51
|
Abstract
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
Collapse
Affiliation(s)
- Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
52
|
Murphy L, Cruys-Bagger N, Damgaard HD, Baumann MJ, Olsen SN, Borch K, Lassen SF, Sweeney M, Tatsumi H, Westh P. Origin of initial burst in activity for Trichoderma reesei endo-glucanases hydrolyzing insoluble cellulose. J Biol Chem 2012; 287:1252-60. [PMID: 22110134 PMCID: PMC3256860 DOI: 10.1074/jbc.m111.276485] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 11/10/2011] [Indexed: 11/06/2022] Open
Abstract
The kinetics of cellulose hydrolysis have long been described by an initial fast hydrolysis rate, tapering rapidly off, leading to a process that takes days rather than hours to complete. This behavior has been mainly attributed to the action of cellobiohydrolases and often linked to the processive mechanism of this exo-acting group of enzymes. The initial kinetics of endo-glucanases (EGs) is far less investigated, partly due to a limited availability of quantitative assay technologies. We have used isothermal calorimetry to monitor the early time course of the hydrolysis of insoluble cellulose by the three main EGs from Trichoderma reesei (Tr): TrCel7B (formerly EG I), TrCel5A (EG II), and TrCel12A (EG III). These endo-glucanases show a distinctive initial burst with a maximal rate that is about 5-fold higher than the rate after 5 min of hydrolysis. The burst is particularly conspicuous for TrCel7B, which reaches a maximal turnover of about 20 s(-1) at 30 °C and conducts about 1200 catalytic cycles per enzyme molecule in the initial fast phase. For TrCel5A and TrCel12A the extent of the burst is 2-300 cycles per enzyme molecule. The availability of continuous data on EG activity allows an analysis of the mechanisms underlying the initial kinetics, and it is suggested that the slowdown is linked to transient inactivation of enzyme on the cellulose surface. We propose, therefore, that the frequency of structures on the substrate surface that cause transient inactivation determine the extent of the burst phase.
Collapse
Affiliation(s)
- Leigh Murphy
- From Roskilde University, NSM, Biomaterials, 1 Universitetsvej, DK-4000 Roskilde, Denmark
- Novozymes A/S, Krogshøjvej 36, DK-2880 Denmark
| | - Nicolaj Cruys-Bagger
- From Roskilde University, NSM, Biomaterials, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| | | | | | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Denmark
| | | | | | - Hirosuke Tatsumi
- International Young Researchers Empowerment Center, Shinshu University, Matsumoto, Nagano 390-8621, Japan
| | - Peter Westh
- From Roskilde University, NSM, Biomaterials, 1 Universitetsvej, DK-4000 Roskilde, Denmark
| |
Collapse
|
53
|
Abstract
There are two types of processive cellulases, exocellulases and processive endoglucanases. There are also two classes of exocellulases, ones that attack the reducing ends of cellulose chains and ones that attack the nonreducing ends. There are a number of ways of assaying processivity but none of them are ideal. It appears that exocellulases, all of which have their active sites in a tunnel, couple movement along a cellulose chain with cleavage of cellobiose from the end of the cellulose molecule. There are two sets of structures that suggest how an exocellulase might move along a cellulose chain. For family 48 exocellulases there are two different ways that a chain can be bound in the active site while for family 6 exocellulases there are several different ligand-bound structures. Site-directed mutagenesis of Thermobifida fusca exocellulases Cel48A and Cel6B and the processive endoglucanase Cel9A have identified some mutations that increase processivity and some that decrease processivity. In addition a mutation in Cel6B was identified that appears to allow the mutant enzyme to move along a cellulose chain in the absence of cleavage.
Collapse
Affiliation(s)
- David B Wilson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
54
|
Abstract
Natural cellulolytic enzyme systems as well as leading commercial cellulase cocktails are dominated by enzymes that degrade cellulose chains in a processive manner. Despite the abundance of processivity among natural cellulases, the molecular basis as well as the biotechnological implications of this mechanism are only partly understood. One of the major limitations lies in the fact that it is not straightforward to measure and quantify processivity in what essentially are biphasic experimental systems. Here, we describe and discuss both well-established methods and newer methods for measuring cellulase processivity. In addition, we discuss recent insights from studies on chitinases that may help direct further studies on processivity in cellulases.
