyes IE, Hernández-Antonio A, Ahmed I, Sharma A, Parra-Saldívar R, Iqbal HMN. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. MICROMACHINES 2018; 9:E536. [PMID: 30424469 PMCID: PMC6215144 DOI: 10.3390/mi9100536] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
In recent years, ever-increasing scientific knowledge and modern high-tech advancements in micro- and nano-scales fabrication technologies have impacted significantly on various scientific fields. A micro-level approach so-called "microfluidic technology" has rapidly evolved as a powerful tool for numerous applications with special reference to bioengineering and biomedical engineering research. Therefore, a transformative effect has been felt, for instance, in biological sample handling, analyte sensing cell-based assay, tissue engineering, molecular diagnostics, and drug screening, etc. Besides such huge multi-functional potentialities, microfluidic technology also offers the opportunity to mimic different organs to address the complexity of animal-based testing models effectively. The combination of fluid physics along with three-dimensional (3-D) cell compartmentalization has sustained popularity as organ-on-a-chip. In this context, simple humanoid model systems which are important for a wide range of research fields rely on the development of a microfluidic system. The basic idea is to provide an artificial testing subject that resembles the human body in every aspect. For instance, drug testing in the pharma industry is crucial to assure proper function. Development of microfluidic-based technology bridges the gap between in vitro and in vivo models offering new approaches to research in medicine, biology, and pharmacology, among others. This is also because microfluidic-based 3-D niche has enormous potential to accommodate cells/tissues to create a physiologically relevant environment, thus, bridge/fill in the gap between extensively studied animal models and human-based clinical trials. This review highlights principles, fabrication techniques, and recent progress of organs-on-chip research. Herein, we also point out some opportunities for microfluidic technology in the future research which is still infancy to accurately design, address and mimic the in vivo niche.
Collapse
Affiliation(s)
- Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Angel M Villalba-Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Kenya D Romero-Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Mauricio A Aguilar-Aguila-Isaías
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Isaac E García-Reyes
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Arturo Hernández-Antonio
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Ishtiaq Ahmed
- School of Medical Science, Understanding Chronic Conditions Program, Menzies Health Institute Queensland, Griffith University (Gold Coast Campus), Parklands Drive, Southport, QLD 4222, Australia.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, Queretaro CP 76130, Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey CP 64849, N.L., Mexico.
| |
Collapse
|
79
|
George JH, Nagel D, Waller S, Hill E, Parri HR, Coleman MD, Cui Z, Ye H. A closer look at neuron interaction with track-etched microporous membranes. Sci Rep 2018; 8:15552. [PMID: 30341335 PMCID: PMC6195627 DOI: 10.1038/s41598-018-33710-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/03/2018] [Indexed: 01/18/2023] Open
Abstract
Microporous membranes support the growth of neurites into and through micro-channels, providing a different type of neural growth platform to conventional dish cultures. Microporous membranes are used to support various types of culture, however, the role of pore diameter in relation to neurite growth through the membrane has not been well characterised. In this study, the human cell line (SH-SY5Y) was differentiated into neuron-like cells and cultured on track-etched microporous membranes with pore and channel diameters selected to accommodate neurite width (0.8 µm to 5 µm). Whilst neurites extended through all pore diameters, the extent of neurite coverage on the non-seeded side of the membranes after 5 days in culture was found to be directly proportional to channel diameter. Neurite growth through membrane pores reduced significantly when neural cultures were non-confluent. Scanning electron microscopy revealed that neurites bridged pores and circumnavigated pore edges – such that the overall likelihood of a neurite entering a pore channel was decreased. These findings highlight the role of pore diameter, cell sheet confluence and contact guidance in directing neurite growth through pores and may be useful in applications that seek to use physical substrates to maintain separate neural populations whilst permitting neurite contact between cultures.
