51
|
Chen B, Soto C, Morales R. Peripherally administrated prions reach the brain at sub-infectious quantities in experimental hamsters. FEBS Lett 2014; 588:795-800. [PMID: 24492001 DOI: 10.1016/j.febslet.2014.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/20/2013] [Accepted: 01/10/2014] [Indexed: 12/01/2022]
Abstract
The mechanisms implicated in prion infection and tissue distribution are not completely understood. In this study we investigated the levels of 263K prions in brain and spleen of Syrian hamsters few days after intra-peritoneal challenge. For this purpose we utilized the PMCA technology which permits to detect as little as few PrP(Sc) molecules. Our results show that peripherally administered prions directly reach the brain, although at levels below the minimum necessary to produce disease. PrP(Sc) remains in the brain several days after administration suggesting inefficient clearance or early replication. Understanding the fate of the infectious agent after administration and its uptake in different organs and fluids may provide useful information to develop strategies to minimize further spreading of prion diseases.
Collapse
Affiliation(s)
- Baian Chen
- Protein Misfolding Disorders Laboratory, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston, TX 77030, USA; Department of Laboratory Animal Science, School of Basic Medical Science, Capital Medical University, Beijing 100069, China
| | - Claudio Soto
- Protein Misfolding Disorders Laboratory, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Rodrigo Morales
- Protein Misfolding Disorders Laboratory, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
52
|
Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 2013; 5:e00829-13. [PMID: 24381300 PMCID: PMC3884057 DOI: 10.1128/mbio.00829-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. IMPORTANCE The method developed here allows large-scale, fast, and reliable cell-free amplification of subinfectious levels of prions from different species. The sensitivity and rapidity achieved approach or equal those of other recently developed prion-seeded conversion assays. Our simplified assay may be amenable to high-throughput, automated purposes and serve in a complementary manner with other recently developed assays for urgently needed antemortem diagnostic tests, by using bodily fluids containing small amounts of prion infectivity. Such a combination of assays is of paramount importance to reduce the transfusion risk in the human population and to identify asymptomatic carriers of variant Creutzfeldt-Jakob disease.
Collapse
|
53
|
Kovacs GG, Peden A, Weis S, Höftberger R, Berghoff AS, Yull H, Ströbel T, Koppi S, Katzenschlager R, Langenscheidt D, Assar H, Zaruba E, Gröner A, Voigtländer T, Puska G, Hametner E, Grams A, Muigg A, Knoflach M, László L, Ironside JW, Head MW, Budka H. Rapidly progressive dementia with thalamic degeneration and peculiar cortical prion protein immunoreactivity, but absence of proteinase K resistant PrP: a new disease entity? Acta Neuropathol Commun 2013; 1:72. [PMID: 24252716 PMCID: PMC3835463 DOI: 10.1186/2051-5960-1-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 01/03/2023] Open
Abstract
Background Human prion diseases are a group of rare fatal neurodegenerative conditions with well-developed clinical and neuropathological diagnostic criteria. Recent observations have expanded the spectrum of prion diseases beyond the classically recognized forms. Results In the present study we report six patients with a novel, apparently sporadic disease characterised by thalamic degeneration and rapidly progressive dementia (duration of illness 2–12 months; age at death: 55–81 years). Light and electron microscopic immunostaining for the prion protein (PrP) revealed a peculiar intraneuritic distribution in neocortical regions. Proteinase K resistant PrP (PrPres) was undetectable by Western blotting in frontal cortex from the three cases with frozen tissue, even after enrichment for PrPres by centrifugation or by phosphotungstic acid precipitation. Conformation-dependent immunoassay analysis using a range of PK digestion conditions (and no PK digestion) produced only very limited evidence of meaningful D-N (denatured/native) values, indicative of the presence of disease-associated PrP (PrPSc) in these cases, when the results were compared with appropriate negative control groups. Conclusions Our observation expands the spectrum of conditions associated with rapidly progressive dementia and may have implications for the understanding of the pathogenesis of prion diseases.
Collapse
|
54
|
Klöhn PC, Castro-Seoane R, Collinge J. Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery? J Infect 2013; 67:359-68. [PMID: 23911964 DOI: 10.1016/j.jinf.2013.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 07/23/2013] [Indexed: 11/18/2022]
Abstract
Prion diseases are incurable transmissible neurological disorders. In many natural and experimental prion diseases, infectious prions can be detected in the lymphoreticular system (LRS) long before they reach the brain where they cause a fatal rapidly progressive degeneration. Although major cell types that contribute to prion accumulation have been identified, the mode of prion dissemination in the LRS remains elusive. Recent evidence of a remarkably fast splenic prion accumulation after peripheral infection of mice, resulting in high prion titers in dendritic cells (DCs) and a release of prions from infected DCs via exosomes suggest that intercellular dissemination may contribute to rapid prion colonization in the LRS. A vast body of evidence from retroviral infections shows that DCs and other antigen-presenting cells (APCs) share viral antigens by intercellular transfer to warrant immunity against viruses if APCs remain uninfected. Evolved to adapt the immune response to evading pathogens, these pathways may constitute a portal for unimpeded prion dissemination owing to the tolerance of the immune system against host-encoded prion protein. In this review we summarize current paradigms for antigen-sharing pathways which may be relevant to better understand dissemination of rogue neurotoxic proteins.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
55
|
Laferrière F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E, Laude H, Rezaei H, Béringue V. Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 2013; 9:e1003702. [PMID: 24130496 PMCID: PMC3795044 DOI: 10.1371/journal.ppat.1003702] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrP(Sc), an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). Stable variations in PrP(Sc) conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrP(Sc) quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrP(Sc) quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrP(Sc). To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrP(Sc) tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrP(Sc) aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrP(Sc) quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.
Collapse
Affiliation(s)
- Florent Laferrière
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
56
|
Xiao X, Cali I, Dong Z, Puoti G, Yuan J, Qing L, Wang H, Kong Q, Gambetti P, Zou WQ. Protease-sensitive prions with 144-bp insertion mutations. Aging (Albany NY) 2013; 5:155-73. [PMID: 23515139 PMCID: PMC3629288 DOI: 10.18632/aging.100543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insertion of 144-base pair (bp) containing six extra octapeptide repeats between residues 51 and 91 of prion protein (PrP) gene is associated with inherited prion diseases. Most cases linked to this insertion examined by Western blotting showed detectable proteinase K-resistant PrPSc (rPrPSc) resembling PrPSc type 1 and type 2 in sporadic Creutzfeldt-Jakob disease (sCJD), or PrP7-8 in Gerstmann-Sträussler-Scheinker disease. However, cases lacking detectable rPrPSc also have been reported. Which PrP conformer is associated with neuropathological changes in the cases without detectable rPrPSc remains to be determined. Here we report that while all six but one subjects with the 144-bp insertion mutations examined display the pathognomonic PrP patches in the cerebellum, one of them exhibits no detectable typical rPrPSc even in PrPSc-enriched preparations. Instead, a large amount of abnormal PrP is captured from this case by gene 5 protein and sodium phosphotungstate, reagents that have been proved to specifically capture abnormal PrP. All captured abnormal PrP from the cerebellum and other brain regions is virtually sensitive to PK-digestion (termed sPrPSc). The presence of the predominant sPrPSc but absence of rPrPSc in this 144-bp insertion-linked inherited CJD case suggests that mutant sPrPSc is the main component of the PrP deposit patches and sPrPSc is sufficient to cause neurotoxicity and prion disease.
Collapse
Affiliation(s)
- Xiangzhu Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kuczius T, Groschup MH. Cellular prion proteins in humans and cattle but not sheep are characterized by a low-solubility phenotype. Comp Immunol Microbiol Infect Dis 2013; 36:599-605. [PMID: 23948376 DOI: 10.1016/j.cimid.2013.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
A feature of transmissible spongiform encephalopathies is the accumulation of infectious prion proteins (PrP(Sc)), which are formed by the conversion of physiological prion proteins (PrP(C)). As PrP(C), which is modified posttranslationally with various types of glycoproteins, serves as the substrates for PrP(Sc) conversion, various PrP(C) subtypes may play a role in the formation of PrP(Sc) and species-specific transmission; the cattle disease BSE is transmissible naturally to humans, but the sheep disease scrapie is not. To reveal new mechanisms modulating prion conversion, we analyzed the PrP(C) profiles by determining the differential PrP(C) protein solubilities in the anionic and nonionic detergents N-lauroylsarcosine, N-octyl-β-D-glucopyranoside, CHAPS and deoxycholic acid. We compared the resulting solubility profiles of human PrP(C) with the solubility profiles of PrP(C) from sheep and cattle. The PrP(C) subtypes were differentially soluble. However, non-glycosylated PrP(C) from cattle and human was found explicitly in the insoluble fraction, while non-glycosylated ovine PrP(C) was detected in the soluble fraction. These findings indicate the existence of low-solubility PrP(C) phenotypes in cattle and humans.
