51
|
Xu W, Pang C, Song C, Qian J, Feola S, Cerullo V, Fan L, Yu H, Lehto VP. Black porous silicon as a photothermal agent and immunoadjuvant for efficient antitumor immunotherapy. Acta Biomater 2022; 152:473-483. [PMID: 36087872 DOI: 10.1016/j.actbio.2022.08.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 08/22/2022] [Accepted: 08/30/2022] [Indexed: 02/06/2023]
Abstract
Photothermal therapy (PTT) in combination with other treatment modalities has shown great potential to activate immunotherapy against tumor metastasis. However, the nanoparticles (NPs) that generate PTT have served as the photothermal agent only. Moreover, researchers have widely utilized highly immunogenic tumor models to evaluate the immune response of these NPs thus giving over-optimistic results. In the present study black porous silicon (BPSi) NPs were developed to serve as both the photothermal agent and the adjuvant for PTT-based antitumor immunotherapy. We found that the poorly immunogenic tumor models such as B16 are more valid to evaluate NP-based immunotherapy than the widely used immunogenic models such as CT26. Based on the B16 cancer model, a cocktail regimen was developed that combined BPSi-based PTT with doxorubicin (DOX) and cytosine-phosphate-guanosine (CpG). BPSi-based PTT was an important trigger to activate the specific immunotherapy to inhibit tumor growth by featuring the selective upregulation of TNF-α. Either by adding a low dose DOX or by prolonging the laser heating time, a similar efficacy of immunotherapy was evoked to inhibit tumor growth. Moreover, BPSi acted as a co-adjuvant for CpG to significantly boost the immunotherapy. The present study demonstrates that the BPSi-based regimen is a potent and safe antitumor immunotherapy modality. Moreover, our study highlighted that tuning the laser heating parameters of PTT is an alternative to the toxic cytostatic to evoke immunotherapy, paving the way to optimize the PTT-based combination therapy for enhanced efficacy and decreased side effects. STATEMENT OF SIGNIFICANCE: Tumor metastasis causes directly or indirectly more than 90% of cancer deaths. Combination of photothermal therapy (PTT), chemotherapy and immunotherapy based on nanoparticles (NPs) has shown great potential to inhibit distant and metastatic tumors. However, these NPs typically act only as photothermal agents and many of them have been evaluated with immunogenic tumor models. The present study developed black porous silicon working as both the photothermal conversion agent and the immunoadjuvant to inhibit distant tumor. It was recognized that the poorly immunogenic tumor model B16 is more appropriate to evaluate immunotherapy than the widely used immunogenic model CT26. The coordination mechanism of the PTT-based combination therapy regimen was discovered in detail, paving the way to optimize cancer immunotherapy for enhanced efficacy and decreased side effects.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| | - Cui Pang
- Department of Pharmaceutical Chemistry and Analysis, Airforce Medical University, 169th Changle West Road, Xi'an, Shaanxi 710032, China; Department of Oncology, The Air Force Hospital from Eastern Theater of PLA, Nanjing 210001, China
| | - Chaojun Song
- School of Life Science, Northwestern Polytechnical University, Xi'an 710032, China
| | - Jing Qian
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland; College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sara Feola
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Vincenzo Cerullo
- Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Li Fan
- Department of Pharmaceutical Chemistry and Analysis, Airforce Medical University, 169th Changle West Road, Xi'an, Shaanxi 710032, China.
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Vesa-Pekka Lehto
- Department of Applied Physics, University of Eastern Finland, Kuopio 70211, Finland.
