51
|
Bodman SE, Breen C, Plasser F, Butler SJ. Impact of Varying the Phenylboronic Acid Position in Macrocyclic Eu(III) Complexes on the Recognition of Adenosine Monophosphate. Org Chem Front 2022. [DOI: 10.1039/d2qo01067d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective recognition of anions in water by artificial receptors remains a significant research challenge. The creation of a receptor selective for adenosine monophosphate (AMP) is particularly difficult due to...
Collapse
|
52
|
Bodman SE, Breen C, Kirkland S, Wheeler S, Robertson E, Plasser F, Butler SJ. Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate. Chem Sci 2022; 13:3386-3394. [PMID: 35432862 PMCID: PMC8943852 DOI: 10.1039/d1sc05377a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
The design of molecular receptors that bind and sense anions in biologically relevant aqueous solutions is a key challenge in supramolecular chemistry. The recognition of inorganic phosphate is particularly challenging because of its high hydration energy and pH dependent speciation. Adenosine monophosphate (AMP) represents a valuable but elusive target for supramolecular detection because of its structural similarity to the more negatively charged anions, ATP and ADP. We report two new macrocyclic Eu(iii) receptors capable of selectively sensing inorganic phosphate and AMP in water. The receptors contain a sterically demanding 8-(benzyloxy)quinoline pendant arm that coordinates to the metal centre, creating a binding pocket suitable for phosphate and AMP, whilst excluding potentially interfering chelating anions, in particular ATP, bicarbonate and lactate. The sensing selectivity of our Eu(iii) receptors follows the order AMP > ADP > ATP, which represents a reversal of the order of selectivity observed for most reported nucleoside phosphate receptors. We have exploited the unique host–guest induced changes in emission intensity and lifetime for the detection of inorganic phosphate in human serum samples, and for monitoring the enzymatic production of AMP in real-time. We present two new europium-based anion receptors that selectively bind to inorganic phosphate and AMP in aqueous media. Their sensing selectivity follows the order AMP > ADP > ATP, representing a reversal of the selectivity order observed for most nucleoside phosphate receptors.![]()
Collapse
Affiliation(s)
- Samantha E. Bodman
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Colum Breen
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Sam Kirkland
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Simon Wheeler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Erin Robertson
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK
| |
Collapse
|
53
|
Cepeda C, Denisov SA, Boturyn D, McClenaghan ND, Sénèque O. Ratiometric Luminescence Detection of Copper(I) by a Resonant System Comprising Two Antenna/Lanthanide Pairs. Inorg Chem 2021; 60:17426-17434. [PMID: 34788035 DOI: 10.1021/acs.inorgchem.1c02985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Selective and sensitive detection of Cu(I) is an ongoing challenge due to its important role in biological systems, for example. Herein, we describe a photoluminescent molecular chemosensor integrating two lanthanide ions (Tb3+ and Eu3+) and respective tryptophan and naphthalene antennas onto a polypeptide backbone. The latter was structurally inspired from copper-regulating biomacromolecules in Gram-negative bacteria and was found to bind Cu+ effectively under pseudobiological conditions (log KCu+ = 9.7 ± 0.2). Ion regulated modulation of lanthanide luminescence in terms of intensity and long, millisecond lifetime offers perspectives in terms of ratiometric and time-gated detection of Cu+. The role of the bound ion in determining the photophysical properties is discussed with the aid of additional model compounds.
