51
|
Tong F, Wang Y, Xu Y, Zhou Y, He S, Du Y, Yang W, Lei T, Song Y, Gong T, Gao H. MMP-2-triggered, mitochondria-targeted PROTAC-PDT therapy of breast cancer and brain metastases inhibition. Nat Commun 2024; 15:10382. [PMID: 39613781 DOI: 10.1038/s41467-024-54854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Proteolytic targeting chimera (PROTAC) technology is a protein-blocking technique and induces antitumor effects, with potential advantages. However, its effect is limited by insufficient distribution and accumulation in tumors. Herein, a transformable nanomedicine (dBET6@CFMPD) with mitochondrial targeting capacity is designed and constructed to combine PROTAC with photodynamic therapy (PDT). In this work, we demonstrate that dBET6@CFMPD exhibits great biodistribution and retention, and can induce potent antitumor response to suppress primary and metastatic tumors, becoming a nanomedicine with potential in cancer combination therapy.
Collapse
Affiliation(s)
- Fan Tong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanyan Xu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yang Zhou
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570200, China
| | - Siqin He
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yufan Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wenqin Yang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ting Lei
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yujun Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
52
|
Shi J, Wang L, Zeng X, Xie C, Meng Z, Campbell A, Wang L, Fan H, Sun H. Precision-engineered PROTACs minimize off-tissue effects in cancer therapy. Front Mol Biosci 2024; 11:1505255. [PMID: 39649701 PMCID: PMC11621628 DOI: 10.3389/fmolb.2024.1505255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/11/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) offer a groundbreaking approach to selectively degrade disease-related proteins by utilizing the ubiquitin-proteasome system. While this strategy shows great potential in preclinical and clinical settings, off-tissue effects remain a major challenge, leading to toxicity in healthy tissues. This review explores recent advancements aimed at improving PROTAC specificity, including tumor-specific ligand-directed PROTACs, pro-PROTACs activated in tumor environments, and E3 ligase overexpression strategies. Innovations such as PEGylation and nanotechnology also play a role in optimizing PROTAC efficacy. These developments hold promise for safer, more effective cancer therapies, though challenges remain for clinical translation.
Collapse
Affiliation(s)
- Jianghua Shi
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Luo Wang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xuanwei Zeng
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Chengzhi Xie
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Anahit Campbell
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Lulu Wang
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Heli Fan
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Huabing Sun
- State Key Laboratory of Experimental Hematology, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, The School of Pharmacy, Tianjin Medical University, Tianjin, China
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
53
|
Yao Y, Wu M, Wang Y, Liao Z, Yang Y, Liu Y, Shi J, Wu W, Wei X, Xu J, Guo Y, Dong X, Che J, Wang J, Gu Z. An Oral PROTAC Targeting HPK1 Degradation Potentiates Anti-Solid Tumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411454. [PMID: 39568237 DOI: 10.1002/adma.202411454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/25/2024] [Indexed: 11/22/2024]
Abstract
Hematopoietic progenitor pinase1 (HPK1) knockout has been identified as an efficient route to enhance anti-tumor immune response. Here, this work develops an oral proteolysis targeting chimera (PROTAC) targeting HPK1 to efficiently and selectively degrade HPK1 to augment immunotherapeutic outcomes. In a postoperative tumor model of human cervical cancer in NSG mice, the orally-administrated PROTAC can reach tumors, down-regulate HPK1 levels in locally-administrated CAR-T cells, and promote their efficiency in inhibiting solid tumor recurrence, achieving 50% partial response (PR) and 50% complete response (CR). In addition, oral administration of PROTAC can amplify the suppression capability of the anti-PD-L1 antibody on the growth of CT26 solid tumors in BALB/c mice by promoting the infiltration of CD45-positive immune cells from 0.7% to 1.5% and CD3-positive T cells from 0.2% to 0.5% within the tumors.
Collapse
Affiliation(s)
- Yuejun Yao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Mingfei Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanfang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Ziyan Liao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yinxian Yang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yun Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jiaqi Shi
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Wei Wu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xinwei Wei
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Jianchang Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Yugang Guo
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaowu Dong
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jinxin Che
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinqiang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310000, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, China, Liangzhu Laboratory, Hangzhou, 311121, China
| |
Collapse
|
54
|
Zhao M, Ma W, Liang J, Xie Y, Wei T, Zhang M, Qin J, Lao L, Tian R, Wu H, Cheng J, Li M, Liu Y, Hong L, Li G. Design, Synthesis, and Activity Evaluation of BRD4 PROTAC Based on Alkenyl Oxindole-DCAF11 Pair. J Med Chem 2024; 67:19428-19447. [PMID: 39475482 DOI: 10.1021/acs.jmedchem.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Proteolytic targeting chimera (PROTAC) represent an advanced strategy for targeting undruggable proteins, and the molecular warheads targeting E3 ligases play a crucial role. Recently, we explored an alkenyl oxindole warhead targeting the E3 ligase DCAF11 and sought to validate its potential. In this study, we synthesized a range of BRD4 PROTACs (8a-8o, 14a-14f, 22a-22m) with modified alkenyl oxindole warheads and developed a high-throughput screening system based on high-content imaging. We identified L134 (22a) as a potent BRD4 degrader, achieving BRD4 degradation (Dmax > 98%, DC50 = 7.36 nM) and demonstrating antitumor activity. Mechanically, BRD4 degradation by L134 was mediated through the ubiquitin-proteasome system in a DCAF11-dependent manner. Therefore, this study provides a rapid screening method for effective PROTACs and highlights the PROTAC L134 based on alkenyl oxindole-DCAF11 pair as a promising candidate for treating BRD4-driven cancers.
Collapse
Affiliation(s)
- Man Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjing Ma
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jinyi Liang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yubao Xie
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tianzi Wei
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ming Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jiajie Qin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Lingyin Lao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ruilin Tian
- Key University Laboratory of Metabolism and Health of Guangdong, Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Haiqiang Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention, Wuxi Center for Disease Control and Prevention, Nanjing Medical University, Wuxi 214023, China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyang Liu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guofeng Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
55
|
Zeng Z, Yang Z, Li C, Liu S, Wei W, Zhou Y, Wang S, Sui M, Li M, Lin S, Cheng Y, Hou P. Advancing Cancer Immunotherapy through Engineering New PD-L1 Degraders: A Comprehensive Study from Small Molecules to PD-L1-Specific Peptide-Drug Conjugates. J Med Chem 2024; 67:19216-19233. [PMID: 39420825 PMCID: PMC11571110 DOI: 10.1021/acs.jmedchem.4c01652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Despite the considerable achievements of antibodies targeting PD-1/PD-L1 in cancer immunotherapy, limitations in antitumor immune response and pharmacokinetics hinder their clinical adoption. Small molecules toward PD-L1 degradation signifies an innovative avenue to modulate PD-1/PD-L1 axis. Herein, we unveil a comprehensive engineering involving the development of new PD-L1 degraders based on the berberine (BBR) and palmatine (PMT) bioactive frameworks and explore their translational potential for cancer immunotherapy using a peptide-drug conjugate strategy. Chemical modifications at the O-9 position of PMT dramatically enhance the PD-L1 degradation capacity. Further conjugation of PMT degraders with an anti-PD-L1 peptide featuring disulfide linkers enables efficient GSH-specific prodrug activation, yielding synergistic immunotherapeutic benefits through both external PD-L1 blockade and internal PD-L1 degradation mechanisms. This work elucidates the compelling charm of the discovery and application of PD-L1 degraders, offering solutions to the challenges in advancing cancer immunotherapy in widespread clinics.
Collapse
Affiliation(s)
- Zekun Zeng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Zhiwei Yang
- MOE
Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed
Matter, School of Physics, Xi’an
Jiaotong University, Xi’an 710049, P. R. China
| | - Chenghao Li
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shujing Liu
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Wei Wei
- Department
of Ultrasound Medicine, The First Affiliated
Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, P. R. China
| | - Ye Zhou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Simeng Wang
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengjun Sui
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Mengdan Li
- Department
of Cardiology, The Second Affiliated Hospital
of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Shumei Lin
- Department
of Infectious Disease Medicine, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Yangyang Cheng
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| | - Peng Hou
- International
Joint Research Center for Tumor Precision Medicine of Shaanxi Province
and Department of Endocrinology, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P. R. China
| |
Collapse
|
56
|
Wang Z, Yue S, Chen X, Li J, Zhu P, Chen H, Qiu F, Xie D, Liang Y, Li D, Lu A, Liang C. Design of Murine Double Minute 2 Proteolysis Targeting Chimera Degraders with a Built-In Tumor-Targeting Ability. J Med Chem 2024; 67:18865-18882. [PMID: 39437434 DOI: 10.1021/acs.jmedchem.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules to induce the proteasomal degradation of target proteins. Currently, there are no tumor-targeting PROTACs for modulating oncogenic murine double minute 2 (MDM2). AS1411 is a tumor-targeting aptamer that specifically recognizes nucleolin (NCL) overexpressed on the surface of tumor cells. We recently repurposed AS1411 as an MDM2 recruiter since it could form an NCL-bridged ternary complex with MDM2. In this study, we design a PROTAC molecule AS1411-VH032 via conjugating AS1411 with a recruiter of von Hippel-Lindau (VHL) ligase VH032. AS1411-VH032 facilitates tumor-selective degradation of MDM2, leading to tumor shrinkage with no detectable toxicity. Besides being a molecular target, MDM2 also serves as an E3 ligase harnessed by PROTACs. Thus, we developed an AS1411-based homo-PROTAC homoAS1411, which induces tumor-specific suicide degradation of MDM2 and prevents tumor progression without causing side effects. Both AS1411-VH032 and homoAS1411 are promising MDM2 degraders with built-in tumor-targeting ability, which balances the antitumor efficacy with a favorable safety profile.