| |
Collapse
|
52
|
Lv C, Kang W, Liu S, Yang P, Nishina Y, Ge S, Bianco A, Ma B. Growth of ZIF-8 Nanoparticles In Situ on Graphene Oxide Nanosheets: A Multifunctional Nanoplatform for Combined Ion-Interference and Photothermal Therapy. ACS NANO 2022; 16:11428-11443. [PMID: 35816172 DOI: 10.1021/acsnano.2c05532] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of intracellular ions' overload to interrupt normal bioprocesses and cause cell death has been developed as an efficient strategy (named as ion-interference therapy/IIT) to treat cancer. In this study, we design a multifunctional nanoplatform (called BSArGO@ZIF-8 NSs) by in situ growth of metal organic framework nanoparticles (ZIF-8 NPs) onto the graphene oxide (GO) surface, subsequently reduced by ascorbic acid and modified by bovine serum albumin. This nanocomplex causes the intracellular overload of Zn2+, an increase of reactive oxygen species (ROS), and exerts a broad-spectrum lethality to different kinds of cancer cells. BSArGO@ZIF-8 NSs can promote cell apoptosis by initiating bim (a pro-apoptotic protein)-mediated mitochondrial apoptotic events, up-regulating PUMA/NOXA expression, and down-regulating the level of Bid/p53AIP1. Meanwhile, Zn2+ excess triggers cellular dysfunction and mitochondria damage by activating the autophagy signaling pathways and disturbing the intracellular environmental homeostasis. Combined with the photothermal effect of reduced GO (rGO), BSArGO@ZIF-8 NSs mediated ion-interference and photothermal combined therapy leads to effective apoptosis and inhibits cell proliferation and angiogenesis, bringing a higher efficacy in tumor suppression in vivo. This designed Zn-based multifunctional nanoplatform will allow promoting further the development of IIT and the corresponding combined cancer therapy strategy.
Collapse
Affiliation(s)
- Chunxu Lv
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Wenyan Kang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shuo Liu
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Pishan Yang
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
53
|
Wen F, Li P, Meng H, Yan H, Huang X, Hao C, Su W. Nitrogen-doped carbon dots/curcumin nanocomposite for combined Photodynamic/photothermal dual-mode antibacterial therapy. Photodiagnosis Photodyn Ther 2022; 39:103033. [PMID: 35905831 DOI: 10.1016/j.pdpdt.2022.103033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/07/2023]
Abstract
Due to their excellent photophysical properties, carbon quantum dots have great potential in biomedical and drug delivery fields. In this study, nitrogen-doped carbon quantum dots with good water solubility were prepared using citric acid and ethylenediamine as precursors, and compounded with curcumin, a photosensitive component, to produce composite nanomaterials with photodynamic therapy and synergistic photothermal therapy. The formation of nitrogen-doped carbon quantum dots and composite nanomaterials was verified using physical and optical means. In addition, the composite nanomaterials produced single-linear oxygen and exacerbated the increase of solution temperature under blue (405 nm) and near-infrared (808 nm) light irradiation, respectively. The plate counting method showed that the composite nanomaterials exhibited good photodynamic synergistic photothermal antibacterial properties against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus under dual light source (405+808 nm) irradiation, which improved the photoinactivation of curcumin against bacteria. In addition, the composite nanomaterials exhibited low toxicity and good hemocompatibility. These experimental results suggested that the composite nanomaterials showed great potential in a multimodal photodynamic therapy synergistic photothermal treatment platform.
Collapse
Affiliation(s)
- Fangzhou Wen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiyuan Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Hongrong Meng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Hongjun Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaodong Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| | - Cui Hao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
54
|
Hwang J, An EK, Kim SJ, Zhang W, Jin JO. Escherichia coli Mimetic Gold Nanorod-Mediated Photo- and Immunotherapy for Treating Cancer and Its Metastasis. ACS NANO 2022; 16:8472-8483. [PMID: 35466668 DOI: 10.1021/acsnano.2c03379] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Most cancer-related deaths are due to metastasis or recurrence. Therefore, the ultimate goal of cancer therapy will be to treat metastatic and recurrent cancers. Combination therapy for cancer will be one of trial for effective treating metastasis and recurrence. In this study, Escherichia coli-mimetic nanomaterials are synthesized using Escherichia coli membrane proteins, adhesion proteins, and gold nanorods, which are named E. coli mimetic AuNRs (ECA), for combination therapy against cancer and its recurrence. ECA treatment with 808 nm laser irradiation eliminates CT-26 or 4T1 tumors via a photothermal effect. ECA with laser irradiation induces activation of immune cells in the tumor-draining lymph nodes. The mice cured from CT-26 or 4T1 tumor by ECA are rechallenged with those cancer in the lung metastatic form, and the results showed that ECA treatment for the first CT-26 or 4T1 tumor challenge prevents cancer infiltration to the lung in the second challenge. This preventive effect of ECA against tumor growth in the second challenge is aided by cancer antigen-specific T cell immunity. Overall, these findings show that ECA is a nanomaterial with dual functions as a photothermal therapy for treating primary cancers and as immunotherapy for preventing recurrence and metastasis.
