51
|
Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao WT, Ma HK, Jiang MD, Xu TT, Xu J, Shen Y, Song B, Gao PJ, Han WQ, Zhang W. HIF-1α-BNIP3-mediated mitophagy in tubular cells protects against renal ischemia/reperfusion injury. Redox Biol 2020; 36:101671. [PMID: 32829253 PMCID: PMC7452120 DOI: 10.1016/j.redox.2020.101671] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 01/17/2023] Open
Abstract
In the present study, we hypothesized that hypoxia-inducible factor 1α (HIF-1α)-mediated mitophagy plays a protective role in ischemia/reperfusion (I/R)-induced acute kidney injury (AKI). Mitophagy was evaluated by measuring the changes of mitophagy flux, mitochondria DNA copy number, and the changes of mitophagy-related proteins including translocase of outer mitochondrial membrane 20 (TOMM20), cytochrome c oxidase IV (COX IV), microtubule-associated protein 1 light chain 3B (LC3B), and mitochondria adaptor nucleoporin p62 in HK2 cells, a human tubular cell line. Results show that HIF-1α knockout significantly attenuated hypoxia/reoxygenation (H/R)-induced mitophagy, aggravated H/R-induced apoptosis, and increased the production of reactive oxygen species (ROS). Similarly, H/R induced significantly increase in Bcl-2 19-kDa interacting protein 3 (BNIP3), a downstream regulator of HIF-1α. Notably, BNIP3 overexpression reversed the inhibitory effect of HIF-1α knockout on H/R-induced mitophagy, and prevented the enhancing effect of HIF-1α knockout on H/R-induced apoptosis and ROS production. For in vivo study, we established HIF-1αflox/flox; cadherin-16-cre mice in which tubular HIF-1α was specifically knockout. It was found that tubular HIF-1α knockout significantly inhibited I/R-induced mitophagy, and aggravated I/R-induced tubular apoptosis and kidney damage. In contrast, adenovirus-mediated BNIP3 overexpression significantly reversed the decreased mitophagy, and prevented enhanced kidney damage in tubular HIF-1α knockout mice with I/R injury. In summary, our study demonstrated that HIF-1α-BNIP3-mediated mitophagy in tubular cells plays a protective role through inhibition of apoptosis and ROS production in acute kidney damage.
Collapse
Affiliation(s)
- Zong-Jie Fu
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China; Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai China, 200032, PR China
| | - Zhi-Yu Wang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Lian Xu
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China; Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China; Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Xiang-Xiao Li
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China; Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Wei-Tang Liao
- Research Center for Experimental Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Hong-Kun Ma
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Meng-Di Jiang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Ting-Ting Xu
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Jing Xu
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Yan Shen
- Research Center for Experimental Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Bei Song
- Department of General Practice, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China; Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China
| | - Wei-Qing Han
- Department of Cardiovascular Medicine, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China; Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China.
| | - Wen Zhang
- Department of Nephrology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, PR China.
| |
Collapse
|
52
|
Flint LE, Hamm G, Ready JD, Ling S, Duckett CJ, Cross NA, Cole LM, Smith DP, Goodwin RJA, Clench MR. Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging. Anal Chem 2020; 92:12538-12547. [PMID: 32786495 PMCID: PMC7497704 DOI: 10.1021/acs.analchem.0c02389] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Mass
spectrometry imaging (MSI) is an established analytical tool
capable of defining and understanding complex tissues by determining
the spatial distribution of biological molecules. Three-dimensional
(3D) cell culture models mimic the pathophysiological environment
of in vivo tumors and are rapidly emerging as a valuable
research tool. Here, multimodal MSI techniques were employed to characterize
a novel aggregated 3D lung adenocarcinoma model, developed by the
group to mimic the in vivo tissue. Regions of tumor
heterogeneity and the hypoxic microenvironment were observed based
on the spatial distribution of a variety of endogenous molecules.
Desorption electrospray ionization (DESI)-MSI defined regions of a
hypoxic core and a proliferative outer layer from metabolite distribution.
Targeted metabolites (e.g., lactate, glutamine, and citrate) were
mapped to pathways of glycolysis and the TCA cycle demonstrating tumor
metabolic behavior. The first application of imaging mass cytometry
(IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm
spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic
signaling in the aggregoid model, which complemented the metabolite
data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis
localized endogenous elements including magnesium and copper, further
differentiating the hypoxia gradient and validating the protein expression.
Obtaining a large amount of molecular information on a complementary
nature enabled an in-depth understanding of the biological processes
within the novel tumor model. Combining powerful imaging techniques
to characterize the aggregated 3D culture highlighted a future methodology
with potential applications in cancer research and drug development.