Collapse
Affiliation(s)
- Julian H George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - David Nagel
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Sharlayne Waller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Eric Hill
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - H Rhein Parri
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Michael D Coleman
- Aston Research Centre for Healthy Ageing, Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
80
|
Yeste J, Illa X, Alvarez M, Villa R. Engineering and monitoring cellular barrier models. J Biol Eng 2018; 12:18. [PMID: 30214484 PMCID: PMC6134550 DOI: 10.1186/s13036-018-0108-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
Epithelia and endothelia delineate tissue compartments and control their environments by regulating the passage of ions and solutes. This barrier function is essential for the development and maintenance of multicellular organisms, and its dysfunction is associated with numerous human diseases. Recent advances in biomaterials and microfabrication technologies have evolved in vitro approaches for modelling biological barriers. Current microphysiological systems have become more efficient and reliable in mimicking the cell microenvironment. Additionally, methods for the quantification of barrier permeability have long provided significant insight into their underlying mechanisms. In this review, we outline the current techniques to quantify the barrier function of engineered tissues, and we also give an overview of recent microphysiological systems of biological barriers that emulate the microenvironment and microarchitecture of native tissues.
Collapse
Affiliation(s)
- Jose Yeste
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Xavi Illa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Mar Alvarez
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
| | - Rosa Villa
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), 08193, Bellaterra, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| |
Collapse
|
81
|
Rothbauer M, Rosser JM, Zirath H, Ertl P. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol 2018; 55:81-86. [PMID: 30189349 DOI: 10.1016/j.copbio.2018.08.009] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Organ-on-a-chip technology offers the potential to recapitulate human physiology by keeping human cells in a precisely controlled and artificial tissue-like microenvironment. The current and potential advantages of organs-on-chips over conventional cell cultures systems and animal models have captured the attention of scientists, clinicians and policymakers as well as advocacy groups in the past few years. Recent advances in tissue engineering and stem cell research are also aiding the development of clinically relevant chip-based organ and diseases models with organ level physiology for drug screening, biomedical research and personalized medicine. Here, the latest advances in organ-on-a-chip technology are reviewed and future clinical applications discussed.
Collapse
Affiliation(s)
- Mario Rothbauer
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Julie M Rosser
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Helene Zirath
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria
| | - Peter Ertl
- Vienna University of Technology, Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/163-164, 1060 Vienna, Austria.
| |
Collapse
|
82
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
83
|
Tillmaand EG, Sweedler JV. Integrating Mass Spectrometry with Microphysiological Systems for Improved Neurochemical Studies. ACTA ACUST UNITED AC 2018; 2. [PMID: 30148282 DOI: 10.21037/mps.2018.05.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microphysiological systems, often referred to as "organs-on-chips", are in vitro platforms designed to model the spatial, chemical, structural, and physiological elements of in vivo cellular environments. They enhance the evaluation of complex engineered biological systems and are a step between traditional cell culture and in vivo experimentation. As neurochemists and measurement scientists studying the molecules involved in intercellular communication in the nervous system, we focus here on recent advances in neuroscience using microneurological systems and their potential to interface with mass spectrometry. We discuss a number of examples - microfluidic devices, spheroid cultures, hydrogels, scaffolds, and fibers - highlighting those that would benefit from mass spectrometric technologies to obtain improved chemical information.
Collapse
Affiliation(s)
- Emily G Tillmaand
- Department of Chemistry, the Neuroscience Program and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry, the Neuroscience Program and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
84
|
Nawroth J, Rogal J, Weiss M, Brucker SY, Loskill P. Organ-on-a-Chip Systems for Women's Health Applications. Adv Healthc Mater 2018; 7. [PMID: 28985032 DOI: 10.1002/adhm.201700550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Indexed: 12/19/2022]
Abstract
Biomedical research, for a long time, has paid little attention to the influence of sex in many areas of study, ranging from molecular and cellular biology to animal models and clinical studies on human subjects. Many studies solely rely on male cells/tissues/animals/humans, although there are profound differences in male and female physiology, which can significantly impact disease mechanisms, toxicity of compounds, and efficacy of pharmaceuticals. In vitro systems have been traditionally very limited in their capacity to recapitulate female-specific physiology and anatomy such as dynamic sex-hormone levels and the complex interdependencies of female reproductive tract organs. However, the advent of microphysiological organ-on-a-chip systems, which attempt to recreate the 3D structure and function of human organs, now gives researchers the opportunity to integrate cells and tissues from a variety of individuals. Moreover, adding a dynamic flow environment allows mimicking endocrine signaling during the menstrual cycle and pregnancy, as well as providing a controlled microfluidic environment for pharmacokinetic modeling. This review gives an introduction into preclinical and clinical research on women's health and discusses where organ-on-a-chip systems are already utilized or have the potential to deliver new insights and enable entirely new types of studies.
