51
|
Zhang Y, Chen Y, Bai X, Cheng G, Cao T, Dong L, Zhao J, Zhang Y, Qu H, Kong H, Zhao Y. Glycyrrhizae radix et Rhizoma-Derived Carbon Dots and Their Effect on Menopause Syndrome in Ovariectomized Mice. Molecules 2023; 28:molecules28041830. [PMID: 36838814 PMCID: PMC9962818 DOI: 10.3390/molecules28041830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
With the extension of the human life span and the increasing pressure of women's work and life, menopause syndrome (MPS) refers to a problem that puzzles almost all women worldwide. Hormone replacement treatment (HRT) can effectively mitigate the symptoms but can also exert adverse effects to a certain extent. Glycyrrhizae radix et rhizome (GRR) is commonly made into a charcoal processed product, termed GRR Carbonisatas (GRRC), for use in traditional Chinese medicine (TCM). GRRC is widely used to treat MPS and other gynecological diseases. In this study, GRRC was prepared through pyrolysis. Subsequently, GRR-derived carbon dots (GRR-CDs) were purified through dialysis and characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron microscopy, and high-performance liquid chromatography. The effects of GRR-CDs on MPS were examined and confirmed using ovariectomized female mice models. The GRR-CDs ranged from 1.0 to 3.0 nm in diameter and with multiple surface chemical groups, as indicated by the results. GRR-CDs can elevate the estradiol (E2) level of healthy female mice. Moreover, GRR-CDs can alleviate MPS using the typical ovariectomized mice model, as confirmed by elevating the estradiol (E2) level and reducing the degree of follicle stimulating hormone (FSH) and luteinizing hormone (LH) and raising the degree of uterine atrophy. The results of this study suggested that GRR-CDs may be a potential clinical candidate for the treatment of MPS, which also provides a possibility for nanodrugs to treat hormonal diseases.
Collapse
Affiliation(s)
- Ying Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yumin Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Bai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guoliang Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyou Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
- Correspondence: (H.K.); (Y.Z.); Tel.: +86-010-6248-6705 (Y.Z.); Fax: +86-010-6428-6821 (Y.Z.)
| |
Collapse
|
52
|
Red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers for optosensing of pyrraline in fatty foods. Mikrochim Acta 2023; 190:88. [PMID: 36773114 DOI: 10.1007/s00604-023-05669-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
A novel and facile method was proposed for preparation of red emissive N-doped carbon dots encapsulated within molecularly imprinted polymers (RNCDs@MIPs) using a one-pot room-temperature reverse microemulsion polymerization. RNCDs used citric acid and urea as carbon and nitrogen sources by one-step solvothermal synthesis with the optimum emission of 620 nm. Unique optical properties of RNCDs coupled with high selective MIPs make the RNCDs@MIPs conjugate capable to adsorb specific targets of pyrraline (PRL), such a binding event was then transduced to quench fluorescence response signal of the RNCDs. RNCDs@MIPs for PRL showed linearity from 0.1 to 40 μg/L, with a detection limit of 65 ng/L. The RNCDs@MIPs exhibited a good reproducibility of 4.67% obtained from four times of rebinding for PRL. The optosensing probe was successfully applied to the detection of PRL in fatty foods with the spiked recovery of 85.93-106.96%.
Collapse
|
53
|
Huang P, Xu S, Liu W, Liu C, Ou H, Luo Y, Yan Z, Zhou X, Wu P, Liao X. ZnO@Carbon Dot Nanoparticles Stimulating the Antibacterial Activity of Polyvinylidene Fluoride-Hexafluoropropylene with a Higher Electroactive Phase for Multifunctional Devices. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6735-6746. [PMID: 36696096 DOI: 10.1021/acsami.2c18859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To further advance the application of flexible piezoelectric materials in wearable/implantable devices and robot electronic skin, it is necessary to endow them with a new function of antibacterial properties and with higher piezoelectric performance. Introducing a specially designated nanomaterial based on the nanocomposite effect is a feasible strategy to improve material properties and achieve multifunctionalization of composites. In this paper, carbon dots (CDs) were sensitized onto the surface of ZnO to form ZnO@CDs nanoparticles, which were then incorporated into polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) to obtain a multifunctional composite. On the one hand, the antibacterial property of ZnO was improved because CDs had good optical absorption of visible light and their surface functional groups were favorable for electrostatic adsorption with bacteria. Therefore, ZnO@CDs endowed the composite with an outstanding antibacterial rate of 69.1% for Staphylococcus aureus. On the other hand, CDs played a bridging role between ZnO and PVDF-HFP, reducing the negative effect of ZnO aggregation and interface incompatibility with PVDF-HFP. As a result, ZnO@CDs induced β-phase formation of 80.4% in PVDF-HFP with a d33 value of 33.8 pC N-1. The multifunctional device exhibited excellent piezoelectric and antibacterial performance in the application of energy harvesters and self-powered pressure sensors.
Collapse
Affiliation(s)
- Ping Huang
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Shunjian Xu
- School of Intelligent Manufacturing, Huzhou College, Huzhou313000, China
| | - Wei Liu
- School of Public Health, Xinyu University, Xinyu338004, China
| | - Chen Liu
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Hui Ou
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Yongping Luo
- School of Intelligent Manufacturing, Huzhou College, Huzhou313000, China
| | - Zhimin Yan
- School of Mechanical and Electrical Engineering, Xinyu University, Xinyu338004, China
| | - Xu Zhou
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Pengjun Wu
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| | - Xingyu Liao
- Xinyu Institute of New Energy, Xinyu University, Xinyu338004, China
| |
Collapse
|
54
|
Rocco D, Moldoveanu VG, Feroci M, Bortolami M, Vetica F. Electrochemical Synthesis of Carbon Quantum Dots. ChemElectroChem 2023; 10:e202201104. [PMID: 37502311 PMCID: PMC10369859 DOI: 10.1002/celc.202201104] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/19/2022] [Indexed: 01/13/2023]
Abstract
Carbon quantum dots (CDs) are "small" carbon nanostructures with excellent photoluminescence properties, together with low-toxicity, high biocompatibility, excellent dispersibility in water as well as organic solvents. Due to their characteristics, CDs have been studied for a plethora of applications as biosensors, luminescent probes for photodynamic and photothermal therapy, fluorescent inks and many more. Moreover, the possibility to obtain carbon dots from biomasses and/or organic waste has strongly promoted the interest in this class of carbon-based nanoparticles, having a promising impact in the view of circular economy and sustainable processes. Within this context, electrochemistry proved to be a green, practical, and efficient method for the synthesis of high-quality CDs, with the possibility to fine-tune their characteristics by changing operational parameters. This review outlines the principal and most recent advances in the electrochemical synthesis of CDs, focusing on the electrochemical set-up optimization.
Collapse
Affiliation(s)
- Daniele Rocco
- Department of Mechanic and Aerospace EngineeringSapienza University of Romevia Eudossiana Roma, 180084RomeItaly
| | | | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of Romevia Castro Laurenziano, 700161RomeItaly
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering (SBAI)Sapienza University of Romevia Castro Laurenziano, 700161RomeItaly
| | - Fabrizio Vetica
- Department of ChemistrySapienza University of Romepiazzale Aldo Moro, 500185RomeItaly
| |
Collapse
|
55
|
Ge M, Liu S, Li J, Li M, Li S, James TD, Chen Z. Luminescent materials derived from biomass resources. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Gulati S, Baul A, Amar A, Wadhwa R, Kumar S, Varma RS. Eco-Friendly and Sustainable Pathways to Photoluminescent Carbon Quantum Dots (CQDs). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:554. [PMID: 36770515 PMCID: PMC9920802 DOI: 10.3390/nano13030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Carbon quantum dots (CQDs), a new family of photoluminescent 0D NPs, have recently received a lot of attention. They have enormous future potential due to their unique properties, which include low toxicity, high conductivity, and biocompatibility and accordingly can be used as a feasible replacement for conventional materials deployed in various optoelectronic, biomedical, and energy applications. The most recent trends and advancements in the synthesizing and setup of photoluminescent CQDs using environmentally friendly methods are thoroughly discussed in this review. The eco-friendly synthetic processes are emphasized, with a focus on biomass-derived precursors. Modification possibilities for creating newer physicochemical properties among different CQDs are also presented, along with a brief conceptual overview. The extensive amount of writings on them found in the literature explains their exceptional competence in a variety of fields, making these nanomaterials promising alternatives for real-world applications. Furthermore, the benefits, drawbacks, and opportunities for CQDs are discussed, with an emphasis on their future prospects in this emerging research field.