Collapse
Affiliation(s)
- Juyoung Hwang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Eun-Koung An
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - So-Jung Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Jun-O Jin
- Shanghai Public Health Clinical Center & Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 201508, China
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, 38541, South Korea
| |
Collapse
|
55
|
Chang W, Wang J, Zhang J, Ling Q, Li Y, Wang J. High Performance Gold Nanorods@DNA Self-Assembled Drug-Loading System for Cancer Thermo-Chemotherapy in the Second Near-Infrared Optical Window. Pharmaceutics 2022; 14:pharmaceutics14051110. [PMID: 35631696 PMCID: PMC9145609 DOI: 10.3390/pharmaceutics14051110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
In terms of synergistic cancer therapy, biological nanomaterials with a second near-infrared (NIR-II) window response can greatly increase photothermal effects and photoacoustic imaging performance. Herein, we report a novel stimuli-responsive multifunctional drug-loading system which was constructed by integrating miniature gold nanorods (GNR) as the NIR-II photothermal nanorods and cyclic ternary aptamer (CTA) composition as a carrier for chemotherapy drugs. In this system, doxorubicin hydrochloride (DOX, a chemotherapy drug) binds to the G-C base pairs of the CTA, which exhibited a controlled release behavior based on the instability of G-C base pairs in the slightly acidic tumor microenvironment. Upon the 1064 nm (NIR-II biowindow) laser irradiation, the strong photothermal and promoted cargo release properties endow gold nanorods@CTA (GNR@CTA) nanoparticles displaying excellent synergistic anti-cancer effect. Moreover, the GNR@CTA of NIR also possesses thermal imaging and photoacoustic (PA) imaging properties due to the strong NIR region absorbance. This work enables to obtaining a stimuli-responsive “all-in-one” nanocarrier, which are promising candidate for bimodal imaging diagnosis and chemo-photothermal synergistic therapy.
Collapse
Affiliation(s)
- Wei Chang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Junfeng Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Jing Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
| | - Qing Ling
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Anhui Engineering Technology Research Center of Biochemical Pharmaceuticals, Faculty of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Yumei Li
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei 230032, China; (W.C.); (J.W.); (J.Z.); (Q.L.)
- Correspondence: (Y.L.); (J.W.); Tel.: +86-(13)-055-271-587 (Y.L.); +86-(13)-055-165-161-176 (J.W.)
| |
Collapse
|
56
|
Yang Y, Zan J, Shuai Y, Yang L, Zhang L, Zhang H, Wang D, Peng S, Shuai C. In Situ Growth of a Metal-Organic Framework on Graphene Oxide for the Chemo-Photothermal Therapy of Bacterial Infection in Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21996-22005. [PMID: 35512272 DOI: 10.1021/acsami.2c04841] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial infection with high morbidity (>30%) seriously affects the defect's healing after bone transplantation. To this end, chemotherapy and photothermal therapy have been utilized for antibacterial treatment owing to their high selectivity and minimal toxicity. However, they also face several dilemmas. For example, bacterial biofilms prevented the penetration of antibacterial agents and local temperatures (over 70 °C) caused by the photothermal therapy damaged normal tissue. Herein, a co-dispersion nanosystem with chemo-photothermal function was constructed via the in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on graphene oxide (GO) nanosheets. In this nanosystem, GO generates a local temperature (∼50 °C) to increase the permeability of a bacterial biofilm under near-infrared laser irradiation. Then, Zn ions released by ZIF-8 seized this chance to react with the bacterial membrane and inactivate it, thus realizing efficient sterilization in a low-temperature environment. This antibacterial system was incorporated into a poly-l-lactic acid scaffold for bone repair. Results showed that the scaffold showed a high antibacterial rate of 85% against both Escherichia coli and Staphylococcus aureus. In vitro cell tests showed that the scaffold promoted cell proliferation.
