51
|
Neßlinger V, Welzel S, Rieker F, Meinderink D, Nieken U, Grundmeier G. Thin Organic‐inorganic Anti‐fouling Hybrid‐films for Microreactor Components. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vanessa Neßlinger
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Stefan Welzel
- Institute of Chemical Process Engineering University of Stuttgart Böblinger Str. 78 70199 Stuttgart Germany
| | - Florian Rieker
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Dennis Meinderink
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| | - Ulrich Nieken
- Institute of Chemical Process Engineering University of Stuttgart Böblinger Str. 78 70199 Stuttgart Germany
| | - Guido Grundmeier
- Faculty of Science Department of Chemistry Technical and Macromolecular Chemistry (TMC) Paderborn University Warburger Str. 100 33098 Paderborn Germany
| |
Collapse
|
52
|
Nikolić N, Spasojević J, Radosavljević A, Milošević M, Barudžija T, Rakočević L, Kačarević-Popović Z. Influence of poly(vinyl alcohol)/poly(N-vinyl-2-pyrrolidone) polymer matrix composition on the bonding environment and characteristics of Ag nanoparticles produced by gamma irradiation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
53
|
Rananaware P, Pandit P, Naik S, Mishra M, Keri RS, Brahmkhatri VP. Anti-amyloidogenic property of gold nanoparticle decorated quercetin polymer nanorods in pH and temperature induced aggregation of lysozyme. RSC Adv 2022; 12:23661-23674. [PMID: 36090438 PMCID: PMC9389553 DOI: 10.1039/d2ra03121c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
Quercetin is an abundant plant polyphenol effective against several diseases due to its antioxidant and anti-inflammatory activity. Herein, we report novel polymeric quercetin nanorods and the former decorated with gold nanoparticles for the first time. The prepared conjugates quercetin-polyvinylpyrrolidone (Q-PVP) and quercetin-polyvinylpyrrolidone-gold nanoparticles (Q-PVP-Au) were characterized by UV-visible spectroscopy, Fourier transform infrared, dynamic light scattering, and zeta potential measurements. The surface morphology of conjugates was analyzed by field emission scanning electron microscopy. These conjugates exhibit harmonized rod-like morphology with a narrow size distribution. Furthermore, the quercetin conjugates with nanorod morphology exhibited enhanced and prolonged drug release over a long period. The synthesized conjugates were investigated for lysozyme aggregation kinetics. ThT binding assay, fibril size measurement, and electron microscopy results revealed that conjugates could suppress fibrillogenesis in lysozyme. The highest amyloid aggregation inhibition activity (IC50) was obtained against Q-PVP and Q-PVP-Au at 32 μg mL-1 and 30 μg mL-1 respectively. The amyloid aggregate disintegration activity (DC50) obtained against Q-PVP and Q-PVP-Au was 27 μg mL-1 and 29 μg mL-1 respectively. The present quercetin conjugates exhibit enhanced bioavailability and stability. They were potent inhibitors of lysozyme aggregation that may find applications as a therapeutic agent in neurological diseases like Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Pranita Rananaware
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Parimal Pandit
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Seekha Naik
- Neural Developmental Biology Lab, Department of Life Science NIT Rourkela Rourkela Odisha 769008 India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science NIT Rourkela Rourkela Odisha 769008 India
| | - Rangappa S Keri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| | - Varsha P Brahmkhatri
- Nanomaterials for Drug Delivery and Therapeutics (NDT-Lab), Centre for Nano and Material Science, Jain University Jain Global Campus Bengaluru 562112 Karnataka India
| |
Collapse
|
54
|
Yuan L, Geng Z, Zhang S, Xu J, Guo F, Kumar Kundu B, Han C. Efficient all-in-one removal of total chromium over nonconjugated polymer-inorganic ZnIn 2S 4 semiconductor hybrid. J Colloid Interface Sci 2022; 628:100-108. [PMID: 35914422 DOI: 10.1016/j.jcis.2022.07.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 10/17/2022]
Abstract
Chromium (Cr)-containing wastewater has caused a serious threat to the environment due to its high toxicity and mobility. The traditional Cr removal methods are generally based on an inconvenient two-step process with the first transformation of Cr(VI) to Cr(III) and the consecutive removal of Cr(III) by precipitation. Herein, we demonstrate the efficient all-in-one removal of total Cr through the simultaneous photocatalytic reduction of Cr(VI) to Cr(III) and in-situ fixation of Cr(III) over the nonconjugated polymer engineered ZnIn2S4 (P-ZIS) photocatalyst. By in-situ polyvinylpyrrolidone (PVP) modification of ZIS during the preparation process, the resulted P-ZIS can completely reduce Cr(VI) within 60 min under visible light irradiation. The kinetics of Cr(VI) reduction over P-ZIS is 2.8 times as that of pure ZIS, which is proved to be benefited from the enhanced light absorption, uplifted conduction band for strengthening reducibility, and accelerated charge carrier transfer. Moreover, as compared to ZIS, P-ZIS also exhibits significantly improved in-situ adsorption ability for Cr(III), thus resulting in efficient all-in-one elimination of total Cr within a single system. We show that this polymer engineered strategy could be a facile and versatile protocol for modulating the electronic structure and surface chemistry of the semiconductor photocatalysts towards complete, safe, and cost-efficient removal of Cr.
Collapse
Affiliation(s)
- Lan Yuan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhaoyi Geng
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Shen Zhang
- The PLA Rocket Force Command College, Wuhan 430012, China
| | - Jikun Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fen Guo
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Chuang Han
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, United States.
| |
Collapse
|
55
|
Wu S, Li K, Shi W, Cai J. Preparation and performance evaluation of chitosan/polyvinylpyrrolidone/polyvinyl alcohol electrospun nanofiber membrane for heavy metal ions and organic pollutants removal. Int J Biol Macromol 2022; 210:76-84. [PMID: 35533844 DOI: 10.1016/j.ijbiomac.2022.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 12/20/2022]
Abstract
In this work, a novel electrospun chitosan (CS)/polyvinylpyrrolidone (PVP)/polyvinyl alcohol (PVA) nanofibrous membrane was prepared to remove heavy metal ions and organic pollutants from water. The nanofiber morphologies were adjusted through the optimal electrospinning process parameters. Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) characterizations indicated that a well-crosslinked CS/PVP/PVA nanofiber film was formed. Under the optimize conditions, the obtained CS/PVP/PVA nanofiber membranes exhibited porous and uniform nanofibrous structures with an average diameter of 160 nm and a pure water permeability of 4518.91 L·m-2·h-1·bar-1. In addition, the adsorption and separation performance of CS/PVP/PVA nanofiber membranes were evaluated with Cu(II), Ni(II), Cd(II), Pb(II) and Methylene Blue (MB), Malachite Green (MG) as target ions and dyes. The results showed that the retention rate of CS/PVP/PVA nanofiber membranes for Cu(II), Ni(II), Cd(II), Pb(II), MG and MB can reach 94.20%, 90.35%, 83.33%, 80.12%, 84.01% and 69.91%, respectively. The adsorption capacities of Cu(II), Ni(II), Cd(II), Pb(II), MG and MB were 34.79, 25.24, 18.07, 16.05, 17.86 and 13.27 mg g-1. The adsorption kinetics of heavy metal ions and dyes by the nanofiber membranes can be explained by the Langmuir isotherm model and represented by the pseudo-second-order kinetic mechanism that determined the spontaneous chemisorption process. This study provides a synthetic approach to membranes for the removal of organic and heavy metal micropollutants from water.
Collapse
Affiliation(s)
- Shuping Wu
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China.
| | - Kanghui Li
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Weijian Shi
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| | - Jiawei Cai
- Research School of Polymeric Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, PR China
| |
Collapse
|
56
|
Siriwachirachai C, Pongjanyakul T. Particle Agglomeration of Acid-Modified Tapioca Starches: Characterization and Use as Direct Compression Fillers in Tablets. Pharmaceutics 2022; 14:1245. [PMID: 35745817 PMCID: PMC9227145 DOI: 10.3390/pharmaceutics14061245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Acid-modified tapioca starches (AMTSs) possessed good compressibility but showed poor particle flowability for preparing tablets by the direct compression method. The aims of this work were to prepare and characterize AMTS agglomerates using polyvinylpyrrolidone (PVP) as an agglomerating agent. The dilution potential and stability studies of the AMTS agglomerates were investigated. The results showed that particle enlargement of TS and AMTS could be achieved via agglomeration using PVP. The thermal behavior and molecular interaction of the agglomerates were revealed using DSC and FTIR spectroscopy, respectively. An increase in PVP concentrations resulted in greater particle strength of the TS agglomerates and a higher acid concentration for modification enhanced the strength of the AMTS agglomerates. All agglomerates presented good particle flowability. Moreover, the AMTS agglomerates provided higher compressibility hardness than the TS agglomerates. The addition of PVP could extend the disintegration time and slow drug dissolution from the agglomerate tablets. The humidity of the storage conditions influenced the thickness and hardness of the AMTS agglomerate tablets, and good physical and chemical stability of the tablets was obtained under ambient conditions and in the refrigerator. Furthermore, the AMTS agglomerates displayed good carrying capacity and possessed desirable characteristics for use in direct compression tablets.
