51
|
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Yuanyuan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
52
|
Meng X, Zhang K, Yang F, Dai W, Lu H, Dong H, Zhang X. Biodegradable Metal–Organic Frameworks Power DNAzyme for in Vivo Temporal-Spatial Control Fluorescence Imaging of Aberrant MicroRNA and Hypoxic Tumor. Anal Chem 2020; 92:8333-8339. [DOI: 10.1021/acs.analchem.0c00782] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Kai Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Huiting Lu
- School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
53
|
|
54
|
Huang S, Zhang Q, Yao H, Wang W, Zhang JR, Zhu JJ. Quantitative Detection and Imaging of Multiple Biological Molecules in Living Cells for Cell Screening. ACS Sens 2020; 5:1149-1157. [PMID: 32164417 DOI: 10.1021/acssensors.0c00170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Because of insufficient information, a single biomarker is not sufficient for early diagnosis of cancer, whereas sensitive and selective detection of multiple biomolecules can significantly reduce analysis time, sample size, and accurately perform cell screening in early cancer. Therefore, the development of a noninvasive strategy that can simultaneously quantify multiple biomarkers (i.e., nucleic acids, proteins, and small molecules) in a single cell is particularly important. Herein, a universal sensing system (functional DNA@mesoporous silica nanoparticles (MSN)-Black Hole Quencher-rhodamine 6G (RhB), FDSBR), which is based on the combination of functionalized DNA and smart responsive nanomaterial, was successfully constructed. After incubation with the cells, different types of targets trigger the strand displacement reaction to release the fluorophore-labeled nucleic acids as the output signals to reflect the intracellular level of the telomerase and adenosine triphosphate (ATP), respectively. Simultaneously, intracellular miR-21 can be clearly indicated by the restored fluorescence of RhB when the caged double-stranded DNA was substituted into single-stranded DNA to open the pore. The concentrations of intracellular telomerase, miR-21, and ATP were identified successfully in three cell lines at the single-cell level. The results show that the contents of three biomolecules have significant differences in the three model cell lines and provide a promising route for developing innovative early disease diagnosis and cell screening assay.
Collapse
Affiliation(s)
- Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huiqin Yao
- Department of Chemistry, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
55
|
Chen J, Zhu Y, Liu H, Wang L. Tailoring DNA Self-assembly to Build Hydrogels. Top Curr Chem (Cham) 2020; 378:32. [PMID: 32146604 DOI: 10.1007/s41061-020-0295-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/23/2020] [Indexed: 01/12/2023]
Abstract
DNA hydrogels are crosslinked polymeric networks in which DNA is used as the backbone or the crosslinker. These hydrogels are novel biofunctional materials that possess the biological character of DNA and the framed structure of hydrogels. Compared with other kinds of hydrogels, DNA hydrogels exhibit not only high mechanical strength and controllable morphologies but also good recognition ability, designable responsiveness, and programmability. The DNA used in this type of hydrogel acts as a building block for self-assembly or as a responsive element due to its sequence recognition ability and switchable structural transitions, respectively. In this review, we describe recent developments in the field of DNA hydrogels and discuss the role played by DNA in these hydrogels. Various synthetic strategies for and a range of applications of DNA hydrogels are detailed.
Collapse
Affiliation(s)
- Jie Chen
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Shanghai Research Institute for Intelligent Autonomous Systems, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, Shanghai, 200092, China.