Collapse
Affiliation(s)
- Svein J Horn
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | | | | | | |
Collapse
|
55
|
Fox JM, Levine SE, Clark DS, Blanch HW. Initial- and Processive-Cut Products Reveal Cellobiohydrolase Rate Limitations and the Role of Companion Enzymes. Biochemistry 2011; 51:442-52. [DOI: 10.1021/bi2011543] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jerome M. Fox
- Energy Biosciences Institute and ‡Department of
Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Seth E. Levine
- Energy Biosciences Institute and ‡Department of
Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Douglas S. Clark
- Energy Biosciences Institute and ‡Department of
Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Harvey W. Blanch
- Energy Biosciences Institute and ‡Department of
Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
56
|
Baumann MJ, Borch K, Westh P. Xylan oligosaccharides and cellobiohydrolase I (TrCel7A) interaction and effect on activity. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:45. [PMID: 22035059 PMCID: PMC3257202 DOI: 10.1186/1754-6834-4-45] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/31/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND The well-studied cellulase mixture secreted by Trichoderma reesei (anamorph to Hypocrea jecorina) contains two cellobiohydolases (CBHs), cellobiohydrolase I (TrCel7A) and cellobiohydrolase II (TrCeI6A), that are core enzymes for the solubilisation of cellulose. This has attracted significant research interest because of the role of the CBHs in the conversion of biomass to fermentable sugars. However, the CHBs are notoriously slow and susceptible to inhibition, which presents a challenge for the commercial utilisation of biomass. The xylans and xylan fragments that are also present in the biomass have been suggested repeatedly as one cause of the reduced activity of CHBs. Yet, the extent and mechanisms of this inhibition remain poorly elucidated. Therefore, we studied xylan oligosaccharides (XOSs) of variable lengths with respect to their binding and inhibition of both TrCel7A and an enzyme variant without the cellulose-binding domain (CBM). RESULTS We studied the binding of XOSs to TrCel7A by isothermal titration calorimetry. We found that XOSs bind to TrCel7A and that the affinity increases commensurate with XOS length. The CBM, on the other hand, did not affect the affinity significantly, which suggests that XOSs may bind to the active site. Activity assays of TrCel7A clearly demonstrated the negative effect of the presence of XOSs on the turnover number. CONCLUSIONS On the basis of these binding data and a comparison of XOS inhibition of the activity of the two enzyme variants towards, respectively, soluble and insoluble substrates, we propose a competitive mechanism for XOS inhibition of TrCel7A with phosphoric swollen cellulose as a substrate.
Collapse
Affiliation(s)
- Martin J Baumann
- Research Unit for Biomaterials, Roskilde University, NSM, Universitetsvej 1, DK-4000, Roskilde, Denmark
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Peter Westh
- Research Unit for Biomaterials, Roskilde University, NSM, Universitetsvej 1, DK-4000, Roskilde, Denmark
| |
Collapse
|
57
|
Warden AC, Little BA, Haritos VS. A cellular automaton model of crystalline cellulose hydrolysis by cellulases. BIOTECHNOLOGY FOR BIOFUELS 2011; 4:39. [PMID: 22005054 PMCID: PMC3214134 DOI: 10.1186/1754-6834-4-39] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/17/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. RESULTS The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall glucose production. CONCLUSIONS Cellulase 4D simulates the enzymatic hydrolysis of cellulose to glucose by surface and solution phase-acting enzymes and accounts for complex phenomena that have previously not been included in cellulose hydrolysis models. The model is intended as a tool for industry, researchers and educators alike to explore options for enzyme engineering and process development and to test hypotheses regarding cellulase mechanisms.