Collapse
Affiliation(s)
| | - Julia Rogal
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| | - Martin Weiss
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Sara Y. Brucker
- Department of Gynecology and Obstetrics; University Medicine Tübingen; Calwerstrasse 7 72076 Tübingen Germany
| | - Peter Loskill
- Department of Cell and Tissue Engineering; Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB; Nobelstrasse 12 70569 Stuttgart Germany
| |
Collapse
|
85
|
Smirnova L, Kleinstreuer N, Corvi R, Levchenko A, Fitzpatrick SC, Hartung T. 3S - Systematic, systemic, and systems biology and toxicology. ALTEX 2018; 35:139-162. [PMID: 29677694 PMCID: PMC6696989 DOI: 10.14573/altex.1804051] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
A biological system is more than the sum of its parts - it accomplishes many functions via synergy. Deconstructing the system down to the molecular mechanism level necessitates the complement of reconstructing functions on all levels, i.e., in our conceptualization of biology and its perturbations, our experimental models and computer modelling. Toxicology contains the somewhat arbitrary subclass "systemic toxicities"; however, there is no relevant toxic insult or general disease that is not systemic. At least inflammation and repair are involved that require coordinated signaling mechanisms across the organism. However, the more body components involved, the greater the challenge to reca-pitulate such toxicities using non-animal models. Here, the shortcomings of current systemic testing and the development of alternative approaches are summarized. We argue that we need a systematic approach to integrating existing knowledge as exemplified by systematic reviews and other evidence-based approaches. Such knowledge can guide us in modelling these systems using bioengineering and virtual computer models, i.e., via systems biology or systems toxicology approaches. Experimental multi-organ-on-chip and microphysiological systems (MPS) provide a more physiological view of the organism, facilitating more comprehensive coverage of systemic toxicities, i.e., the perturbation on organism level, without using substitute organisms (animals). The next challenge is to establish disease models, i.e., micropathophysiological systems (MPPS), to expand their utility to encompass biomedicine. Combining computational and experimental systems approaches and the chal-lenges of validating them are discussed. The suggested 3S approach promises to leverage 21st century technology and systematic thinking to achieve a paradigm change in studying systemic effects.
Collapse
Affiliation(s)
- Lena Smirnova
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA
| | | | - Raffaella Corvi
- European Commission, Joint Research Centre (JRC), EU Reference Laboratory for Alternatives to Animal Testing (EURL ECVAM), Ispra, (VA), Italy
| | - Andre Levchenko
- Yale Systems Biology Institute and Biomedical Engineering Department, Yale University, New Haven, CT, USA
| | - Suzanne C Fitzpatrick
- Food and Drug Administration (FDA), Center for Food Safety and Applied Nutrition, College Park, MD, USA
| | - Thomas Hartung
- Johns Hopkins University, Bloomberg School of Public Health, Center for Alternatives to Animal Testing (CAAT), Baltimore, MD, USA.