Collapse
Affiliation(s)
- Thorsten Kuczius
- Institute for Hygiene, Westfälische Wilhelms-University and University Hospital Münster, Robert Koch-Strasse 41, 48149 Münster, Germany.
| | | |
Collapse
|
58
|
Saverioni D, Notari S, Capellari S, Poggiolini I, Giese A, Kretzschmar HA, Parchi P. Analyses of protease resistance and aggregation state of abnormal prion protein across the spectrum of human prions. J Biol Chem 2013; 288:27972-85. [PMID: 23897825 DOI: 10.1074/jbc.m113.477547] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prion diseases are characterized by tissue accumulation of a misfolded, β-sheet-enriched isoform (scrapie prion protein (PrP(Sc))) of the cellular prion protein (PrP(C)). At variance with PrP(C), PrP(Sc) shows a partial resistance to protease digestion and forms highly aggregated and detergent-insoluble polymers, two properties that have been consistently used to distinguish the two proteins. In recent years, however, the idea that PrP(Sc) itself comprises heterogeneous species has grown. Most importantly, a putative proteinase K (PK)-sensitive form of PrP(Sc) (sPrP(Sc)) is being increasingly investigated for its possible role in prion infectivity, neurotoxicity, and strain variability. The study of sPrP(Sc), however, remains technically challenging because of the need of separating it from PrP(C) without using proteases. In this study, we have systematically analyzed both PK resistance and the aggregation state of purified PrP(Sc) across the whole spectrum of the currently characterized human prion strains. The results show that PrP(Sc) isolates manifest significant strain-specific differences in their PK digestion profile that are only partially explained by differences in the size of aggregates, suggesting that other factors, likely acting on PrP(Sc) aggregate stability, determine its resistance to proteolysis. Fully protease-sensitive low molecular weight aggregates were detected in all isolates but in a limited proportion of the overall PrP(Sc) (i.e. <10%), arguing against a significant role of slowly sedimenting PK-sensitive PrP(Sc) in the biogenesis of prion strains. Finally, we highlight the limitations of current operational definitions of sPrP(Sc) and of the quantitative analytical measurements that are not based on the isolation of a fully PK-sensitive PrP(Sc) form.
Collapse
Affiliation(s)
- Daniela Saverioni
- From the Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
59
|
Smith JD, Nicholson EM, Greenlee JJ. Evaluation of a combinatorial approach to prion inactivation using an oxidizing agent, SDS, and proteinase K. BMC Vet Res 2013; 9:151. [PMID: 23886483 PMCID: PMC3728008 DOI: 10.1186/1746-6148-9-151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Prions demonstrate an unusual resistance to methods effective at inactivating conventional microorganisms. This has resulted in a very tangible and difficult infection control challenge to the medical and veterinary communities, as well as animal agriculture and related industries. Currently accepted practices of harsh chemical treatments such as prolonged exposure to sodium hydroxide or sodium hypochlorite, or autoclaving are not suitable in many situations. Less caustic and more readily applicable treatments to contaminated environments are therefore desirable. We recently demonstrated that exposure of the RML scrapie agent to a commercial product containing sodium percarbonate (SPC-P) with or without sodium dodecyl sulfate (SDS) rendered PrP(Sc) sensitive to proteinase K (PK), but did not eliminate infectivity. The current study was designed to evaluate the efficacy of a combinatorial approach to inactivating prions by exposing RML-positive brain homogenate to SPC-P and SDS followed by PK. Treated samples were evaluated for PrP(Sc)-immunoreactivity by western blot, and residual infectivity by mouse bioassay. RESULTS Treatment of infected brain homogenate with SPC-P and SDS followed by PK exposure resulted in a 4-5 log10 reduction in infectivity when bioassayed in tga20 mice. CONCLUSIONS This study demonstrates that exposure of the RML scrapie agent to SPC-P and SDS followed by PK markedly reduces, but does not eliminate infectivity. The results of this study encourage further investigation into whether consecutive or concomitant exposure to sodium percarbonate, SDS, and a protease may serve as a viable and non-caustic option for prion inactivation.
Collapse
Affiliation(s)
- Jodi D Smith
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA
| |
Collapse
|
60
|
TSE diagnostics: recent advances in immunoassaying prions. Clin Dev Immunol 2013; 2013:360604. [PMID: 23970925 PMCID: PMC3732588 DOI: 10.1155/2013/360604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/27/2013] [Accepted: 07/02/2013] [Indexed: 02/05/2023]
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are a group of rare fatal neurodegenerative diseases, affecting humans and animals. They are believed to be the consequence of the conversion of the cellular prion protein to its aggregation-prone, β-sheet-rich isoform, named prion. Definite diagnosis of TSEs is determined post mortem. For this purpose, immunoassays for analyzing brain tissue have been developed. However, the ultimate goal of TSE diagnostics is an ante mortem test, which would be sensitive enough to detect prions in body fluids, that is, in blood, cerebrospinal fluid, or urine. Such a test would be of paramount importance also for screening of asymptomatic carriers of the disease with the aim of increasing food, drugs, and blood-derived products safety. In the present paper, we have reviewed recent advances in the development of immunoassays for the detection of prions.
Collapse
|
61
|
Biochemical characterization of prion strains in bank voles. Pathogens 2013; 2:446-56. [PMID: 25437201 PMCID: PMC4235696 DOI: 10.3390/pathogens2030446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022] Open
Abstract
Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived) and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres) and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed.
Collapse
|
62
|
Jacobson KH, Kuech TR, Pedersen JA. Attachment of pathogenic prion protein to model oxide surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6925-34. [PMID: 23611152 PMCID: PMC4091914 DOI: 10.1021/es3045899] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The presence of the N-terminal portion of the protein appeared to promote attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions would tend to associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides).
Collapse
Affiliation(s)
- Kurt H. Jacobson
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706
| | - Thomas R. Kuech
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, WI 53706
| | - Joel A. Pedersen
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, WI 53706
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, WI 53706
- Department of Soil Science, University of Wisconsin, Madison, WI 53706
- Corresponding author address: Department of Soil Science, University of Wisconsin, 1525 Observatory Drive, Madison, WI 53706 1299; phone: (608) 263-4971; fax: (608) 265-2595;
| |
Collapse
|
63
|
Bett C, Kurt TD, Lucero M, Trejo M, Rozemuller AJ, Kong Q, Nilsson KPR, Masliah E, Oldstone MB, Sigurdson CJ. Defining the conformational features of anchorless, poorly neuroinvasive prions. PLoS Pathog 2013; 9:e1003280. [PMID: 23637596 PMCID: PMC3630170 DOI: 10.1371/journal.ppat.1003280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion. Prions cause fatal neurodegenerative disease in humans and animals and there is currently no treatment available. The cellular prion protein is normally tethered to the outer leaflet of the plasma membrane by a glycophosphatidyl inositol (GPI) anchor. A rare stop codon mutation in the PRNP gene leads to the production of GPI-anchorless prion protein and the development of familial prion disease, which has been reproduced in mouse models. GPI-anchorless prions in humans or mice form large, dense plaques containing fibrils in the brain that vary from the more common non-fibrillar prion aggregates. Here we investigated the biochemical differences between GPI-anchored and GPI-anchorless prions. We also assessed the capacity of GPI-anchorless prions to spread from entry sites into the central nervous system. We found that infectious GPI-anchorless prions were extraordinarily stable when exposed to protein denaturing conditions. Additionally, we show that GPI-anchorless prions rarely invade the central nervous system and then only after long incubation periods, despite their presence in extraneural tissues including adipose tissue and heart. Our study shows that GPI-anchored prions converted into GPI-anchorless prions become extraordinarily stable, more resistant to enzyme digestion, and are poorly able to invade the nervous system.
