51
|
Arrigoni F, Elleouet C, Mele A, Pétillon FY, De Gioia L, Schollhammer P, Zampella G. Insights into the Two‐Electron Reductive Process of [FeFe]H
2
ase Biomimetics: Cyclic Voltammetry and DFT Investigation on Chelate Control of Redox Properties of [Fe
2
(CO)
4
(κ
2
‐Chelate)(μ‐Dithiolate)]. Chemistry 2020; 26:17536-17545. [DOI: 10.1002/chem.202003233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/25/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Catherine Elleouet
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Andrea Mele
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - François Y. Pétillon
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Luca De Gioia
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| | - Philippe Schollhammer
- UMR CNRS 6521 Chimie, Electrochimie Moléculaires et Chimie Analytique Université de Bretagne Occidentale, UFR Sciences et Techniques 6 Avenue Victor le Gorgeu, CS 93837 29238 Brest-Cedex 3 France
| | - Giuseppe Zampella
- Department of Biotechnology and Bioscience University of Milano-Bicocca Piazza della Scienza 2 20126 Milan Italy
| |
Collapse
|
52
|
Gennari M, Duboc C. Bio-inspired, Multifunctional Metal-Thiolate Motif: From Electron Transfer to Sulfur Reactivity and Small-Molecule Activation. Acc Chem Res 2020; 53:2753-2761. [PMID: 33074643 DOI: 10.1021/acs.accounts.0c00555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfur-rich metalloproteins and metalloenzymes, containing strongly covalent metal-thiolate (cysteinate) or metal-sulfide bonds in their active site, are ubiquitous in nature. The metal-sulfur motif is a highly versatile tool involved in various biological processes: (i) metal storage, transport, and detoxification; (ii) electron transfer; (iii) activation of the sulfur atom to promote different types of S-based reactions including S-alkylation, S-oxygenation, S-nitrosylation, or disulfide or thiyl radicals formation; (iv) activation of small earth-abundant molecules (such as water, dioxygen, superoxide radical anion, carbon oxides, nitrous oxide, and dinitrogen).This Account describes our investigations carried out during the past 10 years on bio-inspired and biomimetic low-nuclearity complexes containing metal-thiolate bonds. The general objective of these structural, spectroscopic, electrochemical, and catalytic studies was to determine structure-properties-function correlations useful to (i) understanding the peculiar features or the mechanism of the mimicked natural systems and/or (ii) reproducing enzymatic reactivities for specific catalytic applications.By employing a unique highly preorganized N2S2-donor ligand with two thiolate functions, in combination with different first-row transition metals (Mn, Fe, Co, Ni, Cu, Zn, or V), we got access to a series of bio-inspired sulfur-rich complexes displaying a widespread spectrum of structures, properties, and functions. We isolated a dicopper(I) complex that, for the first time, mimicked concomitantly the key structural, spectroscopic, and redox features of the biological CuA center, a highly efficient electron transfer agent involved in the respiratory enzyme cytochrome c oxidase. In the field of sulfur activation, we explored (i) sulfur methylation promoted by a Zn-dithiolate complex that mimics Zn-dependent thiolate alkylation proteins and shows different selectivity compared to the Ni and Co congeners and (ii) a series of Co, Fe, and Mn complexes as the first copper-free systems able to promote thiolate/disulfide interconversion mediated by (de)coordination of halides. Concerning metal-centered reactivity, we investigated two families of metal-thiolate catalysts for small-molecule activation, especially relevant in the fields of sustainable fuel production and energy conversion: (i) two isostructural Mn and Fe dinuclear complexes that activate and reduce dioxygen selectively, either to hydrogen peroxide or water as a function of the experimental conditions; (ii) a family of dinuclear MFe (M = Ni or Fe) hydrogenase mimics active for catalytic H2 evolution both in organic solution and on modified electrodes in water.This Account thus illustrates how the versatility of thiolate ligation can support selected functions for transition metal complexes, depending on the nature of the metal, the nuclearity of the complex, the presence and type of co-ligands, the second coordination sphere effects, and the experimental conditions.
Collapse
Affiliation(s)
- Marcello Gennari
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Carole Duboc
- UMR CNRS 5250, Département de Chimie Moléculaire, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
53
|
Rodríguez-Maciá P, Breuer N, DeBeer S, Birrell JA. Insight into the Redox Behavior of the [4Fe–4S] Subcluster in [FeFe] Hydrogenases. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02771] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Patricia Rodríguez-Maciá
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Nina Breuer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| | - James A. Birrell
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
54
|
Sanchez MLK, Konecny SE, Narehood SM, Reijerse EJ, Lubitz W, Birrell JA, Dyer RB. The Laser-Induced Potential Jump: A Method for Rapid Electron Injection into Oxidoreductase Enzymes. J Phys Chem B 2020; 124:8750-8760. [PMID: 32924491 DOI: 10.1021/acs.jpcb.0c05718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxidoreductase enzymes often perform technologically useful chemical transformations using abundant metal cofactors with high efficiency under ambient conditions. The understanding of the catalytic mechanism of these enzymes is, however, highly dependent on the availability of well-characterized and optimized time-resolved analytical techniques. We have developed an approach for rapidly injecting electrons into a catalytic system using a photoactivated nanomaterial in combination with a range of redox mediators to produce a potential jump in solution, which then initiates turnover via electron transfer (ET) to the catalyst. The ET events at the nanomaterial-mediator-catalyst interfaces are, however, highly sensitive to the experimental conditions such as photon flux, relative concentrations of system components, and pH. Here, we present a systematic optimization of these experimental parameters for a specific catalytic system, namely, [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1). The developed strategies can, however, be applied in the study of a wide variety of oxidoreductase enzymes. Our potential jump system consists of CdSe/CdS core-shell nanorods as a photosensitizer and a series of substituted bipyridinium salts as mediators with redox potentials in the range from -550 to -670 mV (vs SHE). With these components, we screened the effect of pH, mediator concentration, protein concentration, photosensitizer concentration, and photon flux on steady-state photoreduction and hydrogen production as well as ET and potential jump efficiency. By manipulating these experimental conditions, we show the potential of simple modifications to improve the tunability of the potential jump for application to study oxidoreductases.