Collapse
Affiliation(s)
- Youwen Yang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Jun Zan
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liuyimei Yang
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China
| | - Lemin Zhang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Hanqing Zhang
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Dongsheng Wang
- Key Laboratory of Construction Hydraulic Robots of Anhui Higher Education Institutes, Tongling University, Tongling 244000, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha 410078, China
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
- School of Energy and Machinery Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Cijun Shuai
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| |
Collapse
|
57
|
Yang K, Long F, Liu W, Zhang Z, Zhao S, Wang B, Zou Y, Lan M, Yuan J, Song X, Lin C. A-DA'D-A Structured Organic Phototheranostics for NIR-II Fluorescence/Photoacoustic Imaging-Guided Photothermal and Photodynamic Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18043-18052. [PMID: 35420773 DOI: 10.1021/acsami.1c22444] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multimodal imaging-guided combinational phototherapies triggered by a single near-infrared (NIR) laser are highly desirable. However, their development is still a big challenge. Herein, we have developed an "acceptor-donor-acceptor'-donor-acceptor" structured organic phototheranostics (Y16-Pr) with strong light-harvesting ability in the NIR region. After being modified with polyethylene glycol (PEG), the obtained biocompatible nanoparticles (Y16-Pr-PEG NPs) could conduct NIR-II fluorescence imaging (FLI) and photoacoustic imaging (PAI) and perform photothermal therapy (PTT) and photodynamic therapy (PDT) simultaneously. Notably, Y16-Pr-PEG NPs showed an impressive photothermal conversion efficiency (PCE) of 82.4% under 808 nm laser irradiation. The irradiated NPs could also produce hydroxyl radicals (•OH) and singlet oxygen (1O2) for type I and type II PDT, respectively. In vivo and in vitro experiments revealed that the Y16-Pr-PEG NPs significantly inhibit tumor cell growth without apparent toxic side effects under laser irradiation. Overall, the single-laser-triggered multifunctional phototheranostic Y16-Pr-PEG NPs can achieve NIR-II FLI/PAI-guided synergistic PTT/PDT against tumors.
Collapse
Affiliation(s)
- Ke Yang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Wei Liu
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zequn Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| | - Shaojing Zhao
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Benhua Wang
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yingping Zou
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minhuan Lan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun Yuan
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiangzhi Song
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, P. R. China
| |
Collapse
|
58
|
Tang L, Xiao Q, Yin Y, Mei Y, Li J, Xu L, Gao H, Wang W. An enzyme-responsive and NIR-triggered lipid-polymer hybrid nanoplatform for synergistic photothermal/chemo cancer therapy. Biomater Sci 2022; 10:2370-2383. [PMID: 35383799 DOI: 10.1039/d2bm00216g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of photothermal therapy (PTT) and chemotherapy is an emerging therapeutic strategy with promising clinical prospects in cancer treatment. Despite the huge progress achieved in the past years, a number of obstacles still hamper the therapeutic efficacy of this synergistic modality such as uneven heat distribution, lack of targetability of anti-cancer agents and dosage-related side effects. Thus, developing a nanoplatform for targeted drug delivery against cancer is of great necessity. Herein, a lipid-polymer hybrid nanosystem (LP/ID) based on polyethyleneimine (PEI)-lecithin-polyethylene glycol (PEG) was fabricated to co-load indocyanine green (ICG) and dichloroacetate (DCA) for combined photothermal/chemotherapy. DCA and ICG were linked to the PEI backbone to form a dense hydrophobic core through amide bonds and electrostatic interactions, which increased the payload of DCA and ICG as well as achieved enzyme-responsive drug release because of the overexpressed amidase in tumor cells. Lecithin and DSPE-PEG2000 self-assembled around the hydrophobic complexes to obtain prolonged blood circulation and attenuated systemic toxicity of the hybrid nanosystem. The prepared LP/ID exhibited favourable stability in a physiological environment, good tumor imaging properties, and satisfactory photothermal/chemotherapeutic performance. Moreover, LP/ID could also enhance the cellular uptake and tumor retention capacity in comparison with free drug administration. Notably, by co-loading two therapeutic agents with different anti-cancer mechanisms, an obvious inhibitory effect on tumor growth was observed with negligible damage to normal tissues and organs because of the synergistic photothermal/chemotherapy effect, indicating the great potential of LP/ID as a robust nanoplatform for cancer treatment.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Qiaqia Xiao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Lin Xu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| | - Hongbin Gao
- Department of Pharmacy, Baoshan Branch, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200444, P.R. China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China. .,NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, Jiangsu, P.R. China.