Collapse
Affiliation(s)
- Cyrus Bett
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Tim D. Kurt
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Melanie Lucero
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Margarita Trejo
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Annemieke J. Rozemuller
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - K. Peter R. Nilsson
- Department of Chemistry, Biology, and Physics, Linkoping University, Linkoping, Sweden
| | - Eliezer Masliah
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Michael B. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christina J. Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
- Department of Pathology, Immunology, and Microbiology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
64
|
Masujin K, Kaku-Ushiki Y, Miwa R, Okada H, Shimizu Y, Kasai K, Matsuura Y, Yokoyama T. The N-terminal sequence of prion protein consists an epitope specific to the abnormal isoform of prion protein (PrP(Sc)). PLoS One 2013; 8:e58013. [PMID: 23469131 PMCID: PMC3585212 DOI: 10.1371/journal.pone.0058013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The conformation of abnormal prion protein (PrPSc) differs from that of cellular prion protein (PrPC), but the precise characteristics of PrPSc remain to be elucidated. To clarify the properties of native PrPSc, we attempted to generate novel PrPSc-specific monoclonal antibodies (mAbs) by immunizing PrP-deficient mice with intact PrPSc purified from bovine spongiform encephalopathy (BSE)-affected mice. The generated mAbs 6A12 and 8D5 selectivity precipitated PrPSc from the brains of prion-affected mice, sheep, and cattle, but did not precipitate PrPC from the brains of healthy animals. In histopathological analysis, mAbs 6A12 and 8D5 strongly reacted with prion-affected mouse brains but not with unaffected mouse brains without antigen retrieval. Epitope analysis revealed that mAbs 8D5 and 6A12 recognized the PrP subregions between amino acids 31–39 and 41–47, respectively. This indicates that a PrPSc-specific epitope exists in the N-terminal region of PrPSc, and mAbs 6A12 and 8D5 are powerful tools with which to detect native and intact PrPSc. We found that the ratio of proteinase K (PK)-sensitive PrPSc to PK-resistant PrPSc was constant throughout the disease time course.
Collapse
Affiliation(s)
- Kentaro Masujin
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | | | - Ritsuko Miwa
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Hiroyuki Okada
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yoshihisa Shimizu
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Kazuo Kasai
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Yuichi Matsuura
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
| | - Takashi Yokoyama
- Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
65
|
Jackson GS, Mead S, Collinge J. Developing early diagnostics for prion diseases. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.12.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The diagnosis of prion disease is typically made late in the clinical course, by which time patients are in an advanced state of neurological decline. This is despite the presence of pathology in many tissues, particularly those of the lymphoreticular and central nervous systems. The recent description of an effective blood assay for variant Creutzfeldt-Jakob disease clearly demonstrates the potential for routine pre-mortem diagnosis, although further progress is required for the detection of sporadic forms of the disease.
Collapse
Affiliation(s)
- Graham S Jackson
- MRC Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
66
|
Salamat MK, Munoz-Montesino C, Moudjou M, Rezaei H, Laude H, Béringue V, Dron M. Mammalian prions: tolerance to sequence changes-how far? Prion 2012; 7:131-5. [PMID: 23232499 DOI: 10.4161/pri.23110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Upon prion infection, abnormal prion protein (PrP (Sc) ) self-perpetuate by conformational conversion of α-helix-rich PrP (C) into β sheet enriched form, leading to formation and deposition of PrP (Sc) aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrP (Sc) and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region.
Collapse
|
67
|
Taema MM, Maddison BC, Thorne L, Bishop K, Owen J, Hunter N, Baker CA, Terry LA, Gough KC. Differentiating ovine BSE from CH1641 scrapie by serial protein misfolding cyclic amplification. Mol Biotechnol 2012; 51:233-9. [PMID: 21987099 DOI: 10.1007/s12033-011-9460-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whilst ovine BSE displays distinct pathological characteristics to ovine CH1641-like scrapie upon passage in rodents, they have very similar molecular phenotypes. As such, the in vitro differentiation of these strains in routine surveillance programmes presents a significant diagnostic challenge. In this study, using serial protein-misfolding cyclic amplification (sPMCA), ovine BSE was readily amplified in vitro in brain substrates from sheep with V₁₃₆R₁₅₄Q₁₇₁/V₁₃₆R₁₅₄Q₁₇₁ or AHQ/AHQ PRNP genotypes. In contrast, the CH1641 strain was refractory to such amplification. This method allowed for complete and unequivocal differentiation of experimental BSE from CH1641 prion strains within an ovine host.
Collapse
Affiliation(s)
- Maged M Taema
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington Campus, College Road, Sutton Bonington, Leicestershire LE12 5RD, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Krasemann S, Neumann M, Szalay B, Stocking C, Glatzel M. Protease-sensitive prion species in neoplastic spleens of prion-infected mice with uncoupling of PrP(Sc) and prion infectivity. J Gen Virol 2012; 94:453-463. [PMID: 23136363 DOI: 10.1099/vir.0.045922-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders. An important step in disease pathophysiology is the conversion of cellular prion protein (PrP(C)) to disease-associated misfolded conformers (PrP(Sc)). These misfolded PrP variants are a common component of prion infectivity and are detectable in diseased brain and lymphoreticular organs such as spleen. In the latter, PrP(Sc) is thought to replicate mainly in follicular dendritic cells within spleen follicles. Although the presence of PrP(Sc) is a hallmark for prion disease and serves as a main diagnostic criterion, in certain instances the amount of PrP(Sc) does not correlate well with neurotoxicity or prion infectivity. Therefore, it has been proposed that prions might be a mixture of different conformers and aggregates with differing properties. This study investigated the impact of disruption of spleen architecture by neoplasia on the abundance of different PrP species in spleens of prion-infected mice. Although follicular integrity was completely disturbed, titres of prion infectivity in neoplastic spleens were not significantly altered, yet no protease-resistant PrP(Sc) was detectable. Instead, unique protease-sensitive prion species could be detected in neoplastic spleens. These results indicate the dissociation of PrP(Sc) and prion infectivity and showed the presence of non-PrP(Sc) PrP species in spleen with divergent biochemical properties that become apparent after tissue architecture disruption.
Collapse
Affiliation(s)
- Susanne Krasemann
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Melanie Neumann
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Beata Szalay
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Carol Stocking
- Heinrich Pette Institute, AG Molecular Pathology, D-20206 Hamburg, Germany
| | - Markus Glatzel
- University Medical Center Hamburg-Eppendorf (UKE), Institute of Neuropathology, Martinistrasse 52, D-20246 Hamburg, Germany
| |
Collapse
|
69
|
Abstract
It has been described that the breakdown of β-sheets in PrP (Sc) by denaturation results in loss of infectivity and PK-sensitivity, suggesting a relationship between the structure and PK-resistance. It is also known that an important fraction of total PrP (Sc) is PK-sensitive and can be isolated by the method we already described. Consequently, we decided to employ the PK-sensitive fraction of PrP (Sc) as a potential and useful tool for structural studies. Thus, two essential questions were addressed in our recent article. First, the difference in the infectivity between the sensitive and resistant fractions and second, whether sensitive and resistant PrP (Sc) shared the same conformation or were only different size multimers with the same basic conformation. Here we discuss our latest data in light of recent infectivity studies and their possible implications on the conformation of the prion.
Collapse
Affiliation(s)
- Gustavo Sajnani
- Neural Repair and Biomaterials Laboratory, National Paraplegia Hospital, Finca la Peraleda s/n, Toledo, Spain
| | | |
Collapse
|
70
|
Moda F, Vimercati C, Campagnani I, Ruggerone M, Giaccone G, Morbin M, Zentilin L, Giacca M, Zucca I, Legname G, Tagliavini F. Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice. Prion 2012; 6:383-90. [PMID: 22842862 DOI: 10.4161/pri.20197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are caused by a conformational modification of the cellular prion protein (PrP (C)) into disease-specific forms, termed PrP (Sc), that have the ability to interact with PrP (C) promoting its conversion to PrP (Sc). In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrP (C) region involved in the interaction with PrP (Sc) thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrP (Sc) in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.
Collapse
Affiliation(s)
- Fabio Moda
- Division of Neuropathology and Neurology 5, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Several lines of evidence suggest that various cofactors may be required for prion replication. PrP binds to polyanions, and RNAs were shown to promote the conversion of PrP(C) into PrP(Sc) in vitro. In the present study, we investigated strain-specific differences in RNA requirement during in vitro conversion and the potential role of RNA as a strain-specifying component of infectious prions. We found that RNase treatment impairs PrP(Sc)-converting activity of 9 murine prion strains by protein misfolding cyclic amplification (PMCA) in a strain-specific fashion. While the addition of RNA restored PMCA conversion efficiency, the effect of synthetic polynucleotides or DNA was strain dependent, showing a different promiscuity of prion strains in cofactor utilization. The biological properties of RML propagated by PMCA under RNA-depleted conditions were compared to those of brain-derived and PMCA material generated in the presence of RNA. Inoculation of RNA-depleted RML in Tga20 mice resulted in an increased incidence of a distinctive disease phenotype characterized by forelimb paresis. However, this abnormal phenotype was not conserved in wild-type mice or upon secondary transmission. Immunohistochemical and cell panel assay analyses of mouse brains did not reveal significant differences between mice injected with the different RML inocula. We conclude that replication under RNA-depleted conditions did not modify RML prion strain properties. Our study cannot, however, exclude small variations of RML properties that would explain the abnormal clinical phenotype observed. We hypothesize that RNA molecules may act as catalysts of prion replication and that variable capacities of distinct prion strains to utilize different cofactors may explain strain-specific dependency upon RNA.