Collapse
Affiliation(s)
- Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peixi Zhu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yiying Liang
- Shenzhen LingGene Biotech Co., Ltd., Shenzhen 518055, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| |
Collapse
|
57
|
Fang X, Hu X, Li QX, Ni SF, Ruan Z. Paired Electro-Synthesis of Remote Amino Alcohols with/in H 2O. Angew Chem Int Ed Engl 2024:e202418277. [PMID: 39535322 DOI: 10.1002/anie.202418277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Amino alcohols, particularly remote amino alcohols and peptide alcohols, are valuable due to their functional diversity in biologically active compounds. However, traditional synthesis methods face significant challenges, making electrochemistry an attractive alternative. We have developed a mild and biocompatible sequential paired electrolysis strategy, leveraging copper-electrocatalysis to synthesize diverse remote amino alcohols, including unnatural peptide alcohols. Both experimental results and density functional theory (DFT) calculations demonstrated that water serves as both the hydroxyl source and the solvent, facilitating the generation of CuH with Cu(I) at the cathode, which in turn reduces the aldehyde intermediates formed during the reaction.
Collapse
Affiliation(s)
- Xinyue Fang
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Quan-Xin Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
58
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024; 10:6814-6827. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
59
|
Vukovic D, Winkelvoß D, Kapp JN, Hänny AC, Bürgisser H, Riermeier L, Udovcic A, Tiefenboeck P, Plückthun A. Protein degradation kinetics measured by microinjection and live-cell fluorescence microscopy. Sci Rep 2024; 14:27153. [PMID: 39511251 PMCID: PMC11544240 DOI: 10.1038/s41598-024-76224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
We have developed a method combining microinjection and automated fluorescence microscopy to continuously assess the degradation rate, subcellular localization and intracellular concentration of protein analytes at the single-cell level. Cells are unperturbed and grown in unaltered environmental conditions and show high viability. The injection of analytes at defined ratios and concentrations allows for a clearly defined starting point of degradation, without the entanglement of biosynthesis/uptake, often encountered in existing methods. The possibility to evaluate, add, or remove post-translational modifications prior to injection represents a powerful tool to assess minute protein degradation rate changes with high precision and allowed us to determine the absolute degradation rates caused by N-degron pathway engagement, with a focus on the role of acetylation. The low degradation rate of eGFP was found to be caused by inefficient N-terminal proteasomal unfolding. We moreover quantified the surprisingly strong influences of commonly used peptide tags and detected high variation between fluorescent proteins with regard to both protein degradation and subcellular localization. Furthermore, we have validated the use of chemically coupled dyes as robust reporters for protein degradation, and elucidated the significance of their membrane-permeability, thereby extending the applicability of our method to any protein of interest.
Collapse
Affiliation(s)
- David Vukovic
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Dorothea Winkelvoß
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jonas N Kapp
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Anna-Carina Hänny
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Héloïse Bürgisser
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Luca Riermeier
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Anto Udovcic
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Peter Tiefenboeck
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
60
|
Scott JS, Michaelides IN, Schade M. Property-based optimisation of PROTACs. RSC Med Chem 2024:d4md00769g. [PMID: 39553465 PMCID: PMC11561549 DOI: 10.1039/d4md00769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024] Open
Abstract
PROTACs are an emerging therapeutic approach towards targeted protein degradation. This article examines the leading examples of this modality that are in clinical development through the prism of their physicochemical properties. In particular, the optimisation of the various components of PROTACs together with the difficulties faced by medicinal chemists seeking to achieve oral bioavailability in this challenging space are outlined. Guidance, opinion and advice based on the authors' own experiences in this area are offered in the hope this may be useful to others working in this fascinating frontier of drug discovery.
Collapse
Affiliation(s)
- James S Scott
- Oncology R&D, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| | | | - Markus Schade
- Oncology R&D, AstraZeneca 1 Francis Crick Avenue Cambridge CB2 0AA UK
| |
Collapse
|
61
|
Wang Q, Su T, Cheng F, Zhou S, Liu X, Wang M, Xu Y, Tang R, Liao S, Dailey J, Xiao G, Yang C, Wen H, Zheng W, Wen B, Tyc KM, Liu J, Sun D, Wang S, Zhu G. Proteolysis-targeting vaccines (PROTAVs) for robust combination immunotherapy of melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616069. [PMID: 39574605 PMCID: PMC11580958 DOI: 10.1101/2024.10.01.616069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Protein/peptide subunit vaccines are promising to promote the tumor therapeutic efficacy of immune checkpoint blockade (ICB). However, current protein/peptide vaccines elicit limited antitumor T cell responses, leading to suboptimal therapeutic efficacy. Here, we present proteolysis-targeting vaccines (PROTAVs) that facilitate antigen proteolytic processing and cross-presentation to potentiate T cell responses for robust ICB combination immunotherapy of melanoma. PROTAVs are modular conjugates of protein/peptide antigens, E3 ligase-binding ligands, and linkers. In antigen-presenting cells (APCs), PROTAVs bind to E3 ligases to rapidly ubiquitinate PROTAV antigens, facilitating antigen proteolytic processing by proteasome, and thereby promoting antigen cross-presentation to T cells and potentiating CD8+ T cell responses. We developed a melanoma PROTAV using a tandem peptide of trivalent melanoma-associated antigens. Co-delivered by lipid nanoparticles (LNPs) with bivalent immunostimulant adjuvants, this PROTAV promotes the quantity and quality of melanoma-specific CD8+ T cells in mice. Further, combining PROTAV and ICB ameliorates the immunosuppressive melanoma microenvironment. As a result, PROTAV and ICB combination enhances melanoma complete regression rates and eradicated 100% large Braf V600E melanoma without recurrence in syngeneic mice. PROTAVs hold the potential for robust tumor combination immunotherapy.
Collapse
Affiliation(s)
- Qiyan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ting Su
- Department of Pharmaceutics and Center for Pharmaceutical Engineering, College of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Furong Cheng
- Department of Pharmaceutics and Center for Pharmaceutical Engineering, College of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Shurong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mi Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - You Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ri Tang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shimiao Liao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jordan Dailey
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guolan Xiao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunpeng Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanning Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weijia Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bo Wen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katarzyna M Tyc
- Department of Biostatistics, School of Public Health; Bioinformatics Shared Resource, Massey Comprehensive Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Jinze Liu
- Department of Biostatistics, School of Public Health; Bioinformatics Shared Resource, Massey Comprehensive Cancer Center; Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Bioinnovations in Brain Cancer, Biointerfaces Institute; Center for RNA Biomedicine. University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
62
|
Su JF, Xiao Y, Wei LY, Lei HY, Sun F, Wang WX, Li SH, Wang XC, Zheng J, Wang JZ. A new tau dephosphorylation-targeting chimera for the treatment of tauopathies. Acta Pharmacol Sin 2024; 45:2267-2276. [PMID: 38956416 PMCID: PMC11489737 DOI: 10.1038/s41401-024-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/26/2024] [Indexed: 07/04/2024] Open
Abstract
Abnormal accumulation of hyperphosphorylated tau protein plays a pivotal role in a collection of neurodegenerative diseases named tauopathies, including Alzheimer's disease (AD). We have recently conceptualized the design of hetero-bifunctional chimeras for selectively promoting the proximity between tau and phosphatase, thus specifically facilitating tau dephosphorylation and removal. Here, we sought to optimize the construction of tau dephosphorylating-targeting chimera (DEPTAC) and obtained a new chimera D14, which had high efficiency in reducing tau phosphorylation both in cell and tauopathy mouse models, while showing limited cytotoxicity. Moreover, D14 ameliorated neurodegeneration in primary cultured hippocampal neurons treated with toxic tau-K18 fragments, and improved cognitive functions of tauopathy mice. These results suggested D14 as a cost-effective drug candidate for the treatment of tauopathies.
Collapse
Affiliation(s)
- Jing-Fen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Xia Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Anesthesiology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Beijing Life Science Academy, Beijing, 102209, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
63
|
Schwalm MP, Knapp S, Rogov VV. Toward effective Atg8-based ATTECs: Approaches and perspectives. J Cell Biochem 2024; 125:e30380. [PMID: 36780422 DOI: 10.1002/jcb.30380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Induction of Atg8-family protein (LC3/GABARAP proteins in human) interactions with target proteins of interest by proximity-inducing small molecules offers the possibility for novel targeted protein degradation approaches. However, despite intensive screening campaigns during the last 5 years, no potent ligands for LC3/GABARAPs have been developed, rendering this approach largely unexplored and unsuitable for therapeutic exploitation. In this Viewpoint, we analyze the reported attempts identifying LC3/GABARAP inhibitors and provide our own point of view why no potent inhibitors have been found. Additionally, we designate reasonable directions for the identification of potent and probably selective LC3/GABARAP inhibitors for alternative therapeutic applications.