Collapse
Affiliation(s)
| | - Thaned Pongjanyakul
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
57
|
Chau Thuy Nguyen D, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Controlled release of naringenin from soft hydrogel contact lens: An investigation into lens critical properties and in vitro release. Int J Pharm 2022; 621:121793. [DOI: 10.1016/j.ijpharm.2022.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
|
58
|
Moris H, Ghaee A, Karimi M, Nouri-Felekori M, Mashak A. Preparation and characterization of Pullulan-based nanocomposite scaffold incorporating Ag-Silica Janus particles for bone tissue engineering. BIOMATERIALS ADVANCES 2022; 135:212733. [PMID: 35929198 DOI: 10.1016/j.bioadv.2022.212733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 06/15/2023]
Abstract
A nanocomposite bone scaffold was fabricated from pullulan, a natural extracellular polysaccharide. Pullulan (PULL) was blended with polyvinylpyrrolidone (PVP), and a nano-platform with ball-stick morphology, Ag-Silica Janus particles (Ag-Silica JPs), which were utilized to fabricate nanocomposite scaffold with enhanced mechanical and biological properties. The Ag-Silica JPs were synthesized via a one-step sol-gel method and used to obtain synergistic properties of silver and silica's antibacterial and bioactive effects, respectively. The synthesized Ag-Silica JPs were characterized by means of FE-SEM, DLS, and EDS. The PULL/PVP scaffolds containing Ag-Silica JPs, fabricated by the freeze-drying method, were evaluated by SEM, EDS, FTIR, XRD, ICP and biological analysis, including antibacterial activity, bioactivity, cell viability and cell culture tests. It was noted that increasing Ag-Silica JPs amounts to an optimum level (1% w/w) led to an improvement in compressive modulus and strength of nanocomposite scaffold, reaching 1.03 ± 0.48 MPa and 3.27 ± 0.18, respectively. Scaffolds incorporating Ag-Silica JPs also showed favorable antibacterial activity. The investigations through apatite forming ability of scaffolds in SBF indicated spherical apatite precipitates. Furthermore, the cell viability test proved the outstanding biocompatibility of nanocomposite scaffolds (more than 90%) confirmed by cell culture tests showing that increment of Ag-Silica JPs amounts led to better adhesion, proliferation, ALP activity and mineralization of MG-63 cells.
Collapse
Affiliation(s)
- Hanieh Moris
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran.
| | - Majid Karimi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Mohammad Nouri-Felekori
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Arezou Mashak
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran
| |
Collapse
|
59
|
Synthesis of ecological chitosan/PVP magnetic composite: Remediation of amoxicillin trihydrate from its aqueous solution, isotherm modelling, thermodynamic, and kinetic studies. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Zhang Z, Yang G, Wang H, Cao Y, Peng F, Yu H. Controllable Surfactant‐free Synthesis of Colloidal Platinum Nanocuboids Enabled by Bromide Ions and Carbon Monoxide. ChemElectroChem 2022. [DOI: 10.1002/celc.202101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhanzhan Zhang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Guangxing Yang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Hongjuan Wang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yonghai Cao
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Feng Peng
- Guangzhou University School of Chemistry and Chemical Engineering CHINA
| | - Hao Yu
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Rd. 510640 Guangzhou CHINA
| |
Collapse
|
61
|
Abdollahzadeh M, Chai M, Hosseini E, Zakertabrizi M, Mohammad M, Ahmadi H, Hou J, Lim S, Habibnejad Korayem A, Chen V, Asadnia M, Razmjou A. Designing Angstrom-Scale Asymmetric MOF-on-MOF Cavities for High Monovalent Ion Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107878. [PMID: 34921462 DOI: 10.1002/adma.202107878] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Biological ion channels feature angstrom-scale asymmetrical cavity structures, which are the key to achieving highly efficient separation and sensing of alkali metal ions from aqueous resources. The clean energy future and lithium-based energy storage systems heavily rely on highly efficient ionic separations. However, artificial recreation of such a sophisticated biostructure has been technically challenging. Here, a highly tunable design concept is introduced to fabricate monovalent ion-selective membranes with asymmetric sub-nanometer pores in which energy barriers are implanted. The energy barriers act against ionic movements, which hold the target ion while facilitating the transport of competing ions. The membrane consists of bilayer metal-organic frameworks (MOF-on-MOF), possessing a 6 to 3.4-angstrom passable cavity structure. The ionic current measurements exhibit an unprecedented ionic current rectification ratio of above 100 with exceptionally high selectivity ratios of 84 and 80 for K+ /Li+ and Na+ / Li+ , respectively (1.14 Li+ mol m-2 h-1 ). Furthermore, using quantum mechanics/molecular mechanics, it is shown that the combined effect of spatial hindrance and nucleophilic entrapment to induce energy surge baffles is responsible for the membrane's ultrahigh selectivity and ion rectification. This work demonstrates a striking advance in developing monovalent ion-selective channels and has implications in sensing, energy storage, and separation technologies.
Collapse
Affiliation(s)
| | - Milton Chai
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ehsan Hosseini
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Zakertabrizi
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Munirah Mohammad
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Hadi Ahmadi
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jingwei Hou
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sean Lim
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
- Electron Microscope Unit, Mark Wainright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Asghar Habibnejad Korayem
- Nanomaterials Research Centre, School of Civil Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Vicki Chen
- School of Chemical Engineering, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Amir Razmjou
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
62
|
Jain H, Kumar A, Rajput VD, Minkina T, Verma AK, Wadhwa S, Dhupper R, Chandra Garg M, Joshi H. Fabrication and characterization of high-performance forward-osmosis membrane by introducing manganese oxide incited graphene quantum dots. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114335. [PMID: 34952392 DOI: 10.1016/j.jenvman.2021.114335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Forward osmosis (FO) is the futuristic membrane desalination technology as it transcends the disadvantages of other pressure-driven techniques. But, there still remain critical challenges like fabrication of highly permeable membrane with ideal structures maintaining high rejection rates that need to be addressed for implementation as a practical technology. In this work, novel thin-film composite (TFC) membranes were fabricated by means of incorporating manganese oxide (MnO2) incited graphene quantum dots (GQDs) nanocomposite into a cellulose acetate (CA) suspension followed by phase inversion (PI) for enhanced FO performance. The surface morphology and chemical structure of fabricated membranes were studied using various characterization techniques like XRD, FT-IR, SEM-EDS, Mapping, AFM, and TGA. The structural parameters, water flux, reverse salt flux and salt rejection was estimated on the basis of data obtained from four varying initial draw solution concentrations. At high nanocomposites stacking, the hydrophilicity of the casting blend increase, and subsequently, the PI exchange rate additionally increases, which brings about noticeable difference in the surface morphology. The membrane with 0.5 wt% nanocomposite exhibited superior FO separation performance with osmotic water flux of 18.89, 34.49, 41.76 and 42.34 in L.m-2.h-1 with variable concentrations of NaCl salt solution (0.25M, 0.5M, 1M, and 2M), respectively. Also, the porosity of the membrane was increased to 47.23% with 96.87% salt rejection. The results indicate that the hydrophilicity of the nanocomposite drives them to the interface among CA and water during PI process leading to solid hydrogen bonding to achieve high water permeability.