Collapse
Affiliation(s)
- Shikha Gulati
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Arikta Baul
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Anoushka Amar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rachit Wadhwa
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Sanjay Kumar
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi 110021, India
| | - Rajender S. Varma
- Institute for Nanomaterials, Advanced Technologies, and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, 461 17 Liberec, Czech Republic
| |
Collapse
|
57
|
Chen H, Zhang W, Liu G, Ding Q, Xu J, Fang M, Zhang L. Highly sensitive detection of okadaic acid in seawater by magnetic solid-phase extraction based on low-cost metal/nitrogen-doped carbon nanotubes. J Chromatogr A 2023; 1689:463772. [PMID: 36610186 DOI: 10.1016/j.chroma.2022.463772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Algae toxins pose a severe threat to human health all over the world. In this study, magnetic metal/nitrogen-doped carbon nanotubes (M-NCNTs) were facilely synthesized based on one-step carbonization and applied for magnetic solid-phase extraction of okadaic acid (OA) from seawater followed by high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS) analyses. Differences in the physicochemical properties of the three prepared materials (Fe/Co/Ni-NCNTs) were investigated to confirm the best extraction material. Among them, Ni-NCNTs demonstrated a faster extraction rate (10 min) and higher adsorption capacity (223.5 mg g-1), mainly due to the higher specific surface area, suitable pore structure and more abundant pyridine nitrogen ring. Under the optimal conditions, the calibration curve was linear over the range (1.0-800.0 pg mL-1) with good determination coefficients (R) of 0.9992. The limit of detection (LOD) obtained in multiple replicates was 0.4 pg mL-1. Three seawater samples were measured by the developed method, 12.3 pg mL-1 of OA was detected with a satisfying recovery (88.6%-106.7%) and acceptable repeatability (RSD ≤ 4.8%, n = 6). The results demonstrate that M-NCNTs materials are a promising candidate for magnetic solid-phase extraction. Benefiting from its high extraction and interference resistance, the established analytical method is expected to be extended to detect other marine environmental pollutions.
Collapse
Affiliation(s)
- Hui Chen
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Guancheng Liu
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jinhua Xu
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Min Fang
- School of Chemical and Biological Technology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
58
|
Nazari Z, Hadi Nematollahi M, Zareh F, Pouramiri B, Mehrabani M. An Electrochemical Sensor Based on Carbon Quantum Dots and Ionic Liquids for Selective Detection of Dopamine. ChemistrySelect 2023. [DOI: 10.1002/slct.202203630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Zahra Nazari
- Department of Chemistry, Faculty of Science Shahid Bahonar University of Kerman Kerman Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| | - Fatemeh Zareh
- Department of Chemistry, Faculty of Science Shahid Bahonar University of Kerman Kerman Iran
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology Kerman University of Medical Sciences Kerman Iran
| |
Collapse
|
59
|
Zhou X, Cao W. Flexible and Stretchable Carbon-Based Sensors and Actuators for Soft Robots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:316. [PMID: 36678069 PMCID: PMC9864711 DOI: 10.3390/nano13020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
In recent years, the emergence of low-dimensional carbon-based materials, such as carbon dots, carbon nanotubes, and graphene, together with the advances in materials science, have greatly enriched the variety of flexible and stretchable electronic devices. Compared with conventional rigid devices, these soft robotic sensors and actuators exhibit remarkable advantages in terms of their biocompatibility, portability, power efficiency, and wearability, thus creating myriad possibilities of novel wearable and implantable tactile sensors, as well as micro-/nano-soft actuation systems. Interestingly, not only are carbon-based materials ideal constituents for photodetectors, gas, thermal, triboelectric sensors due to their geometry and extraordinary sensitivity to various external stimuli, but they also provide significantly more precise manipulation of the actuators than conventional centimeter-scale pneumatic and hydraulic robotic actuators, at a molecular level. In this review, we summarize recent progress on state-of-the-art flexible and stretchable carbon-based sensors and actuators that have creatively added to the development of biomedicine, nanoscience, materials science, as well as soft robotics. In the end, we propose the future potential of carbon-based materials for biomedical and soft robotic applications.
Collapse
Affiliation(s)
- Xinyi Zhou
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenhan Cao
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, Shanghai 201210, China
| |
Collapse
|
60
|
Yang S, Li Y, Chen L, Wang H, Shang L, He P, Dong H, Wang G, Ding G. Fabrication of Carbon-Based Quantum Dots via a "Bottom-Up" Approach: Topology, Chirality, and Free Radical Processes in "Building Blocks". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205957. [PMID: 36610043 DOI: 10.1002/smll.202205957] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The discovery of carbon-based quantum dots (CQDs) has allowed opportunities for fluorescence bioimaging, tumor diagnosis and treatment, and photo-/electro-catalysis. Nevertheless, in the existing reviews related to the "bottom-up" approaches, attention is mainly paid to the applications of CQDs but not the formation mechanism of CQDs, which mainly derived from the high complexities during the synthesis of CQDs. Among the various synthetic methods, using small molecules as "building blocks", the development of a "bottom-up" approach has promoted the structural design, modulation of the photoluminescence properties, and control of the interfacial properties of CQDs. On the other hand, many works have demonstrated the "building blocks"-dependent properties of CQDs. In this review, from one of the most important variables, the relationships among intrinsic properties of "building blocks" and photoluminescence properties of CQDs are summarized. The topology, chirality, and free radical process are selected as descriptors for the intrinsic properties of "building blocks". This review focuses on the induction and summary of recent research results from the "bottom-up" process. Moreover, several empirical rules pertaining thereto are also proposed.
Collapse
Affiliation(s)
- Siwei Yang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongqiang Li
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangfeng Chen
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hang Wang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liuyang Shang
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng He
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Dong
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, P. R. China
| | - Guqiao Ding
- Joint Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
61
|
Zhang S, Fan X, Jiang S, Guan R, Shao X, Wang S, Yue Q. Fluorometric detection of trace moisture in methanol, ethanol and n-propanol using N, P-codoped carbon dots. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
62
|
Nanomaterial Constructs for Catalytic Applications in Biomedicine: Nanobiocatalysts and Nanozymes. Top Catal 2022; 66:707-722. [PMID: 36597435 PMCID: PMC9798949 DOI: 10.1007/s11244-022-01766-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability. Graphical Abstract
Collapse
|
63
|
Guo F, Li Q, Zhang X, Liu Y, Jiang J, Cheng S, Yu S, Zhang X, Liu F, Li Y, Rose G, Zhang H. Applications of Carbon Dots for the Treatment of Alzheimer's Disease. Int J Nanomedicine 2022; 17:6621-6638. [PMID: 36582459 PMCID: PMC9793737 DOI: 10.2147/ijn.s388030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022] Open
Abstract
There are currently approximately 50 million victims of Alzheimer's disease (AD) worldwide. The exact cause of the disease is unknown at this time, but amyloid plaques and neurofibrillary tangles in the brain are hallmarks of the disease. Current drug treatments for AD may slow the progression of the disease and improve the quality of life of patients, but they are often only minimally effective and are not cures. A major obstacle to developing and delivering more effective drug therapies is the presence of the blood-brain barrier (BBB), which prevents many compounds with therapeutic potential from reaching the central nervous system. Nanotechnology may provide a solution to this problem. Among the medical nanomaterials currently being studied, carbon dots (CDs) have attracted widespread attention because of their ability to cross the BBB, non-toxicity, and potential for drug/gene delivery.