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China. .,Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| |
Collapse
|
56
|
Yang F, Cheng Y, Zhang Y, Wei W, Dong H, Lu H, Zhang X. Bioinspired Framework Nucleic Acid Capture Sensitively and Rapidly Resolving MicroRNAs Biomarkers in Living Cells. Anal Chem 2020; 92:4411-4418. [PMID: 32056432 DOI: 10.1021/acs.analchem.9b05304] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantifying intracellular microRNA (miRNA) is essential for diagnosis and prognosis of diseases because of its importance to the development and progression of complex diseases. The challenge is to develop methods that enable multiplex miRNAs detection in ultralow amounts and over broad concentration ranges. Inspired by the "tentacles" of an octopus, herein, we present a framework nucleic acid (FNA) capture for sensitive, rapid, and multiplexed imaging of miRNAs cancer biomarkers in living cells. The programmable FNA is designed using three DNA triangular prism (DTP) nanostructures carrying two pairs of metastable catalytic hairpin assembled (CHA) probes, AS1411 aptamer, and pendent biotinylated DNA strand in different vertexes and is further assembled via streptavidin to form the multivalent DTP (SA-DTP). The SA-DTP system acts as an octopus that captures the target cancer miRNAs quickly and delivers them preferentially among DTPs' "tentacles" in the SA-DTP system to produce strong, amplified fluorescence for detection. Precise multiplexed imaging of miRNA-155 and miRNA-21 cancer biomarkers' aberrant expression and dynamic change in different cells demonstrates the feasibility of both monitoring disease progression and evaluating therapeutic efficacy.
Collapse
|
57
|
Zhang Q, Wang W, Huang S, Yu S, Tan T, Zhang JR, Zhu JJ. Capture and selective release of multiple types of circulating tumor cells using smart DNAzyme probes. Chem Sci 2020; 11:1948-1956. [PMID: 34123289 PMCID: PMC8148068 DOI: 10.1039/c9sc04309h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022] Open
Abstract
The effective capture, release and reanalysis of circulating tumor cells (CTCs) are of great significance to acquire tumor information and promote the progress of tumor therapy. Particularly, the selective release of multiple types of CTCs is critical to further study; however, it is still a great challenge. To meet this challenge, we designed a smart DNAzyme probe-based platform. By combining multiple targeting aptamers and multiple metal ion responsive DNAzymes, efficient capture and selective release of multiple types CTCs were realized. Sgc8c aptamer integrated Cu2+-dependent DNAzyme and TD05 aptamer integrated Mg2+-dependent DNAzyme can capture CCRF-CEM cells and Ramos cells respectively on the substrate. With the addition of Cu2+ or Mg2+, CCRF-CEM cells or Ramos cells will be released from the substrate with specific selectivity. Furthermore, our platform has been successfully demonstrated in the whole blood sample. Therefore, our capture/release platform will benefit research on the molecular analysis of CTCs after release and has great potential for cancer diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University Wuhan 430070 China
| | - Shan Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Sha Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- School of Chemistry and Life Science, Nanjing University Jinling College Nanjing 210089 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
58
|
Li F, Lyu D, Liu S, Guo W. DNA Hydrogels and Microgels for Biosensing and Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806538. [PMID: 31379017 DOI: 10.1002/adma.201806538] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 06/28/2019] [Indexed: 06/10/2023]
Abstract
DNA hydrogels, which take advantage of the unique properties of functional DNA motifs, such as specific molecular recognition, programmable and high-precision assembly, multifunctionality, and excellent biocompatibility, have attracted increasing research interest in the past two decades in diverse fields, especially in biosensing and biomedical applications. The responsiveness of smart DNA hydrogels to external stimuli by changing their swelling volume, crosslinking density, and optical or mechanical properties has facilitated the development of DNA-hydrogel-based in vitro biosensing systems and actuators. Furthermore, reducing the sizes of DNA hydrogels to the micro- and nanoscale leads to better responsiveness and delivery capacity, thereby making them excellent candidates for rapid detection, in vivo real-time sensing, and drug release applications. Here, the recent progress in the development of smart DNA hydrogels and DNA microgels for biosensing and biomedical applications is summarized, and the current challenges as well as future prospects are also discussed.
Collapse
Affiliation(s)
- Fengyun Li
- College of Chemistry, Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Danya Lyu
- College of Chemistry, Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Shuo Liu
- College of Chemistry, Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| | - Weiwei Guo
- College of Chemistry, Research Centre for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
59
|
Tang Y, He X, Yuan R, Liu X, Zhao Y, Wang T, Chen H, Feng X. Logic-signal-based multiplex detection of MiRNAs with high tension hybridization and multiple signal amplification. Analyst 2020; 145:4314-4320. [PMID: 32400825 DOI: 10.1039/d0an00550a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multiplex miRNA detection scheme with simultaneous multiple signal output by single excitation has been reported.