Collapse
Affiliation(s)
- Harshita Jain
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India
| | - Ajay Kumar
- Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090, Rostov-on-Don, Russia
| | - Anoop Kumar Verma
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147005, India
| | - Shikha Wadhwa
- Department of Chemistry, School of Engineering, University of Petroleum & Energy Studies, Bidholi Campus, Dehradun, Uttarakhand, 248007, India
| | - Renu Dhupper
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh, 201313, India.
| | - Himanshu Joshi
- Department of Hydrology, Indian Institute of Technology Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
63
|
The decisive factor of hollow spherical network morphology of Nd1-xCexCo1-yCuyO3±δ perovskites towards soot oxidation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe perovskites Nd1-xCexCo1-yCuyO3 (x = 0–0.05, y = 0–0.1) have been synthesized using PVP-assisted sol–gel method and applied for soot oxidation reactions. XRD technique reveals the formation of orthorhombic phase with crystal volume of around ~ 214 Å3 and crystal size of ~ 25–40 nm. The interconnected nanoparticles with hollow spherical network morphology of particles are observed for the samples NdCoO3 (NC1) and Nd0.98Ce0.02Co0.95Cu0.05O3 (NC2) with particle sizes of around 300–500 nm. The samples experienced a charge transfer from ligand (O2−) to cobalt cation in UV region (210–260 nm) and also observed broad absorption bands in the visible region (380–600 nm). In addition, the bandgap energy of NC2 showed the lowest value (4.21 eV); as well as surface morphological advantage promoted the transport of surface-chemisorbed oxygen species in the inner and outer surface of catalysts surface due to the reducibility of the catalyst with the soot $$\left( {\frac{{{\text{O}}_{2}^{{{\text{x}} - }} }}{{{\text{O}}_{2}^{{{\text{x}} - }} + {\text{O}}^{2 - } }} = 0.90} \right)$$
O
2
x
-
O
2
x
-
+
O
2
-
=
0.90
. Furthermore, XPS results evidenced the higher content of Co2+ cation upon substitution of Ce/Cu into NC1, which successively formed more amount of Oβ-oxygen species. Remarkably, the perovskite NC2 showed the lowest soot oxidation temperature (T50% = 434 °C) among the investigated perovskites. Besides, the spherically networked morphology of NC2/NC1 samples also decided the soot oxidation process.
Collapse
|
64
|
Yogarathinam LT, Usman J, Othman MHD, Ismail AF, Goh PS, Gangasalam A, Adam MR. Low-cost silica based ceramic supported thin film composite hollow fiber membrane from guinea corn husk ash for efficient removal of microplastic from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127298. [PMID: 34571470 DOI: 10.1016/j.jhazmat.2021.127298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 05/26/2023]
Abstract
In this study, an economic silica based ceramic hollow fiber (HF) microporous membrane was fabricated from guinea cornhusk ash (GCHA). A silica interlayer was coated to form a defect free silica membrane which serves as a support for the formation of thin film composite (TFC) ceramic hollow fiber (HF) membrane for the removal of microplastics (MPs) from aqueous solutions. Polyacrylonitrile (PAN), polyvinyl-chloride (PVC), polyvinylpyrrolidone (PVP) and polymethyl methacrylate (PMMA) are the selected MPs The effects of amine monomer concentration (0.5 wt% and 1 wt%) on the formation of poly (piperazine-amide) layer via interfacial polymerization over the GCHA ceramic support were also investigated. The morphology analysis of TFC GCHA HF membranes revealed the formation of a poly (piperazine-amide) layer with narrow pore arrangement. The pore size of TFC GCHA membrane declined with the formation of poly (piperazine-amide) layer, as evidenced from porosimetry analysis. The increase of amine concentration reduced the porosity and water flux of TFC GCHA HF membranes. During MPs filtration, 1 wt% (piperazine) based TFC GCHA membrane showed a lower transmission percentage of PVP (2.7%) and other suspended MPs also displayed lower transmission. The impact of humic acid and sodium alginate on MPs filtration and seawater pretreatment were also analyzed.
Collapse
Affiliation(s)
- Lukka Thuyavan Yogarathinam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Jamilu Usman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Department of Chemistry, Faculty of Science, Sokoto State University, P.M.B. 2134, Sokoto, Sokoto State, Nigeria
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Arthanareeswaran Gangasalam
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology Tiruchirappalli, 620015, India
| | - Mohd Ridhwan Adam
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
65
|
Shan X, Zhao C, Wang X, Wang Z, Fu S, Lin Y, Zeng T, Zhao X, Xu H, Zhang X, Liu Y. Plasmonic Optoelectronic Memristor Enabling Fully Light-Modulated Synaptic Plasticity for Neuromorphic Vision. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104632. [PMID: 34967152 PMCID: PMC8867191 DOI: 10.1002/advs.202104632] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/15/2021] [Indexed: 05/19/2023]
Abstract
Exploration of optoelectronic memristors with the capability to combine sensing and processing functions is required to promote development of efficient neuromorphic vision. In this work, the authors develop a plasmonic optoelectronic memristor that relies on the effects of localized surface plasmon resonance (LSPR) and optical excitation in an Ag-TiO2 nanocomposite film. Fully light-induced synaptic plasticity (e.g., potentiation and depression) under visible and ultraviolet light stimulations is demonstrated, which enables the functional combination of visual sensing and low-level image pre-processing (including contrast enhancement and noise reduction) in a single device. Furthermore, the light-gated and electrically-driven synaptic plasticity can be performed in the same device, in which the spike-timing-dependent plasticity (STDP) learning functions can be reversibly modulated by visible and ultraviolet light illuminations. Thereby, the high-level image processing function, i.e., image recognition, can also be performed in this memristor, whose recognition rate and accuracy are obviously enhanced as a result of image pre-processing and light-gated STDP enhancement. Experimental analysis shows that the memristive switching mechanism under optical stimulation can be attributed to the oxidation/reduction of Ag nanoparticles due to the effects of LSPR and optical excitation. The authors' work proposes a new type of plasmonic optoelectronic memristor with fully light-modulated capability that may promote the future development of efficient neuromorphic vision.
Collapse
Affiliation(s)
- Xuanyu Shan
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Chenyi Zhao
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Xinnong Wang
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Zhongqiang Wang
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Shencheng Fu
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Ya Lin
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Tao Zeng
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Xiaoning Zhao
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Haiyang Xu
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Xintong Zhang
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials ResearchKey Laboratory for UV Light‐Emitting Materials and Technology (Northeast Normal University)Ministry of Education5268 Renmin StreetChangchun130024China
| |
Collapse
|
66
|
Ye Z, Li C, Celentano M, Lindley M, O’Reilly T, Greer AJ, Huang Y, Hardacre C, Haigh SJ, Xu Y, Bell SEJ. Surfactant-free Synthesis of Spiky Hollow Ag-Au Nanostars with Chemically Exposed Surfaces for Enhanced Catalysis and Single-Particle SERS. JACS AU 2022; 2:178-187. [PMID: 35098234 PMCID: PMC8791058 DOI: 10.1021/jacsau.1c00462] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Spiky/hollow metal nanoparticles have applications across a broad range of fields. However, the current bottom-up methods for producing spiky/hollow metal nanoparticles rely heavily on the use of strongly adsorbing surfactant molecules, which is undesirable because these passivate the product particles' surfaces. Here we report a high-yield surfactant-free synthesis of spiky hollow Au-Ag nanostars (SHAANs). Each SHAAN is composed of >50 spikes attached to a hollow ca. 150 nm diameter cubic core, which makes SHAANs highly plasmonically and catalytically active. Moreover, the surfaces of SHAANs are chemically exposed, which gives them significantly enhanced functionality compared with their surfactant-capped counterparts, as demonstrated in surface-enhanced Raman spectroscopy (SERS) and catalysis. The chemical accessibility of the pristine SHAANs also allows the use of hydroxyethyl cellulose as a weakly bound stabilizing agent. This produces colloidal SHAANs that remain stable for >1 month while retaining the functionalities of the pristine particles and allows even single-particle SERS to be realized.
Collapse
Affiliation(s)
- Ziwei Ye
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Chunchun Li
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Maurizio Celentano
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Matthew Lindley
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Tamsin O’Reilly
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Adam J. Greer
- Department
of Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Yiming Huang
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Christopher Hardacre
- Department
of Chemical Engineering & Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sarah J. Haigh
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, University Road, Belfast BT9 5AG, Northern Ireland, United Kingdom
| |
Collapse
|
67
|
Rzelewska-Piekut M, Wiecka Z, Regel-Rosocka M. Studies on the Formation of Catalytically Active PGM Nanoparticles from Model Solutions as a Basis for the Recycling of Spent Catalysts. Molecules 2022; 27:390. [PMID: 35056704 PMCID: PMC8779495 DOI: 10.3390/molecules27020390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 12/04/2022] Open
Abstract
The paper presents basic studies on the precipitation of platinum, palladium, rhodium, and ruthenium nanoparticles from model acidic solutions using sodium borohydride, ascorbic acid, and sodium formate as reducing agents and polyvinylpyrrolidone as a stabilizing agent. The size of the obtained PGM particles after precipitation with NaBH4 solution does not exceed 55 nm. NaBH4 is an efficient reducer; the precipitation yields for Pt, Pd, Ru, Rh are 75, 90, 65 and 85%, respectively. By precipitation with ascorbic acid, it is possible to efficiently separate Pt, Rh, and Ru from Pd from the two-component mixtures. The obtained Pt, Pd, and Rh precipitates have the catalytic ability of the catalytic reaction of p-nitrophenol to p-aminophenol. The morphological characteristic of the PGM precipitates was analyzed by AFM, SEM-EDS, and TEM.