Collapse
Affiliation(s)
- Monica L K Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| | - Sara E Konecny
- Department of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| | - Sarah M Narehood
- Department of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| | - Edward J Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| |
Collapse
|
55
|
Wang P, Liang G, Webster CE, Zhao X. Structure‐Functional Analysis of Hydrogen Production Catalyzed by Molecular Cobalt Complexes with Pentadentate Ligands in Aqueous Solutions. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Wang
- Department of Chemistry The University of Memphis 38152 Memphis Tennessee USA
| | - Guangchao Liang
- Department of Chemistry University of Michigan 48109 Ann Arbor Michigan USA
- Department of Chemistry Mississippi State University 39762 Starkville Mississippi USA
| | - Charles Edwin Webster
- Department of Chemistry Mississippi State University 39762 Starkville Mississippi USA
| | - Xuan Zhao
- Department of Chemistry The University of Memphis 38152 Memphis Tennessee USA
| |
Collapse
|
56
|
|
57
|
Prasad P, Selvan D, Chakraborty S. Biosynthetic Approaches towards the Design of Artificial Hydrogen-Evolution Catalysts. Chemistry 2020; 26:12494-12509. [PMID: 32449989 DOI: 10.1002/chem.202001338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Indexed: 11/07/2022]
Abstract
Hydrogen is a clean and sustainable form of fuel that can minimize our heavy dependence on fossil fuels as the primary energy source. The need of finding greener ways to generate H2 gas has ignited interest in the research community to synthesize catalysts that can produce H2 by the reduction of H+ . The natural H2 producing enzymes hydrogenases have served as an inspiration to produce catalytic metal centers akin to these native enzymes. In this article we describe recent advances in the design of a unique class of artificial hydrogen evolving catalysts that combine the features of the active site metal(s) surrounded by a polypeptide component. The examples of these biosynthetic catalysts discussed here include i) assemblies of synthetic cofactors with native proteins; ii) peptide-appended synthetic complexes; iii) substitution of native cofactors with non-native cofactors; iv) metal substitution from rubredoxin; and v) a reengineered Cu storage protein into a Ni binding protein. Aspects of key design considerations in the construction of these artificial biocatalysts and insights gained into their chemical reactivity are discussed.
Collapse
Affiliation(s)
- Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Dhanashree Selvan
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
58
|
Ruff A, Szczesny J, Vega M, Zacarias S, Matias PM, Gounel S, Mano N, Pereira IAC, Schuhmann W. Redox-Polymer-Wired [NiFeSe] Hydrogenase Variants with Enhanced O 2 Stability for Triple-Protected High-Current-Density H 2 -Oxidation Bioanodes. CHEMSUSCHEM 2020; 13:3627-3635. [PMID: 32339386 PMCID: PMC7497094 DOI: 10.1002/cssc.202000999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/25/2020] [Indexed: 06/01/2023]
Abstract
Variants of the highly active [NiFeSe] hydrogenase from D. vulgaris Hildenborough that exhibit enhanced O2 tolerance were used as H2 -oxidation catalysts in H2 /O2 biofuel cells. Two [NiFeSe] variants were electrically wired by means of low-potential viologen-modified redox polymers and evaluated with respect to H2 -oxidation and stability against O2 in the immobilized state. The two variants showed maximum current densities of (450±84) μA cm-2 for G491A and (476±172) μA cm-2 for variant G941S on glassy carbon electrodes and a higher O2 tolerance than the wild type. In addition, the polymer protected the enzyme from O2 damage and high-potential inactivation, establishing a triple protection for the bioanode. The use of gas-diffusion bioanodes provided current densities for H2 -oxidation of up to 6.3 mA cm-2 . Combination of the gas-diffusion bioanode with a bilirubin oxidase-based gas-diffusion O2 -reducing biocathode in a membrane-free biofuel cell under anode-limiting conditions showed unprecedented benchmark power densities of 4.4 mW cm-2 at 0.7 V and an open-circuit voltage of 1.14 V even at moderate catalyst loadings, outperforming the previously reported system obtained with the [NiFeSe] wild type and the [NiFe] hydrogenase from D. vulgaris Miyazaki F.