Collapse
Affiliation(s)
- Martin P Schwalm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
64
|
Wang Z, He L, Fan Z, Luo Y. Patenting perspective of modulators of ClpP endopeptidase: 2019-present. Expert Opin Ther Pat 2024; 34:1073-1084. [PMID: 39267345 DOI: 10.1080/13543776.2024.2404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION ClpP is a highly conserved serine protease that plays a crucial role in maintaining protein homeostasis in both bacterial cells and human mitochondria. Several studies have demonstrated the potential of ClpP as a drug target, with ClpP modulators, including both inhibitors and activators, showing promise in treating a range of conditions such as drug-resistant bacteria, malignant cancers, and fatty liver disease. AREA COVERED This review provides an overview of patents related to ClpP modulators filed over the last five years, detailing their claims and therapeutic applications. The sources of patent information included databases of the European Patent Office, the China Patent Office and the U.S.A. patent Office, while relevant research articles were accessed through PubMed. EXPERT OPINION The number of patents concerning ClpP modulators is on the rise, reflecting advancements in related research. By summarizing and outlining relevant patents, we aim to stimulate further interest among researchers, ultimately leading to the development of effective drugs based on ClpP modulators. The broad spectrum of diseases associated with ClpP dysfunction underscores the potential for ClpP modulators to address a wide range of therapeutic needs.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Liqing He
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Ziheng Fan
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
65
|
Zhao W, Jiang Y, Li X, Wang H. Nanotechnology-Enabled Targeted Protein Degradation for Cancer Therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e2020. [PMID: 39663650 DOI: 10.1002/wnan.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/11/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Targeted protein degradation (TPD) represents an innovative therapeutic strategy that has garnered considerable attention from both academic and industrial sectors due to its promising developmental prospects. Approximately 85% of human proteins are implicated in disease pathogenesis, and the FDA has approved around 400 drugs targeting these disease-related proteins, predominantly enzymes, transcription factors, and non-enzymatic proteins. However, existing therapeutic modalities fail to address certain "high-value" targets, such as c-Myc and Ras. The emergence of proteolysis-targeting chimeras (PROTAC) technology has introduced TPD into a new realm. The capability to target non-druggable sites has expanded the therapeutic horizon of protein-based drugs, although challenges related to bioavailability, safety, and adverse side effects have constrained their clinical progression. Nano-delivery systems and emerging TPD modalities, such as molecular glues, lysosome-targeted chimeras (LYTACs), autophagy system compounds (ATTEC), and antibody PROTAC (AbTACs), have mitigated some of these limitations. This paper reviews the latest advancements in TPD, highlighting their applications and benefits in cancer therapy, and concludes with a forward-looking perspective on the future development of this field.
Collapse
Affiliation(s)
- Wutong Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | | | - Xiufen Li
- The Second Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| |
Collapse
|
66
|
Fàbrega C, Gallisà-Suñé N, Zuin A, Ruíz JS, Coll-Martínez B, Fabriàs G, Eritja R, Crosas B. Aptamer-Hytac Chimeras for Targeted Degradation of SARS-CoV-2 Spike-1. Cells 2024; 13:1767. [PMID: 39513874 PMCID: PMC11544835 DOI: 10.3390/cells13211767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
The development of novel tools to tackle viral processes has become a central focus in global health, during the COVID-19 pandemic. The spike protein is currently one of the main SARS-CoV-2 targets, owing to its key roles in infectivity and virion formation. In this context, exploring innovative strategies to block the activity of essential factors of SARS-CoV-2, such as spike proteins, will strengthen the capacity to respond to current and future threats. In the present work, we developed and tested novel bispecific molecules that encompass: (i) oligonucleotide aptamers S901 and S702, which bind to the spike protein through its S1 domain, and (ii) hydrophobic tags, such as adamantane and tert-butyl-carbamate-based ligands. Hydrophobic tags have the capacity to trigger the degradation of targets recruited in the context of a proteolytic chimera by activating quality control pathways. We observed that S901-adamantyl conjugates promote the degradation of the S1 spike domain, stably expressed in human cells by genomic insertion. These results highlight the suitability of aptamers as target-recognition molecules and the robustness of protein quality control pathways triggered by hydrophobic signals, and place aptamer-Hytacs as promising tools for counteracting coronavirus progression in human cells.
Collapse
Affiliation(s)
- Carme Fàbrega
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Núria Gallisà-Suñé
- Proteasome Regulation Lab, Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 4, 08028 Barcelona, Spain (A.Z.)
| | - Alice Zuin
- Proteasome Regulation Lab, Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 4, 08028 Barcelona, Spain (A.Z.)
| | - Juan Sebastián Ruíz
- Lincbiotech SL, Avenida do Mestre Mateo, 2, 15706 Santiago de Compostela, Spain;
| | - Bernat Coll-Martínez
- Proteasome Regulation Lab, Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 4, 08028 Barcelona, Spain (A.Z.)
| | - Gemma Fabriàs
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain;
| | - Ramon Eritja
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18, 08034 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Bernat Crosas
- Proteasome Regulation Lab, Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri i Reixac 4, 08028 Barcelona, Spain (A.Z.)
| |
Collapse
|
67
|
Ma Z, Bolinger AA, Pinchuk IV, Tian B, Zhou J. BRD4 as an emerging epigenetic therapeutic target for inflammatory bowel disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:203-236. [PMID: 39521601 DOI: 10.1016/bs.apha.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder, mainly comprising two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). IBD, featured by recurrent symptoms and significant morbidity, poses a significant threat to global health and has an adverse impact on quality of life. Currently, there is no curative therapy for IBD, and the available medications are only for managing the disease condition, likely owing to the insufficient understanding of the underlying pathophysiology processes involved in IBD, and the lack of safe and effective medicines. Thus, novel targeted therapies for IBD are urgently needed for better efficacy with an improved adverse event profile. As the most extensively studied member of bromodomain and extra terminal domain (BET) family proteins, bromodomain-containing protein 4 (BRD4) is emerging as a promising epigenetic therapeutic target for IBD. Pharmacological inhibition of BRD4 with selective small molecule inhibitors shows potent anti-inflammatory effects in both in vitro and different IBD mouse models. Herein, we summarize current knowledge in understanding the role of BRD4 in the pathogenesis and development of IBD, and the clinical landscape of developing BET/BRD4 inhibitors and emerging BRD4-targeted degraders as promising therapeutical alternatives. Challenges and opportunities, as well as future directions in drug discovery by targeting BRD4 are also briefly discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Irina V Pinchuk
- Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Bing Tian
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
68
|
Wu M, Zhao Y, Zhang C, Pu K. Advancing Proteolysis Targeting Chimera (PROTAC) Nanotechnology in Protein Homeostasis Reprograming for Disease Treatment. ACS NANO 2024; 18:28502-28530. [PMID: 39377250 DOI: 10.1021/acsnano.4c09800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) represent a transformative class of therapeutic agents that leverage the intrinsic protein degradation machinery to modulate the hemostasis of key disease-associated proteins selectively. Although several PROTACs have been approved for clinical application, suboptimal therapeutic efficacy and potential adverse side effects remain challenging. Benefiting from the enhanced targeted delivery, reduced systemic toxicity, and improved bioavailability, nanomedicines can be tailored with precision to integrate with PROTACs which hold significant potential to facilitate PROTAC nanomedicines (nano-PROTACs) for clinical translation with enhanced efficacy and reduced side effects. In this review, we provide an overview of the recent progress in the convergence of nanotechnology with PROTAC design, leveraging the inherent properties of nanomaterials, such as lipids, polymers, inorganic nanoparticles, nanohydrogels, proteins, and nucleic acids, for precise PROTAC delivery. Additionally, we discuss the various categories of PROTAC targets and provide insights into their clinical translational potential, alongside the challenges that need to be addressed.
Collapse
Affiliation(s)
- Mengyao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yilan Zhao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| |
Collapse
|
69
|
Yun C, Li N, Zhang Y, Fang T, Ma J, Zheng Z, Zhou S, Cai X. Glucose Transporter-Targeting Chimeras Enabling Tumor-Selective Degradation of Secreted and Membrane Proteins. ACS Chem Biol 2024; 19:2254-2263. [PMID: 39374326 DOI: 10.1021/acschembio.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Tumor-selective degradation of target proteins has the potential to offer superior therapeutic benefits with maximized therapeutic windows and minimized off-target effects. However, the development of effective lysosome-targeted degradation platforms for achieving selective protein degradation in tumors remains a substantial challenge. Cancer cells depend on certain solute carrier (SLC) transporters to acquire extracellular nutrients to sustain their metabolism and growth. This current study exploits facilitative glucose transporters (GLUTs), a group of SLC transporters widely overexpressed in numerous types of cancer, to drive the endocytosis and lysosomal degradation of target proteins in tumor cells. GLUT-targeting chimeras (GTACs) were generated by conjugating multiple glucose ligands to an antibody specific for the target protein. We demonstrate that the constructed GTACs can induce the internalization and lysosomal degradation of the extracellular and membrane proteins streptavidin, tumor necrosis factor-alpha (TNF-α), and human epidermal growth factor receptor 2 (HER2). Compared with the parent antibody, the GTAC exhibited higher potency in inhibiting the growth of tumor cells in vitro and enhanced tumor-targeting capacity in a tumor-bearing mouse model. Thus, the GTAC platform represents a novel degradation strategy that harnesses an SLC transporter for tumor-selective depletion of secreted and membrane proteins of interest.