Collapse
Affiliation(s)
- Andrew C Warden
- CSIRO Energy Transformed Flagship and CSIRO Ecosystems Sciences, PO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Bryce A Little
- CSIRO Livestock Industries, FD McMaster Laboratory, Armidale, New South Wales 2350, Australia
- CSIRO Livestock Industries, Queensland Biosciences Precinct, 306 Carmody Road, St Lucia, Queensland 4067, Australia
| | - Victoria S Haritos
- CSIRO Energy Transformed Flagship and CSIRO Ecosystems Sciences, PO Box 1700, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
58
|
Ye Z, Lane AN, Willing GA, Berson RE. Scaled-up separation of cellobiohydrolase1 from a cellulase mixture by ion-exchange chromatography. Biotechnol Prog 2011; 27:1644-52. [DOI: 10.1002/btpr.696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/27/2011] [Indexed: 11/10/2022]
|
59
|
Olsen S, Bohlin C, Murphy L, Borch K, McFarland K, Sweeny M, Westh P. Effects of non-ionic surfactants on the interactions between cellulases and tannic acid: A model system for cellulase–poly-phenol interactions. Enzyme Microb Technol 2011; 49:353-9. [DOI: 10.1016/j.enzmictec.2011.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 05/10/2011] [Accepted: 06/18/2011] [Indexed: 11/26/2022]
|
60
|
Yan S, Li T, Yao L. Mutational Effects on the Catalytic Mechanism of Cellobiohydrolase I from Trichoderma reesei. J Phys Chem B 2011; 115:4982-9. [DOI: 10.1021/jp200384m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Shihai Yan
- Key Lab of Biofuels, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Tong Li
- Key Lab of Biofuels, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Lishan Yao
- Key Lab of Biofuels, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
61
|
Praestgaard E, Elmerdahl J, Murphy L, Nymand S, McFarland KC, Borch K, Westh P. A kinetic model for the burst phase of processive cellulases. FEBS J 2011; 278:1547-60. [DOI: 10.1111/j.1742-4658.2011.08078.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
62
|
Kurasin M, Väljamäe P. Processivity of cellobiohydrolases is limited by the substrate. J Biol Chem 2010; 286:169-77. [PMID: 21051539 DOI: 10.1074/jbc.m110.161059] [Citation(s) in RCA: 184] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Processive cellobiohydrolases (CBHs) are the key components of fungal cellulase systems. Despite the wealth of structural data confirming the processive mode of action, little quantitative information on the processivity of CBHs is available. Here, we developed a method for measuring cellulase processivity. Sensitive fluorescence detection of enzyme-generated insoluble reducing groups on cellulose after labeling with diaminopyridine enabled quantification of the number of reducing-end exo-mode and endo-mode initiations. Both CBHs TrCel7A from Trichoderma reesei and PcCel7D from Phanerochaete chrysosporium employed reducing-end exo- and endo-mode initiation in parallel. Processivity values measured for TrCel7A and PcCel7D on cellulose hydrolysis were more than an order of magnitude lower than the values of intrinsic processivity that were found from the ratio of catalytic constant (k(cat)) and dissociation rate constant (k(off)). We propose that the length of the obstacle-free path available for a processive run on cellulose chain limits the processivity of CBHs on cellulose. TrCel7A and PcCel7D differed in their k(off) values, whereas the k(cat) values were similar. Furthermore, the k(off) values for endoglucanases (EGs) were much higher than the k(off) values for CBHs, whereas the k(cat) values for EGs and CBHs were within the same order of magnitude. These results suggest that the value of k(off) may be the primary target for the selection of cellulases.