| |
Collapse
|
59
|
Li W, Fan Y, Lin J, Yu P, Wang Z, Ning C. Near‐Infrared Light‐Activatable Bismuth‐based Nanomaterials for Antibacterial and Antitumor Treatment. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Li
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Youzhun Fan
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Jian Lin
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Peng Yu
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Zhengao Wang
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
| | - Chengyun Ning
- School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou 510006 P. R. China
- Metallic Materials Surface Functionalization Engineering Research Center of Guangdong Province South China University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
60
|
Experimental Investigation on Mid-Temperature Thermal Stability of WO2.9-SiC Binary Nanofluid. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
61
|
Zhu S, Wang DQ, Sun XH, Li XY, Xiao HF, Sun WR, Wang XT, Li YJ, Wang PY, Xie SY, Wang RR. Mitochondria-Targeted Degradable Nanocomposite Combined with Laser and Ultrasound for Synergistic Tumor Therapies. J Biomed Nanotechnol 2022; 18:763-777. [PMID: 35715902 DOI: 10.1166/jbn.2022.3287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although the development of safe and efficient cancer therapeutic agents is essential, this process remains challenging. In this study, a mitochondria-targeted degradable nanoplatform (PDA-MnO₂-IR780) for synergistic photothermal, photodynamic, and sonodynamic tumor treatment was investigated. PDA-MnO₂-IR780 exhibits superior photothermal properties owing to the integration of polydopamine, MnO₂, and IR780. IR780, a photosensitizer and sonosensitizer, was used for photodynamic therapy and sonodynamic therapy. When PDA-MnO₂-IR780 was delivered to the tumor site, MnO₂ was decomposed by hydrogen peroxide, producing Mn2+ and oxygen. Meanwhile, alleviating tumor hypoxia promoted the production of reactive oxygen species during photodynamic therapy and sonodynamic therapy. Moreover, large amounts of reactive oxygen species could reduce the expression of heat shock proteins and increase the heat sensitivity of tumor cells, thereby improving the photothermal treatment effect. In turn, hyperthermia caused by photothermal therapy accelerated the production of reactive oxygen species in photodynamic therapy. IR780 selectively accumulation in mitochondria also promoted tumor apoptosis. In this system, the mutual promotion of photothermal therapy and photodynamic therapy/sonodynamic therapy had an enhanced therapeutic effect. Moreover, the responsive degradable characteristic of PDA-MnO₂-IR780 in the tumor microenvironment ensured excellent biological safety. These results reveal a great potential of PDA-MnO₂-IR780 for safe and highly-efficiency synergistic therapy for cancer.
Collapse
Affiliation(s)
- Shuang Zhu
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - De-Qiang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xue-Hua Sun
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264003, PR China
| | - Xin-Yu Li
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Hui-Fang Xiao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Wan-Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xing-Tao Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - You-Jie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Ping-Yu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Shu-Yang Xie
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Ran-Ran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| |
Collapse
|
62
|
Ren D, Williams GR, Zhang Y, Ren R, Lou J, Zhu LM. Mesoporous Doxorubicin-Loaded Polydopamine Nanoparticles Coated with a Platelet Membrane Suppress Tumor Growth in a Murine Model of Human Breast Cancer. ACS APPLIED BIO MATERIALS 2022; 5:123-133. [PMID: 35014822 DOI: 10.1021/acsabm.1c00926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bringing together photothermal therapy and chemotherapy (photothermal-chemotherapy, PT-CT) is a highly promising clinical approach but requires the development of intelligent multifunctional delivery vectors. In this work, we prepared mesoporous polydopamine nanoparticles (MPDA NPs) loaded with the chemotherapeutic drug doxorubicin (DOX). These NPs were then coated with the platelet membrane (PLTM). The coated MPDA NPs are spherical and clearly mesoporous in structure. They have a particle size of approximately 184 nm and pore size of ca. 45 nm. The NPs are potent photothermal agents and efficient DOX carriers, with increased rates of drug release observed in vitro in conditions representative of the tumor microenvironment. The NPs are preferentially taken up by cancer cells but not by macrophage cells, and while cytocompatible with healthy cells are highly toxic to cancer cells. An in vivo murine model of human breast cancer revealed that the NPs can markedly slow the growth of a tumor (ca. 9-fold smaller after 14 days' treatment), have extended pharmacokinetics compared to free DOX (with DOX still detectable in the bloodstream after 24 h when the NPs are applied), and are highly targeted with minimal off-site effects on the heart, liver, spleen, kidney, and lungs.