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|
86
|
Jorfi M, D'Avanzo C, Kim DY, Irimia D. Three-Dimensional Models of the Human Brain Development and Diseases. Adv Healthc Mater 2018; 7:10.1002/adhm.201700723. [PMID: 28845922 PMCID: PMC5762251 DOI: 10.1002/adhm.201700723] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/24/2017] [Indexed: 01/07/2023]
Abstract
Deciphering the human brain pathophysiology remains one of the greatest challenges of the 21st century. Neurological disorders represent a significant proportion of diseases burden; however, the complexity of the brain physiology makes it challenging to model its diseases. Simple in vitro models have been very useful for precise measurements in controled conditions. However, existing models are limited in their ability to replicate complex interactions between various cells in the brain. Studying human brain requires sophisticated models to reconstitute the tangled architecture and functions of brain cells. Recently, advances in the development of three-dimensional (3D) brain cell culture models have begun to recapitulate various aspects of the human brain physiology in vitro and replicate basic disease processes of Alzheimer's disease, amyotrophic lateral sclerosis, and microcephaly. In this review, we discuss the progress, advantages, limitations, and future directions of 3D cell culture systems for modeling the human brain development and diseases.
Collapse
Affiliation(s)
- Mehdi Jorfi
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Doo Yeon Kim
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, 02129, USA
| |
Collapse
|
87
|
Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E, Davenport-Huyer L, Lai B, Zhang B, Zhao Y, Mandla S, Korolj A, Radisic M. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv Healthc Mater 2018; 7. [PMID: 29034591 DOI: 10.1002/adhm.201700506] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/15/2017] [Indexed: 12/11/2022]
Abstract
Significant advances in biomaterials, stem cell biology, and microscale technologies have enabled the fabrication of biologically relevant tissues and organs. Such tissues and organs, referred to as organ-on-a-chip (OOC) platforms, have emerged as a powerful tool in tissue analysis and disease modeling for biological and pharmacological applications. A variety of biomaterials are used in tissue fabrication providing multiple biological, structural, and mechanical cues in the regulation of cell behavior and tissue morphogenesis. Cells derived from humans enable the fabrication of personalized OOC platforms. Microscale technologies are specifically helpful in providing physiological microenvironments for tissues and organs. In this review, biomaterials, cells, and microscale technologies are described as essential components to construct OOC platforms. The latest developments in OOC platforms (e.g., liver, skeletal muscle, cardiac, cancer, lung, skin, bone, and brain) are then discussed as functional tools in simulating human physiology and metabolism. Future perspectives and major challenges in the development of OOC platforms toward accelerating clinical studies of drug discovery are finally highlighted.
Collapse
Affiliation(s)
- Samad Ahadian
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Robert Civitarese
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Dawn Bannerman
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Rick Lu
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Erika Wang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Locke Davenport-Huyer
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Ben Lai
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Boyang Zhang
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Serena Mandla
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto M5S 3G9 Ontario Canada
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; Toronto M5S 3G9 Ontario Canada
| |
Collapse
|
88
|
Ren X, Levin D, Lin F. Cell Migration Research Based on Organ-on-Chip-Related Approaches. MICROMACHINES 2017; 8:mi8110324. [PMID: 30400514 PMCID: PMC6190356 DOI: 10.3390/mi8110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/28/2017] [Accepted: 10/28/2017] [Indexed: 11/16/2022]
Abstract
Microfluidic devices have been widely used for cell migration research over the last two decades, owing to their attractive features in cellular microenvironment control and quantitative single-cell migration analysis. However, the majority of the microfluidic cell migration studies have focused on single cell types and have configured microenvironments that are greatly simplified compared with the in-vivo conditions they aspire to model. In addition, although cell migration is considered an important target for disease diagnosis and therapeutics, very few microfluidic cell migration studies involved clinical samples from patients. Therefore, more sophisticated microfluidic systems are required to model the complex in-vivo microenvironment at the tissue or organ level for cell migration studies and to explore cell migration-related clinical applications. Research in this direction that employs organ-on-chip-related approaches for cell migration analysis has been increasingly reported in recent years. In this paper, we briefly introduce the general background of cell migration and organ-on-chip research, followed by a detailed review of specific cell migration studies using organ-on-chip-related approaches, and conclude by discussing our perspectives of the challenges, opportunities and future directions.