Collapse
Affiliation(s)
- Mihhail Kurasin
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51014, Estonia
| | | |
Collapse
|
63
|
Olsen SN, Lumby E, McFarland K, Borch K, Westh P. Kinetics of Enzymatic High-Solid Hydrolysis of Lignocellulosic Biomass Studied by Calorimetry. Appl Biochem Biotechnol 2010; 163:626-35. [DOI: 10.1007/s12010-010-9068-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
|
64
|
Gottschalk LMF, Oliveira RA, Bon EPDS. Cellulases, xylanases, β-glucosidase and ferulic acid esterase produced by Trichoderma and Aspergillus act synergistically in the hydrolysis of sugarcane bagasse. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2010.05.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
65
|
Jalak J, Väljamäe P. Mechanism of initial rapid rate retardation in cellobiohydrolase catalyzed cellulose hydrolysis. Biotechnol Bioeng 2010; 106:871-83. [DOI: 10.1002/bit.22779] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
66
|
Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity - a key predictor of the enzymatic hydrolysis rate. FEBS J 2010; 277:1571-82. [DOI: 10.1111/j.1742-4658.2010.07585.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
67
|
Igarashi K, Koivula A, Wada M, Kimura S, Penttilä M, Samejima M. High speed atomic force microscopy visualizes processive movement of Trichoderma reesei cellobiohydrolase I on crystalline cellulose. J Biol Chem 2009; 284:36186-36190. [PMID: 19858200 PMCID: PMC2794734 DOI: 10.1074/jbc.m109.034611] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/13/2009] [Indexed: 11/06/2022] Open
Abstract
Fungal cellobiohydrolases act at liquid-solid interfaces. They have the ability to hydrolyze cellulose chains of a crystalline substrate because of their two-domain structure, i.e. cellulose-binding domain and catalytic domain, and unique active site architecture. However, the details of the action of the two domains on crystalline cellulose are still unclear. Here, we present real time observations of Trichoderma reesei (Tr) cellobiohydrolase I (Cel7A) molecules sliding on crystalline cellulose, obtained with a high speed atomic force microscope. The average velocity of the sliding movement on crystalline cellulose was 3.5 nm/s, and interestingly, the catalytic domain without the cellulose-binding domain moved with a velocity similar to that of the intact TrCel7A enzyme. However, no sliding of a catalytically inactive enzyme (mutant E212Q) or a variant lacking tryptophan at the entrance of the active site tunnel (mutant W40A) could be detected. This indicates that, besides the hydrolysis of glycosidic bonds, the loading of a cellulose chain into the active site tunnel is also essential for the enzyme movement.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan.
| | - Anu Koivula
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Masahisa Wada
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland
| | - Masahiro Samejima
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
68
|
Voutilainen SP, Murray PG, Tuohy MG, Koivula A. Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 2009; 23:69-79. [DOI: 10.1093/protein/gzp072] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
69
|
Bansal P, Hall M, Realff MJ, Lee JH, Bommarius AS. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol Adv 2009; 27:833-848. [DOI: 10.1016/j.biotechadv.2009.06.005] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/19/2009] [Accepted: 06/20/2009] [Indexed: 11/15/2022]
|
70
|
The noncellulosomal family 48 cellobiohydrolase from Clostridium phytofermentans ISDg: heterologous expression, characterization, and processivity. Appl Microbiol Biotechnol 2009; 86:525-33. [PMID: 19830421 DOI: 10.1007/s00253-009-2231-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/29/2009] [Accepted: 08/31/2009] [Indexed: 10/20/2022]
Abstract
Family 48 glycoside hydrolases (cellobiohydrolases) are among the most important cellulase components for crystalline cellulose hydrolysis mediated by cellulolytic bacteria. Open reading frame (Cphy_3368) of Clostridium phytofermentans ISDg encodes a putative family 48 glycoside hydrolase (CpCel48) with a family 3 cellulose-binding module. CpCel48 was successfully expressed as two soluble intracellular forms with or without a C-terminal His-tag in Escherichia coli and as a secretory active form in Bacillus subtilis. It was found that calcium ion enhanced activity and thermostability of the enzyme. CpCel48 had high activities of 15.1 U micromol(-1) on Avicel and 35.9 U micromol(-1) on regenerated amorphous cellulose (RAC) with cellobiose as a main product and cellotriose and cellotetraose as by-products. By contrast, it had very weak activities on soluble cellulose derivatives (e.g., carboxymethyl cellulose (CMC)) and did not significantly decrease the viscosity of the CMC solution. Cellotetraose was the smallest oligosaccharide substrate for CpCel48. Since processivity is a key characteristic for cellobiohydrolases, the new initial false/right attack model was developed for estimation of processivity by considering the enzyme's substrate specificity, the crystalline structure of homologous Cel48 enzymes, and the configuration of cellulose chains. The processivities of CpCel48 on Avicel and RAC were estimated to be approximately 3.5 and 6.0, respectively. Heterologous expression of secretory active cellobiohydrolase in B. subtilis is an important step for developing recombinant cellulolytic B. subtilis strains for low-cost production of advanced biofuels from cellulosic materials in a single step.