Collapse
Affiliation(s)
- Chengyu Yun
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Na Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Yishu Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Tong Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Jing Ma
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Zhenting Zheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Subing Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, 132 East Outer Ring Road, Guangzhou 510006, China
| |
Collapse
|
70
|
Yang L, Yang Y, Zhang J, Li M, Yang L, Wang X, Chen M, Zhang H, He B, Wang X, Dai W, Wang Y, Zhang Q. Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy. Signal Transduct Target Ther 2024; 9:275. [PMID: 39419977 PMCID: PMC11486899 DOI: 10.1038/s41392-024-01983-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) have been considered the next blockbuster therapies. However, due to their inherent limitations, the efficacy of PROTACs is frequently impaired by limited tissue penetration and particularly insufficient cellular internalization into their action sites. Herein, based on the ultra-pH-sensitive and enzyme-sensitive nanotechnology, a type of polymer PROTAC conjugated and pH/cathepsin B sequential responsive nanoparticles (PSRNs) are deliberately designed, following the construction of the PROTAC for Cyclin-dependent kinase 4 and 6 (CDK4/6). Colorectal cancer (CRC) which hardly responds to many treatments even immune checkpoint blockades was selected as the tumor model in this study. As a result, PSRNs were found to maintain nanostructure (40 nm) in circulation and efficiently accumulated in tumors via enhanced permeation and retention effect. Then, they were dissociated into unimers (<10 nm) in response to an acidic tumor microenvironment, facilitating tumor penetration and cellular internalization. Eventually, the CDK4/6 degrading PROTACs were released intracellularly following the cleavage of cathepsin B. Importantly, PSRNs led to the enhanced degradation of target protein in vitro and in vivo. The degradation of CDK4/6 also augmented the efficacy of immune checkpoint blockades, through the upregulation of programmed cell death-ligand 1 (PD-L1) expression in cancer cells and the suppression of regulatory T cells cell proliferation in tumor microenvironment. By combination with α-PD-1, an enhanced anti-tumor outcome is well achieved in CT26 tumor model. Overall, our study verifies the significance of precise intracellular delivery of PROTACs and introduces a promising therapeutic strategy for the targeted combination treatment of CRC.
Collapse
Affiliation(s)
- Liuqing Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Ye Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Jing Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Long Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Yiguang Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, China.
| |
Collapse
|
71
|
Seabrook LJ, Franco CN, Loy CA, Osman J, Fredlender C, Zimak J, Campos M, Nguyen ST, Watson RL, Levine SR, Khalil MF, Sumigray K, Trader DJ, Albrecht LV. Methylarginine targeting chimeras for lysosomal degradation of intracellular proteins. Nat Chem Biol 2024:10.1038/s41589-024-01741-y. [PMID: 39414979 DOI: 10.1038/s41589-024-01741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 09/05/2024] [Indexed: 10/18/2024]
Abstract
A paradigm shift in drug development is the discovery of small molecules that harness the ubiquitin-proteasomal pathway to eliminate pathogenic proteins. Here we provide a modality for targeted protein degradation in lysosomes. We exploit an endogenous lysosomal pathway whereby protein arginine methyltransferases (PRMTs) initiate substrate degradation via arginine methylation. We developed a heterobifunctional small molecule, methylarginine targeting chimera (MrTAC), that recruits PRMT1 to a target protein for induced degradation in lysosomes. MrTAC compounds degraded substrates across cell lines, timescales and doses. MrTAC degradation required target protein methylation for subsequent lysosomal delivery via microautophagy. A library of MrTAC molecules exemplified the generality of MrTAC to degrade known targets and neo-substrates-glycogen synthase kinase 3β, MYC, bromodomain-containing protein 4 and histone deacetylase 6. MrTAC selectively degraded target proteins and drove biological loss-of-function phenotypes in survival, transcription and proliferation. Collectively, MrTAC demonstrates the utility of endogenous lysosomal proteolysis in the generation of a new class of small molecule degraders.
Collapse
Affiliation(s)
- Laurence J Seabrook
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Carolina N Franco
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Cody A Loy
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jaida Osman
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Callie Fredlender
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Jan Zimak
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Melissa Campos
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Steven T Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Richard L Watson
- Department of Medicine, Division of Pulmonary & Critical Care, University of California, Los Angeles, Los Angeles, CA, USA
| | - Samantha R Levine
- Center for Neurotherapeutics, University of California, Irvine, Irvine, CA, USA
| | - Marian F Khalil
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Kaelyn Sumigray
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Darci J Trader
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, CA, USA
| | - Lauren V Albrecht
- Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy & Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
72
|
Xu K, Wang Z, Xiang S, Tang R, Deng Q, Ge J, Jiang Z, Yang K, Hou T, Sun H. Characterizing the Cooperative Effect of PROTAC Systems with End-Point Binding Free Energy Calculation. J Chem Inf Model 2024; 64:7666-7678. [PMID: 39361611 DOI: 10.1021/acs.jcim.4c01227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Proteolytic targeting chimeras (PROTACs), as an emerging type of drug, function by proximity-based modalities that narrow the distance between a target protein and the E3 ubiquitin ligase to facilitate the ubiquitination labeling of the target protein for degradation. Although it is evidenced that the cooperativity of the PROTAC ternary interaction is one of the key factors affecting the degradation rate of a target protein, PROTAC design utilizing this indicator is still challenging because of the complicated/flexible interactions in a target-PROTAC-E3 ternary system. Therefore, developing reliable and practicable computational methods is of great interest for PROTAC design. Hence, in this study, we investigate the feasibility of using the end-point binding free energy calculation method, represented by molecular mechanics/Poisson-Boltzmann (generalized-Born) surface area (MM/PB(GB)SA), for characterizing cooperativity (including the stabilization and hook effects) of the PROTAC systems. The result shows that MM/GBSA is a good predictor in characterizing these effects under a relatively long molecular dynamics adjustment (50-100 ns) and low dielectric constant (εin = 1), with the Pearson correlation coefficient (rp) > 0.5 and 0.6 for the stabilization and hook effect, respectively. This study provides a feasible strategy for characterizing the cooperativity of the PROTAC systems, facilitating the rational design of PROTAC molecules.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Sutong Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Rongfan Tang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Qirui Deng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Jingxuan Ge
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Zhiliang Jiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Kaimo Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058 Zhejiang, P. R. China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009 Jiangsu, P. R. China
| |
Collapse
|
73
|
Huang J, Su J, Wang H, Chen J, Tian Y, Zhang J, Feng T, Di L, Lu X, Sheng H, Zhu Q, Chen X, Wang J, He X, Yerkinkazhina Y, Xie Z, Shu Y, Kang T, Tang H, Qian J, Zhu WG. Discovery of Novel PROTAC SIRT6 Degraders with Potent Efficacy against Hepatocellular Carcinoma. J Med Chem 2024; 67:17319-17349. [PMID: 39323022 DOI: 10.1021/acs.jmedchem.4c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Sirtuin 6 (SIRT6), a member of the SIRT family, plays essential roles in the regulation of metabolism, inflammation, aging, DNA repair, and cancer development, making it a promising anticancer drug target. Herein, we present our use of proteolysis-targeting chimera (PROTAC) technology to formulate a series of highly potent and selective SIRT6 degraders. One of the degraders, SZU-B6, induced the near-complete degradation of SIRT6 in both SK-HEP-1 and Huh-7 cell lines and more potently inhibited hepatocellular carcinoma (HCC) cell proliferation than the parental inhibitors. In preliminary mechanistic studies, SZU-B6 hampered DNA damage repair, promoting the cellular radiosensitization of cancer cells. Our SIRT6 degrader SZU-B6 displayed promising antitumor activity, particularly when combined with the well-known kinase inhibitor sorafenib or irradiation in an SK-HEP-1 xenograft mouse model. Our results suggest that these PROTACs might constitute a potent therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Jinbo Huang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
- National Engineering Research Centrer for Biotechnology, Shenzhen 518055, China
| | - Jiajie Su
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Haiyu Wang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jiayi Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Tingting Feng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Longjiang Di
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Hao Sheng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xinyun Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jingchao Wang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Xingkai He
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yerkezhan Yerkinkazhina
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Zhongyi Xie
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Yuxin Shu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Tianshu Kang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Huangqi Tang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
| | - Jinqin Qian
- Department of Urology, Peking University First Hospital, Beijing 100035, China
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Health Science Centre School of Basic Medical Sciences, Shenzhen University, Shenzhen 518055, China
- Shenzhen University School of Pharmacy, Shenzhen University Medical School, Shenzhen 518055, China
- School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China
| |
Collapse
|
74
|
Ying S, Chi H, Wu X, Zeng P, Chen J, Fu T, Fu W, Zhang P, Tan W. Selective and Orally Bioavailable c-Met PROTACs for the Treatment of c-Met-Addicted Cancer. J Med Chem 2024; 67:17053-17069. [PMID: 39348183 DOI: 10.1021/acs.jmedchem.3c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
c-Met is an attractive therapeutic target in multiple tumors. Previous studies have discovered some effective proteolysis-targeting chimeras (PROTACs) able to degrade c-Met; however, the structure-activity relationship (SAR), degradation selectivity, and pharmacokinetic profiles of c-Met PROTACs have, to date, remained largely unknown. Herein, through extensive SAR studies on various warheads, linkers, and E3 ligase ligands, a novel potent c-Met PROTAC Met-DD4 was identified. Our results suggested that Met-DD4 could induce robust c-Met degradation with excellent selectivity (DC50 = 6.21 nM), substantially killing the c-Met-addicted cancer cells (IC50 = 4.37 nM). Furthermore, in vivo studies showed that Met-DD4 could achieve excellent oral bioavailability and c-Met degradation, strongly retarding tumor growth with minute organ toxicity. Overall, this study reveals that targeted degradation of c-Met is a promising strategy for the treatment of c-Met-addicted cancers and provides novel lead compounds for the clinical translation of c-Met PROTACs.