Collapse
Affiliation(s)
- Martyna Rzelewska-Piekut
- Institute of Chemical Technology and Engineering, Poznan University of Technology, ul. Berdychowo 4, 60-965 Poznań, Poland; (Z.W.); (M.R.-R.)
| | | | | |
Collapse
|
68
|
Shen X, Li D, Zhuang P, Yu Y, Shi Z, Mei X, Liu C. Negatively charged gold nanoclusters protect against diabetic cardiomyopathy by inhibiting mitophagy. NEW J CHEM 2022. [DOI: 10.1039/d2nj01536f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Negatively charged AuNCs were found to stabilize the membrane potential and inhibit mitophagy, thereby preventing diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Xiaolei Shen
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Li
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
| | - Pengfei Zhuang
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
| | - Yang Yu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zuqiang Shi
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xifan Mei
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
69
|
Shah SSA, Lee K, Park H, Choo KH. Live membrane filters with immobilized quorum quenching bacterial strains for anti-biofouling. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
70
|
Díaz-Vázquez ED, Soria-Castro SM, Della-Cagnoletta I, Martín SE, Oksdath-Mansilla G, Uberman PM. Highly active small Pd nanocatalysts obtained by visible-light-induced photoreduction with citrate and oxalate salts under batch and flow approaches. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00524c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a suitable combination of citrate and oxalate salts as photoinitiators, a visible-light induced Pd NP synthesis was conducted. Depending on the reaction conditions of the catalysis, the ligands may have a great impact on the catalytic activity.
Collapse
Affiliation(s)
- E. Daniela Díaz-Vázquez
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - Silvia M. Soria-Castro
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - Irina Della-Cagnoletta
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - Sandra E. Martín
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
| | - Paula M. Uberman
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Orgánica, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Fisicoquímica de Córdoba-INFIQC-CONICET-Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende. Edificio Ciencias 2. Ciudad Universitaria X5000HUA, Córdoba, Argentina
| |
Collapse
|
71
|
Lukiev IV, Antipina LS, Goreninskii SI, Tverdokhlebova TS, Vasilchenko DV, Nemoykina AL, Goncharova DA, Svetlichnyi VA, Dambaev GT, Bouznik VM, Bolbasov EN. Antibacterial Ferroelectric Hybrid Membranes Fabricated via Electrospinning for Wound Healing. MEMBRANES 2021; 11:986. [PMID: 34940487 PMCID: PMC8704805 DOI: 10.3390/membranes11120986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/12/2021] [Indexed: 01/19/2023]
Abstract
In the present study, wound healing ferroelectric membranes doped with zinc oxide nanoparticles were fabricated from vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone using the electrospinning technique. Five different ratios of vinylidene fluoride-tetrafluoroethylene to polyvinylpyrrolidone were used to control the properties of the membranes at a constant zinc oxide nanoparticle content. It was found that an increase of polyvinylpyrrolidone content leads to a decrease of the spinning solution conductivity and viscosity, causing a decrease of the average fiber diameter and reducing their strength and elongation. By means of X-ray diffraction and infrared spectroscopy, it was revealed that increased polyvinylpyrrolidone content leads to difficulty in crystallization of the vinylidene fluoride-tetrafluoroethylene copolymer in the ferroelectric β-phase in membranes. Changing the ratio of vinylidene fluoride-tetrafluoroethylene copolymer and polyvinylpyrrolidone with a constant content of zinc oxide nanoparticles is an effective approach to control the antibacterial properties of membranes towards Staphylococcus aureus. After carrying out in vivo experiments, we found that ferroelectric hybrid membranes, containing from five to ten mass percent of PVP, have the greatest wound-healing effect for the healing of purulent wounds.
Collapse
Affiliation(s)
- Ivan V. Lukiev
- B.P. Veinberg Research and Educational Centre, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.V.L.); (S.I.G.); (T.S.T.)
- Center for Chemical Engineering, ITMO University, 197101 St. Petersburg, Russia
| | - Ludmila S. Antipina
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, 634050 Tomsk, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Semen I. Goreninskii
- B.P. Veinberg Research and Educational Centre, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.V.L.); (S.I.G.); (T.S.T.)
- N.M. Kizhner Research and Educational Centre, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Tamara S. Tverdokhlebova
- B.P. Veinberg Research and Educational Centre, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.V.L.); (S.I.G.); (T.S.T.)
| | - Dmitry V. Vasilchenko
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, 634050 Tomsk, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Anna L. Nemoykina
- Laboratory of Biopolymers and Biotechnology, Chemical Faculty, Tomsk State University, 634050 Tomsk, Russia;
| | - Daria A. Goncharova
- Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (D.A.G.); (V.A.S.)
| | - Valery A. Svetlichnyi
- Laboratory of Advanced Materials and Technology, Siberian Physical-Technical Institute, Tomsk State University, 634050 Tomsk, Russia; (D.A.G.); (V.A.S.)
| | - Georgiy T. Dambaev
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, 634050 Tomsk, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Vyacheslav M. Bouznik
- Arctic Climate Materials Division, All Russian Scientific Research Institute of Aviation Materials, 105005 Moscow, Russia;
- Department of Inorganic Chemistry, Tomsk State University, 634050 Tomsk, Russia
| | - Evgeny N. Bolbasov
- B.P. Veinberg Research and Educational Centre, Tomsk Polytechnic University, 634050 Tomsk, Russia; (I.V.L.); (S.I.G.); (T.S.T.)
- Microwave Photonics Laboratory, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia
| |
Collapse
|
72
|
Li BC, Lin JY, Lee J, Kwon E, Thanh BX, Duan X, Chen HH, Yang H, Lin KYA. Size-controlled nanoscale octahedral HKUST-1 as an enhanced catalyst for oxidative conversion of vanillic alcohol: The mediating effect of polyvinylpyrrolidone. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Nanocomposite of PVA/PVP blend incorporated by copper oxide nanoparticles via nanosecond laser ablation for antibacterial activity enhancement. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03975-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
74
|
Al Mogbel MS, Elabbasy MT, Mohamed RS, Ghoniem AE, El-Kader MFHA, Menazea AA. Improvement in antibacterial activity of Poly Vinyl Pyrrolidone/Chitosan incorporated by graphene oxide NPs via laser ablation. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02838-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
75
|
Lian M, Liu M, Zhang X, Zhang W, Zhao J, Zhou X, Chen D. Template-Regulated Bimetallic Sulfide Nanozymes with High Specificity and Activity for Visual Colorimetric Detection of Cellular H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53599-53609. [PMID: 34726914 DOI: 10.1021/acsami.1c15839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the past several decades, most of the research studies on nanozymes have been aimed at improving their catalytic activity and diversity; however, developing nanozymes with strong catalytic activity and great specificity remains a challenge. Herein, a simple and efficient template synthesis method was used to synthesize bimetallic sulfide nanoparticles, NiCo2S4 NPs, and prove that they have excellent peroxidase-like activity with good specificity. By regulating polyvinyl pyrrolidone (PVP) and hexadecyl trimethyl ammonium bromide as the templating agent, we have obtained the NiCo2S4 (PVP) NPs with a high Ni/Co ratio, thus exhibiting superior peroxidase activity. In addition, the NiCo2S4 NPs selectively catalyzed and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB). On being treated with H2O2, TMB turns blue while other substrates did not undergo the oxidation reaction under the same conditions, such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) and dopamine. The high specificity of NiCo2S4 NPs is due to the strong electrostatic driving coordination between negatively charged NiCo2S4 NPs and positively charged TMB. Due to the peroxidase activity of the developed NiCo2S4 NPs, a simple, low-cost, and reliable colorimetric method was established. Simultaneously, this method for in situ quantitative monitoring of H2O2 produced by MDA-MB-231 cells was also achieved. This study has provided a theoretical basis for the improvement of the activity and specificity of bimetallic sulfide nanozymes and may offer guidance for the further reasonable design of related materials.