Collapse
Affiliation(s)
- Feng Guo
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Qingman Li
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xiaolin Zhang
- Key Laboratory of Child Cognition & Behavior Development of Hainan Province, Qiongtai Normal University, Haikou, 571127, People’s Republic of China
| | - Yiheng Liu
- Haikou Hospital Affiliated to Central South University Xiangya School of Medicine, Haikou, 570208, People’s Republic of China
| | - Jie Jiang
- Scientific Experiment Center of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Shuanghuai Cheng
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Si Yu
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Xingfang Zhang
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China,The First Affiliated Hospital of Hainan Medical College, Haikou, 570102, People’s Republic of China
| | - Fangfang Liu
- Laboratory Department, Nanping First Hospital Affiliated to Fujian Medical University, Fujian, 353006, People’s Republic of China
| | - Yiying Li
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China
| | - Gregory Rose
- Departments of Anatomy and Physiology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA,Correspondence: Gregory Rose, Departments of Anatomy and Physiology, Southern Illinois University School of Medicine, Carbondale, IL, 62901, USA, Tel +1 618-303-6503, Email
| | - Haiying Zhang
- Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China,Haiying Zhang, Public Research Laboratory of Hainan Medical University, Haikou, 571199, People’s Republic of China, Tel +86 13907533247, Email
| |
Collapse
|
64
|
Ahmad NNR, Mohammad AW, Mahmoudi E, Ang WL, Leo CP, Teow YH. An Overview of the Modification Strategies in Developing Antifouling Nanofiltration Membranes. MEMBRANES 2022; 12:membranes12121276. [PMID: 36557183 PMCID: PMC9780855 DOI: 10.3390/membranes12121276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 05/12/2023]
Abstract
Freshwater deficiency has become a significant issue affecting many nations' social and economic development because of the fast-growing demand for water resources. Nanofiltration (NF) is one of the promising technologies for water reclamation application, particularly in desalination, water, and wastewater treatment fields. Nevertheless, membrane fouling remains a significant concern since it can reduce the NF membrane performance and increase operating expenses. Consequently, numerous studies have focused on improving the NF membrane's resistance to fouling. This review highlights the recent progress in NF modification strategies using three types of antifouling modifiers, i.e., nanoparticles, polymers, and composite polymer/nanoparticles. The correlation between antifouling performance and membrane properties such as hydrophilicity, surface chemistry, surface charge, and morphology are discussed. The challenges and perspectives regarding antifouling modifiers and modification strategies conclude this review.
Collapse
Affiliation(s)
- Nor Naimah Rosyadah Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: author:
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Malaysia
| | - Yeit Haan Teow
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
65
|
Huang Y, Si X, Han M, Bai C. Rapid and Sensitive Detection of Rutin in Food Based on Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe. Molecules 2022; 27:molecules27248834. [PMID: 36557970 PMCID: PMC9784171 DOI: 10.3390/molecules27248834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to establish a rapid detection method of rutin in food based on nitrogen-doped carbon quantum dots (N-CDs) as the fluorescent probe. N-CDs were prepared via a single-step hydrothermal process using citric acid as the carbon source and thiourea as the nitrogen source. The optical properties of N-CDs were characterized using an electron transmission microscope, X-ray diffractometer, Fourier-transform infrared spectrometer, and nanoparticle size potential analyzer. The UV/Vis absorption property and fluorescence intensity of N-CDs were also characterized using the respective spectroscopy techniques. On this basis, the optimal conditions for the detection of rutin by N-CDs fluorescent probes were also explored. The synthesized N-CDs were amorphous carbon structures with good water solubility and optical properties, and the quantum yield was 24.1%. In phosphate-buffered solution at pH = 7.0, Rutin had a strong fluorescence-quenching effect on N-CDs, and the method showed good linearity (R2 = 0.9996) when the concentration of Rutin was in the range of 0.1-400 μg/mL, with a detection limit of 0.033 μg/mL. The spiked recoveries in black buckwheat tea and wolfberry were in the range of 93.98-104.92%, the relative standard deviations (RSD) were in the range of 0.35-4.11%. The proposed method is simple, rapid, and sensitive, and it can be used for the rapid determination of rutin in food.
Collapse
|
66
|
Ramos-Soriano J, Ghirardello M, Galan MC. Carbon-based glyco-nanoplatforms: towards the next generation of glycan-based multivalent probes. Chem Soc Rev 2022; 51:9960-9985. [PMID: 36416290 PMCID: PMC9743786 DOI: 10.1039/d2cs00741j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 11/24/2022]
Abstract
Cell surface carbohydrates mediate a wide range of carbohydrate-protein interactions key to healthy and disease mechanisms. Many of such interactions are multivalent in nature and in order to study these processes at a molecular level, many glycan-presenting platforms have been developed over the years. Among those, carbon nanoforms such as graphene and their derivatives, carbon nanotubes, carbon dots and fullerenes, have become very attractive as biocompatible platforms that can mimic the multivalent presentation of biologically relevant glycosides. The most recent examples of carbon-based nanoplatforms and their applications developed over the last few years to study carbohydrate-mediate interactions in the context of cancer, bacterial and viral infections, among others, are highlighted in this review.
Collapse
Affiliation(s)
- Javier Ramos-Soriano
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Mattia Ghirardello
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
- Departamento de Química, Universidad de La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain.
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
67
|
Bao K, Shi J, Liao F, Huang H, Liu Y, Kang Z. The Advance and Critical Functions of Energetic Carbon Dots in Carbon Dioxide Photo/Electroreduction Reactions. SMALL METHODS 2022; 6:e2200914. [PMID: 36287097 DOI: 10.1002/smtd.202200914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
As a unique carbon-based nano material, carbon dots (CDs) have attracted great attention because of their special structures and properties, and have been widely used in various fields, such as bio-imaging technology, catalyst design, pollutant degradation, chemical analysis, clean energy development and so on. CDs are used as catalysts or cocatalysts for multiple energy conversion reactions due to their advantages of valid visible light utilization, fast transmission of charge carriers, excellent catalytic activity, and good electrical conductivity. This review first summarizes the basic structure and properties of CDs. The advance and critical functions of energetic CDs in carbon dioxide photo/electroreduction reactions are discussed in detail. Due to the excellent optical absorption, electron transfer properties and good conductivity of CDs, they can enhance catalytic activity and stability effectively. In the end, the existing problems and future development opportunities of CDs-based catalysts in CO2 reduction reaction are proposed and outlined.
Collapse
Affiliation(s)
- Kaili Bao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jie Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Hui Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| |
Collapse
|
68
|
Hubbard MA, Luyet C, Kumar P, Elvati P, VanEpps JS, Violi A, Kotov NA. Chiral chromatography and surface chirality of carbon nanoparticles. Chirality 2022; 34:1494-1502. [PMID: 36221174 PMCID: PMC9828453 DOI: 10.1002/chir.23507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Chiral carbon nanoparticles (CNPs) represent a rapidly evolving area of research for optical and biomedical technologies. Similar to small molecules, applications of CNPs as well as fundamental relationships between their optical activity and structural asymmetry would greatly benefit from their enantioselective separations by chromatography. However, this technique remains in its infancy for chiral carbon and other nanoparticles. The possibility of effective separations using high performance liquid chromatography (HPLC) with chiral stationary phases remains an open question whose answer can also shed light on the components of multiscale chirality of the nanoparticles. Herein, we report a detailed methodology of HPLC for successful separation of chiral CNPs and establish a path for its future optimization. A mobile phase of water/acetonitrile was able to achieve chiral separation of CNPs derived from L- and D-cysteine denoted as L-CNPs and D-CNPs. Molecular dynamics simulations show that the teicoplanin-based stationary phase has a higher affinity for L-CNPs than for D-CNPs, in agreement with experiments. The experimental and computational findings jointly indicate that chiral centers of chiral CNPs are present at their surface, which is essential for the multiple applications of these chiral nanostructures and equally essential for interactions with biomolecules and circularly polarized photons.