Collapse
Affiliation(s)
- Céline Cepeda
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| | | | - Didier Boturyn
- Univ. Grenoble Alpes, CNRS, DCM (UMR 5250), 38000 Grenoble, France
| | | | - Olivier Sénèque
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, LCBM (UMR 5249), 38000 Grenoble, France
| |
Collapse
|
54
|
Zakrzewski J, Kumar K, Zychowicz M, Jankowski R, Wyczesany M, Sieklucka B, Ohkoshi SI, Chorazy S. Combined Experimental and Ab Initio Methods for Rationalization of Magneto-Luminescent Properties of Yb III Nanomagnets Embedded in Cyanido/Thiocyanidometallate-Based Crystals. J Phys Chem Lett 2021; 12:10558-10566. [PMID: 34694818 PMCID: PMC8573772 DOI: 10.1021/acs.jpclett.1c02942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The ab initio calculations were correlated with magnetic and emission characteristics to understand the modulation of properties of NIR-emissive [YbIII(2,2'-bipyridine-1,1'-dioxide)4]3+ single-molecule magnets by cyanido/thiocyanidometallate counterions, [AgI(CN)2]- (1), [AuI(SCN)2]- (2), [CdII(CN)4]2-/[CdII2(CN)7]3- (3), and [MIII(CN)6]3- [MIII = Co (4), Ir (5), Fe (6), Cr (7)]. Theoretical studies indicate easy-axis-type ground doublets for all YbIII centers. They differ in the magnetic axiality; however, transversal g-tensor components are always large enough to explain the lack of zero-dc-field relaxation. The excited doublets lie more than 120 cm-1 above the ground one for all YbIII centers. It was confirmed by high-resolution emission spectra reproduced from the ab initio calculations that give reliable insight into energies and oscillator strengths of optical transitions. These findings indicate the dominance of Raman relaxation with the power n varying from 2.93(4) to 6.9(2) in the 4-3-5-1-2 series. This trend partially follows the magnetic axiality, being deeper correlated with the phonon modes schemes of (thio)cyanido matrices.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kunal Kumar
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikolaj Zychowicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Robert Jankowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maciej Wyczesany
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Barbara Sieklucka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
55
|
Mouchel Dit Leguerrier D, Barré R, Molloy J, Thomas F. Lanthanide complexes as redox and ROS/RNS probes: A new paradigm that makes use of redox-reactive and redox non-innocent ligands. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
Sun G, Xie Y, Sun L, Zhang H. Lanthanide upconversion and downshifting luminescence for biomolecules detection. NANOSCALE HORIZONS 2021; 6:766-780. [PMID: 34569585 DOI: 10.1039/d1nh00299f] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecules play critical roles in biological activities and are closely related to various disease conditions. The reliable, selective and sensitive detection of biomolecules holds much promise for specific and rapid biosensing. In recent years, luminescent lanthanide probes have been widely used for monitoring the activity of biomolecules owing to their long luminescence lifetimes and line-like emission which allow time-resolved and ratiometric analyses. In this review article, we concentrate on recent advances in the detection of biomolecule activities based on lanthanide luminescent systems, including upconversion luminescent nanoparticles, lanthanide-metal organic frameworks, and lanthanide organic complexes. We also introduce the latest remarkable accomplishments of lanthanide probes in the design principles and sensing mechanisms, as well as the forthcoming challenges and perspectives for practical achievements.
Collapse
Affiliation(s)
- Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
| | - Yao Xie
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lining Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
57
|
Herath ID, Breen C, Hewitt SH, Berki TR, Kassir AF, Dodson C, Judd M, Jabar S, Cox N, Otting G, Butler SJ. A Chiral Lanthanide Tag for Stable and Rigid Attachment to Single Cysteine Residues in Proteins for NMR, EPR and Time-Resolved Luminescence Studies. Chemistry 2021; 27:13009-13023. [PMID: 34152643 PMCID: PMC8518945 DOI: 10.1002/chem.202101143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/12/2022]
Abstract
A lanthanide-binding tag site-specifically attached to a protein presents a tool to probe the protein by multiple spectroscopic techniques, including nuclear magnetic resonance, electron paramagnetic resonance and time-resolved luminescence spectroscopy. Here a new stable chiral LnIII tag, referred to as C12, is presented for spontaneous and quantitative reaction with a cysteine residue to generate a stable thioether bond. The synthetic protocol of the tag is relatively straightforward, and the tag is stable for storage and shipping. It displays greatly enhanced reactivity towards selenocysteine, opening a route towards selective tagging of selenocysteine in proteins containing cysteine residues. Loaded with TbIII or TmIII ions, the C12 tag readily generates pseudocontact shifts (PCS) in protein NMR spectra. It produces a relatively rigid tether between lanthanide and protein, which is beneficial for interpretation of the PCSs by single magnetic susceptibility anisotropy tensors, and it is suitable for measuring distance distributions in double electron-electron resonance experiments. Upon reaction with cysteine or other thiol compounds, the TbIII complex exhibits a 100-fold enhancement in luminescence quantum yield, affording a highly sensitive turn-on luminescence probe for time-resolved FRET assays and enzyme reaction monitoring.