Collapse
Affiliation(s)
- Adrian Ruff
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstr. 15044780BochumGermany
| | - Julian Szczesny
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstr. 15044780BochumGermany
| | - Maria Vega
- Facultat de BiociènciesUniversitat Autònoma de Barcelona (UAB)Carrer de la Vall Moronta08193BellaterraSpain
| | - Sonia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de LisboaAv. da República2780-157OeirasPortugal
| | - Pedro M. Matias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de LisboaAv. da República2780-157OeirasPortugal
- Instituto de Biologia Experimental e Tecnológica (iBET)Apartado 122780-901OeirasPortugal
| | | | - Nicolas Mano
- CNRSCRPP, UMR 5031Univ. Bordeaux33600PessacFrance
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de LisboaAv. da República2780-157OeirasPortugal
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr-University BochumUniversitätsstr. 15044780BochumGermany
| |
Collapse
|
59
|
Budnikova YH, Khrizanforova VV. Synthetic models of hydrogenases based on framework structures containing coordinating P, N-atoms as hydrogen energy electrocatalysts – from molecules to materials. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Nowadays, hydrogen has become not only an extremely important chemical product but also a promising clean energy carrier for replacing fossil fuels. Production of molecular H2 through electrochemical hydrogen evolution reactions is crucial for the development of clean-energy technologies. The development of economically viable and efficient H2 production/oxidation catalysts is a key step in the creation of H2-based renewable energy infrastructure. Intrinsic limitations of both natural enzymes and synthetic materials have led researchers to explore enzyme-induced catalysts to realize a high current density at a low overpotential. In recent times, highly active widespread numerous electrocatalysts, both homogeneous or heterogeneous (immobilized on the electrode), such as transition metal complexes, heteroatom- or metal-doped nanocarbons, metal-organic frameworks, and other metal derivatives (calix [4] resorcinols, pectates, etc.), which are, to one extent or another, structural or functional analogs of hydrogenases, have been extensively studied as alternatives for Pt-based catalysts, demonstrating prospects for the development of a “hydrogen economy”. This mini-review generalizes some achievements in the field of development of new electrocatalysts for H2 production/oxidation and their application for fuel cells, mainly focuses on the consideration of the catalytic activity of M[P2N2]2
2+ (M = Ni, Fe) complexes and other nickel structures which have been recently obtained.
Collapse
Affiliation(s)
- Yulia H. Budnikova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences , 8, E.Arbuzov str. , Kazan, 420088 , Russian Federation
| | - Vera V. Khrizanforova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences , 8, E.Arbuzov str. , Kazan, 420088 , Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences , Kazan , Russian Federation
| |
Collapse
|
60
|
Halfsandwich iron S-alkyl dithiocarbonato complexes: Synthesis, characterization and reactivity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
61
|
Thompson Z, Cowan JA. Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000392. [PMID: 32372559 DOI: 10.1002/smll.202000392] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Cellular life is orchestrated by the biochemical components of cells that include nucleic acids, lipids, carbohydrates, proteins, and cofactors such as metabolites and metals, all of which coalesce and function synchronously within the cell. Metalloenzymes allow for such complex chemical processes, as they catalyze a myriad of biochemical reactions both efficiently and selectively, where the metal cofactor provides additional functionality to promote reactivity not readily achieved in their absence. While the past 60 years have yielded considerable insight on how enzymes catalyze these reactions, a need to engineer and develop artificial metalloenzymes has been driven not only by industrial and therapeutic needs, but also by innate human curiosity. The design of miniature enzymes, both rationally and through serendipity, using both organic and inorganic building blocks has been explored by many scientists over the years and significant progress has been made. Herein, recent developments over the past 5 years in areas that have not been recently reviewed are summarized, and prospects for future research in these areas are addressed.
Collapse
Affiliation(s)
- Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - James Allan Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
62
|
Collado A, Torres A, Gómez‐Gallego M, Casarrubios L, Sierra MA. A Model for the Prediction of the Redox Potentials in [FeFe]‐Clusters from the Electronic Properties of Isocyanide Ligands. ChemistrySelect 2020. [DOI: 10.1002/slct.202001820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alba Collado
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de QuímicaUniversidad Complutense 28040 Madrid Spain
| | - Alejandro Torres
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de QuímicaUniversidad Complutense 28040 Madrid Spain
| | - Mar Gómez‐Gallego
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de QuímicaUniversidad Complutense 28040 Madrid Spain
| | - Luis Casarrubios
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de QuímicaUniversidad Complutense 28040 Madrid Spain
| | - Miguel A. Sierra
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Facultad de QuímicaUniversidad Complutense 28040 Madrid Spain
| |
Collapse
|
63
|
Xie L, Tian J, Ouyang Y, Guo X, Zhang W, Apfel U, Zhang W, Cao R. Water‐Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003836] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
64
|
Xie L, Tian J, Ouyang Y, Guo X, Zhang W, Apfel U, Zhang W, Cao R. Water‐Soluble Polymers with Appending Porphyrins as Bioinspired Catalysts for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2020; 59:15844-15848. [DOI: 10.1002/anie.202003836] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/10/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Lisi Xie
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xinai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
65
|
Land H, Senger M, Berggren G, Stripp ST. Current State of [FeFe]-Hydrogenase Research: Biodiversity and Spectroscopic Investigations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01614] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Henrik Land
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Moritz Senger
- Physical Chemistry, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sven T. Stripp
- Bioinorganic Spectroscopy, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
66
|
Agarwal T, Kaur-Ghumaan S. Mono- and dinuclear mimics of the [FeFe] hydrogenase enzyme featuring bis(monothiolato) and 1,3,5-triaza-7-phosphaadamantane ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
67
|
Zhang L, Xu D, Kong D, Ji M, Shan L, Zhao Y. Improving dark fermentative hydrogen production through zero-valent iron/copper (Fe/Cu) micro-electrolysis. Biotechnol Lett 2020; 42:445-451. [PMID: 31925631 DOI: 10.1007/s10529-020-02793-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate the effect of zero-valent iron and copper (Fe/Cu) micro-electrolysis on dark fermentative hydrogen production from glucose by a mixed bacterial consortium and the possible mechanisms of increasing hydrogen yield. RESULTS Compared to zero-valent iron and activated carbon (Fe/C) micro-electrolysis, Fe/Cu micro-electrolysis could increase hydrogen yield by 32.2%, hydrogen production potential by 27.1%, and the maximum hydrogen production rate by 62.0%. Meanwhile, the number of ferrous ions released into the liquid phase with Fe/Cu micro-electrolysis was about 27.0% greater than that released by Fe/C micro-electrolysis, because the dispersion of copper on the surface of iron could markedly improve electrochemical corrosion activity. Metabolic analysis revealed that Fe/C micro-electrolysis promoted acetate formation, which may have been responsible for the observed improvement in fermentative hydrogen production. Further investigation indicated that Fe/Cu micro-electrolysis increased the activity of hydrogenases and stimulated the expression of the [FeFe]-hydrogenase gene. CONCLUSION Fe/Cu micro-electrolysis is better than Fe/C micro-electrolysis or Fe corrosion alone for dark fermentative hydrogen production.