Collapse
Affiliation(s)
- Dandan Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Yanyan Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Rong Ren
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiadong Lou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Li-Min Zhu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
63
|
A Narrative Review of Cell-Based Approaches for Cranial Bone Regeneration. Pharmaceutics 2022; 14:pharmaceutics14010132. [PMID: 35057028 PMCID: PMC8781797 DOI: 10.3390/pharmaceutics14010132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 01/08/2023] Open
Abstract
Current cranial repair techniques combine the use of autologous bone grafts and biomaterials. In addition to their association with harvesting morbidity, autografts are often limited by insufficient quantity of bone stock. Biomaterials lead to better outcomes, but their effectiveness is often compromised by the unpredictable lack of integration and structural failure. Bone tissue engineering offers the promising alternative of generating constructs composed of instructive biomaterials including cells or cell-secreted products, which could enhance the outcome of reconstructive treatments. This review focuses on cell-based approaches with potential to regenerate calvarial bone defects, including human studies and preclinical research. Further, we discuss strategies to deliver extracellular matrix, conditioned media and extracellular vesicles derived from cell cultures. Recent advances in 3D printing and bioprinting techniques that appear to be promising for cranial reconstruction are also discussed. Finally, we review cell-based gene therapy approaches, covering both unregulated and regulated gene switches that can create spatiotemporal patterns of transgenic therapeutic molecules. In summary, this review provides an overview of the current developments in cell-based strategies with potential to enhance the surgical armamentarium for regenerating cranial vault defects.
Collapse
|
64
|
Li Y, Yu H, Ren J, Lu G, Cao Y, Xu Z, Kang Y, Xue P. Acidic TME-Responsive Nano-Bi 2 Se 3 @MnCaP as a NIR-II-Triggered Free Radical Generator for Hypoxia-Irrelevant Phototherapy with High Specificity and Immunogenicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104302. [PMID: 34761867 DOI: 10.1002/smll.202104302] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Here, acidic tumor microenvironment (TME)-responsive nano-Bi2 Se3 @MnCaP, as a near-infrared-II (NIR-II) biowindow-triggered free radical generator for hypoxia-irrelevant phototherapy, is elaborately developed by biomimetic mineralization of MnCaP onto 2, 2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH)-loaded mesoporous nano-Bi2 Se3 to form Bi2 Se3 /AIPH@MnCaP (BAM). Surface mineral of MnCaP can be degraded under mild acidity, leading to the release of both Mn2+ and AIPH. The leached Mn2+ not only facilitates chemodynamic therapy (CDT) via hydroxyl radicals (• OH) from Mn2+ -mediated Fenton-like reaction but also acts as contrast agent for magnetic resonance imaging. In another aspect, the splendid photothermal conversion capacity of BAM enables a rapid hyperthermia generation under NIR-II laser irradiation for photothermal therapy (PTT). Simultaneously, the local thermal shock can induce the disintegration of AIPH to generate alkyl radicals (• R) for thermodynamic therapy (TDT) and accelerate Fenton-like reaction rate to augment CDT efficacy. The strong synergistic effects from cooperative CDT/PTT/TDT are applied to 4T1 tumor suppression with minimal side effects. Importantly, the combination therapy can effectively trigger immunogenetic cell death and enhance antitumor immunity for systemic tumor eradication. Collectively, this proof-of-concept study demonstrates a more efficacious and safer strategy for oxygenation-independent phototherapy, which holds a good potential for clinical translation in cancer management.