Collapse
Affiliation(s)
- Yaqin Tang
- Department of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Xiao He
- Department of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Rui Yuan
- Chongqing University Cancer Hospital
- Chongqing Cancer Hospital
- Chongqing
- China
| | - Xingming Liu
- Chongqing University Cancer Hospital
- Chongqing Cancer Hospital
- Chongqing
- China
| | - Yi Zhao
- Chongqing University Cancer Hospital
- Chongqing Cancer Hospital
- Chongqing
- China
| | - Tingting Wang
- Biochemistry and Molecular Biology Laboratory
- Experimental Teaching and Management Center
- Chongqing Medical University
- Chongqing
- China
| | - Hui Chen
- Department of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| | - Xuli Feng
- Department of Pharmaceutical Sciences
- Chongqing University
- Chongqing
- China
| |
Collapse
|
60
|
Lu H, Guo K, Cao Y, Yang F, Wang D, Dou L, Liu Y, Dong H. Cancer Cell Membrane Vesicle for Multiplex MicroRNA Imaging in Living Cells. Anal Chem 2019; 92:1850-1855. [DOI: 10.1021/acs.analchem.9b03764] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Huiting Lu
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Keke Guo
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Yu Cao
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P.R. China
| | - Fan Yang
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Dongdong Wang
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Lei Dou
- Department of Surgery & Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yayun Liu
- Department of Orthopedic Surgery, Jiangxi Province People’s Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Haifeng Dong
- School of Chemistry and Bioengineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
61
|
DNA-templated copper nanoparticles as signalling probe for electrochemical determination of microRNA-222. Mikrochim Acta 2019; 187:4. [DOI: 10.1007/s00604-019-4011-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
|
62
|
Su J, Wu F, Xia H, Wu Y, Liu S. Accurate cancer cell identification and microRNA silencing induced therapy using tailored DNA tetrahedron nanostructures. Chem Sci 2019; 11:80-86. [PMID: 32110359 PMCID: PMC7012044 DOI: 10.1039/c9sc04823e] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022] Open
Abstract
Accurate cancer cell identification and efficient therapy are extremely desirable and challenging in clinics. Here, we reported the first example of DNA tetrahedron nanostructures (DTNSs) to real-time monitor and image three intracellular miRNAs based on the fluorescence "OFF" to "ON" mode, as well as to realize cancer therapy induced by miRNA silencing. DTNSs were self-assembled by seven customized single-stranded nucleic acid chains containing three recognition sequences for target miRNAs. In the three vertexes of DTNSs, fluorophores and quenchers were brought into close proximity, inducing fluorescence quenching. In the presence of target miRNAs, fluorophores and quenchers would be separated, resulting in fluorescence recovery. Owing to the unique tetrahedron-like spatial structure, DTNSs displayed improved resistance to enzymatic digestion and high cellular uptake efficiency, and exhibited the ability to simultaneously monitor three intracellular miRNAs. DTNSs not only effectively distinguished tumor cells from normal cells, but also identified cancer cell subtypes, which avoided false-positive signals and significantly improved the accuracy of cancer diagnosis. Moreover, the DTNSs could also act as an anti-cancer drug; antagomir-21 (one recognition sequence) was detached from DTNSs to silence endogenous miRNA-21 inside cells, which would suppress cancer cell migration and invasion, and finally induce cancer cell apoptosis; the result was demonstrated by experiments in vitro and in vivo. It is anticipated that the development of smart nanoplatforms will open a door for cancer diagnosis and treatment in clinical systems.