Collapse
Affiliation(s)
- Lei Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China.
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China.
| | - Danyu Xu
- Tianjin Academy of Environmental Sciences, Tianjin, 300191, China
| | - Deyong Kong
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lianbin Shan
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| | - Yongjiao Zhao
- Shenyang Academy of Environmental Sciences, Shenyang, 110167, China
| |
Collapse
|
68
|
Arrigoni F, Bertini L, Breglia R, Greco C, De Gioia L, Zampella G. Catalytic H 2 evolution/oxidation in [FeFe]-hydrogenase biomimetics: account from DFT on the interplay of related issues and proposed solutions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03393f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A DFT overview on selected issues regarding diiron catalysts related to [FeFe]-hydrogenase biomimetic research, with implications for both energy conversion and storage strategies.
Collapse
Affiliation(s)
- Federica Arrigoni
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Raffaella Breglia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Claudio Greco
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
- Department of Earth and Environmental Sciences
| | - Luca De Gioia
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences
- University of Milano – Bicocca
- 20126 Milan
- Italy
| |
Collapse
|
69
|
Gao S, Liu Y, Shao Y, Jiang D, Duan Q. Iron carbonyl compounds with aromatic dithiolate bridges as organometallic mimics of [FeFe] hydrogenases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
70
|
Exner KS. Electrolyte Engineering as a Key Strategy Towards a Sustainable Energy Scenario? ChemElectroChem 2019. [DOI: 10.1002/celc.201902009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kai S. Exner
- Sofia University, Faculty of Chemistry and PharmacyDepartment of Physical Chemistry 1 James Bourchier Avenue 1164 Sofia Bulgaria
| |
Collapse
|
71
|
Ruff A, Conzuelo F, Schuhmann W. Bioelectrocatalysis as the basis for the design of enzyme-based biofuel cells and semi-artificial biophotoelectrodes. Nat Catal 2019. [DOI: 10.1038/s41929-019-0381-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
72
|
Shimamura T, Maeno Y, Kubo K, Kume S, Greco C, Mizuta T. Protonation and electrochemical properties of a bisphosphide diiron hexacarbonyl complex bearing amino groups on the phosphide bridge. Dalton Trans 2019; 48:16595-16603. [PMID: 31651000 DOI: 10.1039/c9dt03427g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bisphosphide-bridged diiron hexacarbonyl complex 3 with NEt2 groups on the phosphide bridge was synthesized to examine a new proton relay system from the NEt2 group to the bridging hydride between the two iron centers. As a precursor of the bridging moiety, peri-Et2NP-PNEt2-bridged naphthylene 5 was synthesized by the reaction of 1,8-dilithionaphthylene with two equivalents of Cl2PNEt2 followed by reductive P-P bond formation by magnesium. The reaction of the diphosphine ligand 5 with Fe2(CO)9 gave the diiron hexacarbonyl complex 3, in which the P-P bond of the ligand was cleaved to form the bisphosphide-bridge. The molecular structure of 3 indicated that the trigonal plane of the NEt2 group was forced to face the Fe-Fe bond to avoid steric congestion with the naphthylene group linking the two phosphide groups. The NEt2 group could be protonated by p-toluenesulfonic acid. Density functional theory (DFT) calculations confirmed that the proton of the N(H)Et2 group adopted a position close to the bridging hydride. The DFT results for the ferrocene analogue 1, in which the 1,8-naphthylene group of 3 was replaced with the 1,1'-ferrocenylene group, also revealed that the most stable orientation of the protonated NHEt2 group was that in the protonated 3. As a result, electrochemical proton reduction reactions using complexes 1 and 3 proceeded with similar catalytic efficiencies. Unfortunately, the catalytic efficiencies (CEs) of these complexes were much lower than those of the complexes with a proton relay system of the terminal hydrogen, indicating that the reactive properties of the bridging hydride in the present proton relay system cannot exceed those of the terminal hydride.