Collapse
Affiliation(s)
- Meiling Lian
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Meihan Liu
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiao Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Wei Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Jingbo Zhao
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
76
|
Binder jetting 3D printing of challenging medicines: from low dose tablets to hydrophobic molecules. Eur J Pharm Biopharm 2021; 170:144-159. [PMID: 34785345 DOI: 10.1016/j.ejpb.2021.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/03/2021] [Accepted: 11/08/2021] [Indexed: 11/20/2022]
Abstract
Increasing access to additive manufacturing technologies utilising easily available desktop devices opened novel ways for formulation of personalized medicines. It is, however, challenging to propose a flexible and robust formulation platform which can be used for fabrication of tailored solid dosage forms composed of APIs with different properties (e.g., hydrophobicity) without extensive optimization. This manuscript presents a strategy for formulation of fast dissolving tablets using binder jetting (BJ) technology. The approach is demonstrated using two model APIs: hydrophilic quinapril hydrochloride (QHCl, logP = 1.4) and hydrophobic clotrimazole (CLO, logP = 5.4). The proposed printing method uses inexpensive well known and easily available FDA approved pharmaceutical excipients. The obtained model tablets had uniform content of the drug, excellent mechanical properties and highly porous structure resulting in short disintegration time and fast dissolution rate. The tablets could be scaled and obtained in predesigned shapes and sizes. The proposed method may find its application in the early stages of drug development where high flexibility of the formulation is required and the amount of available API is limited.
Collapse
|
77
|
Ranimol G, Paul C, Sunkar S. Optimization and efficacy studies of Laccase immobilized on Zein-Polyvinyl pyrrolidone nano fibrous membrane in decolorization of Acid Red 1. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2703-2717. [PMID: 34850688 DOI: 10.2166/wst.2021.200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Azo dyes are widely used in textile industries. A significant portion of these recalcitrant dyes are being discharged to the natural waters. Due to their low biodegradability they pose serious pollution problems if untreated. In this work, decolourization studies of Acid Red 1 (AR1) by laccase enzyme immobilized onto zein-polyvinyl pyrrolidone (PVP) composite nanofiber is done. The nanofibers were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) analysis. pH and temperature profiles of immobilized enzyme were found to be broader than its free counterpart. The Km value was found to be 0.243 mM for free laccase and 0.958 mM for immobilized laccase. Similarly, Vmax for the free enzyme was 3.572 U/mg compared to 2.48 U/mg of immobilized laccase. The relative activity of immobilized laccase was 64.91% after storage for 30 days at room temperature while it was 28.64% for free laccase. The temperature and pH for AR 1 decolorization were optimized and was found to be 60 °C and 5, respectively. Also, decolorization percentage was found to be 91.67% for immobilized laccase and 72.03% of free laccase in the presence of natural mediators like vanillin. From phytotoxicity studies it was found that the germination rate, shoot and root length was increased compared to untreated dye. Therefore, zein-PVP nanofiber immobilized laccase could be an ideal candidate for the textile dye decolorization.
Collapse
Affiliation(s)
- G Ranimol
- Department of Bioinformatics, Center of Molecular Datascience and Systems Biology, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, OMR, Sholinganallur, Chennai 600119, India E-mail: ; Department of Biotechnology, Sahrdaya College of Engineering and Technology, Kodakara, Kerala 680684, India
| | - Chinju Paul
- Department of Biotechnology, Sahrdaya College of Engineering and Technology, Kodakara, Kerala 680684, India
| | - Swetha Sunkar
- Department of Bioinformatics, Center of Molecular Datascience and Systems Biology, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, OMR, Sholinganallur, Chennai 600119, India E-mail:
| |
Collapse
|
78
|
Mahmood S, Mei TS, Yee WX, Hilles AR, Alelwani W, Bannunah AM. Synthesis of Capsaicin Loaded Silver Nanoparticles Using Green Approach and Its Anti-Bacterial Activity Against Human Pathogens. J Biomed Nanotechnol 2021; 17:1612-1626. [PMID: 34544538 DOI: 10.1166/jbn.2021.3122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal's physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach. Ascorbic acid was used as a reducing agent to fabricate silver nanoparticles. The formulation parameters optimisation was conducted using Box-Behnken Design (3×3 factorial design). The loading of capsaicin was confirmed by attenuated total reflectance-fourier transform infrared spectroscopy. Energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDX-SEM) confirmed the existence of silver; net-like structure revealed in SEM and high-resolution transmission electron microscopy further confirmed the nano size of the formulation. Differential scanning calorimetry and X-ray diffraction demonstrated the capsaicin transformed into amorphous after encapsulated. An in-vitro microbial study showed that the 0.10 M formulation of AgCNPs exerted potent anti-bacterial activity, which can be considered an alternative anti-bacterial agent. It also displayed that the zone of inhibition was significantly high in gram-negative bacteria (E. coli) than gram-positive bacteria (S. aureus). Green synthesised AgCNPs showed highly significant anti-bacterial activity, which indicates that this formulation can be very promising for treating psoriasis.
Collapse
Affiliation(s)
- Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Siew Mei
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang
| | - Wong Xi Yee
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300, Kuantan, Pahang
| | - Ayah Rebhi Hilles
- Department of Medical Science and Technology, Faculty of Health Sciences, PICOMS International University College of Medical Sciences, 68100, Kuala Lumpur, Malaysia
| | - Walla Alelwani
- University of Jeddah, Collage of Science, Department of Biochemistry, Jeddah, 21577, Saudi Arabia
| | - Azzah M Bannunah
- Department of Basic Sciences, Common First Year Deanship, Umm Al-Qura University, Makkah, 24230, Saudi Arabia
| |
Collapse
|
79
|
Salim SA, Kamoun EA, Evans S, Taha TH, El-Fakharany EM, Elmazar MM, Abdel-Aziz AF, Abou-Saleh RH, Salaheldin TA. Novel oxygen-generation from electrospun nanofibrous scaffolds with anticancer properties: synthesis of PMMA-conjugate PVP-H 2O 2 nanofibers, characterization, and in vitro bio-evaluation tests. RSC Adv 2021; 11:19978-19991. [PMID: 35479904 PMCID: PMC9033669 DOI: 10.1039/d1ra02575a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Released oxygen plays a critical role in reducing destructive tumor behavior. This study aims to utilize decomposed hydrogen peroxide as an oxygen source by conjugating it with polyvinylpyrrolidone (PVP). PVP-hydrogen peroxide complex (PHP) composed of different ratios of (PVP : H2O2) (0.5 : 1, 1 : 1, 1 : 1.5, 1 : 5, and 1 : 10) were successfully synthesized. PHP complex with a ratio of 1 : 1.5 was chosen as the optimized ratio, and it was incorporated into the polymethyl methacrylate (PMMA) nanofibrous scaffold via the electrospinning technique. Results have revealed that the PMMA-10% PHP complex provided a significant morphological structure of nanofibrous scaffolds. The mechanical properties of PMMA-10% PHP nanofibers showed the most suitable mechanical features such as Young's modulus, elongation-at-break (%), and maximum strength, in addition to the highest degree of swelling. All PHP complex scaffolds released oxygen in a sustained manner. However, the PMMA-10% PHP complex gave the highest concentration of released-oxygen with (∼8.9 mg L-1, after 2.5 h). PMMA-10% PHP nanofibers provided an ideal model for released-oxygen scaffold with anti-cancer effect and high selectivity for cancer cells, especially for breast cancer cells. Nanofibrous scaffolds with different composition revealed high cell viability for normal cells. Such outcomes support the suitability of using synthesized nanofibrous scaffolds as released-oxygen biomaterials to enhance cancer cells' sensitivity and maximize the treatment effect.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) El-Sherouk City Cairo 11837 Egypt
- Biochemistry Group, Dep. of Chemistry, Faculty of Science, Mansoura University Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) El-Sherouk City Cairo 11837 Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Stephen Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds LS2 9JT UK
| | - Tarek H Taha
- Environmental Biotechnology Dep., GEBRI, City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Esmail M El-Fakharany
- Protein Research Dep., GEBRI, City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Mohamed M Elmazar
- Faculty of Pharmacy, The British University in Egypt (BUE) El-Sherouk City Cairo 11837 Egypt
| | - A F Abdel-Aziz
- Biochemistry Group, Dep. of Chemistry, Faculty of Science, Mansoura University Egypt
| | - R H Abou-Saleh
- Biophysics Group, Dep. of Physics, Faculty of Science, Mansoura University Egypt
- Nanoscience and Technology Program, Faculty of Advanced Basic Science, Galala University Egypt
| | - Taher A Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences Abany NY 12144 USA
| |
Collapse
|
80
|
Goswami T, Yadav DK, Bhatt H, Kaur G, Shukla A, Babu KJ, Ghosh HN. Defect-Mediated Slow Carrier Recombination and Broad Photoluminescence in Non-Metal-Doped ZnIn 2S 4 Nanosheets for Enhanced Photocatalytic Activity. J Phys Chem Lett 2021; 12:5000-5008. [PMID: 34018752 DOI: 10.1021/acs.jpclett.1c01203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Elemental doping has already been established to be one of the most effective approaches for band-gap engineering and controlled material response for improved photocatalytic activity. Herein atomically thin ZnIn2S4 (ZIS) nanosheets were doped with O and N separately, and the effects of doping were spectroscopically investigated for photocatalytic H2 evolution. Steady-state photoluminescence studies revealed an enhanced charge-carrier population in the doped systems along with a defect-state-induced broad peak in the red region of the spectra. Transient absorption (TA) spectroscopy demonstrated that the conduction-band-edge electrons are transferred on an ultrafast time scale to the inter-band-gap defect states. TA analysis suggests that O and N doping contributes to the defect state concentration and ensures an enhanced photocatalytic activity of the system. This detailed spectroscopic analysis uncovers the role of inter-band-gap defect states in the photocatalytic activity of ZIS and will open new avenues for the construction of nanosheet-based optical devices.