Collapse
|
71
|
Xu F, Ding H, Tejirian A. Detrimental effect of cellulose oxidation on cellulose hydrolysis by cellulase. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
72
|
Selig MJ, Knoshaug EP, Adney WS, Himmel ME, Decker SR. Synergistic enhancement of cellobiohydrolase performance on pretreated corn stover by addition of xylanase and esterase activities. BIORESOURCE TECHNOLOGY 2008; 99:4997-5005. [PMID: 18006303 DOI: 10.1016/j.biortech.2007.09.064] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 09/06/2007] [Accepted: 09/06/2007] [Indexed: 05/05/2023]
Abstract
Significant increases in the depolymerization of corn stover cellulose by cellobiohydrolase I (Cel7A) from Trichoderma reesei were observed using small quantities of non-cellulolytic cell wall-degrading enzymes. Purified endoxylanase (XynA), ferulic acid esterase (FaeA), and acetyl xylan esterase (Axe1) all enhanced Cel7A performance on corn stover subjected to hot water pretreatment. In all cases, the addition of these activities improved the effectiveness of the enzymatic hydrolysis in terms of the quantity of cellulose converted per milligram of total protein. Improvement in cellobiose release by the addition of the non-cellulolytic enzymes ranged from a 13-84% increase over Cel7A alone. The most effective combinations included the addition of both XynA and Axe1, which synergistically enhance xylan conversions resulting in additional synergistic improvements in glucan conversion. Additionally, we note a direct relationship between enzymatic xylan removal in the presence of XynA and the enhancement of cellulose hydrolysis by Cel7A.
Collapse
Affiliation(s)
- Michael J Selig
- National Renewable Energy Laboratory, Chemical and BioSciences Center, 1617 Cole Boulevard, Golden, CO 80401, United States.
| | | | | | | | | |
Collapse
|
73
|
Szijártó N, Siika-Aho M, Tenkanen M, Alapuranen M, Vehmaanperä J, Réczey K, Viikari L. Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces. J Biotechnol 2008; 136:140-7. [PMID: 18635283 DOI: 10.1016/j.jbiotec.2008.05.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 05/05/2008] [Accepted: 05/15/2008] [Indexed: 10/22/2022]
Abstract
Three thermostable neutral cellulases from Melanocarpus albomyces, a 20-kDa endoglucanase (Cel45A), a 50-kDa endoglucanase (Cel7A), and a 50-kDa cellobiohydrolase (Cel7B) heterologously produced in a recombinant Trichoderma reesei were purified and studied in hydrolysis (50 degrees C, pH 6.0) of crystalline and amorphous cellulose. To improve their efficiency, M. albomyces cellulases naturally harboring no cellulose-binding module (CBM) were genetically modified to carry the CBM of T. reesei CBHI/Cel7A, and were studied under similar experimental conditions. Hydrolysis performance and product profiles were used to evaluate hydrolytic features of the investigated enzymes. Each cellulase proved to be active against the tested substrates; the cellobiohydrolase Cel7B had greater activity than the endoglucanases Cel45A and Cel7A against crystalline cellulose, whereas in the case of amorphous substrate the order was reversed. Evidence of synergism was observed when mixtures of the novel enzymes were applied in a constant total protein dosage. Presence of the CBM improved the hydrolytic potential of each enzyme in all experimental configurations; it had a greater effect on the endoglucanases Cel45A and Cel7A than the cellobiohydrolase Cel7B, especially against crystalline substrate. The novel cellobiohydrolase performed comparably to the major cellobiohydrolase of T. reesei (CBHI/Cel7A) under the applied experimental conditions.