Collapse
Affiliation(s)
- Takehiko Shimamura
- Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-hiroshima 739-8526, Japan.
| | | | | | | | | | | |
Collapse
|
73
|
Esselborn J, Kertess L, Apfel UP, Hofmann E, Happe T. Loss of Specific Active-Site Iron Atoms in Oxygen-Exposed [FeFe]-Hydrogenase Determined by Detailed X-ray Structure Analyses. J Am Chem Soc 2019; 141:17721-17728. [PMID: 31609603 DOI: 10.1021/jacs.9b07808] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The [FeFe]-hydrogenases catalyze the uptake and evolution of hydrogen with unmatched speed at low overpotential. However, oxygen induces the degradation of the unique [6Fe-6S] cofactor within the active site, termed the H-cluster. We used X-ray structural analyses to determine possible modes of irreversible oxygen-driven inactivation. To this end, we exposed crystals of the [FeFe]-hydrogenase CpI from Clostridium pasteurianum to oxygen and quantitatively investigated the effects on the H-cluster structure over several time points using multiple data sets, while correlating it to decreases in enzyme activity. Our results reveal the loss of specific Fe atoms from both the diiron (2FeH) and the [4Fe-4S] subcluster (4FeH) of the H-cluster. Within the 2FeH, the Fe atom more distal to the 4FeH is strikingly more affected than the more proximal Fe atom. The 4FeH interconverts to a [2Fe-2S] cluster in parts of the population of active CpIADT, but not in crystals of the inactive apoCpI initially lacking the 2FeH. We thus propose two parallel processes: dissociation of the distal Fe atom and 4FeH interconversion. Both pathways appear to play major roles in the oxidative damage of [FeFe]-hydrogenases under electron-donor deprived conditions probed by our experimental setup.
Collapse
|
74
|
Senger M, Eichmann V, Laun K, Duan J, Wittkamp F, Knör G, Apfel UP, Happe T, Winkler M, Heberle J, Stripp ST. How [FeFe]-Hydrogenase Facilitates Bidirectional Proton Transfer. J Am Chem Soc 2019; 141:17394-17403. [PMID: 31580662 PMCID: PMC6823627 DOI: 10.1021/jacs.9b09225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Hydrogenases are metalloenzymes that
catalyze the conversion of
protons and molecular hydrogen, H2. [FeFe]-hydrogenases
show particularly high rates of hydrogen turnover and have inspired
numerous compounds for biomimetic H2 production. Two decades
of research on the active site cofactor of [FeFe]-hydrogenases have
put forward multiple models of the catalytic proceedings. In comparison,
our understanding of proton transfer is poor. Previously, residues
were identified forming a hydrogen-bonding network between active
site cofactor and bulk solvent; however, the exact mechanism of catalytic
proton transfer remained inconclusive. Here, we employ in
situ infrared difference spectroscopy on the [FeFe]-hydrogenase
from Chlamydomonas reinhardtii evaluating dynamic
changes in the hydrogen-bonding network upon photoreduction. While
proton transfer appears to be impaired in the oxidized state (Hox), the presented data support continuous proton transfer
in the reduced state (Hred). Our analysis allows for
a direct, molecular unique assignment to individual amino acid residues.
We found that transient protonation changes of glutamic acid residue
E141 and, most notably, arginine R148 facilitate bidirectional proton
transfer in [FeFe]-hydrogenases.
Collapse
Affiliation(s)
- Moritz Senger
- Experimental Molecular Biophysics, Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Viktor Eichmann
- Experimental Molecular Biophysics, Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Konstantin Laun
- Experimental Molecular Biophysics, Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | | | | | - Günther Knör
- Institute of Inorganic Chemistry , Johannes Kepler Universität Linz , Altenberger Straße 69 , 4040 Linz , Austria
| | | | | | | | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Sven Timo Stripp
- Experimental Molecular Biophysics, Department of Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
75
|
|
76
|
Sanchez MLK, Sommer C, Reijerse E, Birrell JA, Lubitz W, Dyer RB. Investigating the Kinetic Competency of CrHydA1 [FeFe] Hydrogenase Intermediate States via Time-Resolved Infrared Spectroscopy. J Am Chem Soc 2019; 141:16064-16070. [DOI: 10.1021/jacs.9b08348] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Monica L. K. Sanchez
- Department of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| | - Constanze Sommer
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A. Birrell
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30030, United States
| |
Collapse
|
77
|
Glass RS, Pyun J, Lichtenberger DL, Brezinski WP, Karayilan M, Clary KE, Pavlopoulos NG, Evans DH. Water-soluble and air-stable [2Fe-2S]-metallopolymers: A new class of electrocatalysts for H 2 production via water splitting. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1603705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Richard S. Glass
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Jeffrey Pyun
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, USA
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, Korea
| | | | - William P. Brezinski
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Metin Karayilan
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, USA
| | - Kayla E. Clary
- Department of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, USA
| | | | - Dennis H. Evans
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
78
|
Affiliation(s)
- Eric S. Wiedner
- Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory, P.O. Box 999,
K2-57, Richland, Washington 99352, United States
| |
Collapse
|
79
|
Papini C, Sommer C, Pecqueur L, Pramanik D, Roy S, Reijerse EJ, Wittkamp F, Artero V, Lubitz W, Fontecave M. Bioinspired Artificial [FeFe]-Hydrogenase with a Synthetic H-Cluster. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00540] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Cecilia Papini
- Laboratoire de Chimie des Processus Biologiques, Collège de France−CNRS−Sorbonne Université, CNRS UMR 8229, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Constanze Sommer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Ludovic Pecqueur