Collapse
Affiliation(s)
- Yongcan Li
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Honglian Yu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Junjie Ren
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Guangjie Lu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| |
Collapse
|
65
|
Wang Z, Peng Y, Zhou Y, Zhang S, Tan J, Li H, He D, Deng L. Pd-Cu nanoalloy for dual stimuli-responsive chemo-photothermal therapy against pathogenic biofilm bacteria. Acta Biomater 2022; 137:276-289. [PMID: 34715367 DOI: 10.1016/j.actbio.2021.10.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/02/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
Photothermal therapy (PTT) is a promising strategy for antimicrobial therapy. However, the application of PTT to treat bacterial infections remains a challenge as the high temperature required for bacterial elimination can partly damage healthy tissues. Selecting the appropriate treatment temperature is therefore a key factor for PTT. In this work, we designed a near-infrared/pH dual stimuli-responsive activated procedural antibacterial system based on zeolitic imidazolate framework-8 (ZIF-8), which was bottom-up synthesized and utilized to encapsulate both Pd-Cu nanoalloy (PC) and the antibiotic amoxicillin (AMO). This procedural antibacterial therapy comprises chemotherapy (CT) and PTT. The former disrupts the bacterial cell wall by releasing AMO in an acidic environment, which depends on the sensitive response of ZIF-8 to pH value change. With the progression in time, the AMO release rate decreased gradually. The latter can then significantly stimulate drug release and further complete the antibacterial effect. This impactful attack consisted of two waves that constitute the procedural therapy for bacterial infection. Accordingly, the treatment temperature required for antibacterial therapy can be significantly lowered under this mode of treatment. This antibacterial system has a significant therapeutic effect on planktonic bacteria (G+/G-) and their biofilms and also has good biocompatibility; thus, it provides a promising strategy to develop an effective and safe treatment against bacterial infections. STATEMENT OF SIGNIFICANCE: We have developed a near infrared/pH dual stimuli-responsive activated procedural antibacterial system that combines enhanced antibiotic delivery with photothermal therapy and has highly efficient antimicrobial activity. The antibacterial effect of this therapy was based on two mechanisms of action: chemotherapy, in which the bacterial cell wall was first destroyed, followed by photothermal therapy. After exposure to irradiation with an 808 nm laser, the inhibition rates were 99.8% and 99.1% for Staphylococcus aureus and Pseudomonas aeruginosa, respectively, and the clearance rates for their established biofilms were 75.3% and 74.8%, respectively. Thus, this procedural antibacterial therapy has shown great potentiality for use in the photothermal therapy of bacterial infectious diseases, including biofilm elimination.
Collapse
Affiliation(s)
- Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Yanling Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Shengnan Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Huan Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China; Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China; Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.
| |
Collapse
|
66
|
Liang P, Mao L, Dong Y, Zhao Z, Sun Q, Mazhar M, Ma Y, Yang S, Ren W. Design and Application of Near-Infrared Nanomaterial-Liposome Hybrid Nanocarriers for Cancer Photothermal Therapy. Pharmaceutics 2021; 13:2070. [PMID: 34959351 PMCID: PMC8704010 DOI: 10.3390/pharmaceutics13122070] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Liposomes are attractive carriers for targeted and controlled drug delivery receiving increasing attention in cancer photothermal therapy. However, the field of creating near-infrared nanomaterial-liposome hybrid nanocarriers (NIRN-Lips) is relatively little understood. The hybrid nanocarriers combine the dual superiority of nanomaterials and liposomes, with more stable particles, enhanced photoluminescence, higher tumor permeability, better tumor-targeted drug delivery, stimulus-responsive drug release, and thus exhibiting better anti-tumor efficacy. Herein, this review covers the liposomes supported various types of near-infrared nanomaterials, including gold-based nanomaterials, carbon-based nanomaterials, and semiconductor quantum dots. Specifically, the NIRN-Lips are described in terms of their feature, synthesis, and drug-release mechanism. The design considerations of NIRN-Lips are highlighted. Further, we briefly introduced the photothermal conversion mechanism of NIRNs and the cell death mechanism induced by photothermal therapy. Subsequently, we provided a brief conclusion of NIRNs-Lips applied in cancer photothermal therapy. Finally, we discussed a synopsis of associated challenges and future perspectives for the applications of NIRN-Lips in cancer photothermal therapy.
Collapse
Affiliation(s)
- Pan Liang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Linshen Mao
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yanli Dong
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Zhenwen Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry Chinese Academy of Sciences, Beijing Mass Spectrum Center, Beijing 100190, China;
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Maryam Mazhar
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yining Ma
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Sijin Yang
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| | - Wei Ren
- National Traditional Chinese Medicine Clinical Research Base and Drug Research Center of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (P.L.); (L.M.); (Y.D.); (Q.S.); (M.M.); (Y.M.)