Collapse
Affiliation(s)
- Misché A. Hubbard
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Luyet
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Prashant Kumar
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Paolo Elvati
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - J. Scott VanEpps
- Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA,Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA,The Max Harry Weil Institute for Critical Care Research and InnovationUniversity of MichiganAnn ArborMichiganUSA
| | - Angela Violi
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biophysics ProgramUniversity of MichiganAnn ArborMichiganUSA,Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMichiganUSA
| | - Nicholas A. Kotov
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA,Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA,Department of Materials Science and EngineeringUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
69
|
Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
70
|
Light-Activated Modified Arginine Carbon Dots as Antibacterial Particles. Catalysts 2022. [DOI: 10.3390/catal12111376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nitrogen-doped arginine carbon dots (Arg CDs) as light-sensitive antibacterial agents were prepared by using citric acid as the carbon source and arginine amino acid as the nitrogen source via a microwave-assisted synthesis method. Dynamic light scattering (DLS) measurements and TEM images revealed that the Arg CDs were in the 1–10 nm size range with a graphitic structure. To improve their antibacterial capability, the Arg CDs were modified with ethyleneimine (EDA), pentaethylenehexamine (PEHA), and polyethyleneimine (PEI) as different amine sources, and the zeta potential value of +2.8 ± 0.6 mV for Arg CDs was increased to +34.4 ± 4.1 mV for PEI-modified Arg CDs. The fluorescence intensity of the Arg CDs was significantly enhanced after the modification with EDA, and the highest antibacterial effect was observed for the PEI-modified Arg CDs. Furthermore, the photodynamic antibacterial capacity of bare and EDA-modified Arg CDs was determined upon light exposure to show their light-induced antibacterial effects. Photoexcited (315–400 nm, UVA, 300 W), EDA-modified Arg CDs at 5 mg/mL concentration were found to inhibit about 49 ± 7% of pathogenic bacteria, e.g., Escherichia coli, with 5 min of light exposure. Furthermore, the biocompatibilities of the bare and modified Arg CDs were also investigated with blood compatibility tests via hemolysis and blood clotting assays and cytotoxicity analysis on L929 fibroblast cells.
Collapse
|
71
|
Zhao Y, Ji H, Lu M, Tao J, Ou Y, Wang Y, Chen Y, Huang Y, Wang J, Mao Y. Thermochromic Smart Windows Assisted by Photothermal Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3865. [PMID: 36364641 PMCID: PMC9657717 DOI: 10.3390/nano12213865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Thermochromic smart windows are optical devices that can regulate their optical properties actively in response to external temperature changes. Due to their simple structures and as they do not require other additional energy supply devices, they have great potential in building energy-saving. However, conventional thermochromic smart windows generally have problems with high response temperatures and low response rates. Owing to their great effect in photothermal conversion, photothermal materials are often used in smart windows to assist phase transition so that they can quickly achieve the dual regulation of light and heat at room temperature. Based on this, research progress on the phase transition of photothermal material-assisted thermochromic smart windows is summarized. In this paper, the phase transition mechanisms of several thermochromic materials (VO2, liquid crystals, and hydrogels) commonly used in the field of smart windows are introduced. Additionally, the applications of carbon-based nanomaterials, noble metal nanoparticles, and semiconductor (metal oxygen/sulfide) nanomaterials in thermochromic smart windows are summarized. The current challenges and solutions are further indicated and future research directions are also proposed.
Collapse
|
72
|
Synthesis of Green fluorescent Nitrogen doped Vitis vinifera derived Carbon dots and their in-vitro antimicrobial studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
73
|
Chen Z, Liu Y, Kang Z. Diversity and Tailorability of Photoelectrochemical Properties of Carbon Dots. Acc Chem Res 2022; 55:3110-3124. [PMID: 36240013 DOI: 10.1021/acs.accounts.2c00570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As a new kind of carbon based functional material, carbon dots (CDs) have sparked much interest in recent years. The tunable structure, composition, and morphology of CDs unlocks opportunities to enable diversity in their photoelectrochemical properties, and thus they show great potential in various applications such as biology, catalysis, sensors, and energy storage. Nevertheless, the related understanding of CDs is insufficient at present due to their inherent complexity of microstructure, which involves the intersection of high polymer, bulk carbon, and quantum dot (QD). A good understanding of the underlying mechanism behind the properties of CDs is still a formidable challenge, requiring the integration of robust knowledge from organic chemistry, materials science, and solid state physics. Within this context, discovering more appealing properties, elucidating fundamental factors that affect the properties and proposing effective engineering strategies that can realize specific functions for CDs are now highly pursued by researchers.At the beginning of this Account, the main features of CDs are introduced, where not only the basic structural, compositional and morphological characteristics but also the rich photoelectrochemical properties are elucidated, among which the band gap, chirality, photoinduced potential, and electron sink effect are particularly emphasized. Furthermore, new analysis techniques including transient photoinduced current (TPC), transient photoinduced voltage (TPV), and machine learning (ML) to reveal the unique properties of CDs are described. Then, several appealing strategies that aim to rationally tailor CDs for oriented applications are highlighted. These regulation strategies are morphology modulation (e.g., developing CDs with new geometrical configuration, controlling the particle size), phase engineering (e.g., altering the phase crystallinity, introducing the foreign atoms), surface functionalization (e.g., grafting various types of functional groups), and interfacial tuning (e.g., building CD-based nanohybrids with well-defined interfaces). Although the fundamental investigation of CDs is relatively undeveloped because of their complexity, this does not hinder their wide application. At the same time, exploring the extensive applications of CDs will promote their in-depth understanding. Finally, the chances for building a CD-centered blueprint for sustainable society are explored and challenges for future research in the field of CDs are proposed as follows: (i) the controllable synthesis of CDs with uniform size; (ii) search for novel CDs with unique structure, morphology, or composition; (iii) quantitative understanding of the property of CDs; (iv) performance enhancement by external forces such as magnetism or heat injection; (v) construction of the dual carbon concept; (vi) further research on different photocatalytic applications. On the whole, this Account may provide meaningful references for the understanding of the microstructure-property correlation as well as the regulation of CDs, thereby promoting their transition from fundamental research to practical application.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.,Zhenhui Kang-Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078 Macao, China
| |
Collapse
|
74
|
Zhang Y, Li Y, Yuan Y. Carbon Quantum Dot-Decorated BiOBr/Bi 2WO 6 Photocatalytic Micromotor for Environmental Remediation and DFT Calculation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuanyuan Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Li
- Micro/Nanotechnology Research Centre, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Yuan
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
75
|
Guan Y, Wang S, Du Q, Wu M, Zheng Z, Li Z, Yan S. C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. J Colloid Interface Sci 2022; 624:168-180. [PMID: 35660886 DOI: 10.1016/j.jcis.2022.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
Abstract
With a facile one-pot solvothermal method, an efficient ternary heterojunction photocatalyst carbon quantum dots (CQDs)/Bi/BiOBr is firstly prepared. Ethylene glycol (EG) is used as the solvent and carbon source for the first time. At 190 °C for 3 h, while BiOBr is synthesized, EG is employed to prepare CQDs through bottom-up method. CQDs are grafted by a large number of functional groups with reducibility, which reduce some neighboring BiO+ to metal Bi. By modifying the solvothermal temperature and time, CQDs and Bi are in-situ controllably deposited on the surface of BiOBr microspheres. Due to different Fermi levels and work functions, the interfaces of CQDs, BiOBr and Bi are connected through ohmic junctions with low contact impedance. The hot electrons from Bi with surface plasmon resonance (SPR) properties, and electrons in the CB of BiOBr flow to CQDs, forming a C-scheme electron transfer mechanism. O2- from CQDs and h+ in the VB of BiOBr respectively attack the sites with higher and lower electron density in methyl orange (MO) molecule, resulting in its photodegradation into small molecular products.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Shaomang Wang
- School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Qiongdie Du
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Mingfei Wu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Zhiqian Zheng
- School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China; School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, PR China.