- Laboratoire de Chimie des Processus Biologiques, Collège de France−CNRS−Sorbonne Université, CNRS UMR 8229, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Debajyoti Pramanik
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA Fundamental Research Division, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Souvik Roy
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA Fundamental Research Division, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Edward J. Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Florian Wittkamp
- Inorganic Chemistry I, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Vincent Artero
- Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA Fundamental Research Division, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France−CNRS−Sorbonne Université, CNRS UMR 8229, 11 place Marcelin Berthelot, 75231 Paris Cedex 05, France
| |
Collapse
|
80
|
Electronic Communication between Dithiolato-Bridged Diiron Carbonyl and S-Bridged Redox-Active Centres. INORGANICS 2019. [DOI: 10.3390/inorganics7030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The catalytic potential of linked redox centres is exemplified by the catalytic site of [FeFe]-hydrogenases, which feature a diiron subsite linked by a cysteinyl S atom to a 4Fe4S cube. The investigation of systems possessing similarly-linked redox sites is important because it provides a context for understanding the biological system and the rational design of abiological catalysts. The structural, electrochemical and spectroscopic properties of Fe2(CO)5(CH3C(CH2S)2CH2SPhNO2, I-bzNO2 and the aniline analogue, I-bzNH2, are described and IR spectroelectrochemical studies have allowed investigation of the reduction products and their reactions with CO and protons. These measurements have allowed identification of the nitrobenzenyl radical anion, quantification of the shifts of the (CO) bands on ligand-based reduction compared with NO2/NH2 exchange and protonation of the pendent ligand. The strength of thioether coordination is related to the electronic effects, where competitive binding studies with CO show that CO/thioether exchange can be initiated by redox processes of the pendent ligand. Stoichiometric multi electron/proton transfer reactions of I-bzNO2 localised on nitrobenzene reductions occur at mild potentials and a metal-centred reduction in the presence of protons does not lead to significant electrocatalytic proton reduction.
Collapse
|
81
|
Mebs S, Duan J, Wittkamp F, Stripp ST, Happe T, Apfel UP, Winkler M, Haumann M. Differential Protonation at the Catalytic Six-Iron Cofactor of [FeFe]-Hydrogenases Revealed by 57Fe Nuclear Resonance X-ray Scattering and Quantum Mechanics/Molecular Mechanics Analyses. Inorg Chem 2019; 58:4000-4013. [PMID: 30802044 DOI: 10.1021/acs.inorgchem.9b00100] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
[FeFe]-hydrogenases are efficient biological hydrogen conversion catalysts and blueprints for technological fuel production. The relations between substrate interactions and electron/proton transfer events at their unique six-iron cofactor (H-cluster) need to be elucidated. The H-cluster comprises a four-iron cluster, [4Fe4S], linked to a diiron complex, [FeFe]. We combined 57Fe-specific X-ray nuclear resonance scattering experiments (NFS, nuclear forward scattering; NRVS, nuclear resonance vibrational spectroscopy) with quantum-mechanics/molecular-mechanics computations to study the [FeFe]-hydrogenase HYDA1 from a green alga. Selective 57Fe labeling at only [4Fe4S] or [FeFe], or at both subcomplexes was achieved by protein expression with a 57Fe salt and in vitro maturation with a synthetic diiron site precursor containing 57Fe. H-cluster states were populated under infrared spectroscopy control. NRVS spectral analyses facilitated assignment of the vibrational modes of the cofactor species. This approach revealed the H-cluster structure of the oxidized state (Hox) with a bridging carbon monoxide at [FeFe] and ligand rearrangement in the CO-inhibited state (Hox-CO). Protonation at a cysteine ligand of [4Fe4S] in the oxidized state occurring at low pH (HoxH) was indicated, in contrast to bridging hydride binding at [FeFe] in a one-electron reduced state (Hred). These findings are direct evidence for differential protonation either at the four-iron or diiron subcomplex of the H-cluster. NFS time-traces provided Mössbauer parameters such as the quadrupole splitting energy, which differ among cofactor states, thereby supporting selective protonation at either subcomplex. In combination with data for reduced states showing similar [4Fe4S] protonation as HoxH without (Hred') or with (Hhyd) a terminal hydride at [FeFe], our results imply that coordination geometry dynamics at the diiron site and proton-coupled electron transfer to either the four-iron or the diiron subcomplex discriminate catalytic and regulatory functions of [FeFe]-hydrogenases. We support a reaction cycle avoiding diiron site geometry changes during rapid H2 turnover.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulf-Peter Apfel
- Fraunhofer UMSICHT , Osterfelder Straße 3 , 46047 Oberhausen , Germany
| | | | | |
Collapse
|
82
|
Yang X, Gianetti TL, Wörle MD, van Leest NP, de Bruin B, Grützmacher H. A low-valent dinuclear ruthenium diazadiene complex catalyzes the oxidation of dihydrogen and reversible hydrogenation of quinones. Chem Sci 2019; 10:1117-1125. [PMID: 30774909 PMCID: PMC6346631 DOI: 10.1039/c8sc02864h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022] Open
Abstract
The dinuclear ruthenium complex [Ru2H(μ-H)(Me2dad)(dbcot)2] contains a 1,4-dimethyl-diazabuta-1,3-diene (Me2dad) as a non-innocent bridging ligand between the metal centers to give a [Ru2(Me2dad)] core. In addition, each ruthenium is bound to one dibenzo[a,e]cyclooctatetraene (dbcot) ligand. This Ru dimer converts H2 to protons and electrons. It also catalyzes reversibly under mild conditions the selective hydrogenation of vitamins K2 and K3 to their corresponding hydroquinone equivalents without affecting the C[double bond, length as m-dash]C double bonds. Mechanistic studies suggest that the [Ru2(Me2dad)] moiety, like hydrogenases, reacts with H2 and releases electrons and protons stepwise.