Collapse
Affiliation(s)
- Iresha D. Herath
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Colum Breen
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Sarah H. Hewitt
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Thomas R. Berki
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Ahmad F. Kassir
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Charlotte Dodson
- Department of Pharmacy & PharmacologyUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Martyna Judd
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Shereen Jabar
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Nicholas Cox
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Gottfried Otting
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Stephen J. Butler
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| |
Collapse
|
58
|
Okayasu Y, Yuasa J. Structure Determination of Europium Complexes in Solution Using Crystal-Field Splitting of the Narrow f- f Emission Lines. J Phys Chem Lett 2021; 12:6867-6874. [PMID: 34279951 PMCID: PMC8397343 DOI: 10.1021/acs.jpclett.1c01885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Nine nona-coordinated Eu(III) complexes (1-9) studied here have three unsymmetric β-diketonate ligands and one chiral Ph-Pybox ligand, which can produce eight possible coordination isomers, depending on the position of the three unsymmetric β-diketonate ligands. Substituents on the β-diketonate ligands cause a rational structural rearrangement upon crystallization. Substituents with higher polarity, including -CN, -F, -Cl, -Br, -OMe, and -OEt, employ intercomplex hydrogen bonding to generate an association complex through structural rearrangement upon crystallization. Substituents with lower polarity, including -CF3, -SMe, and -Me, cause the most energetically favorable isomer to crystallize directly from solution. These two crystal structures exhibit well-resolved f-f emission lines with characteristic Stark splitting structures. This work revealed that the configuration of the Eu(III) complexes in solution can be determined by systematic comparison of their Stark splitting structures to those obtained from the solid phase using density functional theory (DFT)-based predictions combined with circular dichroism data.
Collapse
Affiliation(s)
- Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
59
|
Parker D, Fradgley JD, Wong KL. The design of responsive luminescent lanthanide probes and sensors. Chem Soc Rev 2021; 50:8193-8213. [PMID: 34075982 DOI: 10.1039/d1cs00310k] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The principles of the design of responsive luminescent probes and sensors based on lanthanide emission are summarised, based on a mechanistic understanding of their mode of action. Competing kinetic pathways for deactivation of the excited states that occur are described, highlighting the need to consider each of the salient quenching processes. Such an analysis dictates the choice of both the ligand and its integral sensitising moiety for the particular application. The key aspects of quenching involving electron transfer and vibrational and electronic energy transfer are highlighted and exemplified. Responsive systems for pH, pM, pX and pO2 and selected biochemical analytes are distinguished, according to the nature of the optical signal observed. Signal changes include both simple and ratiometric intensity measurements, emission lifetime variations and the unique features associated with the observation of circularly polarised luminescence (CPL) for chiral systems. A classification of responsive lanthanide probes is introduced. Examples of the operation of probes for reactive oxygen species, citrate, bicarbonate, α1-AGP and pH are used to illustrate reversible and irreversible transformations of the ligand constitution, as well as the reversible changes to the metal primary and secondary coordination sphere that sensitively perturb the ligand field. Finally, systems that function by modulation of dynamic quenching of the ligand or metal excited states are described, including real time observation of endosomal acidification in living cells, rapid urate analysis in serum, accurate temperature assessment in confined compartments and high throughput screening of drug binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- David Parker
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
60
|
Martínez‐Crespo L, Hewitt SH, De Simone NA, Šindelář V, Davis AP, Butler S, Valkenier H. Transmembrane Transport of Bicarbonate Unravelled*. Chemistry 2021; 27:7367-7375. [PMID: 33932059 PMCID: PMC8251953 DOI: 10.1002/chem.202100491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Anion receptors can be used to transport ions across lipid bilayers, which has potential for therapeutic applications. Synthetic bicarbonate transporters are of particular interest, as defects in transmembrane transport of bicarbonate are associated with various diseases. However, no convenient method exists to directly observe bicarbonate transport and study the mechanisms involved. Here, an assay is presented that allows the kinetics of bicarbonate transport into liposomes to be monitored directly and with great sensitivity. The assay utilises an encapsulated europium(III) complex, which exhibits a large increase in emission intensity upon binding bicarbonate. Mechanisms involving CO2 diffusion and the dissipation of a pH gradient are shown to be able to lead to an increase in bicarbonate concentration within liposomes, without transport of the anion occurring at all. By distinguishing these alternative mechanisms from actual bicarbonate transport, this assay will inform the future development of bicarbonate transporters.