Collapse
Affiliation(s)
- Shilong Ying
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Hongli Chi
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Xiaoqiu Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Pingping Zeng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jinling Chen
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weitao Fu
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| | - Penghui Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
75
|
Teng X, Zhao X, Dai Y, Zhang X, Zhang Q, Wu Y, Hu D, Li J. ClickRNA-PROTAC for Tumor-Selective Protein Degradation and Targeted Cancer Therapy. J Am Chem Soc 2024; 146:27382-27391. [PMID: 39320981 DOI: 10.1021/jacs.4c06402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) show promise in tumor treatment. However, the E3 ligases VHL and CRBN, commonly used in PROTAC, are highly expressed in only a few tumors, thus limiting the application scope and efficacy of PROTAC drugs. Furthermore, the lack of tumor specificity in PROTAC drugs can result in toxic side effects. Therefore, there is an urgent need to develop tumor-selective PROTAC drugs that do not rely on endogenous E3 ligases. In this study, we introduce the ClickRNA-PROTAC system, which involves the expression of a fusion protein of the E3 ubiquitin ligase SIAH1 and SNAPTag through mRNA transfection and recruits the protein of interest (POI) using bio-orthogonal click chemistry. ClickRNA-PROTAC can effectively degrade various proteins such as BRD4, KRAS, and NFκB simply by replacing the warhead molecules. By employing a tumor-specific mRNA-responsive translation strategy, ClickRNA-PROTAC can selectively degrade POIs in tumor cells. Furthermore, ClickRNA-PROTAC demonstrated strong efficacy in targeted cancer therapy in a xenograft mouse model of adrenocortical carcinoma. In conclusion, this approach offers several advantages, including independence from endogenous E3 ubiquitin ligases, tumor specificity, and programmability, thereby paving the way for the development of PROTAC drugs.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Life Science Academy, Beijing 102209, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xuan Zhao
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yicong Dai
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xiangdong Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Qiushuang Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yuncong Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Difei Hu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
- Beijing Life Science Academy, Beijing 102209, China
- New Cornerstone Science Laboratory, Shenzhen 518054, China
- Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
76
|
De Santis A, Grifagni D, Orsetti A, Lenci E, Rosato A, D’Onofrio M, Trabocchi A, Ciofi-Baffoni S, Cantini F, Calderone V. A Structural Investigation of the Interaction between a GC-376-Based Peptidomimetic PROTAC and Its Precursor with the Viral Main Protease of Coxsackievirus B3. Biomolecules 2024; 14:1260. [PMID: 39456193 PMCID: PMC11506516 DOI: 10.3390/biom14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
The conservation of the main protease in viral genomes, combined with the absence of a homologous protease in humans, makes this enzyme family an ideal target for developing broad-spectrum antiviral drugs with minimized host toxicity. GC-376, a peptidomimetic 3CL protease inhibitor, has shown significant efficacy against coronaviruses. Recently, a GC-376-based PROTAC was developed to target and induce the proteasome-mediated degradation of the dimeric SARS-CoV-2 3CLPro protein. Extending this approach, the current study investigates the application of the GC-376 PROTAC to the 3CPro protease of enteroviruses, specifically characterizing its interaction with CVB3 3CPro through X-ray crystallography, NMR (Nuclear Magnetic Resonance) and biochemical techniques. The crystal structure of CVB3 3CPro bound to the GC-376 PROTAC precursor was obtained at 1.9 Å resolution. The crystallographic data show that there are some changes between the binding of CVB3 3CPro and SARS-CoV-2 3CLPro, but the overall similarity is strong (RMSD on C-alpha 0.3 Å). The most notable variation is the orientation of the benzyloxycarbonyl group of GC-376 with the S4 subsite of the proteases. NMR backbone assignment of CVB3 3CPro bound and unbound to the GC-376 PROTAC precursor (80% and 97%, respectively) was obtained. This information complemented the investigation, by NMR, of the interaction of CVB3 3CPro with the GC-376 PROTAC, and its precursor allows us to define that the GC-376 PROTAC binds to CVB3 3CPro in a mode very similar to that of the precursor. The NMR relaxation data indicate that a quench of dynamics of a large part of the protein backbone involving the substrate-binding site and surrounding regions occurs upon GC-376 PROTAC precursor binding. This suggests that the substrate cavity, by sampling different backbone conformations in the absence of the substrate, is able to select the suitable one necessary to covalently bind the substrate, this being the latter reaction, which is the fundamental step required to functionally activate the enzymatic reaction. The inhibition activity assay showed inhibition potency in the micromolar range for GC-376 PROTAC and its precursor. Overall, we can conclude that the GC-376 PROTAC fits well within the binding sites of both proteases, demonstrating its potential as a broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Alessia De Santis
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Deborah Grifagni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Andrea Orsetti
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Elena Lenci
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Antonio Rosato
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Mariapina D’Onofrio
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Andrea Trabocchi
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Francesca Cantini
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| | - Vito Calderone
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; (A.D.S.); (D.G.); (A.O.); (A.R.); (S.C.-B.)
- Department of Chemistry, University of Florence, Via della Lastruccia 3-13, Sesto Fiorentino, 50019 Florence, Italy; (E.L.); (A.T.)
| |
Collapse
|
77
|
Yan S, Zhang G, Luo W, Xu M, Peng R, Du Z, Liu Y, Bai Z, Xiao X, Qin S. PROTAC technology: From drug development to probe technology for target deconvolution. Eur J Med Chem 2024; 276:116725. [PMID: 39083982 DOI: 10.1016/j.ejmech.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug development remains a critical focus within the global pharmaceutical industry. To date, more than 80 % of disease targets are considered difficult to target. The emergence of PROTAC technology has, to some extent, alleviated this challenge. Since introduction, PROTAC technology has evolved through the peptide E3 ligase ligand phase and the small molecule E3 ligase ligand phase. Currently, multiple PROTAC molecules are in the clinical research phase, showing promising potential for addressing drug resistance, disease recurrence, and intractable targets. Target deconvolution is a crucial step in the drug discovery and development process. Due to the exceptional targeting ability and specificity of PROTAC, it is widely used and promoted as an innovative technology for discovering new drug targets, leading to significant breakthroughs. The use of PROTAC probe requires only a catalytic dose and weak interaction with the target protein to achieve target degradation. Thus, it offers substantial advantages over traditional probes, particularly in identifying new targets that are low-abundance or difficult to target. This review provides a comprehensive overview of the advancements made by PROTAC technology in drug development and drug target discovery, while also systematically reviewing the workflow of PROTAC probe. With the ongoing development of PROTAC technology, PROTAC probe is poised to become a key research area in future drug target deconvolution.
Collapse
Affiliation(s)
- Si Yan
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Guangshuai Zhang
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China
| | - Wei Luo
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Mengwei Xu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Rui Peng
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Yan Liu
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China
| | - Zhaofang Bai
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Xiaohe Xiao
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| | - Shuanglin Qin
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, PR China; Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, PR China; Department of Hepatology, China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing, PR China.
| |
Collapse
|
78
|
Wang X, Li N, Liu YH, Wu J, Liu QG, Niu JB, Xu Y, Huang CZ, Zhang SY, Song J. Targeting focal adhesion kinase (FAK) in cancer therapy: A recent update on inhibitors and PROTAC degraders. Eur J Med Chem 2024; 276:116678. [PMID: 39029337 DOI: 10.1016/j.ejmech.2024.116678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.
Collapse
Affiliation(s)
- Xiao Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Na Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yun-He Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Xu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen-Zheng Huang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
79
|
Ji W, Du G, Jiang J, Lu W, Mills CE, Yuan L, Jiang F, He Z, Bradshaw GA, Chung M, Jiang Z, Byun WS, Hinshaw SM, Zhang T, Gray NS. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem 2024; 276:116613. [PMID: 39004018 PMCID: PMC11316633 DOI: 10.1016/j.ejmech.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Fen Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary A Bradshaw
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
80
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
81
|
Li S, Xiong Q, Shen Y, Lin J, Zhang L, Wu Y, Jin J, Luan X. Toosendanin: upgrade of an old agent in cancer treatment. Chin J Nat Med 2024; 22:887-899. [PMID: 39428181 DOI: 10.1016/s1875-5364(24)60693-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Indexed: 10/22/2024]
Abstract
Toosendanin (TSN), a tetracyclic triterpenoid derived from Melia toosendan and M. azedarach, demonstrates broad application prospects in cancer treatment. Although previously employed as a pesticide, recent studies have revealed its potential therapeutic value in treating various types of cancer. TSN exerts an anticancer effect via mechanisms including proliferation inhibition, apoptosis induction, migration suppression, and angiogenesis inhibition. However, TSN's toxicity, particularly its hepatotoxicity, significantly limits its therapeutic application. This review explored the dual nature of TSN, evaluating both its anticancer potential and toxicological risks, emphasizing the importance of balancing these aspects in therapeutic applications. Furthermore, we investigated the incorporation of TSN into novel therapeutic strategies, such as Proteolysis-targeting chimeras (PROTAC) technology and nanotechnology-based drug delivery systems (DDS), which enhance treatment efficacy while mitigating toxicity in normal tissues.