Collapse
|
72
|
Mahal SP, Jablonski J, Suponitsky-Kroyter I, Oelschlegel AM, Herva ME, Oldstone M, Weissmann C. Propagation of RML prions in mice expressing PrP devoid of GPI anchor leads to formation of a novel, stable prion strain. PLoS Pathog 2012; 8:e1002746. [PMID: 22685404 PMCID: PMC3369955 DOI: 10.1371/journal.ppat.1002746] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/27/2012] [Indexed: 12/03/2022] Open
Abstract
PrP(C), a host protein which in prion-infected animals is converted to PrP(Sc), is linked to the cell membrane by a GPI anchor. Mice expressing PrP(C) without GPI anchor (tgGPI⁻ mice), are susceptible to prion infection but accumulate anchorless PrP(Sc) extra-, rather than intracellularly. We investigated whether tgGPI⁻ mice could faithfully propagate prion strains despite the deviant structure and location of anchorless PrP(Sc). We found that RML and ME7, but not 22L prions propagated in tgGPI⁻ brain developed novel cell tropisms, as determined by the Cell Panel Assay (CPA). Surprisingly, the levels of proteinase K-resistant PrP(Sc) (PrP(res)) in RML- or ME7-infected tgGPI⁻ brain were 25-50 times higher than in wild-type brain. When returned to wild-type brain, ME7 prions recovered their original properties, however RML prions had given rise to a novel prion strain, designated SFL, which remained unchanged even after three passages in wild-type mice. Because both RML PrP(Sc) and SFL PrP(Sc) are stably propagated in wild-type mice we propose that the two conformations are separated by a high activation energy barrier which is abrogated in tgGPI⁻ mice.
Collapse
Affiliation(s)
- Sukhvir Paul Mahal
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Joseph Jablonski
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | | | | | - Maria Eugenia Herva
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| | - Michael Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Charles Weissmann
- Department of Infectology, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
73
|
Altmeppen HC, Puig B, Dohler F, Thurm DK, Falker C, Krasemann S, Glatzel M. Proteolytic processing of the prion protein in health and disease. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2012; 1:15-31. [PMID: 23383379 PMCID: PMC3560451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
A variety of physiological functions, not only restricted to the nervous system, are discussed for the cellular prion protein (PrP(C)). A prominent, non-physiological property of PrPC is the conversion into its pathogenic isoform (PrP(Sc)) during fatal, transmissible, and neurodegenerative prion diseases. The prion protein is subject to posttranslational proteolytic processing and these cleavage events have been shown i) to regulate its physiological functions, ii) to produce biologically active fragments, and iii) to potentially influence the course of prion disease. Here, we give an overview on the proteolytic processing under physiological and pathological conditions and critically review what is currently known about the three main cleavage events of the prion protein, namely α-cleavage, β-cleavage, and ectodomain shedding. The biological relevance of resulting fragments as well as controversies regarding candidate proteases, with special emphasis on members of the A-disintegrin-and-metalloproteinase (ADAM) family, will be discussed. In addition, we make suggestions aimed at facilitating clarity and progress in this important research field. The better understanding of this issue will not only answer basic questions in prion biology but will likely impact research on other neurodegenerative diseases as well.
Collapse
Affiliation(s)
- Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
74
|
Altered Prion protein expression pattern in CSF as a biomarker for Creutzfeldt-Jakob disease. PLoS One 2012; 7:e36159. [PMID: 22558368 PMCID: PMC3338608 DOI: 10.1371/journal.pone.0036159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/30/2012] [Indexed: 12/14/2022] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is the most frequent human Prion-related disorder (PrD). The detection of 14-3-3 protein in the cerebrospinal fluid (CSF) is used as a molecular diagnostic criterion for patients clinically compatible with CJD. However, there is a pressing need for the identification of new reliable disease biomarkers. The pathological mechanisms leading to accumulation of 14-3-3 protein in CSF are not fully understood, however neuronal loss followed by cell lysis is assumed to cause the increase in 14-3-3 levels, which also occurs in conditions such as brain ischemia. Here we investigated the relation between the levels of 14-3-3 protein, Lactate dehydrogenase (LDH) activity and expression of the prion protein (PrP) in CSF of sporadic and familial CJD cases. Unexpectedly, we found normal levels of LDH activity in CJD cases with moderate levels of 14-3-3 protein. Increased LDH activity was only observed in a percentage of the CSF samples that also exhibited high 14-3-3 levels. Analysis of the PrP expression pattern in CSF revealed a reduction in PrP levels in all CJD cases, as well as marked changes in its glycosylation pattern. PrP present in CSF of CJD cases was sensitive to proteases. The alterations in PrP expression observed in CJD cases were not detected in other pathologies affecting the nervous system, including cases of dementia and tropical spastic paraparesis/HTLV-1 associated myelopathy (HAM/TSP). Time course analysis in several CJD patients revealed that 14-3-3 levels in CSF are dynamic and show a high degree of variability during the end stage of the disease. Post-mortem analysis of brain tissue also indicated that 14-3-3 protein is upregulated in neuronal cells, suggesting that its expression is modulated during the course of the disease. These results suggest that a combined analysis of 14-3-3 and PrP expression pattern in CSF is a reliable biomarker to confirm the clinical diagnosis of CJD patients and follow disease progression.
Collapse
|
75
|
Miyazawa K, Kipkorir T, Tittman S, Manuelidis L. Continuous production of prions after infectious particles are eliminated: implications for Alzheimer's disease. PLoS One 2012; 7:e35471. [PMID: 22509412 PMCID: PMC3324552 DOI: 10.1371/journal.pone.0035471] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/17/2012] [Indexed: 11/19/2022] Open
Abstract
Rat septal cells, induced to enter a terminal differentiation-like state by temperature shift, produce prion protein (PrP) levels 7x higher than their proliferative counterparts. Host PrP accumulates on the plasma membrane, newly elaborated nanotubes, and cell-to-cell junctions, important conduits for viral spread. To find if elevated PrP increased susceptibility to FU-CJD infection, we determined agent titers under both proliferating and arresting conditions. A short 5 day arrest and a prolonged 140 day arrest increased infectivity by 5x and 122x (>2 logs) respectively as compared to proliferating cells. Total PrP rapidly increased 7x and was even more elevated in proliferating cells that escaped chronic arrest conditions. Amyloid generating PrP (PrP-res), the “infectious prion” form, present at ∼100,000 copies per infectious particle, also increased proportionately by 140 days. However, when these highly infectious cells were switched back to proliferative conditions for 60 days, abundant PrP-res continued to be generated even though 4 logs of titer was lost. An identical 4 log loss was found with maximal PrP and PrP-res production in parallel cells under arresting conditions. While host PrP is essential for TSE agent spread and replication, excessive production of all forms of PrP can be inappropriately perpetuated by living cells, even after the initiating infectious agent is eliminated. Host PrP changes can start as a protective innate immune response that ultimately escapes control. A subset of other neurodegenerative and amyloid diseases, including non-transmissible AD, may be initiated by environmental infectious agents that are no longer present.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Terry Kipkorir
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Sarah Tittman
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
| | - Laura Manuelidis
- Section of Neuropathology, Department of Surgery, Yale University Medical School, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
76
|
Miyazawa K, Emmerling K, Manuelidis L. High CJD infectivity remains after prion protein is destroyed. J Cell Biochem 2012; 112:3630-7. [PMID: 21793041 DOI: 10.1002/jcb.23286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hypothesis that host prion protein (PrP) converts into an infectious prion form rests on the observation that infectivity progressively decreases in direct proportion to the decrease of PrP with proteinase K (PK) treatment. PrP that resists limited PK digestion (PrP-res, PrP(sc)) has been assumed to be the infectious form, with speculative types of misfolding encoding the many unique transmissible spongiform encephalopathy (TSE) agent strains. Recently, a PK sensitive form of PrP has been proposed as the prion. Thus we re-evaluated total PrP (sensitive and resistant) and used a cell-based assay for titration of infectious particles. A keratinase (NAP) known to effectively digest PrP was compared to PK. Total PrP in FU-CJD infected brain was reduced to ≤0.3% in a 2 h PK digest, yet there was no reduction in titer. Remaining non-PrP proteins were easily visualized with colloidal gold in this highly infectious homogenate. In contrast to PK, NAP digestion left 0.8% residual PrP after 2 h, yet decreased titer by >2.5 log; few residual protein bands remained. FU-CJD infected cells with 10× the infectivity of brain by both animal and cell culture assays were also evaluated. NAP again significantly reduced cell infectivity (>3.5 log). Extreme PK digestions were needed to reduce cell PrP to <0.2%, yet a very high titer of 8 logs survived. Our FU-CJD brain results are in good accord with the only other report on maximal PrP destruction and titer. It is likely that one or more residual non-PrP proteins may protect agent nucleic acids in infectious particles.