Collapse
Affiliation(s)
- Xiuxiu Yang
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
| | - Thomas L Gianetti
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , USA .
| | - Michael D Wörle
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
| | - Nicolaas P van Leest
- Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS) , University of Amsterdam (UvA) , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir-Prelog-Weg 1 , 8093 Zürich , Switzerland .
| |
Collapse
|
83
|
Survey of the Geometric and Electronic Structures of the Key Hydrogenated Forms of FeMo-co, the Active Site of the Enzyme Nitrogenase: Principles of the Mechanistically Significant Coordination Chemistry. INORGANICS 2019. [DOI: 10.3390/inorganics7010008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzyme nitrogenase naturally hydrogenates N2 to NH3, achieved through the accumulation of H atoms on FeMo-co, the Fe7MoS9C(homocitrate) cluster that is the catalytically active site. Four intermediates, E1H1, E2H2, E3H3, and E4H4, carry these hydrogen atoms. I report density functional calculations of the numerous possibilities for the geometric and electronic structures of these poly-hydrogenated forms of FeMo-co. This survey involves more than 100 structures, including those with bound H2, and assesses their relative energies and most likely electronic states. Twelve locations for bound H atoms in the active domain of FeMo-co, including Fe–H–Fe and Fe–H–S bridges, are studied. A significant result is that transverse Fe–H–Fe bridges (transverse to the pseudo-threefold axis of FeMo-co and shared with triply-bridging S) are not possible geometrically unless the S is hydrogenated to become doubly-bridging. The favourable Fe–H–Fe bridges are shared with doubly-bridging S. ENDOR data for an E4H4 intermediate trapped at low temperature, and interpretations in terms of the geometrical and electronic structure of E4H4, are assessed in conjunction with the calculated possibilities. The results reported here yield a set of 24 principles for the mechanistically significant coordination chemistry of H and H2 on FeMo-co, in the stages prior to N2 binding.
Collapse
|
84
|
Ghosh S, Hollingsworth N, Warren M, Hrovat DA, Richmond MG, Hogarth G. Hydrogenase biomimics containing redox-active ligands: Fe2(CO)4(μ-edt)(κ2-bpcd) with electron-acceptor 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) as a potential [Fe4–S4]H surrogate. Dalton Trans 2019; 48:6051-6060. [DOI: 10.1039/c8dt04906h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The diiron centre and redox-active diphosphine are reduced in separate steps but there is little evidence of intramolecular electron transfer between the two.
Collapse
Affiliation(s)
- Shishir Ghosh
- Department of Chemistry
- King's College London
- London SE1 1DB
- UK
- Department of Chemistry
| | | | | | - David A. Hrovat
- Center for Advanced Scientific Computing and Modeling
- University of North Texas
- Denton
- USA
- Department of Chemistry
| | | | - Graeme Hogarth
- Department of Chemistry
- King's College London
- London SE1 1DB
- UK
| |
Collapse
|
85
|
Kato M, Kon K, Hirayama J, Yagi I. Host–guest chemistry between cyclodextrin and a hydrogen evolution catalyst cobaloxime. NEW J CHEM 2019. [DOI: 10.1039/c9nj00081j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the host–guest chemistry between cyclodextrin and a bisdimethylglyoximato cobalt complex, cobaloxime.
Collapse
Affiliation(s)
- Masaru Kato
- Section of Environmental Materials Science
- Faculty of Environmental Earth Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Keita Kon
- Division of Environmental Materials Science
- Graduate School of Environmental Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Jun Hirayama
- Division of Environmental Materials Science
- Graduate School of Environmental Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| | - Ichizo Yagi
- Section of Environmental Materials Science
- Faculty of Environmental Earth Science
- Hokkaido University
- Sapporo 060-0810
- Japan
| |
Collapse
|
86
|
Bhagi-Damodaran A, Lu Y. The Periodic Table's Impact on Bioinorganic Chemistry and Biology's Selective Use of Metal Ions. STRUCTURE AND BONDING 2019; 182:153-173. [PMID: 36567794 PMCID: PMC9788643 DOI: 10.1007/430_2019_45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the availability of a vast variety of metal ions in the periodic table, biology uses only a selective few metal ions. Most of the redox active metals used belong to the first row of transition metals in the periodic table and include Fe, Co, Ni, Mn and Cu. On the other hand, Ca, Zn and Mg are the most commonly used redox inactive metals in biology. In this chapter, we discuss the periodic table's impact on bio-inorganic chemistry, by exploring reasons behind this selective choice of metals biology. A special focus is placed on the chemical and functional reasons why one metal ion is preferred over another one. We discuss the implications of metal choice in various biological processes including catalysis, electron transfer, redox sensing and signaling. We find that bioavailability of metal ions along with their redox potentials, coordination flexibility, valency and ligand affinity determine the specificity of metals for biological processes. Understanding the implications underlying the selective choice of metals of the periodic table in these biological processes can help design more efficient catalysts, more precise biosensors and more effective drugs.