Collapse
Affiliation(s)
- Shuwei Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qingyi Xiong
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yiwen Shen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital; Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
82
|
Ma Z, Zhang C, Bolinger AA, Zhou J. An updated patent review of BRD4 degraders. Expert Opin Ther Pat 2024; 34:929-951. [PMID: 39219068 PMCID: PMC11427152 DOI: 10.1080/13543776.2024.2400166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Bromodomain-containing protein 4 (BRD4), an important epigenetic reader, is closely associated with the pathogenesis and development of many diseases, including various cancers, inflammation, and infectious diseases. Targeting BRD4 inhibition or protein elimination with small molecules represents a promising therapeutic strategy, particularly for cancer therapy. AREAS COVERED The recent advances of patented BRD4 degraders were summarized. The challenges, opportunities, and future directions for developing novel potent and selective BRD4 degraders are also discussed. The patents of BRD4 degraders were searched using the SciFinder and Cortellis Drug Discovery Intelligence database. EXPERT OPINION BRD4 degraders exhibit superior efficacy and selectivity to BRD4 inhibitors, given their unique mechanism of protein degradation instead of protein inhibition. Excitingly, RNK05047 is now in phase I/II clinical trials, indicating that selective BRD4 protein degradation may offer a viable therapeutic strategy, particularly for cancer. Targeting BRD4 with small-molecule degraders provides a promising approach with the potential to overcome therapeutic resistance for treating various BRD4-associated diseases.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Cun Zhang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA
| |
Collapse
|
83
|
Chen H, Gridnev A, Schlamowitz N, Hu W, Dey K, Zheng G, Misra JR. Targeted degradation of specific TEAD paralogs by small molecule degraders. Heliyon 2024; 10:e37829. [PMID: 39328531 PMCID: PMC11425103 DOI: 10.1016/j.heliyon.2024.e37829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The transcription factors, TEAD1-4 together with their co-activator YAP/TAZ function as key downstream effectors of the Hippo pathway. Hyperactivation of TEAD-YAP/TAZ activity is observed in many human cancers. TEAD1-4 possess distinct physiological and pathological functions, with conserved sequences and structures. Targeting specific isoforms within TEAD1-4 can serve as valuable chemical probes for investigating TEAD-related functions in both development and diseases. We report the TEAD-targeting proteolysis targeting chimera (PROTAC), HC278, which achieves effective and specific targeting of TEAD1 and TEAD3 at low nanomolar doses while weakly degrading TEAD2 and TEAD4 at higher doses. Proteomic analysis of >6000 proteins confirmed their highly selective TEAD1 and TEAD3 degradation. Consistently, HC278 can suppress the proliferation of YAP-dependent NCI-H226 mesothelioma cells. Mechanistic exploration revealed that both CRBN and proteasome systems are involved in the TEAD degradation induced by HC278. Moreover, RNA-seq and Gene Set Enrichment Analysis (GSEA) revealed that the YAP signature genes such as CTGF, CYR61, and ANKRD1 are significantly downregulated by HC278 treatment. Overall, HC278 serves as a valuable chemical tool for unraveling the intricate biological roles of TEAD1 and TEAD3 and holds the potential as a lead compound for developing targeted therapy for TEAD1/3-driven pathologies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Artem Gridnev
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, Oregon Health & Sciences University, Portland, OR, USA
| | - Netanya Schlamowitz
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wanyi Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Kuntala Dey
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA
| | - Jyoti R. Misra
- Department of Pharmacological Sciences, Stony Brook University School of Medicine, Stony Brook, 11794, USA
| |
Collapse
|
84
|
Ma M, Li M, Zhang C, Yang Z, Chen X, Lu P, Nie S, Zhang S, Ma S, Qin C. Discovery of a Highly Potent PROTAC Degrader of p300/CBP Proteins for the Treatment of Enzalutamide-Resistant Prostate Cancer. J Med Chem 2024. [PMID: 39344125 DOI: 10.1021/acs.jmedchem.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Prostate cancer therapies against androgen receptor (AR) eventually develop lethal resistance; thus, exploring new therapeutic approaches is urgent for prostate cancer treatment. Acetyltransferase p300/CBP are key coactivators for AR-mediated transcription and represent promising therapeutic targets to inhibit AR activity in prostate cancer. We describe the design synthesis and evaluation of a new class of p300/CBP PROTAC degraders. We identified an excellent p300/CBP degrader MJP6412, which effectively induced degradation of p300/CBP proteins, downregulated AR target genes, and inhibited cell growth of human prostate cancer cell lines and enzalutamide-resistant cells with IC50 even at nanomolar concentrations. Furthermore, MJP6412 demonstrated significant inhibition of tumor growth in a VCaP xenograft model. Collectively, MJP6412 is a promising lead compound for the treatment of prostate cancer, especially enzalutamide-resistant prostate cancer.
Collapse
Affiliation(s)
- Mengjun Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Mengyao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Chengwei Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Zixuan Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Xiaoyu Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Penghui Lu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Shuangshuang Nie
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
| | - Siqi Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
| | - Shumin Ma
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
| | - Chong Qin
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, Shandong, China
- Center for Targeted Protein Degradation and Drug Discovery, Ocean University of China, Qingdao 266003, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
85
|
Venturi A, Di Bona S, Desantis J, Eleuteri M, Bartalucci M, Baroni M, Benedetti P, Goracci L, Cruciani G. Between Theory and Practice: Computational/Experimental Integrated Approaches to Understand the Solubility and Lipophilicity of PROTACs. J Med Chem 2024; 67:16355-16380. [PMID: 39271471 DOI: 10.1021/acs.jmedchem.4c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Emerging drug candidates more often fall in the beyond-rule-of-five chemical space. Among them, proteolysis targeting chimeras (PROTACs) have gained great attention in the past decade. Although physicochemical properties of small molecules accomplishing Lipinski's rule-of-five can now be easily predicted through models generated by large data collections, for PROTACs the knowledge is still limited and heterogeneous, hampering their prediction. Here, the kinetic solubility and the coefficient of distribution at pH 7.4 (LogD7.4) of 44 PROTACs, designed and synthesized to cover a wide chemical space, were measured. Their generally low solubility and high lipophilicity required an optimization of the experimental methods. Concerning the LogD7.4, several in silico prediction tools were tested, which were quite accurate for classical small molecules but provided dissimilar outcomes for PROTACs. Finally, in silico models for the prediction of PROTACs' kinetic solubility and LogD7.4 were proposed by combining in-house generated experimental data with 3D description of PROTACs' structures.
Collapse
Affiliation(s)
- Andrea Venturi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Stefano Di Bona
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Jenny Desantis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Michela Eleuteri
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Matteo Bartalucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Massimo Baroni
- Kinetic Business Centre, Molecular Discovery Ltd., Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Paolo Benedetti
- Kinetic Business Centre, Molecular Discovery Ltd., Elstree, Borehamwood, Hertfordshire WD6 4PJ, United Kingdom
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell' Elce di Sotto 8, Perugia 06123, Italy
| |
Collapse
|
86
|
Naganuma M, Ohoka N, Hirano M, Watanabe D, Tsuji G, Inoue T, Demizu Y. Hydrophobic CPP/HDO conjugates: a new frontier in oligonucleotide-warheaded PROTAC delivery. RSC Med Chem 2024:d4md00546e. [PMID: 39421539 PMCID: PMC11480826 DOI: 10.1039/d4md00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/22/2024] [Indexed: 10/19/2024] Open
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as a potent strategy for inducing targeted degradation of proteins, offering promising therapeutic potential to treat diseases such as cancer. However, oligonucleotide-based PROTACs face significant delivery challenges because of their anionic nature and chemical instability. To address these issues, we developed a novel hydrophobic cell-penetrating peptide (CPP) and heteroduplex oligonucleotide (HDO)-conjugated PROTAC, CPP/HDO-PROTAC, to enhance intracellular delivery and degradation efficiency. CPP/HDO-PROTAC was designed to enter the cell through the activity of the conjugated hydrophobic CPP and release decoy oligonucleotide-based PROTACs by RNase H-mediated RNA strand breaks. Our findings demonstrated that CPP/HDO-PROTAC binds to the estrogen receptor α (ERα) with higher affinity than previous constructs, significantly degrades ERα in MCF-7 human breast cancer cells and inhibits cell proliferation at 10 μM. This research highlights the potential of CPP/HDO-PROTAC as a viable method for delivering and activating decoy oligonucleotide-based PROTACs within cells, overcoming the limitations of traditional transfection methods and paving the way for their clinical application.
Collapse
Affiliation(s)
- Miyako Naganuma
- Division of Organic Chemistry, National Institute of Health Sciences Kanagawa Japan +81 44 270 6578 +81 44 270 6578
- Graduate School of Medical Life Science, Yokohama City University Kanagawa Japan
| | - Nobumichi Ohoka
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan +81 44 270 6537
| | - Motoharu Hirano
- Division of Organic Chemistry, National Institute of Health Sciences Kanagawa Japan +81 44 270 6578 +81 44 270 6578
- Graduate School of Medical Life Science, Yokohama City University Kanagawa Japan
| | - Daishi Watanabe
- Division of Organic Chemistry, National Institute of Health Sciences Kanagawa Japan +81 44 270 6578 +81 44 270 6578
- Graduate School of Medical Life Science, Yokohama City University Kanagawa Japan
| | - Genichiro Tsuji
- Division of Organic Chemistry, National Institute of Health Sciences Kanagawa Japan +81 44 270 6578 +81 44 270 6578
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences Kanagawa Japan +81 44 270 6537
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences Kanagawa Japan +81 44 270 6578 +81 44 270 6578
- Graduate School of Medical Life Science, Yokohama City University Kanagawa Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University Japan
| |
Collapse
|
87
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
88
|
Chi Y, Lu X, Li S, Wang J, Xi J, Zhou X, Tang C, Chen M, Yuan H, Lin S, Xiao Y, Lai L, Zou Q. A compact, versatile drug-induced splicing switch system with minimal background expression. CELL REPORTS METHODS 2024; 4:100842. [PMID: 39236714 PMCID: PMC11440066 DOI: 10.1016/j.crmeth.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Gene-switch techniques hold promising applications in contemporary genetics research, particularly in disease treatment and genetic engineering. Here, we developed a compact drug-induced splicing system that maintains low background using a human ubiquitin C (hUBC) promoter and optimized drug (LMI070) binding sequences based on the Xon switch system. To ensure precise subcellular localization of the protein of interest (POI), we inserted a 2A self-cleaving peptide between the extra N-terminal peptide and POI. This streamlined and optimized switch system, named miniXon2G, effectively regulated POIs in different subcellular localizations both in vitro and in vivo. Furthermore, miniXon2G could be integrated into endogenous gene loci, resulting in precise, reversible regulation of target genes by both endogenous regulators and drugs. Overall, these findings highlight the performance of miniXon2G in controlling protein expression with great potential for general applicability to diverse biological scenarios requiring precise and delicate regulation.