| |
Collapse
|
76
|
Abstract
Micro-/nanorobots (MNRs) can be autonomously propelled on demand in complex biological environments and thus may bring revolutionary changes to biomedicines. Fluorescence has been widely used in real-time imaging, chemo-/biosensing, and photo-(chemo-) therapy. The integration of MNRs with fluorescence generates fluorescent MNRs with unique advantages of optical trackability, on-the-fly environmental sensitivity, and targeting chemo-/photon-induced cytotoxicity. This review provides an up-to-date overview of fluorescent MNRs. After the highlighted elucidation about MNRs of various propulsion mechanisms and the introductory information on fluorescence with emphasis on the fluorescent mechanisms and materials, we systematically illustrate the design and preparation strategies to integrate MNRs with fluorescent substances and their biomedical applications in imaging-guided drug delivery, intelligent on-the-fly sensing and photo-(chemo-) therapy. In the end, we summarize the main challenges and provide an outlook on the future directions of fluorescent MNRs. This work is expected to attract and inspire researchers from different communities to advance the creation and practical application of fluorescent MNRs on a broad horizon.
Collapse
Affiliation(s)
- Manyi Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xia Guo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
77
|
Ben-Zichri S, Rajendran S, Bhunia SK, Jelinek R. Resveratrol Carbon Dots Disrupt Mitochondrial Function in Cancer Cells. Bioconjug Chem 2022; 33:1663-1671. [PMID: 36065131 DOI: 10.1021/acs.bioconjchem.2c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resveratrol, a natural polyphenol, exhibits beneficial health properties and has been touted as a potential anti-tumor agent. Here, we demonstrate potent anti-cancer effects of carbon dots (C-dots) synthesized from resveratrol. The mild synthesis conditions retained resveratrol functional moieties upon the carbon dots' (C-dots) surface, an important requisite for achieving specificity toward cancer cells and biological activities. Indeed, the disruptive effects of the resveratrol-C-dot were more pronounced in several cancer cell types compared to normal cells, underscoring targeting capabilities of the C-dots, a pertinent issue for the development of cancer therapeutics. In particular, we observed impairment of mitochondrial functionalities, including intracellular calcium release, inhibition of cytochrome-C oxidase enzyme activity, and mitochondrial membrane perturbation. Furthermore, the resveratrol C-dots were more potent than either resveratrol molecules alone, known anti-cancer polyphenolic agents such as curcumin and triphenylphosphonium, or C-dots prepared from different carbonaceous precursors. This study suggests that resveratrol-synthesized C-dots may have promising therapeutic potential as anti-cancer agents.
Collapse
Affiliation(s)
- Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Sathish Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| |
Collapse
|
78
|
Xiang J, Li R, Long X, Wu S, Wang J, Wang Z. Strict Twice Iterative Optimization Strategy to Synthesize Ultrabright Fluorescent Carbon Dots for UV and pH Dual-Encryption Fluorescent Ink. ACS OMEGA 2022; 7:29952-29958. [PMID: 36061698 PMCID: PMC9434782 DOI: 10.1021/acsomega.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
In this work, ultrabright fluorescent carbon dots (U-CDs) were synthesized by using a strict twice iterative optimization strategy. Their relative photoluminescence (PL) quantum yield is close to 100%, exceeding most of the reported fluorescent CDs and greatly boosting the practical applications of fluorescent CDs in many fields. Then serving as fluorescent anti-counterfeiting ink was taken as an example to briefly introduce the application of the U-CDs. The PL emission of the U-CDs is quenched at the range of pH < 4 or pH > 11 and restored at the range of pH = 5-10. This pH-sensitive PL feature allows the U-CDs to be used as fluorescent ink for pH and UV dual information encryption. The written or printed information is invisible under daylight but visible under UV light. After acid treatment or alkali treatment, the information is invisible even under a UV lamp but visible after neutralization treatment. This work provides a standardized scheme for optimizing the synthesis conditions of fluorescent CDs and paves the way for large-scale production of high-performance fluorescent CDs.
Collapse
Affiliation(s)
- Jiamei Xiang
- College
of Chemistry and Materials Science, Sichuan
Normal University, Chengdu 610066, China
| | - Ruixue Li
- College
of Chemistry and Materials Science, Sichuan
Normal University, Chengdu 610066, China
| | - Xiang Long
- College
of Chemistry and Materials Science, Sichuan
Normal University, Chengdu 610066, China
| | - Shaogui Wu
- College
of Chemistry and Materials Science, Sichuan
Normal University, Chengdu 610066, China
| | - Jiayang Wang
- Department
of Resources & Environment, Chengdu
University of Information Technology, Chengdu 610041, China
| | - Zhuo Wang
- Department
of Resources & Environment, Chengdu
University of Information Technology, Chengdu 610041, China
| |
Collapse
|
79
|
Saha P, Akter R, Shah SS, Mahfoz W, Aziz MA, Ahammad AJS. Gold Nanomaterials and their Composites as Electrochemical Sensing Platforms for Nitrite Detection. Chem Asian J 2022; 17:e202200823. [PMID: 36039466 DOI: 10.1002/asia.202200823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Indexed: 02/01/2023]
Abstract
Nitrite is one of the abundant toxic components existing in the environment and is likely to have a great potential to affect human health badly. For that reason, it has become crucial to build a reliable nitrite detection method. In recent years, several nitrite monitoring systems have been proposed. Compared with traditional analytical strategies, the electrochemical approach has a bunch of advantages, including low cost, rapid response, easy operation, simplicity, etc. In this case, noble metal nanomaterials, especially Au-based nanomaterials, have attracted attention in electrode modification because of higher catalytic activity, facile mass transfer, and broad active area for determining nitrite. This review is based on the state-of-the-art, which includes a variety of nanomaterials that have been coupled with AuNPs for the creation of nanocomposites, and the construction as well as development of electrochemical sensors for nitrite detection over the last few years (2016-2022). A background study on synthesizing different morphological AuNPs and nanocomposites has also been introduced. The fabrication methods and sensing capabilities of modified electrodes are given special consideration.
Collapse
Affiliation(s)
- Protity Saha
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Riva Akter
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| | - Syed Shaheen Shah
- King Fahd University of Petroleum & Minerals, Physics Department, Building 6, 31261, Dhahran, SAUDI ARABIA
| | - Wael Mahfoz
- King Fahd University of Petroleum & Minerals, Chemistry, Chemistry Department, 31261, Dhahran, SAUDI ARABIA
| | - Md Abdul Aziz
- King Fahd University of Petroleum & Minerals, Center of Research excellence in Nanotechnology, KFUPM Box # 81, 31261, Dhahran, SAUDI ARABIA
| | - A J Saleh Ahammad
- Jagannath University, Chemistry, Department of Chemistry, 1100, BANGLADESH
| |
Collapse
|
80
|
Long X, Li R, Xiang J, Wu S, Wang J. Ultrabright carbon dots as a fluorescent nano sensor for Pb 2+ detection. RSC Adv 2022; 12:24390-24396. [PMID: 36128542 PMCID: PMC9425294 DOI: 10.1039/d2ra03591j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, we synthesized ultrabright carbon dots (U-CDs) with photoluminescence quantum yield (PLQY) up to ∼100% using CA and EDA as precursors. When studying their interaction with the Pb2+ ion, we found that the PL quenching degree is independent of the U-CDs concentration. This feature provides great convenience for practical detection, which allows the standard curve determination and practical detection to be conducted under different U-CDs concentrations with detection error less than 20%. Based on the experimental observations, a possible mechanism is proposed to explain this phenomenon. To our best knowledge, this work has never been reported before and provides a new idea for the design of novel fluorescent sensors.