Collapse
Affiliation(s)
- Kohtaro Miyazawa
- Department of Surgery, Yale Medical School, New Haven, Connecticut 06511, USA
| | | | | |
Collapse
|
77
|
Diaz-Espinoza R, Soto C. High-resolution structure of infectious prion protein: the final frontier. Nat Struct Mol Biol 2012; 19:370-7. [PMID: 22472622 DOI: 10.1038/nsmb.2266] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prions are the proteinaceous infectious agents responsible for the transmission of prion diseases. The main or sole component of prions is the misfolded prion protein (PrP(Sc)), which is able to template the conversion of the host's natively folded form of the protein (PrP(C)). The detailed mechanism of prion replication and the high-resolution structure of PrP(Sc) are unknown. The currently available information on PrP(Sc) structure comes mostly from low-resolution biophysical techniques, which have resulted in quite divergent models. Recent advances in the production of infectious prions, using very pure recombinant protein, offer new hope for PrP(Sc) structural studies. This review highlights the importance of, challenges for and recent progress toward elucidating the elusive structure of PrP(Sc), arguably the major pending milestone to reach in understanding prions.
Collapse
Affiliation(s)
- Rodrigo Diaz-Espinoza
- Department of Neurology, Mitchell Center for Alzheimer's Disease and Related Brain Disorders, University of Texas Medical School, Houston, Texas, USA
| | | |
Collapse
|
78
|
Abstract
The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare.
Collapse
Affiliation(s)
- Jiri G Safar
- Department of Pathology, National Prion Disease Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
79
|
Sajnani G, Silva CJ, Ramos A, Pastrana MA, Onisko BC, Erickson ML, Antaki EM, Dynin I, Vázquez-Fernández E, Sigurdson CJ, Carter JM, Requena JR. PK-sensitive PrP is infectious and shares basic structural features with PK-resistant PrP. PLoS Pathog 2012; 8:e1002547. [PMID: 22396643 PMCID: PMC3291653 DOI: 10.1371/journal.ppat.1002547] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/10/2012] [Indexed: 11/25/2022] Open
Abstract
One of the main characteristics of the transmissible isoform of the prion protein (PrPSc) is its partial resistance to proteinase K (PK) digestion. Diagnosis of prion disease typically relies upon immunodetection of PK-digested PrPSc following Western blot or ELISA. More recently, researchers determined that there is a sizeable fraction of PrPSc that is sensitive to PK hydrolysis (sPrPSc). Our group has previously reported a method to isolate this fraction by centrifugation and showed that it has protein misfolding cyclic amplification (PMCA) converting activity. We compared the infectivity of the sPrPSc versus the PK-resistant (rPrPSc) fractions of PrPSc and analyzed the biochemical characteristics of these fractions under conditions of limited proteolysis. Our results show that sPrPSc and rPrPSc fractions have comparable degrees of infectivity and that although they contain different sized multimers, these multimers share similar structural properties. Furthermore, the PK-sensitive fractions of two hamster strains, 263K and Drowsy (Dy), showed strain-dependent differences in the ratios of the sPrPSc to the rPrPSc forms of PrPSc. Although the sPrPSc and rPrPSc fractions have different resistance to PK-digestion, and have previously been shown to sediment differently, and have a different distribution of multimers, they share a common structure and phenotype. Prion diseases are protein misfolding disorders. Different strains of prions are known to have variable resistance to proteinase K (PK) digestion. Furthermore, the same strain possesses both a PK sensitive (sPrPSc) and PK resistant (rPrPSc) aggregate of PrP. We developed methods to isolate the sPrPSc from rPrPSc fraction of the 263K strain of hamster-adapted scrapie. Both fractions were infectious, but have different physico-chemical properties. When we analyzed the lesion targets in the brain produced by each fraction they were essentially identical, suggesting that they were the same strain. The biochemical differences in the phenotypes of these two fractions are due to different sized multimers that share common structural properties. Furthermore, the comparison of the sensitive fractions of two hamster strains, 263K and Drowsy (Dy), showed strain-dependent differences in the ratios of the PK-sensitive to the PK-resistant forms of PrPSc.
Collapse
Affiliation(s)
- Gustavo Sajnani
- Department of Medicine, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Galiza, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Kubota T, Hamazoe Y, Hashiguchi S, Ishibashi D, Akasaka K, Nishida N, Katamine S, Sakaguchi S, Kuroki R, Nakashima T, Sugimura K. Direct evidence of generation and accumulation of β-sheet-rich prion protein in scrapie-infected neuroblastoma cells with human IgG1 antibody specific for β-form prion protein. J Biol Chem 2012; 287:14023-39. [PMID: 22356913 DOI: 10.1074/jbc.m111.318352] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We prepared β-sheet-rich recombinant full-length prion protein (β-form PrP) (Jackson, G. S., Hosszu, L. L., Power, A., Hill, A. F., Kenney, J., Saibil, H., Craven, C. J., Waltho, J. P., Clarke, A. R., and Collinge, J. (1999) Science 283, 1935-1937). Using this β-form PrP and a human single chain Fv-displaying phage library, we have established a human IgG1 antibody specific to β-form but not α-form PrP, PRB7 IgG. When prion-infected ScN2a cells were cultured with PRB7 IgG, they generated and accumulated PRB7-binding granules in the cytoplasm with time, consequently becoming apoptotic cells bearing very large PRB7-bound aggregates. The SAF32 antibody recognizing the N-terminal octarepeat region of full-length PrP stained distinct granules in these cells as determined by confocal laser microscopy observation. When the accumulation of proteinase K-resistant PrP was examined in prion-infected ScN2a cells cultured in the presence of PRB7 IgG or SAF32, it was strongly inhibited by SAF32 but not at all by PRB7 IgG. Thus, we demonstrated direct evidence of the generation and accumulation of β-sheet-rich PrP in ScN2a cells de novo. These results suggest first that PRB7-bound PrP is not responsible for the accumulation of β-form PrP aggregates, which are rather an end product resulting in the triggering of apoptotic cell death, and second that SAF32-bound PrP lacking the PRB7-recognizing β-form may represent so-called PrP(Sc) with prion propagation activity. PRB7 is the first human antibody specific to β-form PrP and has become a powerful tool for the characterization of the biochemical nature of prion and its pathology.
Collapse
Affiliation(s)
- Toshiya Kubota
- Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Biochemical properties of highly neuroinvasive prion strains. PLoS Pathog 2012; 8:e1002522. [PMID: 22319450 PMCID: PMC3271082 DOI: 10.1371/journal.ppat.1002522] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/21/2011] [Indexed: 11/24/2022] Open
Abstract
Infectious prions propagate from peripheral entry sites into the central nervous system (CNS), where they cause progressive neurodegeneration that ultimately leads to death. Yet the pathogenesis of prion disease can vary dramatically depending on the strain, or conformational variant of the aberrantly folded and aggregated protein, PrPSc. Although most prion strains invade the CNS, some prion strains cannot gain entry and do not cause clinical signs of disease. The conformational basis for this remarkable variation in the pathogenesis among strains is unclear. Using mouse-adapted prion strains, here we show that highly neuroinvasive prion strains primarily form diffuse aggregates in brain and are noncongophilic, conformationally unstable in denaturing conditions, and lead to rapidly lethal disease. These neuroinvasive strains efficiently generate PrPSc over short incubation periods. In contrast, the weakly neuroinvasive prion strains form large fibrillary plaques and are stable, congophilic, and inefficiently generate PrPSc over long incubation periods. Overall, these results indicate that the most neuroinvasive prion strains are also the least stable, and support the concept that the efficient replication and unstable nature of the most rapidly converting prions may be a feature linked to their efficient spread into the CNS. Prion diseases are fatal neurodegenerative disorders that are also infectious. Prions are composed of a misfolded, aggregated form of a normal cellular protein that is highly expressed in neurons. Prion- infected individuals show variability in the clinical signs and brain regions that selectively accumulate prions, even within the same species expressing the same prion protein sequence. The basis of these divergent disease phenotypes is unclear, but is thought to be due to different conformations of the misfolded prion protein, known as strains. Here we characterized the neuropathology and biochemical properties of prion strains that efficiently or poorly invade the CNS from their peripheral entry site. We show that prion strains that efficiently invade the CNS also cause a rapidly terminal disease after an intracerebral exposure. These rapidly lethal strains were unstable when exposed to denaturants or high temperatures, and efficiently accumulated misfolded prion protein over a short incubation period in vivo. Our findings indicate that the most invasive, rapidly spreading strains are also the least conformationally stable.