Collapse
Affiliation(s)
- Nóra Szijártó
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
74
|
Jeoh T, Michener W, Himmel ME, Decker SR, Adney WS. Implications of cellobiohydrolase glycosylation for use in biomass conversion. BIOTECHNOLOGY FOR BIOFUELS 2008; 1:10. [PMID: 18471276 PMCID: PMC2427024 DOI: 10.1186/1754-6834-1-10] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Accepted: 05/01/2008] [Indexed: 05/07/2023]
Abstract
The cellulase producing ascomycete, Trichoderma reesei (Hypocrea jecorina), is known to secrete a range of enzymes important for ethanol production from lignocellulosic biomass. It is also widely used for the commercial scale production of industrial enzymes because of its ability to produce high titers of heterologous proteins. During the secretion process, a number of post-translational events can occur, however, that impact protein function and stability. Another ascomycete, Aspergillus niger var. awamori, is also known to produce large quantities of heterologous proteins for industry. In this study, T. reesei Cel7A, a cellobiohydrolase, was expressed in A. niger var. awamori and subjected to detailed biophysical characterization. The purified recombinant enzyme contains six times the amount of N-linked glycan than the enzyme purified from a commercial T. reesei enzyme preparation. The activities of the two enzyme forms were compared using bacterial (microcrystalline) and phosphoric acid swollen (amorphous) cellulose as substrates. This comparison suggested that the increased level of N-glycosylation of the recombinant Cel7A (rCel7A) resulted in reduced activity and increased non-productive binding on cellulose. When treated with the N-glycosidase PNGaseF, the molecular weight of the recombinant enzyme approached that of the commercial enzyme and the activity on cellulose was improved.
Collapse
Affiliation(s)
- Tina Jeoh
- Biological and Agricultural Engineering Department, University of California at Davis, Davis, California, USA
| | - William Michener
- National Bioenergy Center, National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA
| | - Michael E Himmel
- Chemical and Biosciences Center, National Renewable Energy Laboratory 1617 Cole Blvd., Golden, CO 80401, USA
| | - Stephen R Decker
- Chemical and Biosciences Center, National Renewable Energy Laboratory 1617 Cole Blvd., Golden, CO 80401, USA
| | - William S Adney
- Chemical and Biosciences Center, National Renewable Energy Laboratory 1617 Cole Blvd., Golden, CO 80401, USA
| |
Collapse
|
75
|
Liebert T, Seifert M, Heinze T. Efficient Method for the Preparation of Pure, Water-Soluble Cellodextrines. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/masy.200850214] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
76
|
|
77
|
Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 2007; 315:804-7. [PMID: 17289988 DOI: 10.1126/science.1137016] [Citation(s) in RCA: 2249] [Impact Index Per Article: 132.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lignocellulosic biomass has long been recognized as a potential sustainable source of mixed sugars for fermentation to biofuels and other biomaterials. Several technologies have been developed during the past 80 years that allow this conversion process to occur, and the clear objective now is to make this process cost-competitive in today's markets. Here, we consider the natural resistance of plant cell walls to microbial and enzymatic deconstruction, collectively known as "biomass recalcitrance." It is this property of plants that is largely responsible for the high cost of lignocellulose conversion. To achieve sustainable energy production, it will be necessary to overcome the chemical and structural properties that have evolved in biomass to prevent its disassembly.