Collapse
Affiliation(s)
- Tanmay Goswami
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Dharmendra Kumar Yadav
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Gurpreet Kaur
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Ayushi Shukla
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
81
|
Electronic properties of PVP-ionic liquid composite: spectroscopic and DFT-based thermochemical studies on the effect of anions. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00908-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Kitamura S, Iijima M, Tatami J, Fuke T, Hinotsu T, Sato K. Polymer Ligand Design and Surface Modification of Ag Nanowires toward Color-Tone-Tunable Transparent Conductive Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13705-13713. [PMID: 33715362 DOI: 10.1021/acsami.1c00629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ag nanowire suspensions are one of the indispensable materials in the design and fabrication of flexible transparent conductive films. Although the required properties of Ag nanowire films, such as their high transparency, low haze, low contact resistance, and suppression of yellowing, are strongly related to the nanowire surface phenomena, approaches for the surface modification of polyol-synthesized Ag nanowires have rarely been reported. Here, we report the design of a polymer ligand and surface modification of Ag nanowires with the designed polymer to obtain color-tunable transparent conductive films through a simple casting and drying process. In this approach, we synthesized a series of functional polymer ligands by partially grafting polyethyleneimine (PEI) with polyethylene glycol (PEG) chains (PEI-mPEG). The amine sites in PEI-mPEG were designed to act as adsorption sites as well as anchoring sites for an anionic blue dye for suppressing the yellow color tone of Ag nanowires. On the other hand, the PEG chains were designed to maintain the stability of the Ag nanowires in aqueous suspensions and to suppress corrosion of Ag nanowires, which is enhanced by the amine groups of PEI. The effect of the grafting ratio of PEG chains on PEI on the ligand-exchange behavior of the Ag nanowires, their dispersion stability in aqueous inks, and final film properties were investigated systematically. Furthermore, successful color tuning of the Ag nanowire film, without suppressing the conductive and optical properties, is demonstrated by loading anionic blue dye onto PEI-mPEG-modified Ag nanowires.
Collapse
Affiliation(s)
- Shoma Kitamura
- Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Motoyuki Iijima
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Junichi Tatami
- Faculty of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogayaku, Yokohama, Kanagawa 240-8501, Japan
| | - Tsubasa Fuke
- Dowa Electronics Materials Co. Ltd., 1-3-1 Kaigandori, Minamiku, Okayama 702-8506, Japan
| | - Takashi Hinotsu
- Dowa Electronics Materials Co. Ltd., 1-3-1 Kaigandori, Minamiku, Okayama 702-8506, Japan
| | - Kimitaka Sato
- Dowa Electronics Materials Co. Ltd., 1-3-1 Kaigandori, Minamiku, Okayama 702-8506, Japan
| |
Collapse
|
83
|
Kim S, Kim M, Koh WG. Preparation of Surface-Reinforced Superabsorbent Polymer Hydrogel Microspheres via Incorporation of In Situ Synthesized Silver Nanoparticles. Polymers (Basel) 2021; 13:902. [PMID: 33804248 PMCID: PMC7999066 DOI: 10.3390/polym13060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Superabsorbent polymer (SAP) particles are primarily applied for absorbing and storing liquids. Here, poly (acrylic acid) (PAA)-based SAP microspheres incorporated with silver nanoparticles (AgNPs) are prepared as an effort to maintain microsphere shape during swelling and minimize gel blocking. PAA-based SAP spheres are synthesized via inverse suspension polymerization. AgNPs are formed within SAP spheres through in situ reduction of silver nitrate (AgNO3), using polyvinylpyrrolidone as the reducing agent. The formation of AgNPs within SAP was observed via techniques such as scanning electron microscopy, ultraviolet-visible spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy and transmission electron microscopy. Energy dispersive spectroscopy analyses reveal that thin and dense layers of AgNPs are formed on the outer regions of the SAP spheres at higher concentrations of AgNO3. The water absorbency capacity decreases on increasing the amount of incorporated silver nanoparticles; however, it is comparable with that of commercially available surface-crosslinked SAP particles. Finally, micro-computerized tomography (micro-CT) study revealed that AgNP-incorporated SAP spheres maintained their shapes during swelling and exhibit higher void fractions in the packed gel bed, minimizing gel blocking and improving fluid permeability.
Collapse
Affiliation(s)
| | | | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea; (S.K.); (M.K.)
| |
Collapse
|
84
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
85
|
Tommalieh M. Gamma radiation assisted modification on electrical properties of Polyvinyl Pyrrolidone/Polyethylene Oxide blend doped by copper oxide nanoparticles. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
86
|
Patel P, Umapathy D, Manivannan S, Nadar VM, Venkatesan R, Joseph Arokiyam VA, Pappu S, Ponnuchamy K. A doxorubicin-platinum conjugate system: impacts on PI3K/AKT actuation and apoptosis in breast cancer cells. RSC Adv 2021; 11:4818-4828. [PMID: 35424411 PMCID: PMC8694461 DOI: 10.1039/d0ra06708c] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
In recent years, the development of a nano-conjugate system for drug delivery applications has gained attention among researchers. Keeping this in mind, in this study, we developed a doxorubicin-platinum conjugate system that targeted breast cancer cell lines. To achieve this, we developed platinum nanoparticles using polyvinylpyrrolidone (PVP). High resolution-transmission electron microscopy (HR-TEM) revealed the occurrence of octopod-shaped platinum nanoparticles. Subsequently, doxorubicin (DOX) was conjugated on the surface of the as-prepared platinum octopods via an in situ stirring method. The physicochemical characterization of the doxorubicin-platinum conjugate system revealed that the PVP of PtNPs interacts with the NH2 group of doxorubicin via electrostatic interaction/hydrogen bonding. Besides, the doxorubicin-platinum conjugate system exhibited a sustained drug release profile within the cancer cells. Furthermore, the evaluation of the in vitro anticancer efficacy of the doxorubicin-platinum conjugate system in breast cancer cells (MCF-7 and MDA-MB-231) unveiled the induction of apoptosis via intracellular ROS and DNA damage, rather than free DOX and PtNPs. Remarkably, we also perceived that the doxorubicin-platinum conjugate system was strong enough to down-regulate the PI3K/AKT signalling pathway. As a result, the tumour suppressor gene PTEN was activated, which led to the stimulation of a mitochondrion-based intrinsic apoptotic pathway and its downstream caspases, triggering cell death. Hence, our findings suggested that a biologically stable doxorubicin-platinum conjugate system could be an imperative therapeutic agent for anticancer therapy in the near future.