Collapse
Affiliation(s)
- Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuan Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuangpeng Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuo Lin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yingying Xiao
- Jiangmen Wuyi Traditional Chinese Medicine Hospital, Jiangmen 529000, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
89
|
Zhou C, Sun C, Huang M, Tang X, Pi L, Li C. Exploring Degradation of Intrinsically Disordered Protein Yes-Associated Protein Induced by Proteolysis TArgeting Chimeras. J Med Chem 2024; 67:15168-15198. [PMID: 39189384 DOI: 10.1021/acs.jmedchem.4c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Yes-associated protein (YAP) is a key oncogene in the Hippo tumor suppression pathway, historically challenging to target due to its intrinsically disordered nature. Leveraging recent advances in high-throughput screening that identified several YAP binders, we employed proteolysis-targeting chimera technology to develop a series of YAP degraders. Utilizing NSC682769, a known YAP binder, linked with VHL ligand 2 or pomalidomide via diverse linkers, we synthesized degraders including YZ-6. This degrader not only recruits the E3 ligase VHL for the rapid and sustained degradation of YAP but also effectively inhibits its nuclear localization, curtailing YAP/TEAD-mediated transcription in cancer cell lines such as NCI-H226 and Huh7. This dual action significantly diminishes YAP's oncogenic activity, contributing to the potent antiproliferative effects observed both in vitro and in a Huh7 xenograft mouse model. These results underscore the potential of PROTAC-mediated YAP degradation as a strategy for treating YAP-driven cancers.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Miao Huang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Xin Tang
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
90
|
Li K, Krone MW, Butrin A, Bond MJ, Linhares BM, Crews CM. Development of Ligands and Degraders Targeting MAGE-A3. J Am Chem Soc 2024; 146:24884-24891. [PMID: 39190582 DOI: 10.1021/jacs.4c05393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Type I melanoma antigen (MAGE) family members are detected in numerous tumor types, and expression is correlated with poor prognosis, high tumor grade, and increased metastasis. Type I MAGE proteins are typically restricted to reproductive tissues, but expression can recur during tumorigenesis. Several biochemical functions have been elucidated for them, and notably, MAGEs regulate proteostasis by serving as substrate recognition modules for E3 ligase complexes. The repertoire of E3 ligase complexes that can be hijacked for targeted protein degradation continues to expand, and MAGE-E3 complexes are an especially attractive platform given their cancer-selective expression. Additionally, type I MAGE-derived peptides are presented on cancer cell surfaces, so targeted MAGE degradation may increase antigen presentation and improve immunotherapy outcomes. Motivated by these applications, we developed novel, small-molecule ligands for MAGE-A3, a type I MAGE that is widely expressed in tumors and associates with TRIM28, a RING E3 ligase. Chemical matter was identified through DNA-encoded library (DEL) screening, and hit compounds were validated for in vitro binding to MAGE-A3. We obtained a cocrystal structure with a DEL analog and hypothesize that the small molecule binds at a dimer interface. We utilized this ligand to develop PROTAC molecules that induce MAGE-A3 degradation through VHL recruitment and inhibit the proliferation of MAGE-A3 positive cell lines. These ligands and degraders may serve as valuable probes for investigating MAGE-A3 biology and as foundations for the ongoing development of tumor-specific PROTACs.
Collapse
Affiliation(s)
- Ke Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Mackenzie W Krone
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Arseniy Butrin
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Michael J Bond
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Brian M Linhares
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
| | - Craig M Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department of Pharmacology, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
91
|
Andlovic B, Valenti D, Centorrino F, Picarazzi F, Hristeva S, Hiltmann M, Wolf A, Cantrelle FX, Mori M, Landrieu I, Levy LM, Klebl B, Tzalis D, Genski T, Eickhoff J, Ottmann C. Fragment-Based Interrogation of the 14-3-3/TAZ Protein-Protein Interaction. Biochemistry 2024; 63:2196-2206. [PMID: 39172504 PMCID: PMC11375770 DOI: 10.1021/acs.biochem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
The identification of chemical starting points for the development of molecular glues is challenging. Here, we employed fragment screening and identified an allosteric stabilizer of the complex between 14-3-3 and a TAZ-derived peptide. The fragment binds preferentially to the 14-3-3/TAZ peptide complex and shows moderate stabilization in differential scanning fluorimetry and microscale thermophoresis. The binding site of the fragment was predicted by molecular dynamics calculations to be distant from the 14-3-3/TAZ peptide interface, located between helices 8 and 9 of the 14-3-3 protein. This site was confirmed by nuclear magnetic resonance and X-ray protein crystallography, revealing the first example of an allosteric stabilizer for 14-3-3 protein-protein interactions.
Collapse
Affiliation(s)
- Blaž Andlovic
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Dario Valenti
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Federica Centorrino
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Francesca Picarazzi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stanimira Hristeva
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | | | - Alexander Wolf
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - François-Xavier Cantrelle
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Mattia Mori
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Isabelle Landrieu
- CNRS
EMR9002 Integrative Structural Biology, University of Lille, F-59000 Lille, France
- University
of Lille, Inserm, Institut Pasteur de Lille, U1167—RID-AGE—Risk
Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France
| | - Laura M. Levy
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Dimitrios Tzalis
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Thorsten Genski
- Taros
Chemicals GmbH & Co. KG, Emil-Figge-Straße 76a, 44227 Dortmund, Germany
| | - Jan Eickhoff
- Lead
Discovery Center GmbH, Otto-Hahn-Str. 15, 44227 Dortmund, Germany
| | - Christian Ottmann
- Laboratory
of Chemical Biology, Department of Biomedical Engineering and Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
92
|
Chen C, Pan Y, Yang X, Li H, Cai X, He S, Wang Q, Yang Y, Zheng R, Li H, Yuan S, Dong X, Samarawickrama PN, Zi M, He Y, Zhang X. Liver-targeting chimeras as a potential modality for the treatment of liver diseases. J Control Release 2024; 374:627-638. [PMID: 39208934 DOI: 10.1016/j.jconrel.2024.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Liver diseases pose significant challenges to global public health. In the realm of drug discovery and development, overcoming 'on-target off-tissue' effects remains a substantial barrier for various diseases. In this study, we have pioneered a Liver-Targeting Chimera (LIVTAC) approach using a proteolysis-targeting chimera (PROTAC) molecule coupled to the liver-specific asialoglycoprotein receptor (ASGPR) through an innovative linker attachment strategy for the precise induction of target protein degradation within the liver. As a proof-of-concept study, we designed XZ1606, a mammalian bromodomain and extra-terminal domain (BET)-targeting LIVTAC agent, which not only demonstrated enduring tumor suppression (over 2 months) in combination with sorafenib but also an improved safety profile, notably ameliorating the incidence of thrombocytopenia, a common and severe on-target dose-limiting toxic effect associated with conventional BET inhibitors. These encouraging results highlight the potential of LIVTAC as a versatile platform for addressing a broad spectrum of liver diseases.
Collapse
Affiliation(s)
- Chuanjie Chen
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhang Pan
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xiaoyu Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiqin Li
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xinhui Cai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shengyuan He
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qiong Wang
- National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yiwen Yang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Huiwen Li
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Shengjie Yuan
- University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Xin Dong
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Meiting Zi
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, China.
| | - Xuan Zhang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
93
|
Wang Z, Liao X, He H, Guo X, Chen J. Targeting the STAT3 pathway with STAT3 degraders. Trends Pharmacol Sci 2024; 45:811-823. [PMID: 39117533 DOI: 10.1016/j.tips.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) has been widely considered as a therapeutic target for various diseases, especially tumors. Thus far, several STAT3 inhibitors have been advanced to clinical trials; however, the development of STAT3 inhibitors is hindered by numerous dilemmas. Fortunately, STAT3 degraders represent an alternative and promising strategy to block STAT3, attracting extensive research interest. Here, we analyze the recent advancements of STAT3 degraders, including proteolysis targeting chimeras (PROTACs) and small-molecule natural products, focusing on their structures, mechanisms, and biological activities. We discuss the potential opportunities and challenges for developing STAT3 degraders. It is hoped that this Review will provide insights into the discovery of potent STAT3-targeting drugs.
Collapse
Affiliation(s)
- Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China; Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaotong Liao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haiqi He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xia Guo
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
94
|
Choi J, Park B, Park JY, Shin D, Lee S, Yoon HY, Kim K, Kim SH, Kim Y, Yang Y, Shim MK. Light-Triggered PROTAC Nanoassemblies for Photodynamic IDO Proteolysis in Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405475. [PMID: 38898702 DOI: 10.1002/adma.202405475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/30/2024] [Indexed: 06/21/2024]
Abstract
While proteolysis-targeting chimeras (PROTACs) hold great potential for persistently reprogramming the immunosuppressive tumor microenvironment via targeted protein degradation, precisely activating them in tumor tissues and preventing uncontrolled proteolysis at off-target sites remain challenging. Herein, a light-triggered PROTAC nanoassembly (LPN) for photodynamic indoleamine 2,3-dioxygenase (IDO) proteolysis is reported. The LPN is derived from the self-assembly of prodrug conjugates, which comprise a PROTAC, cathepsin B-specific cleavable peptide linker, and photosensitizer, without any additional carrier materials. In colon tumor models, intravenously injected LPNs initially silence the activity of PROTACs and accumulate significantly in targeted tumor tissues due to an enhanced permeability and retention effect. Subsequently, the cancer biomarker cathepsin B begins to trigger the release of active PROTACs from the LPNs through enzymatic cleavage of the linkers. Upon light irradiation, tumor cells undergo immunogenic cell death induced by photodynamic therapy to promote the activation of effector T cells, while the continuous IDO degradation of PROTAC simultaneously blocks tryptophan metabolite-regulated regulatory-T-cell-mediated immunosuppression. Such LPN-mediated combinatorial photodynamic IDO proteolysis effectively inhibits tumor growth, metastasis, and recurrence. Collectively, this study presents a promising nanomedicine, designed to synergize PROTACs with other immunotherapeutic modalities, for more effective and safer cancer immunotherapy.