Collapse
Affiliation(s)
- Michael E Himmel
- Chemical and Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| | | | | | | | | | | | | |
Collapse
|
78
|
Igarashi K, Wada M, Samejima M. Activation of crystalline cellulose to cellulose IIII results in efficient hydrolysis by cellobiohydrolase. FEBS J 2007; 274:1785-92. [PMID: 17319934 DOI: 10.1111/j.1742-4658.2007.05727.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystalline polymorphic form of cellulose (cellulose I(alpha)-rich) of the green alga, Cladophora, was converted into cellulose III(I) and I(beta) by supercritical ammonium and hydrothermal treatments, respectively, and the hydrolytic rate and the adsorption of Trichoderma viride cellobiohydrolase I (Cel7A) on these products were evaluated by a novel analysis based on the surface density of the enzyme. Cellobiose production from cellulose III(I) was more than 5 times higher than that from cellulose I. However, the amount of enzyme adsorbed on cellulose III(I) was less than twice that on cellulose I, and the specific activity of the adsorbed enzyme for cellulose III(I) was more than 3 times higher than that for cellulose I. When cellulose III(I) was converted into cellulose I(beta) by hydrothermal treatment, cellobiose production was dramatically decreased, although no significant change was observed in enzyme adsorption. This clearly indicates that the enhanced hydrolysis of cellulose III(I) is related to the structure of the crystalline polymorph. Thus, supercritical ammonium treatment activates crystalline cellulose for hydrolysis by cellobiohydrolase.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, University of Tokyo, Japan
| | | | | |
Collapse
|
79
|
Abstract
The enzymatic kinetics of glycoside hydrolase family 7 cellobiohydrolase (Cel7A) towards highly crystalline celluloses at the solid-liquid interface was evaluated by applying the novel concept of surface density (rho) of the enzyme, which is defined as the amount of adsorbed enzyme divided by the maximum amount of adsorbed enzyme. When the adsorption levels of Trichoderma viride Cel7A on cellulose I(alpha) from Cladophora and cellulose I(beta) from Halocynthia were compared, the maximum adsorption of the enzyme on cellulose I(beta) was approximately 1.5 times higher than that on cellulose I(alpha), although the rate of cellobiose production from cellulose I(beta) was lower than that from cellulose I(alpha). This indicates that the specific activity (k) of Cel7A adsorbed on cellulose I(alpha) is higher than that of Cel7A adsorbed on cellulose I(beta). When k was plotted versus rho, a dramatic decrease of the specific activity was observed with the increase of surface density (rho-value), suggesting that overcrowding of enzyme molecules on a cellulose surface lowers their activity. An apparent difference of the specific activity was observed between crystalline polymorphs, i.e. the specific activity for cellulose I(alpha) was almost twice that for cellulose I(beta). When cellulose I(alpha) was converted to cellulose I(beta) by hydrothermal treatment, the specific activity of Cel7A decreased and became similar to that of native cellulose I(beta) at the same rho-value. These results indicate that the hydrolytic activity (rate) of bound Cel7A depends on the nature of the crystalline cellulose polymorph, and an analysis that takes surface density into account is an effective means to evaluate cellulase kinetics at a solid-liquid interface.
Collapse
Affiliation(s)
- Kiyohiko Igarashi
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
80
|
Horn SJ, Sørbotten A, Synstad B, Sikorski P, Sørlie M, Vårum KM, Eijsink VGH. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 2006; 273:491-503. [PMID: 16420473 DOI: 10.1111/j.1742-4658.2005.05079.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We present a comparative study of ChiA, ChiB, and ChiC, the three family 18 chitinases produced by Serratia marcescens. All three enzymes eventually converted chitin to N-acetylglucosamine dimers (GlcNAc2) and a minor fraction of monomers. ChiC differed from ChiA and ChiB in that it initially produced longer oligosaccharides from chitin and had lower activity towards an oligomeric substrate, GlcNAc6. ChiA and ChiB could convert GlcNAc6 directly to three dimers, whereas ChiC produced equal amounts of tetramers and dimers, suggesting that the former two enzymes can act processively. Further insight was obtained by studying degradation of the soluble, partly deacetylated chitin-derivative chitosan. Because there exist nonproductive binding modes for this substrate, it was possible to discriminate between independent binding events and processive binding events. In reactions with ChiA and ChiB the polymer disappeared very slowly, while the initially produced oligomers almost exclusively had even-numbered chain lengths in the 2-12 range. This demonstrates a processive mode of action in which the substrate chain moves by two sugar units at a time, regardless of whether complexes formed along the way are productive. In contrast, reactions with ChiC showed rapid disappearance of the polymer and production of a continuum of odd- and even-numbered oligomers. These results are discussed in the light of recent literature data on directionality and synergistic effects of ChiA, ChiB and ChiC, leading to the conclusion that ChiA and ChiB are processive chitinases that degrade chitin chains in opposite directions, while ChiC is a nonprocessive endochitinase.