Collapse
Affiliation(s)
- Puja Patel
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University Karaikudi 630 003 India
| | - Devan Umapathy
- Molecular Oncology Lab, Department of Biochemistry, Bharathidasan University Tiruchirappalli 620 024 Tamil Nadu India
| | - Selvambigai Manivannan
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics (CMIAD), The University of Sheffield Western Bank Sheffield S10 2TN UK
| | - Vinita Manimaran Nadar
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University Karaikudi 630 003 India
| | - Rajiu Venkatesan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University Hangzhou 310027 China
| | | | - Srinivasan Pappu
- Phage Therapy and Molecular Biology Lab, Department of Animal Health and Management, Alagappa University Karaikudi 630003 Tamil Nadu India
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University Karaikudi 630 003 India
| |
Collapse
|
87
|
Hashmi M, Ullah S, Ullah A, Saito Y, Haider MK, Bie X, Wada K, Kim IS. Carboxymethyl Cellulose (CMC) Based Electrospun Composite Nanofiber Mats for Food Packaging. Polymers (Basel) 2021; 13:302. [PMID: 33477920 PMCID: PMC7835877 DOI: 10.3390/polym13020302] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023] Open
Abstract
Cellulose is one of the most abundantly available natural polymers. Carboxymethyl cellulose (CMC) belongs to the cellulose family and has different degrees of substitution. Current research comprises the fabrication and characterization of CMC nanofibers using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as capping agents and carriers for sustainable food packaging applications. Recently authors successfully fabricated smooth and uniform nanofibers of stated polymers and optimized the ratios of three polymers for continuous production. However, in this research, it was further characterized for mechanical properties, surface properties, structural properties, air permeability, and chemical properties to confirm the suitability and scope of tri-component nanofibrous mats in food packaging applications. Different fruits and vegetables were packed in a plastic container and closed by nanofiber mats and by a plastic lid. All samples were observed after a specific period of time (fruits were kept for 40 days while vegetables were kept for 10 days in the controlled environment). It was observed in the results that fruits and vegetables closed by nanofiber based webs exhibited better freshness and lower accumulation of moisture as compared to that of containers with plastic lids. From the results of performed tests, it was observed that nanofiber mats possess enough mechanical, structural, and morphological properties to be used as food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ick Soo Kim
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (M.K.H.); (X.B.); (K.W.)
| |
Collapse
|
88
|
Tverdokhlebova TS, Antipina LS, Kudryavtseva VL, Stankevich KS, Kolesnik IM, Senokosova EA, Velikanova EA, Antonova LV, Vasilchenko DV, Dambaev GT, Plotnikov EV, Bouznik VM, Bolbasov EN. Composite Ferroelectric Membranes Based on Vinylidene Fluoride-Tetrafluoroethylene Copolymer and Polyvinylpyrrolidone for Wound Healing. MEMBRANES 2020; 11:21. [PMID: 33379409 PMCID: PMC7824021 DOI: 10.3390/membranes11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Wound healing is a complex process and an ongoing challenge for modern medicine. Herein, we present the results of study of structure and properties of ferroelectric composite polymer membranes for wound healing. Membranes were fabricated by electrospinning from a solution of vinylidene fluoride/tetrafluoroethylene copolymer (VDF-TeFE) and polyvinylpyrrolidone (PVP) in dimethylformamide (DMF). The effects of the PVP content on the viscosity and conductivity of the spinning solution, DMF concentration, chemical composition, crystal structure, and conformation of VDF-TeFE macromolecules in the fabricated materials were studied. It was found that as PVP amount increased, the viscosity and conductivity of the spinning solutions decreased, resulting in thinner fibers. Using FTIR and XRD methods, it was shown that if the PVP content was lower than 50 wt %, the VDF-TeFE copolymer adopted a flat zigzag conformation (TTT conformation) and crystalline phases with ferroelectric properties were formed. Gas chromatography results indicated that an increase in the PVP concentration led to a higher residual amount of DMF in the material, causing cytotoxic effects on 3T3L1 fibroblasts. In vivo studies demonstrated that compared to classical gauze dressings impregnated with a solution of an antibacterial agent, ferroelectric composite membranes with 15 wt % PVP provided better conditions for the healing of purulent wounds.
Collapse
Affiliation(s)
- Tamara S. Tverdokhlebova
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| | - Ludmila S. Antipina
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, Tomsk 634050, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Valeriya L. Kudryavtseva
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Ksenia S. Stankevich
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Ilya M. Kolesnik
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| | - Evgenia A. Senokosova
- Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (E.A.S.); (E.A.V.); (L.V.A.)
| | - Elena A. Velikanova
- Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (E.A.S.); (E.A.V.); (L.V.A.)
| | - Larisa V. Antonova
- Division of Experimental and Clinical Cardiology, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo 650002, Russia; (E.A.S.); (E.A.V.); (L.V.A.)
| | - Dmitry V. Vasilchenko
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, Tomsk 634050, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Georgiy T. Dambaev
- Department of Hospital Surgery with the Course of Cardiovascular Surgery, Siberian State Medical University, Tomsk 634050, Russia; (L.S.A.); (D.V.V.); (G.T.D.)
| | - Evgenii V. Plotnikov
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| | - Vyacheslav M. Bouznik
- Arctic Climate Materials Division, All Russian Scientific Research Institute of Aviation Materials, Moscow 105005, Russia;
- Department of Inorganic Chemistry, Tomsk State University, Tomsk 634050, Russia
| | - Evgeny N. Bolbasov
- Laboratory of Hybrid Plasma Systems, Tomsk Polytechnic University, Tomsk 634050, Russia; (T.S.T.); (V.L.K.); (K.S.S.); (I.M.K.); (E.V.P.)
| |
Collapse
|
89
|
Li S, Li L, Wen X, Yang X, Shi X, Qu Q. Ultrasmall Pd and PtPd nanoparticles for highly efficient catalysis directed by predesigned Morchella-inspired encapsulation. J Colloid Interface Sci 2020; 585:368-375. [PMID: 33307305 DOI: 10.1016/j.jcis.2020.11.097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/09/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022]
Abstract
Although bio-inspired designs for ultrasmall metal nanoparticles (NPs) are likely to play an important role in exploring future heterogeneous catalysis materials, synthesizing these structures while retaining surface activity and avoiding aggregation is challenging. Inspired by the Morchella with the spatially and well-organized porous structures, we proposed a biological strategy to yield NPs with ultrasmall and highly dispersed while maintaining high catalytic activity through surfactin self-assembly. Here, multifunctional Morchella-like biological pores (MBP) nanomaterials (~28 nm) with reduction and encapsulation has been synthesized by surfactin self-assembly, then, ultrasmall PtPd (~2.90 nm) and Pd NPs (~2.87 nm) with coordinated sizes and well-dispersed have been successfully reduced and encapsulated inside the MBP. Notably, the synthesis possesses distinct advantages such as mild reaction conditions, strong controllability, good biological compatibility, low-toxicity and environmental friendliness. The as-prepared MBP-encapsulated ultrasmall PtPd and Pd NPs (M@MBP NPs) exhibited excellent catalytic activity and toxicity resistance for the ethanol oxidation reaction (EOR) in KOH, due to the synergistic effect of MBP and ultrasmall metal NPs. The current density of PtPd@MBP and Pd@MBP NPs were 3.35 and 2.72 A mg-1, respectively. Such MBP synthesized and encapsulated nanoparticles open a new frontier for the design and preparation of NPs for various applications, such as catalysis, bioremediation and drug delivery.
Collapse
Affiliation(s)
- Shunling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Xinwei Wen
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaoqiang Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaoling Shi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
90
|
Chung I, Song B, Kim J, Yun Y. Enhancing Effect of Residual Capping Agents in Heterogeneous Enantioselective Hydrogenation of α-keto Esters over Polymer-Capped Pt/Al2O3. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iljun Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Byeongju Song
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeongmyeong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yongju Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
91
|
Sharma B, Rajput P, Rana RK. Influencing the Electron Density of Nanosized Au Colloids via Immobilization on MgO to Stimulate Surface Reaction Activities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14203-14213. [PMID: 33206535 DOI: 10.1021/acs.langmuir.0c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heterogenization of colloidal gold on MgO is demonstrated to facilitate its catalytic surface reactivity. We show that the electron density on Au influenced by its immobilization on MgO along with the ensued metal-support interaction is one of the key parameters to obtain high activity. As elucidated by X-ray absorption spectroscopic (X-ray photoelectron spectroscopy, X-ray absorption near-edge structure, and extended X-ray absorption fine structure) studies, the presence of well-dispersed nanosized Au on MgO is observed to result in an enhancement in the electron density of Au. The consequence of this electron-rich gold on the catalytic activity is then investigated using the nitroarene reduction as a model reaction with a detailed kinetic study. The kinetic study is an attempt to use a true heterogeneous system rather than the usually studied quasi-homogeneous systems. The results obtained reveal that the Au/MgO catalyst has a surface rate constant of ∼1.39 × 10-3 mol m-2 s-1, which is significantly higher than those of the reported catalysts. While it validates the higher catalytic activity with a TOF of 9456 h-1 observed for Au/MgO, the increased adsorption constant for 4-nitrophenol on Au/MgO further reflects the efficacy of MgO as the support. This not only allows effective heterogenization of the Au nanoparticles keeping the catalyst stable under the reaction conditions and being reused several times but also renders a capability in reduction of other nitro group-containing substrates. Therefore, the results are believed to be of importance in designing heterogeneous catalysts utilizing the distinctive properties of the nanosized colloids and tuning their surface reactivity as well.