Collapse
Affiliation(s)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
87
|
Lü S, Zhang RF, Li QL, He J, Li YL. Synthesis, characterization and electrochemical properties of two isomers of diiron diselenolato complexes and a new pathway to the μ4-Se twin cluster. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
88
|
Isegawa M, Sharma AK, Ogo S, Morokuma K. Electron and Hydride Transfer in a Redox-Active NiFe Hydride Complex: A DFT Study. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Akhilesh K. Sharma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| |
Collapse
|
89
|
A tetranuclear iron complex: substitution with triphenylphosphine ligand and investigation into electrocatalytic proton reduction. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1529-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Abstract
Over the past two decades, the bioinorganic chemistry of hydrogenases has attracted much interest from basic and applied research. Hydrogenases are highly efficient metalloenzymes that catalyze the reversible reduction of protons to molecular hydrogen (H2) in all domains of life. Their iron- and nickel-based cofactors represent promising blueprints for the design of biomimetic, synthetic catalysts. In this Account, we address the molecular proceedings of hydrogen turnover with [FeFe]-hydrogenases. The active site cofactor of [FeFe]-hydrogenases ("H-cluster") comprises a unique diiron complex linked to a [4Fe-4S] cluster via a single cysteine. Since it was discovered that a synthetic analogue of the diiron site can be incorporated into apoprotein in vitro to yield active enzyme, significant progress has been made toward a comprehensive understanding of hydrogenase catalysis. The diiron site carries three to four carbon monoxide (CO) and two cyanide (CN-) ligands that give rise to intense infrared (IR) absorption bands. These bands are sensitive reporters of the electron density across the H-cluster, which can be addressed by infrared spectroscopy to follow redox and protonation changes at the cofactor. Synthetic variation of the metal-bridging dithiolate ligand at the diiron site, as well as site-directed mutagenesis of amino acids, provides access to the proton pathways toward the cofactor. Quantum chemical calculations are employed to specifically assign IR bands to vibrational modes of the diatomic ligands and yield refined H-cluster geometries. Here, we provide an overview of recent research on [FeFe]-hydrogenases with emphasis on experimental and computational IR studies. We describe advances in attenuated total reflection Fourier transform infrared spectroscopy (ATR FTIR) and protein film electrochemistry, as well as density functional theory (DFT) calculations. Key cofactor species are discussed in terms of molecular geometry, redox state, and protonation. Isotope editing is introduced as a tool to evaluate the cofactor geometry beyond the limits of protein crystallography. In particular, the role of proton-coupled electron transfer (PCET) in the generation of catalytically relevant redox species is addressed. We propose that site-selective protonation of the H-cluster biases surplus electrons either to the [4Fe-4S] cluster or to the diiron site. Protonation of the [4Fe-4S] cluster prevents premature reduction at the diiron site and stabilizes a reactive, terminal hydride. The observed H-cluster species are assigned to rapid H2 conversion or to reactions possibly involved in activity regulation and cellular H2 sensing. In the catalytic cycle of [FeFe]-hydrogenases, an H-cluster geometry is preserved that features a bridging CO ligand. PCET levels the redox potential for two steps of sequential cofactor reduction. The concept of consecutive PCET at a geometrically inert cofactor with tight control of electron and proton localization may inspire the design of a novel generation of biomimetic catalysts for the production of H2 as a fuel.
Collapse
Affiliation(s)
- Michael Haumann
- Department of Physics, Biophysics of Metalloenzymes, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sven T. Stripp
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
91
|
Spectroscopical Investigations on the Redox Chemistry of [FeFe]-Hydrogenases in the Presence of Carbon Monoxide. Molecules 2018; 23:molecules23071669. [PMID: 29987246 PMCID: PMC6100070 DOI: 10.3390/molecules23071669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
[FeFe]-hydrogenases efficiently catalyzes hydrogen conversion at a unique [4Fe⁻4S]-[FeFe] cofactor, the so-called H-cluster. The catalytic reaction occurs at the diiron site, while the [4Fe⁻4S] cluster functions as a redox shuttle. In the oxidized resting state (Hox), the iron ions of the diiron site bind one cyanide (CN−) and carbon monoxide (CO) ligand each and a third carbonyl can be found in the Fe⁻Fe bridging position (µCO). In the presence of exogenous CO, A fourth CO ligand binds at the diiron site to form the oxidized, CO-inhibited H-cluster (Hox-CO). We investigated the reduced, CO-inhibited H-cluster (Hred´-CO) in this work. The stretching vibrations of the diatomic ligands were monitored by attenuated total reflection Fourier-transform infrared spectroscopy (ATR FTIR). Density functional theory (DFT) at the TPSSh/TZVP level was employed to analyze the cofactor geometry, as well as the redox and protonation state of the H-cluster. Selective 13CO isotope editing, spectro-electrochemistry, and correlation analysis of IR data identified a one-electron reduced, protonated [4Fe⁻4S] cluster and an apical CN− ligand at the diiron site in Hred´-CO. The reduced, CO-inhibited H-cluster forms independently of the sequence of CO binding and cofactor reduction, which implies that the ligand rearrangement at the diiron site upon CO inhibition is independent of the redox and protonation state of the [4Fe⁻4S] cluster. The relation of coordination dynamics to cofactor redox and protonation changes in hydrogen conversion catalysis and inhibition is discussed.
Collapse
|