Collapse
Affiliation(s)
- Xiaoou Ren
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - David Levin
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
89
|
Watson DE, Hunziker R, Wikswo JP. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 2017; 242:1559-1572. [PMID: 29065799 DOI: 10.1177/1535370217732765] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microphysiological systems (MPS), which include engineered organoids (EOs), single organ/tissue chips (TCs), and multiple organs interconnected to create miniature in vitro models of human physiological systems, are rapidly becoming effective tools for drug development and the mechanistic understanding of tissue physiology and pathophysiology. The second MPS thematic issue of Experimental Biology and Medicine comprises 15 articles by scientists and engineers from the National Institutes of Health, the IQ Consortium, the Food and Drug Administration, and Environmental Protection Agency, an MPS company, and academia. Topics include the progress, challenges, and future of organs-on-chips, dissemination of TCs into Pharma, children's health protection, liver zonation, liver chips and their coupling to interconnected systems, gastrointestinal MPS, maturation of immature cardiomyocytes in a heart-on-a-chip, coculture of multiple cell types in a human skin construct, use of synthetic hydrogels to create EOs that form neural tissue models, the blood-brain barrier-on-a-chip, MPS models of coupled female reproductive organs, coupling MPS devices to create a body-on-a-chip, and the use of a microformulator to recapitulate endocrine circadian rhythms. While MPS hardware has been relatively stable since the last MPS thematic issue, there have been significant advances in cell sourcing, with increased reliance on human-induced pluripotent stem cells, and in characterization of the genetic and functional cell state in MPS bioreactors. There is growing appreciation of the need to minimize perfusate-to-cell-volume ratios and respect physiological scaling of coupled TCs. Questions asked by drug developers are followed by an analysis of the potential value, costs, and needs of Pharma. Of highest value and lowest switching costs may be the development of MPS disease models to aid in the discovery of disease mechanisms; novel compounds including probes, leads, and clinical candidates; and mechanism of action of drug candidates. Impact statement Microphysiological systems (MPS), which include engineered organoids and both individual and coupled organs-on-chips and tissue chips, are a rapidly growing topic of research that addresses the known limitations of conventional cellular monoculture on flat plastic - a well-perfected set of techniques that produces reliable, statistically significant results that may not adequately represent human biology and disease. As reviewed in this article and the others in this thematic issue, MPS research has made notable progress in the past three years in both cell sourcing and characterization. As the field matures, currently identified challenges are being addressed, and new ones are being recognized. Building upon investments by the Defense Advanced Research Projects Agency, National Institutes of Health, Food and Drug Administration, Defense Threat Reduction Agency, and Environmental Protection Agency of more than $200 million since 2012 and sizable corporate spending, academic and commercial players in the MPS community are demonstrating their ability to meet the translational challenges required to apply MPS technologies to accelerate drug development and advance toxicology.
Collapse
Affiliation(s)
| | - Rosemarie Hunziker
- 2 National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - John P Wikswo
- 3 Departments of Biomedical Engineering, Molecular Physiology & Biophysics, and Physics & Astronomy, Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, TN 37235-1807, USA
| |
Collapse
|
90
|
van der Helm MW, Odijk M, Frimat JP, van der Meer AD, Eijkel JCT, van den Berg A, Segerink LI. Fabrication and Validation of an Organ-on-chip System with Integrated Electrodes to Directly Quantify Transendothelial Electrical Resistance. J Vis Exp 2017. [PMID: 28994800 PMCID: PMC5752338 DOI: 10.3791/56334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Organs-on-chips, in vitro models involving the culture of (human) tissues inside microfluidic devices, are rapidly emerging and promise to provide useful research tools for studying human health and disease. To characterize the barrier function of cell layers cultured inside organ-on-chip devices, often transendothelial or transepithelial electrical resistance (TEER) is measured. To this end, electrodes are usually integrated into the chip by micromachining methods to provide more stable measurements than is achieved with manual insertion of electrodes into the inlets of the chip. However, these electrodes frequently hamper visual inspection of the studied cell layer or require expensive cleanroom processes for fabrication. To overcome these limitations, the device described here contains four easily integrated electrodes that are placed and fixed outside of the culture area, making visual inspection possible. Using these four electrodes the resistance of six measurement paths can be quantified, from which the TEER can be directly isolated, independent of the resistance of culture medium-filled microchannels. The blood-brain barrier was replicated in this device and its TEER was monitored to show the device applicability. This chip, the integrated electrodes and the TEER determination method are generally applicable in organs-on-chips, both to mimic other organs or to be incorporated into existing organ-on-chip systems.