Collapse
|
82
|
Castro-Seoane R, Hummerich H, Sweeting T, Tattum MH, Linehan JM, Fernandez de Marco M, Brandner S, Collinge J, Klöhn PC. Plasmacytoid dendritic cells sequester high prion titres at early stages of prion infection. PLoS Pathog 2012; 8:e1002538. [PMID: 22359509 PMCID: PMC3280992 DOI: 10.1371/journal.ppat.1002538] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022] Open
Abstract
In most transmissible spongiform encephalopathies prions accumulate in the lymphoreticular system (LRS) long before they are detectable in the central nervous system. While a considerable body of evidence showed that B lymphocytes and follicular dendritic cells play a major role in prion colonization of lymphoid organs, the contribution of various other cell types, including antigen-presenting cells, to the accumulation and the spread of prions in the LRS are not well understood. A comprehensive study to compare prion titers of candidate cell types has not been performed to date, mainly due to limitations in the scope of animal bioassays where prohibitively large numbers of mice would be required to obtain sufficiently accurate data. By taking advantage of quantitative in vitro prion determination and magnetic-activated cell sorting, we studied the kinetics of prion accumulation in various splenic cell types at early stages of prion infection. Robust estimates for infectious titers were obtained by statistical modelling using a generalized linear model. Whilst prions were detectable in B and T lymphocytes and in antigen-presenting cells like dendritic cells and macrophages, highest infectious titers were determined in two cell types that have previously not been associated with prion pathogenesis, plasmacytoid dendritic (pDC) and natural killer (NK) cells. At 30 days after infection, NK cells were more than twice, and pDCs about seven-fold, as infectious as lymphocytes respectively. This result was unexpected since, in accordance to previous reports prion protein, an obligate requirement for prion replication, was undetectable in pDCs. This underscores the importance of prion sequestration and dissemination by antigen-presenting cells which are among the first cells of the immune system to encounter pathogens. We furthermore report the first evidence for a release of prions from lymphocytes and DCs of scrapie-infected mice ex vivo, a process that is associated with a release of exosome-like membrane vesicles.
Collapse
Affiliation(s)
- Rocio Castro-Seoane
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Holger Hummerich
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Trevor Sweeting
- Department of Statistical Science, University College London, London, United Kingdom
| | - M. Howard Tattum
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Jacqueline M. Linehan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Mar Fernandez de Marco
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Peter-Christian Klöhn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| |
Collapse
|
83
|
Prionemia and leukocyte-platelet-associated infectivity in sheep transmissible spongiform encephalopathy models. J Virol 2011; 86:2056-66. [PMID: 22156536 DOI: 10.1128/jvi.06532-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamics of the circulation and distribution of transmissible spongiform encephalopathy (TSE) agents in the blood of infected individuals remain largely unknown. This clearly limits the understanding of the role of blood in TSE pathogenesis and the development of a reliable TSE blood detection assay. Using two distinct sheep scrapie models and blood transfusion, this work demonstrates the occurrence of a very early and persistent prionemia. This ability to transmit disease by blood transfusion was correlated with the presence of infectivity in white blood cells (WBC) and peripheral blood mononucleated cells (PBMC) as detected by bioassay in mice overexpressing the ovine prion protein PrP (tg338 mice) and with the identification of abnormal PrP in WBC after using protein misfolding cyclic amplification (PMCA). Platelets and a large variety of leukocyte subpopulations also were shown to be infectious. The use of endpoint titration in tg338 mice indicated that the infectivity in WBC (per ml of blood) was 10(6.5)-fold lower than that in 1 g of posterior brainstem sample. In both WBC and brainstem, infectivity displayed similar resistance to PK digestion. The data strongly support the concept that WBC are an accurate target for reliable TSE detection by PMCA. The presence of infectivity in short-life-span blood cellular elements raises the question of the origin of prionemia.
Collapse
|
84
|
Browning S, Baker CA, Smith E, Mahal SP, Herva ME, Demczyk CA, Li J, Weissmann C. Abrogation of complex glycosylation by swainsonine results in strain- and cell-specific inhibition of prion replication. J Biol Chem 2011; 286:40962-73. [PMID: 21930694 PMCID: PMC3220511 DOI: 10.1074/jbc.m111.283978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/30/2011] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma-derived N2a-PK1 cells, fibroblastic LD9 cells, and CNS-derived CAD5 cells can be infected efficiently and persistently by various prion strains, as measured by the standard scrapie cell assay. Swainsonine, an inhibitor of Golgi α-mannosidase II that causes abnormal N-glycosylation, strongly inhibits infection of PK1 cells by RML, 79A and 22F, less so by 139A, and not at all by 22L prions, and it does not diminish propagation of any of these strains in LD9 or CAD5 cells. Misglycosylated PrP(C) formed in the presence of swainsonine is a good substrate for conversion to PrP(Sc), and misglycosylated PrP(Sc) is fully able to trigger infection and seed the protein misfolding cyclic amplification reaction. Distinct subclones of PK1 cells mediate swainsonine inhibition to very different degrees, implicating misglycosylation of one or more host proteins in the inhibitory process. The use of swainsonine and other glycosylation inhibitors described herein enhances the ability of the cell panel assay to differentiate between prion strains. Moreover, as shown elsewhere, the susceptibility of prions to inhibition by swainsonine in PK1 cells is a mutable trait.
Collapse
Affiliation(s)
- Shawn Browning
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | | | - Emery Smith
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Sukhvir P. Mahal
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Maria E. Herva
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Cheryl A. Demczyk
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Jiali Li
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| | - Charles Weissmann
- From the Department of Infectology, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
85
|
Watts JC, Stöhr J, Bhardwaj S, Wille H, Oehler A, DeArmond SJ, Giles K, Prusiner SB. Protease-resistant prions selectively decrease Shadoo protein. PLoS Pathog 2011; 7:e1002382. [PMID: 22163178 PMCID: PMC3219722 DOI: 10.1371/journal.ppat.1002382] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022] Open
Abstract
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.
Collapse
Affiliation(s)
- Joel C. Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Holger Wille
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Abby Oehler
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
86
|
Weissmann C, Li J, Mahal SP, Browning S. Prions on the move. EMBO Rep 2011; 12:1109-17. [PMID: 21997298 PMCID: PMC3207107 DOI: 10.1038/embor.2011.192] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/30/2011] [Indexed: 02/07/2023] Open
Abstract
Prions consist mainly, if not entirely, of PrP(Sc), an aggregated conformer of the host protein PrP(C). Prions come in different strains, all based on the same PrP(C) sequence, but differing in their conformations. The efficiency of prion transmission between species is usually low, but increases after serial transmission in the new host, suggesting a process involving mutation and selection. Even within the same species, the transfer of prions between cell types entails a selection of favoured 'substrains', and propagation of prions in the presence of an inhibitory drug can result in the appearance of drug-resistant prion populations. We propose that prion populations are comprised of a variety of conformers, constituting 'quasi-species', from which the one replicating most efficiently in a particular environment is selected.
Collapse
Affiliation(s)
- Charles Weissmann
- Department of Infectology, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, USA.