Collapse
Affiliation(s)
- Svein J Horn
- Department of Chemistry, Biotechnology and Food Science, the Norwegian University of Life Sciences, As, Norway
| | | | | | | | | | | | | |
Collapse
|
81
|
Anumula KR. Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates. Anal Biochem 2005; 350:1-23. [PMID: 16271261 DOI: 10.1016/j.ab.2005.09.037] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Accepted: 09/26/2005] [Indexed: 11/28/2022]
Affiliation(s)
- Kalyan R Anumula
- Analytical Biochemistry, Inhibitex Inc., Alpharetta, GA 30004, USA.
| |
Collapse
|
82
|
Hildén L, Väljamäe P, Johansson G. Surface character of pulp fibres studied using endoglucanases. J Biotechnol 2005; 118:386-97. [PMID: 15950308 DOI: 10.1016/j.jbiotec.2005.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 05/02/2005] [Accepted: 05/04/2005] [Indexed: 11/27/2022]
Abstract
The endoglucanase Cel5A from Trichoderma reesei and an endoglucanase from Aspergillus sp. (Novozym 476 from Novozyme A/S) were evaluated as probes for the surface properties of soft- and hardwood chemical pulp fibres. The hydrolysis time curves were in accordance with a two-phase degradation model described by a biexponential function. The kinetic parameters corresponding to the amount of fast and slow degraded parts of the substrate correlated to tensile index, relative bonded area and z-strength of the paper. All paper properties showing a correlation with enzyme kinetic parameters were related to fibre-fibre interactions. Fluorescence labelling of the reducing end groups in pulp fibres followed by enzyme treatment indicated that the fast substrate class corresponds to the population of "loose" cellulose chain ends not tightly associated with the bulk cellulose. The correlation between the parameters of enzyme kinetics and mechanical properties of the paper produced from the corresponding pulp found in this study should allow a rapid evaluation of the raw fibre material used in paper making process.
Collapse
Affiliation(s)
- Lars Hildén
- WURC, Department of Wood Science, Swedish University of Agricultural Sciences, Box 7008, 750 07 Uppsala, Sweden.
| | | | | |
Collapse
|
83
|
Ubhayasekera W, Muñoz IG, Vasella A, Ståhlberg J, Mowbray SL. Structures of Phanerochaete chrysosporium Cel7D in complex with product and inhibitors. FEBS J 2005; 272:1952-64. [PMID: 15819888 DOI: 10.1111/j.1742-4658.2005.04625.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cellobiohydrolase Pc_Cel7D is the major cellulase produced by the white-rot fungus Phanerochaete chrysosporium, constituting approximately 10% of the total secreted protein in liquid culture on cellulose. The enzyme is classified into family 7 of the glycoside hydrolases and, like other family members, catalyses cellulose hydrolysis with net retention of the anomeric carbon configuration. Previous work described the apo structure of the enzyme. Here we investigate the binding of the product, cellobiose, and several inhibitors, i.e. lactose, cellobioimidazole, Tris/HCl, calcium and a thio-linked substrate analogue, methyl 4-S-beta-cellobiosyl-4-thio-beta-cellobioside (GG-S-GG). The three disaccharides bind in the glucosyl-binding subsites +1 and +2, close to the exit of the cellulose-binding tunnel/cleft. Pc_Cel7D binds to lactose more strongly than cellobiose, while the opposite is true for the homologous Trichoderma reesei cellobiohydrolase Tr_Cel7A. Although both sugars bind Pc_Cel7D in a similar fashion, the different preferences can be explained by varying interactions with nearby loops. Cellobioimidazole is bound at a slightly different position, displaced approximately 2 A toward the catalytic centre. Thus the Pc_Cel7D complexes provide evidence for two binding modes of the reducing-end cellobiosyl moiety; this conclusion is confirmed by comparison with other available structures. The combined results suggest that hydrolysis of the glycosyl-enzyme intermediate may not require the prior release of the cellobiose product from the enzyme. Further, the structure obtained in the presence of both GG-S-GG and cellobiose revealed electron density for Tris at the catalytic centre. Inhibition experiments confirm that both Tris and calcium are effective inhibitors at the conditions used for crystallization.
Collapse
Affiliation(s)
- Wimal Ubhayasekera
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|