Collapse
Affiliation(s)
- Marinke W van der Helm
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente;
| | - Mathieu Odijk
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente
| | - Jean-Philippe Frimat
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente; Microsystems, Eindhoven University of Technology
| | - Andries D van der Meer
- Applied Stem Cell Technologies, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente
| | - Jan C T Eijkel
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente
| | - Albert van den Berg
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente
| | - Loes I Segerink
- BIOS Lab on a Chip group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology and Max Planck Center for Complex Fluid Dynamics, University of Twente
| |
Collapse
|
91
|
Wang Y, Gunasekara DB, Attayek PJ, Reed MI, DiSalvo M, Nguyen DL, Dutton JS, Lebhar MS, Bultman SJ, Sims CE, Magness ST, Allbritton NL. In Vitro Generation of Mouse Colon Crypts. ACS Biomater Sci Eng 2017; 3:2502-2513. [PMID: 30854421 DOI: 10.1021/acsbiomaterials.7b00368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organoid culture has had a significant impact on in vitro studies of the intestinal epithelium; however, the exquisite architecture, luminal accessibility, and lineage compartmentalization found in vivo has not been recapitulated in the organoid systems. We have used a microengineered platform with suitable extracellular matrix contacts and stiffness to generate a self-renewing mouse colonic epithelium that replicates key architectural and physiological functions found in vivo, including a surface lined with polarized crypts. Chemical gradients applied to the basal-luminal axis compartmentalized the stem/progenitor cells and promoted appropriate lineage differentiation along the in vitro crypt axis so that the tissue possessed a crypt stem cell niche as well as a layer of differentiated cells covering the luminal surface. This new approach combining microengineered scaffolds, native chemical gradients, and biophysical cues to control primary epithelium ex vivo can serve as a highly functional and physiologically relevant in vitro tissue model.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Dulan B Gunasekara
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peter J Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Mark I Reed
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Matthew DiSalvo
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Daniel L Nguyen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Johanna S Dutton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Michael S Lebhar
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Scott J Bultman
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Scott T Magness
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Nancy L Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27607, United States
| |
Collapse
|
92
|
Bovard D, Iskandar A, Luettich K, Hoeng J, Peitsch MC. Organs-on-a-chip. TOXICOLOGY RESEARCH AND APPLICATION 2017. [DOI: 10.1177/2397847317726351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the last few years, considerable attention has been given to in vitro models in an attempt to reduce the use of animals and to decrease the rate of preclinical failure associated with the development of new drugs. Simple two-dimensional cultures grown in a dish are now frequently replaced by organotypic cultures with three-dimensional (3-D) architecture, which enables interactions between cells, promoting their differentiation and increasing their in vivo likeness. Microengineering now enables the incorporation of small devices into 3-D culture models to reproduce the complex microenvironment of the modeled organ, often referred to as organs-on-a-chip (OoCs). This review describes various OoCs developed to mimic liver, brain, kidney, and lung tissues. Current challenges encountered in attempts to recreate the in vivo environment are described, as well as some examples of OoCs. Finally, attention is given to the ongoing evolution of OoCs with the aim of solving one of the major limitations in that they can only represent a single organ. Multi-organ-on-a-chip (MOC) systems mimic organ interactions observed in the human body and aim to provide the features of compound uptake, metabolism, and excretion, while simultaneously allowing for insights into biological effects. MOCs might therefore represent a new paradigm in drug development, providing a better understanding of dose responses and mechanisms of toxicity, enabling the detection of drug resistance and supporting the evaluation of pharmacokinetic–pharmacodynamics parameters.