| | | | | | | |
Collapse
|
87
|
Kim C, Haldiman T, Cohen Y, Chen W, Blevins J, Sy MS, Cohen M, Safar JG. Protease-sensitive conformers in broad spectrum of distinct PrPSc structures in sporadic Creutzfeldt-Jakob disease are indicator of progression rate. PLoS Pathog 2011; 7:e1002242. [PMID: 21931554 PMCID: PMC3169556 DOI: 10.1371/journal.ppat.1002242] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/12/2011] [Indexed: 11/21/2022] Open
Abstract
The origin, range, and structure of prions causing the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), are largely unknown. To investigate the molecular mechanism responsible for the broad phenotypic variability of sCJD, we analyzed the conformational characteristics of protease-sensitive and protease-resistant fractions of the pathogenic prion protein (PrPSc) using novel conformational methods derived from a conformation-dependent immunoassay (CDI). In 46 brains of patients homozygous for polymorphisms in the PRNP gene and exhibiting either Type 1 or Type 2 western blot pattern of the PrPSc, we identified an extensive array of PrPSc structures that differ in protease sensitivity, display of critical domains, and conformational stability. Surprisingly, in sCJD cases homozygous for methionine or valine at codon 129 of the PRNP gene, the concentration and stability of protease-sensitive conformers of PrPSc correlated with progression rate of the disease. These data indicate that sCJD brains exhibit a wide spectrum of PrPSc structural states, and accordingly argue for a broad spectrum of prion strains coding for different phenotypes. The link between disease duration, levels, and stability of protease-sensitive conformers of PrPSc suggests that these conformers play an important role in the pathogenesis of sCJD. Sporadic Creutzfeldt-Jakob disease (sCJD) is the most common human prion disease worldwide. This neurodegenerative disease, which is transmissible and invariably fatal, is characterized by the accumulation of an abnormally folded isoform (PrPSc) of a host-encoded protein (PrPC), predominantly in the brain. Most researchers believe that PrPSc is the infectious agent and five or six subtypes of sCJD have been identified. Whether or not these subtypes represent distinct strains of sCJD prions is debated in the context of the extraordinary variability of sCJD phenotypes, frequent co-occurrence of different PrPSc fragments in the same brain, and the fact that up to 90% of protease-sensitive PrPSc eludes the conventional analysis because it is destroyed by protease treatment. Using novel conformational methods, we identified within each clinical and pathological category an array of PrPSc structures that differ in protease-sensitivity, display of critical domains, and conformational stability. Each of these features offers evidence of a distinct conformation. The link between the rate at which the disease progresses, on the one hand, and the concentration and stability of protease-sensitive conformers of PrPSc on the other, suggests that these conformers play an important role in how the disease originates and progresses.
Collapse
Affiliation(s)
- Chae Kim
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Tracy Haldiman
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yvonne Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wei Chen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Janis Blevins
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jiri G. Safar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- National Prion Disease Pathology Surveillance Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
88
|
Goold R, Rabbanian S, Sutton L, Andre R, Arora P, Moonga J, Clarke AR, Schiavo G, Jat P, Collinge J, Tabrizi SJ. Rapid cell-surface prion protein conversion revealed using a novel cell system. Nat Commun 2011; 2:281. [PMID: 21505437 PMCID: PMC3104518 DOI: 10.1038/ncomms1282] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 03/17/2011] [Indexed: 11/09/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders with unique transmissible properties. The infectious and pathological agent is thought to be a misfolded conformer of the prion protein. Little is known about the initial events in prion infection because the infecting prion source has been immunologically indistinguishable from normal cellular prion protein (PrP(C)). Here we develop a unique cell system in which epitope-tagged PrP(C) is expressed in a PrP knockdown (KD) neuroblastoma cell line. The tagged PrP(C), when expressed in our PrP-KD cells, supports prion replication with the production of bona fide epitope-tagged infectious misfolded PrP (PrP(Sc)). Using this epitope-tagged PrP(Sc), we study the earliest events in cellular prion infection and PrP misfolding. We show that prion infection of cells is extremely rapid occurring within 1 min of prion exposure, and we demonstrate that the plasma membrane is the primary site of prion conversion.
Collapse
Affiliation(s)
- R Goold
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
A simple, versatile and sensitive cell-based assay for prions from various species. PLoS One 2011; 6:e20563. [PMID: 21655184 PMCID: PMC3105100 DOI: 10.1371/journal.pone.0020563] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/03/2011] [Indexed: 12/03/2022] Open
Abstract
Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies.
Collapse
|
90
|
Quadrio I, Perret-Liaudet A, Kovacs GG. Molecular diagnosis of human prion disease. ACTA ACUST UNITED AC 2011; 5:291-306. [PMID: 23484550 DOI: 10.1517/17530059.2011.576664] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Human prion diseases (PrDs) are transmissible fatal nervous system disorders with public health implications. They are characterized by the presence of a disease-associated form of the physiological cellular prion protein. Development of diagnostic procedures is important to avoid transmission, including through blood products. Methods used for the detection of disease-associated PrP have implications for other neurodegenerative diseases. AREAS COVERED In this review, the authors discuss recent progress in the understanding of the molecular background of phenotypic variability of human PrDs, and the current concepts of molecular diagnosis. Also, the authors provide a critical summary of the diagnostic methods with regard to the molecular subtypes. EXPERT OPINION In spite of a lack of specific tests to detect disease-associated PrP in body fluids, the constellation of clinical symptoms, detection of protein 14-3-3 in cerebrospinal fluid, electroencephalogram, cranial MRI and prion protein gene examinations, together have increased the specificity and sensitivity of in vivo diagnostics. As new forms of PrDs are reported, continuous evaluation of their incidence and the search for their etiology is crucial. Recent studies, suggesting prion-like properties of certain proteinopathies associated with Parkinson's or Alzheimer's disease, have again brought PrDs to the center of interest as a model of diseases with disordered protein processing.
Collapse
Affiliation(s)
- Isabelle Quadrio
- Hospices Civils de Lyon/Claude Bernard University , Groupement Hospitalier Est, Prion Disease Laboratory, Pathology and Biochemistry, 59 bd Pinel , 69677, BRON Cedex , France
| | | | | |
Collapse
|
91
|
Johnson CJ, Bennett JP, Biro SM, Duque-Velasquez JC, Rodriguez CM, Bessen RA, Rocke TE. Degradation of the disease-associated prion protein by a serine protease from lichens. PLoS One 2011; 6:e19836. [PMID: 21589935 PMCID: PMC3092769 DOI: 10.1371/journal.pone.0019836] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/18/2011] [Indexed: 11/19/2022] Open
Abstract
The disease-associated prion protein (PrPTSE), the probable
etiological agent of the transmissible spongiform encephalopathies (TSEs), is
resistant to degradation and can persist in the environment. Lichens,
mutualistic symbioses containing fungi, algae, bacteria and occasionally
cyanobacteria, are ubiquitous in the environment and have evolved unique
biological activities allowing their survival in challenging ecological niches.
We investigated PrPTSE inactivation by lichens and found acetone
extracts of three lichen species (Parmelia sulcata,
Cladonia rangiferina and Lobaria
pulmonaria) have the ability to degrade prion protein (PrP) from
TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and
protein misfolding cyclic amplification indicated at least two logs of
reductions in PrPTSE. Degradative activity was not found in closely
related lichen species or in algae or a cyanobacterium that inhabit lichens.
Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not
inhibitors of other proteases or enzymes. Additionally, we found that PrP levels
in PrPTSE-enriched preps or infected brain homogenates are also
reduced following exposure to freshly-collected P. sulcata or
an aqueous extract of the lichen. Our findings indicate that these lichen
extracts efficiently degrade PrPTSE and suggest that some lichens
could have potential to inactivate TSE infectivity on the landscape or be a
source for agents to degrade prions. Further work to clone and characterize the
protease, assess its effect on TSE infectivity and determine which organism or
organisms present in lichens produce or influence the protease activity is
warranted.
Collapse
Affiliation(s)
- Christopher J Johnson
- Prion Research Laboratory, United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | |
Collapse
|
92
|
Savistchenko J, Arellano-Anaya ZE, Andréoletti O, Vilette D. Mammalian prions: tracking the infectious entities. Prion 2011; 5:84-7. [PMID: 21597318 DOI: 10.4161/pri.5.2.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Protein misfolding is central to the pathogenesis of several neurodegenerative disorders. Among these disorders, prion diseases are unique because they are transmissible. The conversion of the host-encoded GPI-anchored PrP protein into a structurally altered form is crucially associated with the infectious and neurotoxic properties of the resulting abnormal PrP. Many lines of evidence indicate that distinct aggregated forms with different size and protease resistance are produced during prion multiplication. The recent isolation of various subsets of abnormal PrP, along with the improved biochemical tools and infectivity detection assays have shed light on the diversity of abnormal PrP protein and may give insights into the features of the more infectious subsets of abnormal PrP.
Collapse
Affiliation(s)
- Jimmy Savistchenko
- UMR INRA ENVT 1225, Interactions Hôte Agent Pathogène, Ecole Nationale Vétérinaire de Toulouse, France
| | | | | | | |
Collapse
|
93
|
Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature 2011; 470:540-2. [PMID: 21350487 DOI: 10.1038/nature09768] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 12/17/2010] [Indexed: 12/22/2022]
Abstract
Mammalian prions cause fatal neurodegenerative conditions including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy in animals. Prion infections are typically associated with remarkably prolonged but highly consistent incubation periods followed by a rapid clinical phase. The relationship between prion propagation, generation of neurotoxic species and clinical onset has remained obscure. Prion incubation periods in experimental animals are known to vary inversely with expression level of cellular prion protein. Here we demonstrate that prion propagation in brain proceeds via two distinct phases: a clinically silent exponential phase not rate-limited by prion protein concentration which rapidly reaches a maximal prion titre, followed by a distinct switch to a plateau phase. The latter determines time to clinical onset in a manner inversely proportional to prion protein concentration. These findings demonstrate an uncoupling of infectivity and toxicity. We suggest that prions themselves are not neurotoxic but catalyse the formation of such species from PrP(C). Production of neurotoxic species is triggered when prion propagation saturates, leading to a switch from autocatalytic production of infectivity (phase 1) to a toxic (phase 2) pathway.