Collapse
Affiliation(s)
- Juan Su
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Fubing Wu
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Hongping Xia
- Department of Pathology , School of Basic Medical Sciences , Department of Oncology , The Affiliated Sir Run Run Hospital , State Key Laboratory of Reproductive Medicine , Key Laboratory of Antibody Technique of National Health Commission , Nanjing Medical University , Nanjing 211166 , China
| | - Yafeng Wu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device , School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China
| |
Collapse
|
63
|
Yang F, Cheng Y, Cao Y, Zhang Y, Dong H, Lu H, Zhang X. MicroRNA Triggered DNA “Nano Wheel” for Visualizing Intracellular microRNA via Localized DNA Cascade Reaction. Anal Chem 2019; 91:9828-9835. [DOI: 10.1021/acs.analchem.9b01487] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Fan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Yaru Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Yu Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Yiyi Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Haifeng Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Huiting Lu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| | - Xueji Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Research Center for Bioengineering and Sensing Technology, School of Chemistry & Biological Engineering University of Science & Technology Beijing, 30 Xueyuan Road, Beijing 100083, P.R. China
| |
Collapse
|
64
|
Chen Z, Xie Y, Huang W, Qin C, Yu A, Lai G. Exonuclease-assisted target recycling for ultrasensitive electrochemical detection of microRNA at vertically aligned carbon nanotubes. NANOSCALE 2019; 11:11262-11269. [PMID: 31162522 DOI: 10.1039/c9nr02543j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As an important biomarker for early disease diagnosis, microRNA-21 (miRNA-21) has attracted considerable attention owing to its accurate detection. Herein we combine the one-step biorecognition reaction at a vertically aligned nanostructure-based biosensor with the T7 exonuclease (Exo)-assisted target recycling to develop a novel electrochemical bioassay method for miRNA-21 detection. The vertically aligned nanointerface is constructed through the covalent attachment of terminally carboxylated single-walled carbon nanotubes (SWCNTs) at an aryldiazonium salt-modified electrode, which enables the noncovalent adsorption of a ferrocene-labeled single-stranded signal DNA to obtain the biosensor. Upon its incubation with a target miRNA-21 solution, DNA/RNA hybridized duplexes will form and release from the electrode surface, leading to the corresponding electrochemical signal decrease of the biosensor. Moreover, this biorecognition reaction can also trigger the T7 Exo-assisted target recycling to achieve great signal amplification. Together with the highly efficient biorecognition and excellent electron transfer promotion at the vertically aligned SWCNTs, this biosensor exhibits a wide linear range varying from 0.01 to 100 pM and a low detection limit down to 3.5 fM. Considering its obvious performance superiority and convenient manipulations, this vertically aligned SWCNT-based electrochemical biosensing method has extensive potential for practical applications.
Collapse
Affiliation(s)
- Zhichao Chen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Chuanying Qin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| | - Aimin Yu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China. and Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn VIC 3122, Australia
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Department of Chemistry, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
65
|
Abstract
The use of hydrogels in biomedical applications dates back multiple decades, and the engineering potential of these materials continues to grow with discoveries in chemistry and biology. The approaches have led to increasing complex hydrogels that incorporate both synthetic and natural polymers and functional domains for tunable release kinetics, mediated cell response, and ultimately use in clinical and research applications in biomedical practice. This review focuses on recent advances in hybrid hydrogels that incorporate nano/microstructures, their synthesis, and applications in biomedical research. Examples discussed include the implementation of click reactions, photopatterning, and 3D printing for the facile production of these hybrid hydrogels, the use of biological molecules and motifs to promote a desired cellular outcome, and the tailoring of kinetic and transport behavior through hybrid-hydrogel engineering to achieve desired biomedical outcomes. Recent progress in the field has established promising approaches for the development of biologically relevant hybrid hydrogel materials with potential applications in drug discovery, drug/gene delivery, and regenerative medicine.