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
67
|
Hu W, Zhen W, Zhang M, Wang W, Jia X, An S, Wang Y, Guo Z, Jiang X. Development of Nickel Selenide@polydopamine Nanocomposites for Magnetic Resonance Imaging Guided NIR-II Photothermal Therapy. Adv Healthc Mater 2021; 10:e2101542. [PMID: 34643341 DOI: 10.1002/adhm.202101542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The penetration depth of near-infrared laser has greatly restricted the development of most photothermal agents. Recently, photothermal agents in the second near-infrared (NIR-II) window have drawn great attention as they can overcome above barrier. Herein, a novel "all in one" NIR-II responsive nanoplatform (nickel selenide @polydopamine nanocomposites, NiSe@PDA NCs) based on in situ coating the polydopamine (PDA) on the surface of biomineralized nickel selenide nanoparticles (NiSe NPs) for dual-model imaging-guided photothermal therapy is reported. Under the illumination of NIR-II laser (1064 nm), the photothermal conversion efficiency of NiSe@PDA NCs can reach 48.4%, which is higher than that of single NiSe NPs due to the enhanced molar extinction coefficient. In addition, because of the paramagnetic effect of NiSe NPs, the constructed NiSe@PDA NCs can be acted as T1 contrast agent for magnetic resonance imaging (MRI). Most importantly, the MRI contrast effect is enhanced with the coating of PDA layer due to the loose structure of PDA. Ultimately, both in vitro and in vivo experiments demonstrate that the developed NCs can achieve efficient MRI-guided photothermal therapy for treating malignant tumor. Therefore, the designed NiSe@PDA NCs with excellent features show great potential for clinical MRI-guided cancer therapy.
Collapse
Affiliation(s)
- Wenxue Hu
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Wenyao Zhen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Mengchao Zhang
- The Department of Radiology China‐Japan Union Hospital of Jilin University Changchun Jilin 130022 China
| | - Wei Wang
- The Department of Radiology China‐Japan Union Hospital of Jilin University Changchun Jilin 130022 China
| | - Xiaodan Jia
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Shangjie An
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yue Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Zhuo Guo
- Shenyang University of Chemical Technology Shenyang Liaoning 110142 China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
68
|
Onay M, Çetinkaya D, Özer A, Özen A, Can C, Yelken B. Do Hipnotic Anesthetic Agents Used in Patients Undergoing Radical Prostatectomy Cause A Change in Their Neutrophil/Lymphocyte Ratio? Retrospective Study. JOURNAL OF UROLOGICAL SURGERY 2021. [DOI: 10.4274/jus.galenos.2021.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
69
|
Pan S, Goudoulas TB, Jeevanandam J, Tan KX, Chowdhury S, Danquah MK. Therapeutic Applications of Metal and Metal-Oxide Nanoparticles: Dermato-Cosmetic Perspectives. Front Bioeng Biotechnol 2021; 9:724499. [PMID: 34490229 PMCID: PMC8417693 DOI: 10.3389/fbioe.2021.724499] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 07/27/2021] [Indexed: 01/11/2023] Open
Abstract
Invention of novel nanomaterials guaranteeing enhanced biomedical performance in diagnostics and therapeutics, is a perpetual initiative. In this regard, the upsurge and widespread usage of nanoparticles is a ubiquitous phenomenon, focusing predominantly on the application of submicroscopic (< 100 nm) particles. While this is facilitated attributing to their wide range of benefits, a major challenge is to create and maintain a balance, by alleviating the associated toxicity levels. In this minireview, we collate and discuss particularly recent advancements in therapeutic applications of metal and metal oxide nanoparticles in skin and cosmetic applications. On the one hand, we outline the dermatological intrusions, including applications in wound healing. On the other hand, we keep track of the recent trends in the development of cosmeceuticals via nanoparticle engrossments. The dermato-cosmetic applications of metal and metal oxide nanoparticles encompass diverse aspects, including targeted, controlled drug release, and conferring ultraviolet and antimicrobial protections to the skin. Additionally, we deliberate on the critical aspects in comprehending the advantage of rheological assessments, while characterizing the nanoparticulate systems. As an illustration, we single out psoriasis, to capture and comment on the nanodermatology-based curative standpoints. Finally, we lay a broad outlook and examine the imminent prospects.
Collapse
Affiliation(s)
- Sharadwata Pan
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Thomas B Goudoulas
- TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Kei Xian Tan
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang, Singapore
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN, United States
| |
Collapse
|