Collapse
Affiliation(s)
- Xiang Long
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610066 China
| | - Ruixue Li
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610066 China
| | - Jiamei Xiang
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610066 China
| | - Shaogui Wu
- College of Chemistry and Materials Science, Sichuan Normal University Chengdu 610066 China
| | - Jiayang Wang
- Department of Resources & Environment, Chengdu University of Information Technology Chengdu 610041 China
| |
Collapse
|
81
|
Shi F, Wang B, Yan L, Wang B, Niu Y, Wang L, Sun W. In-situ growth of nitrogen-doped carbonized polymer dots on black phosphorus for electrochemical DNA biosensor of Escherichia coli O157: H7. Bioelectrochemistry 2022; 148:108226. [PMID: 36030676 DOI: 10.1016/j.bioelechem.2022.108226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 02/08/2023]
Abstract
Sensitive and accurate detection technology for pathogenic bacteria is of great social and economic significance in foodborne disease and food safety. In this paper, a novel portable electrochemical DNA biosensor for the detection of specific DNA sequence of Escherichia coli (E. coli) O157: H7 was constructed. To enhance the performance of the electrochemical sensor, a functionalized nitrogen-doped carbonized polymer dots in-situ grown on few-layer black phosphorus (N-CPDs@FLBP) was synthesized and used as the modifier on the surface of screen-printed electrode. Combining gold nanoparticles as immobilization matrix and methylene blue as electrochemical indicator, the analytical performance of this electrochemical DNA biosensor was evaluated using standard complementary ssDNA sequence in the linear concentration range from 1.0 × 10-19 to 1.0 × 10-6 mol/L with a low detection limit as 3.33 × 10-20 mol/L (3 σ). Furthermore, the portable electrochemical DNA biosensor was proposed based on polymerase chain reaction amplification for the detection of the E. coli O157: H7 genomic DNA from chicken meat, which verified the feasibility for practical samples detection. The research has great theoretical and practical significance for the development of electrochemical biosensor of pathogenic bacteria.
Collapse
Affiliation(s)
- Fan Shi
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Baoli Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China; College of Health Sciences, Hainan Technology and Business College, Haikou 570102, PR China
| | - Lijun Yan
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Bei Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Yanyan Niu
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Lisi Wang
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Wei Sun
- Key Laboratory of Water Pollution Treatment and Resource Rouse of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China.
| |
Collapse
|
82
|
Dong LY, Cao TY, Guo YH, Chen R, Zhao YS, Zhao Y, Kong H, Qu HH. Aristolochic Acid Nephropathy: A Novel Suppression Strategy of Carbon Dots Derived from Astragali Radix Carbonisata. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite strict restrictions on the use of aristolochic acids (AAs)-containing merchandise or drugs in many countries, a substantial amounts of occurrences aristolochic acid nephropathy (AAN) had been accounted worldwide. Clinically, there is no effective incurable therapy regimen to
reverse the progression of AAN. Although carbon dots have shown surprising bioactivity, research on the acute kidney injury caused by AAs is lacking. Here, a novel biomass-carbon dots from Astragali Radix (AR) as precursors was synthesized through one-step pyrolysis treatment. The ARC-carbon
dots (ARC-CDs) was demonstrated in detail for its inhibitory effect on aristolochic acid nephropathy in a mice model. The indexes of inflammatory cytokines as well as oxidative stress were significantly reduced by the ARC-CDs in kidney tissue cells. Additionally, the ARC-CDs administration
resulted in a large decrease in positive apoptotic cells according to TUNEL labeling and western blotting, which may be connected to the ARC-CDs’ modulation of the protein in the Akt/Mdm2/p53 signaling pathway. These findings show that ARC-CDs have remarkable anti-inflammatory, antioxidant,
and anti-apoptotic capabilities against acute kidney injury spurred by aristolochic acids via the AKT/Mdm2/p53 signaling pathway.
Collapse
Affiliation(s)
- Li-Yang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Tian-You Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Ying-Hui Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Rui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yu-Sheng Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| | - Hui-Hua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China
| |
Collapse
|
83
|
Kumari S, Choudhary PK, Shukla R, Sahebkar A, Kesharwani P. Recent advances in nanotechnology based combination drug therapy for skin cancer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1435-1468. [PMID: 35294334 DOI: 10.1080/09205063.2022.2054399] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Skin-cancer (SC) is more common than all other cancers affecting large percentage of the population in the world and is increasing in terms of morbidity and mortality. In the United States, 3million people are affected by SC annually whereas millions of people are affected globally. Melanoma is fifth most common cancer in the United States. SC is commonly occurred in white people as per WHO. SC is divided into two groups, i.e. melanoma and non-melanoma. In the previous two decades, management of cancer remains to be a tough and a challenging task for many scholars. Presently, the treatment protocols are mostly based on surgery and chemo-radiation therapy, which sooner or later harm the unaffected cells too. To reduce these limitations, nano scaled materials and its extensive range may be recognized as the probable carriers for the selective drug delivery in response to cancerous cells. Recently, the nanocarriers based drugs and their combinations were found to be a new and interesting approach of study for the management of skin carcinoma to enhance the effectiveness, to lessen the dose-dependent side effects and to avoid the drug resistance. This review may emphasize on the wide-range of information on nanotechnology-based drugs and their combination with physical techniques.
Collapse
Affiliation(s)
- Shweta Kumari
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | | | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P., India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
84
|
Liao Z, Huang J, Lo PC, Lovell JF, Jin H, Yang K. Self-adjuvanting cancer nanovaccines. J Nanobiotechnology 2022; 20:345. [PMID: 35883176 PMCID: PMC9316869 DOI: 10.1186/s12951-022-01545-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 11/12/2022] Open
Abstract
Nanovaccines, a new generation of vaccines that use nanoparticles as carriers and/or adjuvants, have been widely used in the prevention and treatment of various diseases, including cancer. Nanovaccines have sparked considerable interest in cancer therapy due to a variety of advantages, including improved access to lymph nodes (LN), optimal packing and presentation of antigens, and induction of a persistent anti-tumor immune response. As a delivery system for cancer vaccines, various types of nanoparticles have been designed to facilitate the delivery of antigens and adjuvants to lymphoid organs and antigen-presenting cells (APCs). Particularly, some types of nanoparticles are able to confer an immune-enhancing capability and can themselves be utilized for adjuvant-like effect for vaccines, suggesting a direction for a better use of nanomaterials and the optimization of cancer vaccines. However, this role of nanoparticles in vaccines has not been well studied. To further elucidate the role of self-adjuvanting nanovaccines in cancer therapy, we review the mechanisms of antitumor vaccine adjuvants with respect to nanovaccines with self-adjuvanting properties, including enhancing cross-presentation, targeting signaling pathways, biomimicking of the natural invasion process of pathogens, and further unknown mechanisms. We surveyed self-adjuvanting cancer nanovaccines in clinical research and discussed their advantages and challenges. In this review, we classified self-adjuvanting cancer nanovaccines according to the underlying immunomodulatory mechanism, which may provide mechanistic insights into the design of nanovaccines in the future.