Collapse
Affiliation(s)
- David Bovard
- Philip Morris Products SA, Neuchatel, Switzerland
| | | | | | - Julia Hoeng
- Philip Morris Products SA, Neuchatel, Switzerland
| | | |
Collapse
|
93
|
Abstract
Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them.
Collapse
Affiliation(s)
- Garet P Lahvis
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, United States
| |
Collapse
|
94
|
Murphy AR, Laslett A, O'Brien CM, Cameron NR. Scaffolds for 3D in vitro culture of neural lineage cells. Acta Biomater 2017; 54:1-20. [PMID: 28259835 DOI: 10.1016/j.actbio.2017.02.046] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Understanding how neurodegenerative disorders develop is not only a key challenge for researchers but also for the wider society, given the rapidly aging populations in developed countries. Advances in this field require new tools with which to recreate neural tissue in vitro and produce realistic disease models. This in turn requires robust and reliable systems for performing 3D in vitro culture of neural lineage cells. This review provides a state of the art update on three-dimensional culture systems for in vitro development of neural tissue, employing a wide range of scaffold types including hydrogels, solid porous polymers, fibrous materials and decellularised tissues as well as microfluidic devices and lab-on-a-chip systems. To provide some context with in vivo development of the central nervous system (CNS), we also provide a brief overview of the neural stem cell niche, neural development and neural differentiation in vitro. We conclude with a discussion of future directions for this exciting and important field of biomaterials research. STATEMENT OF SIGNIFICANCE Neurodegenerative diseases, including dementia, Parkinson's and Alzheimer's diseases and motor neuron diseases, are a major societal challenge for aging populations. Understanding these conditions and developing therapies against them will require the development of new physical models of healthy and diseased neural tissue. Cellular models resembling neural tissue can be cultured in the laboratory with the help of 3D scaffolds - materials that allow the organization of neural cells into tissue-like structures. This review presents recent work on the development of different types of scaffolds for the 3D culture of neural lineage cells and the generation of functioning neural-like tissue. These in vitro culture systems are enabling the development of new approaches for modelling and tackling diseases of the brain and CNS.
Collapse
Affiliation(s)
- Ashley R Murphy
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia
| | - Andrew Laslett
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Bag 10, Clayton South MDC, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC 3800, Australia.
| |
Collapse
|
95
|
Integration concepts for multi-organ chips: how to maintain flexibility?! Future Sci OA 2017; 3:FSO180. [PMID: 28670472 PMCID: PMC5481865 DOI: 10.4155/fsoa-2016-0092] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/01/2017] [Indexed: 12/28/2022] Open
Abstract
Multi-organ platforms have an enormous potential to lead to a paradigm shift in a multitude of research domains including drug development, toxicological screening, personalized medicine as well as disease modeling. Integrating multiple organ–tissues into one microfluidic circulation merges the advantages of cell lines (human genetic background) and animal models (complex physiology) and enables the creation of more in vivo-like in vitro models. In recent years, a variety of design concepts for multi-organ platforms have been introduced, categorizable into static, semistatic and flexible systems. The most promising approach seems to be flexible interconnection of single-organ platforms to application-specific multi-organ systems. This perspective elucidates the concept of ‘mix-and-match’ toolboxes and discusses the numerous advantages compared with static/semistatic platforms as well as remaining challenges. ‘Organs-on-a-chip’ are platforms accommodating organ-specific human tissues in microscale 3D chambers with physiologically relevant structure. Broken down to the basic building blocks but simultaneously mimicking essential organ functions, these sophisticated biochips can help reduce the need for animal models in drug development, toxicity screening and basic research. However, to simulate a drug's journey through the human body, it is necessary to consider how a combination of organs responds to a given drug. In this perspective, concepts of realizing such ‘multi-organ platforms’ and the need for ‘mix-and-match’ toolboxes, which contain a range of single-organ units interconnected in individual, application-specific configurations, are discussed.
Collapse
|