Collapse
Affiliation(s)
- Bikash Sharma
- Nanomaterials Laboratory, Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parasmani Rajput
- Atomic & Molecular Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India
| | - Rohit Kumar Rana
- Nanomaterials Laboratory, Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
92
|
Rafieian F, Mousavi M, Dufresne A, Yu Q. Polyethersulfone membrane embedded with amine functionalized microcrystalline cellulose. Int J Biol Macromol 2020; 164:4444-4454. [PMID: 32896564 DOI: 10.1016/j.ijbiomac.2020.09.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
In this investigation, microcrystalline cellulose (MCC) was functionalized with metformin HCl using (3-chloropropyl)triethixysilane (CPTES) as a coupling agent. Polyethersulfone (PES) membranes were incorporated with different concentrations of modified MCC (MMCC) to enhance its affinity for heavy metals during filtration of aqueous solutions. The composite membranes were characterized via fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), atomic force microscopy (AFM), Brunauer-Emmett-Teller (BET) method, porosity and contact angle measurements and mechanical analysis. The presence of MMCC in the host matrix was confirmed by FTIR. Although composites decomposed at lower temperatures, their thermal stability was sufficient to meet their performance requirements. DSC showed enhanced glass transition temperature (Tg) due to the interfacial interactions between membrane constituents which restrict the mobility of polymer chains. Microscopic imaging revealed higher surface roughness of composites compared to neat PES. Inclusion of MMCC increased the porosity and hydrophilicity of the membrane which consequently, higher permeability can be achieved.
Collapse
Affiliation(s)
- Fatemeh Rafieian
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands.
| | - Mohammad Mousavi
- Department of Food Science and Technology, Agricultural College, University of Tehran, Karaj, Iran
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | - Qingliang Yu
- Department of the Built Environment, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
93
|
Hashmi M, Ullah S, Ullah A, Akmal M, Saito Y, Hussain N, Ren X, Kim IS. Optimized Loading of Carboxymethyl Cellulose (CMC) in Tri-component Electrospun Nanofibers Having Uniform Morphology. Polymers (Basel) 2020; 12:E2524. [PMID: 33137972 PMCID: PMC7694076 DOI: 10.3390/polym12112524] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Cellulose is one of the most hydrophilic polymers with sufficient water holding capacity but it is unstable in aqueous conditions and it swells. Cellulose itself is not suitable for electrospun nanofibers' formation due to high swelling, viscosity, and lower conductivity. Carboxymethyl cellulose (CMC) is also super hydrophilic polymer, however it has the same trend for nanofibers formation as that of cellulose. Due to the above-stated reasons, applications of CMC are quite limited in nanotechnology. In recent research, loading of CMC was optimized for electrospun tri-component polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and carboxymethyl cellulose (CMC) nanofibers aim at widening its area of applications. PVA is a water-soluble polymer with a wide range of applications in water filtration, biomedical, and environmental engineering, and with the advantage of easy process ability. However, it was observed that only PVA was not sufficient to produce PVA/CMC nanofibers via electrospinning. To increase spinnability of PVA/CMC nanofibers, PVP was selected as the best available option because of its higher conductivity and water solubility. Weight ratios of CMC and PVP were optimized to produce uniform nanofibers with continuous production as well. It was observed that at a weight ratio of PVP 12 and CMC 3 was at the highest possible loading to produce smooth nanofibers.
Collapse
Affiliation(s)
- Motahira Hashmi
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (N.H.)
| | - Sana Ullah
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (N.H.)
| | - Azeem Ullah
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (N.H.)
| | - Muhammad Akmal
- Department of Polymer Engineering, National Textile University, Faisalabad, Punjab 37610, Pakistan;
| | - Yusuke Saito
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (N.H.)
| | - Nadir Hussain
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (N.H.)
| | - Xuehong Ren
- Key Laboratory of Eco-Textiles of Ministry of Education, College of Textiles Science & Engineering, Jiangnan University, Wuxi 214122, China;
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Shinshu University Ueda Campus, Nagano 386-8567, Japan; (M.H.); (S.U.); (A.U.); (Y.S.); (N.H.)
| |
Collapse
|
94
|
Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
95
|
Dhatarwal P, Sengwa RJ. Enhanced Dielectric Properties of the ZnO and TiO2 Nanoparticles Dispersed Poly(Vinyl Pyrrolidone) Matrix-Based Nanocomposites. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1809188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Priyanka Dhatarwal
- Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur, India
| | - R. J. Sengwa
- Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur, India
| |
Collapse
|
96
|
Yang T, Shi Y, Janssen A, Xia Y. Oberflächenstabilisatoren und ihre Rolle bei der formkontrollierten Synthese von kolloidalen Metall‐Nanokristallen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Annemieke Janssen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
97
|
Shen H, Shao Z, Zhao Q, Jin M, Shen C, Deng M, Zhong G, Huang F, Zhu H, Chen F, Luo Z. Facile synthesis of novel three-dimensional Bi2S3 nanocrystals capped by polyvinyl pyrrolidone to enhance photocatalytic properties under visible light. J Colloid Interface Sci 2020; 573:115-122. [DOI: 10.1016/j.jcis.2020.03.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
|
98
|
Singh U, Mohan S, Davis F. Selective Bragg reflection of visible light from coaxial electrospun fiber mats. J Appl Polym Sci 2020. [DOI: 10.1002/app.49647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Upindranath Singh
- Physics Department University of the West Indies Bridgetown Barbados
| | - Saeed Mohan
- School of Chemistry Food and Pharmacy University of Reading Reading UK
| | - Fredrick Davis
- School of Chemistry Food and Pharmacy University of Reading Reading UK
| |
Collapse
|
99
|
Ma T, Yang C, Guo W, Lin H, Zhang F, Liu H, Zhao L, Zhang Y, Wang Y, Cui Y, Zhao J, Qu F. Flexible Pt 3Ni-S-Deposited Teflon Membrane with High Surface Mechanical Properties for Efficient Solar-Driven Strong Acidic/Alkaline Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27140-27149. [PMID: 32452665 DOI: 10.1021/acsami.0c04682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solar-driven water evaporation provides a promising solution to the energy crisis and environmental issues. Capitalizing on the high photothermal conversion efficiency and excellent resistance to strong acids or strong alkalis of Pt3Ni-S nanowires, we strategically design and prepare a flexible Pt3Ni-S-deposited Teflon (PTFE) membrane for achieving efficient strong acid/alkaline water evaporation under simulated sunlight irradiation (1 sun). By comparing the surface morphology, mechanical properties, and water evaporation performance of the as-prepared three different membranes, we have screened out a high-performance photothermal membrane that has good hydrophobicity (water contact angle = 106°), strong mechanical properties, high light-to-heat conversion efficiency (η = 80%), and excellent durability (10 cycles in a range of pH = 1.2-12). In particular, we explore the mechanism of high surface mechanical properties of the as-prepared membrane using density functional theory. The results demonstrate that the related mechanism can be ascribed to two main reasons: (1) hydrogen bonds can be formed between the 2-pyrrolidone ring and PTFE-3 and (2) the O atom in PTFE-3 carries more negative charge (-0.19 |e|) than PTFE-1 (-0.16 |e|) and PTFE-2 (-0.15 |e|). Our work highlights the great potentials of a Pt3Ni-S-deposited PTFE membrane as a device for implementing solar energy-driven evaporation of industrial wastewater with strong acidity or alkalinity and provides a new strategy for improving the surface mechanical properties of a photothermal membrane.
Collapse
Affiliation(s)
- Tianyue Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Haixia Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ye Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yitong Cui
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
100
|
Yang T, Shi Y, Janssen A, Xia Y. Surface Capping Agents and Their Roles in Shape‐Controlled Synthesis of Colloidal Metal Nanocrystals. Angew Chem Int Ed Engl 2020; 59:15378-15401. [DOI: 10.1002/anie.201911135] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 01/13/2023]
Affiliation(s)
- Tung‐Han Yang
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| | - Annemieke Janssen
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
- School of Chemistry and Biochemistry Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|