Collapse
Affiliation(s)
- Lucy E Flint
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Gregory Hamm
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WG, United Kingdom
| | - Joseph D Ready
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WG, United Kingdom
| | - Catherine J Duckett
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Neil A Cross
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Laura M Cole
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - David P Smith
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| | - Richard J A Goodwin
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire CB4 0WG, United Kingdom.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Malcolm R Clench
- Centre for Mass Spectrometry Imaging, Biomolecular Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, United Kingdom
| |
Collapse
|
53
|
Xiao Y, Wang T, Song X, Yang D, Chu Q, Kang YJ. Copper promotion of myocardial regeneration. Exp Biol Med (Maywood) 2020; 245:911-921. [PMID: 32148090 DOI: 10.1177/1535370220911604] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IMPACT STATEMENT Copper promotes angiogenesis, but the mechanistic insights have not been fully elucidated until recently. In addition, the significance of copper promotion of angiogenesis in myocardial regeneration was increasingly revealed. Copper critically participates in the regulation of hypoxia-inducible factor 1 (HIF-1) of angiogenic gene expression. Interestingly, myocardial ischemia causes copper efflux from the heart, leading to suppression of angiogenesis, although HIF-1α, the critical subunit of HIF-1, remains accumulated in the ischemic myocardium. Strategies targeting copper specific delivery to the ischemic myocardium lead to selective activation of HIF-1-regulated angiogenic gene expression. Vascularization of the ischemic myocardium re-establishes the tissue injury microenvironment, and rebuilds the conduit for communication between the tissue injury signals and the remote regenerative responses including stem cells. This process promotes myocardial regeneration. Thus, a simple and effective copper supplementation to the ischemic myocardium would become a novel therapeutic approach to the treatment of patients with ischemic heart diseases.
Collapse
Affiliation(s)
- Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Tao Wang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Xin Song
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Dan Yang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan 610041, China
- Memphis Institute of Regenerative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
54
|
Baldari S, Di Rocco G, Toietta G. Current Biomedical Use of Copper Chelation Therapy. Int J Mol Sci 2020; 21:E1069. [PMID: 32041110 PMCID: PMC7037088 DOI: 10.3390/ijms21031069] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Copper is an essential microelement that plays an important role in a wide variety of biological processes. Copper concentration has to be finely regulated, as any imbalance in its homeostasis can induce abnormalities. In particular, excess copper plays an important role in the etiopathogenesis of the genetic disease Wilson's syndrome, in neurological and neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases, in idiopathic pulmonary fibrosis, in diabetes, and in several forms of cancer. Copper chelating agents are among the most promising tools to keep copper concentration at physiological levels. In this review, we focus on the most relevant compounds experimentally and clinically evaluated for their ability to counteract copper homeostasis deregulation. In particular, we provide a general overview of the main disorders characterized by a pathological increase in copper levels, summarizing the principal copper chelating therapies adopted in clinical trials.
Collapse
Affiliation(s)
- Silvia Baldari
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
- Department of Medical Surgical Sciences and Biotechnologies, University of Rome “La Sapienza”, C.so della Repubblica 79, 04100 Latina, Italy
| | - Giuliana Di Rocco
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| | - Gabriele Toietta
- Department of Research, Advanced Diagnostic, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, via E. Chianesi 53, 00144 Rome, Italy; (S.B.); (G.D.R.)
| |
Collapse
|
55
|
Wu X, Wang C, Wang J, Zhu M, Yao Y, Liu J. Hypoxia preconditioning protects neuronal cells against traumatic brain injury through stimulation of glucose transport mediated by HIF-1α/GLUTs signaling pathway in rat. Neurosurg Rev 2020; 44:411-422. [PMID: 31897883 PMCID: PMC7851104 DOI: 10.1007/s10143-019-01228-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Hypoxia preconditioning (HPC), a well-established preconditioning model, has been shown to protect the brain against severe hypoxia or ischemia caused by traumatic brain injury (TBI), but the mechanism has not been well elucidated. Anaerobic glycolysis is the major way for neurons to produce energy under cerebral ischemia and hypoxia after TBI, and it requires large amounts of glucose. We hypothesized that glucose transport, as a rate-limiting step of glucose metabolism, may play key roles in the neuroprotective effects of HPC on cerebral cortex tissue against TBI. The aim of this study was to investigate the effect of HPC on glucose transport activity of rat cerebral cortex tissue after TBI through examining the gene expression of two major glucose transporters (GLUT1 and GLUT3) and their upstream target gene hypoxia-inducible factor-1α (HIF-1α). Sprague-Dawley rats were treated with HPC (50.47 kPa, 3 h/d, 3d). Twenty-four hours after the last treatment, the rats were injured using the Feeney free falling model. Cortex tissues of injured rats were removed at 1 h, 4 h, 8 h, 12 h, 1 day, 3 days, 7 d, and 14 days post-injury for histological analysis. Compared with TBI alone, HPC before TBI resulted in the expression of HIF-1α, GLUT1, and GLUT3 to increase at 1 h; they were markedly increased at 4 h, 8 h, 12 h, 1 day, and 3 days and decreased thereafter (p < 0.05). HPC before TBI could improve neuronal survival in rats by examining NeuN staining and observing reduced apoptosis by examining TUNEL staining. The result showed that HPC before TBI could increase the expression of GLUT1 and GLUT3. And through double immunofluorescence staining for GLUT3 and NeuN, the results strongly suggest that HPC improved glucose transport activity of neurons in rats with TBI. In summary, our results further support that HPC can improve hypoxia tolerance and attenuate neuronal loss of cerebral cortex in rats after TBI. The mechanism is mainly related to the increase of glucose transport activity through inducing GLUT1 and GLUT3 expression through upregulating HIF-1α expression.
Collapse
Affiliation(s)
- Xiaogang Wu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, Hefei, Anhui, China
| | - Chunlin Wang
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, Hefei, Anhui, China
| | - Jinbiao Wang
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, Hefei, Anhui, China
| | - Meijie Zhu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, Hefei, Anhui, China
| | - Yinsheng Yao
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, Hefei, Anhui, China
| | - Jiachuan Liu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, Hefei, Anhui, China.
| |
Collapse
|