Collapse
Affiliation(s)
- Zhiyun Liao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jing Huang
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
85
|
Mokoloko LL, Forbes RP, Coville NJ. The Transformation of 0-D Carbon Dots into 1-, 2- and 3-D Carbon Allotropes: A Minireview. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2515. [PMID: 35893483 PMCID: PMC9330435 DOI: 10.3390/nano12152515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 01/20/2023]
Abstract
Carbon dots (CDs) represent a relatively new type of carbon allotrope with a 0-D structure and with nanoparticle sizes < 10 nm. A large number of research articles have been published on the synthesis, characteristics, mechanisms and applications of this carbon allotrope. Many of these articles have also shown that CDs can be synthesized from “bottom-up” and “top-down” methods. The “top-down” methods are dominated by the breaking down of large carbon structures such as fullerene, graphene, carbon black and carbon nanotubes into the CDs. What is less known is that CDs also have the potential to be used as carbon substrates for the synthesis of larger carbon structures such as 1-D carbon nanotubes, 2-D or 3-D graphene-based nanosheets and 3-D porous carbon frameworks. Herein, we present a review of the synthesis strategies used to convert the 0-D carbons into these higher-dimensional carbons. The methods involve the use of catalysts or thermal procedures to generate the larger structures. The surface functional groups on the CDs, typically containing nitrogen and oxygen, appear to be important in the process of creating the larger carbon structures that typically are formed via the generation of covalent bonds. The CD building blocks can also ‘aggregate’ to form so called supra-CDs. The mechanism for the formation of the structures made from CDs, the physical properties of the CDs and their applications (for example in energy devices and as reagents for use in medicinal fields) will also be discussed. We hope that this review will serve to provide valuable insights into this area of CD research and a novel viewpoint on the exploration of CDs.
Collapse
Affiliation(s)
| | | | - Neil J. Coville
- DSI-NRF Centre of Excellence in Catalysis and the Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa; (L.L.M.); (R.P.F.)
| |
Collapse
|
86
|
Li W, Wang C, Shao D, Lu L, Cao J, Wang X, Lu J, Yang W. Red carbon dot directed biocrystalline alignment for piezoelectric energy harvesting. NANOSCALE 2022; 14:9031-9044. [PMID: 35703451 DOI: 10.1039/d2nr01457b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Herein, using chitin-derived chitosan, we first demonstrate the luminous carbon dot-directed large-scale biocrystalline piezo-phase alignment. This further significantly facilitates the piezo-energy harvesting of Earth-abundant natural biopolymers. A very small, yet moderate, number of red-emission carbon quantum dots (R-CQDs) allow a highly preferential macroscopic alignment of chitosan based, electrospun hybrid nanofibers and a highly preferential microscopic alignment of internal chitosan piezo-phase crystalline lamellae. Meanwhile, R-CQD hybridized bionanofibers maintain the long-wavelength photoluminescence excitation/emission of encapsulated, monodisperse R-CQDs. The piezoelectric voltage output and piezoelectric current output of hybrid bionanofibers reach up to 125 V cm-3 and 1.5 μA cm-3, respectively. They are more than 5 and 6 times higher than those of the state-of-the-art pristine ones, respectively. Moreover, the proof-of-concept red-emission bionanofibrous piezoelectric nanogenerator shows a highly durable, highly stable, and highly reproducible piezoresponse in over 10 000 continuous load cycles. As a reliable renewable energy source, it demonstrates the fast charging of external capacitors and the direct operation of commercial electronics. In particular, as a self-powered wearable tactile healthcare sensor, it attains ultrahigh mechanosensitivity in sensing a broad range of human biophysiological pressures and strains.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Chuanfeng Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Dingyun Shao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Liang Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Jingjing Cao
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Xuanlun Wang
- College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jun Lu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.
| |
Collapse
|
87
|
Gao H, Cui D, Zhai S, Yang Y, Wu Y, Yan X, Wu G. A label-free electrochemical impedimetric DNA biosensor for genetically modified soybean detection based on gold carbon dots. Mikrochim Acta 2022; 189:216. [PMID: 35536374 DOI: 10.1007/s00604-022-05223-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
A label-free electrochemical impedimetric biosensor was constructed based on gold carbon dots (GCDs) modified screen-printed carbon electrode for the detection of genetic modified (GM) soybean. The structure and property of GCDs were investigated. The GCDs can directly bind to single-stranded DNA probes through Au-thiol interaction and boost electric conductivity for the DNA sensor construction. The quantification of target DNA was monitored by the change of electron-transfer resistance (Ret) upon the DNA hybridization on sensor surface. Under the optimal conditions, the Ret response (vs. Ag reference electrode) increased with the logarithm of target DNA concentrations in a wide linear range of 1.0 × 10-7 - 1.0 × 10-13 M with a detection limit of 3.1 × 10-14 M (S/N = 3). It was also demonstrated that the proposed DNA sensor possessed high specificity for discriminating target DNA from mismatched sequences. Moreover, the developed biosensor was applied to detect SHZD32-1 in actual samples, and the results showed a good consistency with those obtained from the gel electrophoresis method. Compared with the previous reports for DNA detection, the label-free biosensor showed a comparatively simple platform due to elimination of complicated DNA labeling. Therefore, the proposed method showed great potential to be an alternative device for simple, sensitive, specific, and portable DNA sensor.
Collapse
Affiliation(s)
- Hongfei Gao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Dandan Cui
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shanshan Zhai
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yao Yang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuhua Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiaohong Yan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Gang Wu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
88
|
A Review on the Catalytic Remediation of Dyes by Tailored Carbon Dots. WATER 2022. [DOI: 10.3390/w14091456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water polluted with dyes has become a serious global concern during the twenty-first century, especially for developing countries. Such types of environmental contaminant pose a severe threat to biodiversity, ecosystems, and human health globally; therefore, its treatment is an utmost requirement. Advanced technologies including the use of nanomaterials represent a promising water treatment technology with high efficiencies, low production costs, and green synthesis. Among the nanomaterials, carbon dots, as a new class of carbon-based nanoparticles, have attracted attention due to their unique features and advantages over other nanomaterials, which include high water solubility, easy fabrication and surface functionalisation, excellent electron-donating ability, and low toxicity. Such properties make carbon dots potential nanocatalysts for the Fenton-like degradation of environmental pollutants in water. Although recent studies show that carbon dots can successfully catalyse the degradation of dyes, there are still limited and controversial studies on the ecotoxicity and fate of these nanoparticles in the environment. In this review, the authors aim to summarise the recent research advances in water remediation by technologies using carbon dots, discuss important properties and factors for optimised catalytic remediation, and provide critical analysis of ecotoxicity issues and the environmental fate of these nanoparticles.
Collapse
|
89
|
Pyrolysis of single carbon sources in SBA-15: A recyclable solid phase synthesis to obtain uniform carbon dots with tunable luminescence. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
90
|
Pang Y, Yao Y, Yang M, Wu D, Ma Y, Zhang Y, Zhang T. TFEB-lysosome pathway activation is associated with different cell death responses to carbon quantum dots in Kupffer cells and hepatocytes. Part Fibre Toxicol 2022; 19:31. [PMID: 35477523 PMCID: PMC9047349 DOI: 10.1186/s12989-022-00474-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Carbon dot has been widely used in biomedical field as a kind of nanomaterial with low toxicity and high biocompatibility. CDs has demonstrated its unique advantages in assisted drug delivery, target diagnosis and targeted therapy with its small size and spontaneous fluorescence. However, the potential biosafety of CDs cannot be evaluated. Therefore, we focused on the study of liver, the target organ involved in CDs metabolism, to evaluate the risk of CDs in vitro. Methods and results Liver macrophage KUP5 cells and normal liver cells AML12 cells were incubated in CDs at the same concentration for 24 h to compare the different effects under the same exposure conditions. The study found that both liver cell models showed ATP metabolism disorder, membrane damage, autophagosome formation and lysosome damage, but the difference was that, KUP5 cells exhibited more serious damage than AML12 cells, suggesting that immunogenic cell type is particularly sensitive to CDs. The underlying mechanism of CDs-induced death of the two hepatocyte types were also assessed. In KUP5 cells, death was caused by inhibition of autophagic flux caused by autophagosome accumulation, this process that was reversed when autophagosome accumulation was prevented by 3-MA. AML12 cells had no such response, suggesting that the accumulation of autophagosomes caused by CDs may be specific to macrophages. Conclusion Activation of the TFEB-lysosome pathway is important in regulating autophagy and apoptosis. The dual regulation of ERK and mTOR phosphorylation upstream of TFEB influences the death outcome of AML12 cells. These findings provide a new understanding of how CDs impact different liver cells and contribute to a more complete toxicological safety evaluation of CDs.