Collapse
Affiliation(s)
- Jiwoong Choi
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Byeongmin Park
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dongwon Shin
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sangmin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Kyung Hee University, Seoul, 02453, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kwangmeyung Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
95
|
Yamaguchi K, Nakagawa S, Furukawa Y. Understanding the role of BRD8 in human carcinogenesis. Cancer Sci 2024; 115:2862-2870. [PMID: 38965933 PMCID: PMC11462934 DOI: 10.1111/cas.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Abstract
The bromodomain is a conserved protein-protein interaction module that functions exclusively to recognize acetylated lysine residues on histones and other proteins. It is noteworthy that bromodomain-containing proteins are involved in transcriptional modulation by recruiting various transcription factors and/or protein complexes such as ATP-dependent chromatin remodelers and acetyltransferases. Bromodomain-containing protein 8 (BRD8), a molecule initially recognized as skeletal muscle abundant protein and thyroid hormone receptor coactivating protein of 120 kDa (TrCP120), was shown to be a subunit of the NuA4/TIP60-histone acetyltransferase complex. BRD8 has been reported to be upregulated in a subset of cancers and implicated in the regulation of cell proliferation as well as in the response to cytotoxic agents. However, little is still known about the underlying molecular mechanisms. In recent years, it has become increasingly clear that the bromodomain of BRD8 recognizes acetylated and/or nonacetylated histones H4 and H2AZ, and that BRD8 is associated with cancer development in both a NuA4/TIP60 complex-dependent and -independent manner. In this review, we will provide an overview of the current knowledge on the molecular function of BRD8, focusing on the biological role of the bromodomain of BRD8 in cancer cells.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research CenterThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Saya Nakagawa
- Division of Clinical Genome Research, Advanced Clinical Research CenterThe Institute of Medical Science, The University of TokyoTokyoJapan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research CenterThe Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
96
|
Wang Q, Zhu Y, Pei J. Targeting EGFR with molecular degraders as a promising strategy to overcome resistance to EGFR inhibitors. Future Med Chem 2024; 16:1923-1944. [PMID: 39206853 PMCID: PMC11485768 DOI: 10.1080/17568919.2024.2389764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Abnormal activation of EGFR is often associated with various malignant tumors, making it an important target for antitumor therapy. However, traditional targeted inhibitors have several limitations, such as drug resistance and side effects. Many studies have focused on the development of EGFR degraders to overcome this resistance and enhance the therapeutic effect on tumors. Proteolysis targeting chimeras (PROTAC) and Lysosome-based degradation techniques have made significant progress in degrading EGFR. This review provides a summary of the structural and function of EGFR, the resistance, particularly the research progress and activity of EGFR degraders via the proteasome and lysosome. Furthermore, this review aims to provide insights for the development of the novel EGFR degraders.
Collapse
Affiliation(s)
- Qiangfeng Wang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, 310003, Hangzhou, Zhejiang, China
| | - Yumeng Zhu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Junping Pei
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
97
|
Xu Q, Feng H, Li Z, Shao X. Acetyl-CoA Carboxylase Proteolysis-Targeting Chimeras: Conceptual Design and Application as Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18809-18815. [PMID: 39145990 DOI: 10.1021/acs.jafc.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Novel approaches for pest control are essential to ensure a sufficient food supply for the growing global population. The development of new insecticides must meet rigorous regulatory requirements for safety and address the resistance issues of existing insecticides. Proteolysis-targeting chimeras (PROTACs), originally developed for human diseases, show promise in agriculture. They offer innovative insecticides tailored to overcome resistance, opening avenues for agricultural applications. In this study, we developed small-molecule degraders by incorporating pomalidomide as an E3 ligand. These degraders were linked to a ligand (spirotetratmat enol) targeting the ACC protein through a flexible chain, aiming to achieve the efficient control of insects. Compounds 9a-9d were designed, synthesized, and evaluated for biological activities and mechanisms. Among them, 9b exhibited superior potency against Aphis craccivora (LC50 = 107.8 μg mL-1) compared to others and effectively degraded ACC proteins through the ubiquitin-proteasome system. These findings highlight the potential of utilizing PROTAC-based approaches in the development of insecticides for efficient pest control.
Collapse
Affiliation(s)
- Qi Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Feng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
98
|
He Y, Zheng Y, Zhu C, Lei P, Yu J, Tang C, Chen H, Diao X. Radioactive ADME Demonstrates ARV-110's High Druggability Despite Low Oral Bioavailability. J Med Chem 2024; 67:14277-14291. [PMID: 39072617 DOI: 10.1021/acs.jmedchem.4c01104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Proteolysis-targeting chimeras (PROTACs) have emerged as potentially effective therapeutic medicines, but their high molecular weight and poor solubility directly impact their oral bioavailability. This work synthesized 14C-labeled bavdegalutamide (ARV-110) as a model compound of PROTACs to evaluate its ADME features. Compared with targeted antitumor drugs, the use of food increased oral bioavailability of ARV-110 in rats from 10.75% to 20.97%, which is still undesirable. However, the therapeutic effect of ARV-110 at a low dose was much better than that of enzalutamide, demonstrating the specific catalytic medicinal properties of PROTACs. Moreover, the specific distribution of ARV-110 in subcutaneous prostate tumors was determined by quantitative whole-body autoradiography (QWBA). Notably, the specificity and activity of PROTACs take precedence over their oral absorption, and high oral bioavailability is not necessary to produce excellent therapeutic effects. This work presents a roadmap for developing future PROTAC medications from a radioactive drug metabolism and pharmacokinetics (DMPK) perspective.
Collapse
Affiliation(s)
- Yifei He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandong Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenggu Zhu
- Wuxi Beita Pharmatech Co., Ltd., Wuxi 214437, China
| | - Peng Lei
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinghua Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Hao Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxing Diao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- XenoFinder Co., Ltd., Suzhou 215123, China
| |
Collapse
|
99
|
Wang C, Wang M, Wang Y, Rej RK, Aguilar A, Xu T, Bai L, Tošović J, McEachern D, Li Q, Sarkari F, Wen B, Sun D, Wang S. Discovery of CW-3308 as a Potent, Selective, and Orally Efficacious PROTAC Degrader of BRD9. J Med Chem 2024; 67:14125-14154. [PMID: 39132814 DOI: 10.1021/acs.jmedchem.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The bromodomain-containing protein BRD9 has emerged as an attractive therapeutic target. In the present study, we successfully identified a number of highly potent BRD9 degraders by using two different cereblon ligands developed in our laboratory. Further optimization led to the discovery of CW-3308 as a potent, selective, and orally bioavailable BRD9 degrader. It displayed degradation potency (DC50) < 10 nM and efficiency (Dmax) > 90% against BRD9 in the G401 rhabdoid tumor and HS-SY-II synovial sarcoma cell lines and had a high degradation selectivity over BRD7 and BRD4 proteins. CW-3308 achieved 91% of oral bioavailability in mice. A single oral dose efficiently reduced the BRD9 protein by >90% in the synovial sarcoma HS-SY-II xenograft tumor tissue. Oral administration effectively inhibited HS-SY-II xenograft tumor growth in mice. CW-3308 is a promising lead compound for further optimization and extensive evaluation for the treatment of synovial sarcoma, rhabdoid tumor, and other BRD9-dependent human diseases.
Collapse
Affiliation(s)
- Changwei Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mi Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yu Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rohan Kalyan Rej
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Angelo Aguilar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tianfeng Xu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Longchuan Bai
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jelena Tošović
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Donna McEachern
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qiuxia Li
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Farzad Sarkari
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bo Wen
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shaomeng Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Medicinal Chemistry, College of Pharmacy,, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
100
|
Feng Y, Hu X, Wang X. Targeted protein degradation in hematologic malignancies: clinical progression towards novel therapeutics. Biomark Res 2024; 12:85. [PMID: 39169396 PMCID: PMC11340087 DOI: 10.1186/s40364-024-00638-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Targeted therapies, such as small molecule kinase inhibitors, have made significant progress in the treatment of hematologic malignancies by directly modulating protein activity. However, issues such as drug toxicity, drug resistance due to target mutations, and the absence of key active sites limit the therapeutic efficacy of these drugs. Targeted protein degradation (TPD) presents an emergent and rapidly evolving therapeutic approach that selectively targets proteins of interest (POI) based on endogenous degradation processes. With an event-driven pharmacology of action, TPD achieves efficacy with catalytic amounts, avoiding drug-related toxicity. Furthermore, TPD has the unique mode of degrading the entire POI, such that resistance derived from mutations in the targeted protein has less impact on its degradation function. Proteolysis-targeting chimeras (PROTACs) and molecular glue degraders (MGDs) are the most maturely developed TPD techniques. In this review, we focus on both preclinical experiments and clinical trials to provide a comprehensive summary of the safety and clinical effectiveness of PROTACs and MGDs in hematologic malignancies over the past two decades. In addition, we also delineate the challenges and opportunities associated with these burgeoning degradation techniques. TPD, as an approach to the precise degradation of specific proteins, provides an important impetus for its future application in the treatment of patients with hematologic malignancies.
Collapse
Affiliation(s)
- Yupiao Feng
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No.324, Jingwu Road, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|