Collapse
Affiliation(s)
- Luis Martínez‐Crespo
- Université Libre de Bruxelles (ULB)Engineering of Molecular NanoSystems, Ecole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| | - Sarah H. Hewitt
- Loughborough UniversityDepartment of ChemistryEpinal WayLoughboroughLE11 3TUUK
| | | | - Vladimír Šindelář
- Masaryk UniversityDepartment of Chemistry and RECETOX, Faculty of ScienceKamenice 5625 00BrnoCzech Republic
| | - Anthony P. Davis
- University of BristolSchool of ChemistryCantock's CloseBristolBS8 1TSUK
| | - Stephen Butler
- Loughborough UniversityDepartment of ChemistryEpinal WayLoughboroughLE11 3TUUK
| | - Hennie Valkenier
- Université Libre de Bruxelles (ULB)Engineering of Molecular NanoSystems, Ecole polytechnique de BruxellesAvenue F.D. Roosevelt 50, CP165/641050BrusselsBelgium
| |
Collapse
|
61
|
Reinke L, Koch M, Müller-Renno C, Kubik S. Selective sensing of adenosine monophosphate (AMP) over adenosine diphosphate (ADP), adenosine triphosphate (ATP), and inorganic phosphates with zinc(II)-dipicolylamine-containing gold nanoparticles. Org Biomol Chem 2021; 19:3893-3900. [PMID: 33949587 DOI: 10.1039/d1ob00341k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mixed monolayer-protected gold nanoparticles containing surface-bound triethylene glycol and dipicolylamine groups aggregated in water/methanol, 1 : 2 (v/v) in the presence of nucleotides, if the solution also contained zinc(ii) nitrate to convert the dipicolylamine units into the corresponding zinc complexes. Nanoparticle aggregation could be followed with the naked eye by the colour change of the solution from red to purple followed by nanoparticle precipitation. The sensitivity was highest for adenosine triphosphate (ATP), which could be detected at concentrations >10 μM, and decreased over adenosine diphosphate (ADP) to adenosine monophosphate (AMP), consistent with the typically higher affinity of zinc(ii)-dipicolylamine-derived receptors for higher charged nucleotides. Inorganic sodium diphosphate and triphosphate interfered in the assay by also inducing nanoparticle aggregation. However, while the nucleotide-induced aggregates persisted even at higher analyte concentrations, the nanoparticles that were precipitated with inorganic salts redissolved again when the salt concentration was increased. The thus resulting solutions retained their ability to respond to nucleotides, but they now preferentially responded to AMP. Accordingly, AMP could be sensed selectively at concentrations ≥50 μM in an aqueous environment, even in the presence of other nucleotides and inorganic anions. This work thus introduces a novel approach for the sensing of a nucleotide that is often the most difficult analyte to detect with other assays.
Collapse
Affiliation(s)
- Lena Reinke
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Christine Müller-Renno
- Technische Universität Kaiserslautern, Fachbereich Physik und Forschungszentrum OPTIMAS, AG Grenzflächen, Nanomaterialien und Biophysik, Erwin-Schrödinger-Straße 56, 67663 Kaiserslautern, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße 54, 67663 Kaiserslautern, Germany.
| |
Collapse
|