Collapse
Affiliation(s)
- Yanting Pang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.,Yangzhou Center for Disease Prevention and Control, Yangzhou, 225200, Jiangsu, China
| | - Mengran Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Devices, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
91
|
Ye S, Zhang M, Guo J, Song J, Zeng P, Qu J, Chen Y, Li H. Facile Synthesis of Green Fluorescent Carbon Dots and Their Application to Fe 3+ Detection in Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1487. [PMID: 35564197 PMCID: PMC9104042 DOI: 10.3390/nano12091487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023]
Abstract
Carbon dots (CDs), a class of fluorescent nanomaterials, have attracted widespread attention from researchers. Because of their unique chemical properties, these high-quality fluorescent probes are widely used for ion and molecule detection. Excess intake of many ions or molecules can cause harm to the human body. Although iron (in the form of Fe3+ ions) is essential for the human body, excess iron in the human body can cause many diseases, such as iron poisoning. In this study, we have synthesized fluorine and nitrogen co-doped carbon dots (FNCDs) by a hydrothermal method. These FNCDs exhibited good stability, selectivity, and anti-interference ability for Fe3+. Fe3+ could be detected in the range of 0.2-300 μM, and their detection limit is up to 0.08 μM. In addition, the recovery and relative standard deviation measured by the standard addition recovery method were not higher than 107.5% and 1.1%, respectively, indicating that FNCDs have good recovery and accuracy for Fe3+ detection.
Collapse
Affiliation(s)
- Shuai Ye
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| | - Mingming Zhang
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| | - Jiaqing Guo
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| | - Jun Song
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| | - Pengju Zeng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Yue Chen
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| | - Hao Li
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen 518060, China; (S.Y.); (M.Z.); (J.G.); (J.S.); (P.Z.); (J.Q.)
| |
Collapse
|
92
|
Chen Y, Cui H, Wang M, Yang X, Pang S. N and S doped carbon dots as novel probes with fluorescence enhancement for fast and sensitive detection of Cr(VI). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
93
|
Jiang K, Wang Y, Lin C, Zheng L, Du J, Zhuang Y, Xie R, Li Z, Lin H. Enabling robust and hour-level organic long persistent luminescence from carbon dots by covalent fixation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:80. [PMID: 35351847 PMCID: PMC8964705 DOI: 10.1038/s41377-022-00767-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 05/04/2023]
Abstract
The first carbon dot (CD)-based organic long persistent luminescence (OLPL) system exhibiting more than 1 h of duration was developed. In contrast to the established OLPL systems, herein, the reported CDs-based system (named m-CDs@CA) can be facilely and effectively fabricated using a household microwave oven, and more impressively, its LPL can be observed under ambient conditions and even in aqueous media. XRD and TEM characterizations, afterglow decay, time-resolved spectroscopy, and ESR analysis were performed, showing the successful composition of CDs and CA, the formation of exciplexes and long-lived charged-separated states. Further studies suggest that the production of covalent bonds between CA and CDs plays pivotal roles in activating LPL and preventing its quenching from oxygen and water. To the best of our knowledge, this is a very rare example of an OLPL system that exhibits hour-level afterglow under ambient conditions. Finally, applications of m-CDs@CA in glow-in-the-dark paints for emergency signs and multicolored luminous pearls were preliminarily demonstrated. This work may provide new insights for the development of rare-earth-free and robust OLPL materials.
Collapse
Affiliation(s)
- Kai Jiang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China.
| | - Yuci Wang
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Cunjian Lin
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, and College of Materials, Xiamen University, 361005, Xiamen, China
| | - Licheng Zheng
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Jiaren Du
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yixi Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, and College of Materials, Xiamen University, 361005, Xiamen, China
| | - Rongjun Xie
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome, and College of Materials, Xiamen University, 361005, Xiamen, China
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, 450001, Zhengzhou, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
94
|
Cao L, Wu Y, Shan Y, Tan B, Liao J. A Review: Potential Application and Outlook of Photothermal Therapy in Oral Cancer Treatment. Biomed Mater 2022; 17. [PMID: 35235924 DOI: 10.1088/1748-605x/ac5a23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022]
Abstract
As one of the most common malignant tumors, oral cancer threatens people's health worldwide. However, traditional therapies, including surgery, radiotherapy, and chemotherapy can't meet the requirement of cancer cure. Photothermal therapy (PTT) has attracted widespread attentions for its advantages of the noninvasive process, few side effects, and promising tumor ablation. Up to now, three types of photothermal agents (PTAs) have been widely employed in oral cancer therapies, which involve metallic materials, carbon-based materials, and organic materials. Previous research mainly introduced hybrid materials due to benefits from the synergistic effect of multiple functions. In this review, we present the advancement of each type PTAs for oral cancer treatment in recent years. In each part, we introduce the properties and synthesis of each PTA, summarize the current studies, and analyze their potential applications. Furthermore, we discuss the status quo and the deficiencies hindering the clinical application of PTT, based on which gives the perspective of its future developing directions.
Collapse
Affiliation(s)
- Liren Cao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yongzhi Wu
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Yue Shan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Bowen Tan
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| | - Jinfeng Liao
- Sichuan University, NO. 14, Section 3, Renming Road, Chengdu, 610041, CHINA
| |
Collapse
|
95
|
Cao Y, Wang X, Bai H, Jia P, Zhao Y, Liu Y, Wang L, Zhuang Y, Yue T. Fluorescent detection of tetracycline in foods based on carbon dots derived from natural red beet pigment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
96
|
Carbon dots enhanced gelatin/chitosan bio-nanocomposite packaging film for perishable foods. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
97
|
Liu Z, Ji X, He D, Zhang R, Liu Q, Xin T. Nanoscale Drug Delivery Systems in Glioblastoma. NANOSCALE RESEARCH LETTERS 2022; 17:27. [PMID: 35171358 PMCID: PMC8850533 DOI: 10.1186/s11671-022-03668-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/09/2022] [Indexed: 05/13/2023]
Abstract
Glioblastoma is the most aggressive cerebral tumor in adults. However, the current pharmaceuticals in GBM treatment are mainly restricted to few chemotherapeutic drugs and have limited efficacy. Therefore, various nanoscale biomaterials that possess distinct structure and unique property were constructed as vehicles to precisely deliver molecules with potential therapeutic effect. In this review, nanoparticle drug delivery systems including CNTs, GBNs, C-dots, MOFs, Liposomes, MSNs, GNPs, PMs, Dendrimers and Nanogel were exemplified. The advantages and disadvantages of these nanoparticles in GBM treatment were illustrated.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Xiaoshuai Ji
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Qian Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Tao Xin
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, China.
- Department of Neurosurgery, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
- Department of Neurosurgery, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang Jiangxi, 330006, China.
| |
Collapse
|
98
|
Li S, Du F, Lin Y, Guan Y, Qu W, Cheng J, Wang D. Excellent anti-corrosion performance of epoxy composite coatings filled with novel N-doped carbon nanodots. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
99
|
Laddha H, Yadav P, Jain Y, Sharma M, Reza M, Agarwal M, Gupta R. One-pot microwave-assisted synthesis of blue emissive multifunctional N-S-P co-doped carbon dots as a nanoprobe for sequential detection of Cr(VI) and ascorbic acid in real samples, fluorescent ink and logic gate operation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117088] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Yusuf VF, Atulbhai SV, Bhattu S, Malek NI, Kailasa SK. Recent developments on carbon dots-based green analytical methods: New opportunities in fluorescence assay of pesticides, drugs and biomolecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj01401g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots (CDs) grabs huge attention in analytical and bioanalytical applications due to their high selectivity towards target analyte, specificity, photostability, and quantum yield. Cost-effective and biocompatible properties of...
Collapse
|