Collapse
Affiliation(s)
- Luisa L. Palmese
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| | - Raj Kumar Thapa
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716
| |
Collapse
|
66
|
Lu H, Yang F, Liu B, Zhang K, Cao Y, Dai W, Li W, Dong H. Intracellular low-abundance microRNA imaging by a NIR-assisted entropy-driven DNA system. NANOSCALE HORIZONS 2019; 4:472-479. [PMID: 32254100 DOI: 10.1039/c8nh00330k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Intracellular microRNA (miRNA) imaging remains a key challenge due to its low abundance. Herein, we integrate a rationally designed elegant entropy-driven DNA probe with assisted DNA fuel on hollow copper sulfide nanoparticles (HCuSNPs) for intracellular miRNA imaging. The anchored assisted DNA fuel strand could be efficiently released by a NIR-II laser irradiation induced photothermal effect of the HCuSNPs. The DNA machine was activated by target miRNA binding and powered by NIR-responsive released DNA fuel through toehold-mediated strand displacement reactions, accomplished by strong fluorescence recovery. It demonstrated 2 orders of magnitude improvement in the detection sensitivity compared to molecular beacons (MBs). Reliable intracellular low-abundance miRNA imaging among different cells and monitoring of down-regulated miRNA was realized without external enzyme or fuel addition. Oncogenic miRNA imaging in vivo was also realized. The entropy-driven DNA machine system provides a facile and powerful tool for intracellular miRNA analysis and related biomedical applications.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Yue S, Song X, Song W, Bi S. An enzyme-free molecular catalytic device: dynamically self-assembled DNA dendrimers for in situ imaging of microRNAs in live cells. Chem Sci 2019; 10:1651-1658. [PMID: 30842828 PMCID: PMC6369435 DOI: 10.1039/c8sc04756a] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/02/2018] [Indexed: 12/13/2022] Open
Abstract
DNA has become a promising material to construct high-order structures and molecular devices owing to its sequence programmability. Herein, a DNA machine based on branched catalytic hairpin assembly (bCHA) is introduced for dynamic self-assembly of DNA dendrimers. For this system, a Y-shaped hairpin trimer tethered with three kinds of hairpins (H1, H2 and H3) is constructed. The introduction of an initiator (I) triggers a cascade of CHA reactions among hairpin trimers, leading to the formation of DNA dendrimers. Through labeling fluorophore/quencher pairs in the hairpin trimers, this catalytic DNA machine is applied as a versatile amplification platform to analyze nucleic acids using microRNA-155 (miR-155) as a model analyte. Benefiting from the "diffusion effect", the proposed bCHA achieves a greatly improved sensitivity in comparison with traditional CHA. This catalytic amplifier exhibits high sensitivity toward miR-155 detection with a dynamic range from 2.5 nM to 500 nM and demonstrates excellent selectivity to distinguish the single-base mismatched sequence from the perfectly complementary one, which is further applied to detect low-abundance miR-155 spiked in complex matrices with minimal interference. This method is further applied for in situ imaging of miR-155 in different live cells. The bCHA reaction can be specifically triggered by intracellular miR-155, achieving monitoring of the dynamic miRNA expression and distribution. Overall, our proposed enzyme-free dynamic DNA self-assembly strategy provides a versatile approach for the development of DNA nanotechnology in biosensing and bioimaging, and monitoring the cellular miRNA-related biological events.
Collapse
Affiliation(s)
- Shuzhen Yue
- College of Chemistry and Chemical Engineering , Qingdao University , Qingdao 266071 , P. R. China .
| | - Xinyue Song
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers , College of Chemistry and Chemical Engineering , Linyi University , Linyi 276000 , P. R. China
| | - Weiling Song
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science , MOE , Shandong Key Laboratory of Biochemical Analysis , Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong , College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering , Qingdao University , Qingdao 266071 , P. R. China .
| |
Collapse
|
68
|
Fang X, Zheng Y, Duan Y, Liu Y, Zhong W. Recent Advances in Design of Fluorescence-Based Assays for High-Throughput Screening. Anal Chem 2019; 91:482-504. [PMID: 30481456 PMCID: PMC7262998 DOI: 10.1021/acs.analchem.8b05303] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoni Fang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yongzan Zheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yaokai Duan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yang Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry, University of California, Riverside, California 92521, United States
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| |
Collapse
|