Collapse
Affiliation(s)
- Malin K Sandberg
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | | | | | | | | |
Collapse
|
94
|
Wadsworth JDF, Asante EA, Collinge J. Review: contribution of transgenic models to understanding human prion disease. Neuropathol Appl Neurobiol 2011; 36:576-97. [PMID: 20880036 PMCID: PMC3017745 DOI: 10.1111/j.1365-2990.2010.01129.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Transgenic mice expressing human prion protein in the absence of endogenous mouse prion protein faithfully replicate human prions. These models reproduce all of the key features of human disease, including long clinically silent incubation periods prior to fatal neurodegeneration with neuropathological phenotypes that mirror human prion strain diversity. Critical contributions to our understanding of human prion disease pathogenesis and aetiology have only been possible through the use of transgenic mice. These models have provided the basis for the conformational selection model of prion transmission barriers and have causally linked bovine spongiform encephalopathy with variant Creutzfeldt-Jakob disease. In the future these models will be essential for evaluating newly identified potentially zoonotic prion strains, for validating effective methods of prion decontamination and for developing effective therapeutic treatments for human prion disease.
Collapse
Affiliation(s)
- J D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College London, National Hospital for Neurology and Neurosurgery, London, UK.
| | | | | |
Collapse
|
95
|
Edgeworth JA, Farmer M, Sicilia A, Tavares P, Beck J, Campbell T, Lowe J, Mead S, Rudge P, Collinge J, Jackson GS. Detection of prion infection in variant Creutzfeldt-Jakob disease: a blood-based assay. Lancet 2011; 377:487-93. [PMID: 21295339 DOI: 10.1016/s0140-6736(10)62308-2] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Variant Creutzfeldt-Jakob disease (vCJD) is a fatal neurodegenerative disorder originating from exposure to bovine-spongiform-encephalopathy-like prions. Prion infections are associated with long and clinically silent incubations. The number of asymptomatic individuals with vCJD prion infection is unknown, posing risk to others via blood transfusion, blood products, organ or tissue grafts, and contaminated medical instruments. We aimed to establish the sensitivity and specificity of a blood-based assay for detection of vCJD prion infection. METHODS We developed a solid-state binding matrix to capture and concentrate disease-associated prion proteins and coupled this method to direct immunodetection of surface-bound material. Quantitative assay sensitivity was assessed with a serial dilution series of 10⁻⁷ to 10⁻¹⁰ of vCJD prion-infected brain homogenate into whole human blood, with a baseline control of normal human brain homogenate in whole blood (10⁻⁶). To establish the sensitivity and specificity of the assay for detection of endogenous vCJD, we analysed a masked panel of 190 whole blood samples from 21 patients with vCJD, 27 with sporadic CJD, 42 with other neurological diseases, and 100 normal controls. Samples were masked and numbered by individuals independent of the assay and analysis. Each sample was tested twice in independent assay runs; only samples that were reactive in both runs were scored as positive overall. FINDINGS We were able to distinguish a 10⁻¹⁰ dilution of exogenous vCJD prion-infected brain from a 10⁻⁶ dilution of normal brain (mean chemiluminescent signal, 1·3×10⁵ [SD 1·1×10⁴] for vCJD vs 9·9×10⁴ [4·5×10³] for normal brain; p<0·0001)—an assay sensitivity that was orders of magnitude higher than any previously reported. 15 samples in the masked panel were scored as positive. All 15 samples were from patients with vCJD, showing an assay sensitivity for vCJD of 71·4% (95% CI 47·8–88·7) and a specificity of 100% (95% CIs between 97·8% and 100%). INTERPRETATION These initial studies provide a prototype blood test for diagnosis of vCJD in symptomatic individuals, which could allow development of large-scale screening tests for asymptomatic vCJD prion infection. FUNDING UK Medical Research Council.
Collapse
Affiliation(s)
- Julie Ann Edgeworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Tattum MH, Jones S, Pal S, Khalili-Shirazi A, Collinge J, Jackson GS. A highly sensitive immunoassay for the detection of prion-infected material in whole human blood without the use of proteinase K. Transfusion 2011; 50:2619-27. [PMID: 20561299 DOI: 10.1111/j.1537-2995.2010.02731.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The causal association of variant Creutzfeldt-Jakob disease (vCJD) with bovine spongiform encephalopathy has raised significant concerns for public health. Assays for vCJD infection are vital for the application of therapeutics, for the screening of organ donations, and to maintain a safe blood supply. Currently the best diagnostic tools for vCJD depend upon the detection of disease-associated prion protein (PrP(Sc) ), which is distinguished from normal background PrP (PrP(C) ) by proteinase K (PK) digestion, which can also degrade up to 90% of the target antigen. STUDY DESIGN AND METHODS A sandwich enzyme-linked immunosorbent assay method was developed using unique antibodies for the detection of disease-associated PrP in the absence of PK treatment. In combination with immunoprecipitation the assay was optimized for the detection of pathogenic PrP in large volumes of whole blood. RESULTS Optimization of the assay allowed detection of 2×10(4) LD(50) units/mL spiked in whole blood. Application of the assay to clinically relevant volumes enabled the detection of 750 LD(50) units/mL in 8mL of whole blood. CONCLUSION By combining the use of a unique antibody that selectively immunoprecipitates PrP(Sc) with glycoform-restrictive antibodies we have developed a rapid assay for vCJD infection that does not require any PK treatment to achieve high levels of specificity in whole human blood, the most challenging potential analyte. The sensitivity of detection of vCJD infection is greater than the equivalent of a more than 2.5 million-fold dilution of infected brain, providing a highly sensitive immunoassay compatible with blood screening.
Collapse
Affiliation(s)
- M Howard Tattum
- MRC Prion Unit and the Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
97
|
Anaya ZEA, Savistchenko J, Massonneau V, Lacroux C, Andréoletti O, Vilette D. Recovery of small infectious PrP(res) aggregates from prion-infected cultured cells. J Biol Chem 2011; 286:8141-8148. [PMID: 21212268 DOI: 10.1074/jbc.m110.165233] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion diseases are characterized by deposits of abnormal conformers of the PrP protein. Although large aggregates of proteinase K-resistant PrP (PrP(res)) are infectious, the precise relationships between aggregation state and infectivity remain to be established. In this study, we have fractionated detergent lysates from prion-infected cultured cells by differential ultracentrifugation and ultrafiltration and have characterized a previously unnoticed PrP species. This abnormal form is resistant to proteinase K digestion but, in contrast to typical aggregated PrP(res), remains in the soluble fraction at intermediate centrifugal forces and is not retained by filters of 300-kDa cutoff. Cell-based assay and inoculation to animals demonstrate that these entities are infectious. The finding that cell-derived small infectious PrP(res) aggregates can be recovered in the absence of strong in vitro denaturating treatments now gives a biological basis for investigating the role of small PrP aggregates in the pathogenicity and/or the multiplication cycle of prions.
Collapse
Affiliation(s)
- Zaira E Arellano Anaya
- From the Institut National Recherche Agronomique, Unité Mixte Recherche 1225, Interactions Hôtes-Agents Pathogènes, Université Toulouse, Institut National Polytechnique, Ecole Nationale Vétérinaire de Toulouse, F31076 Toulouse, France
| | - Jimmy Savistchenko
- From the Institut National Recherche Agronomique, Unité Mixte Recherche 1225, Interactions Hôtes-Agents Pathogènes, Université Toulouse, Institut National Polytechnique, Ecole Nationale Vétérinaire de Toulouse, F31076 Toulouse, France
| | - Véronique Massonneau
- From the Institut National Recherche Agronomique, Unité Mixte Recherche 1225, Interactions Hôtes-Agents Pathogènes, Université Toulouse, Institut National Polytechnique, Ecole Nationale Vétérinaire de Toulouse, F31076 Toulouse, France
| | - Caroline Lacroux
- From the Institut National Recherche Agronomique, Unité Mixte Recherche 1225, Interactions Hôtes-Agents Pathogènes, Université Toulouse, Institut National Polytechnique, Ecole Nationale Vétérinaire de Toulouse, F31076 Toulouse, France
| | - Olivier Andréoletti
- From the Institut National Recherche Agronomique, Unité Mixte Recherche 1225, Interactions Hôtes-Agents Pathogènes, Université Toulouse, Institut National Polytechnique, Ecole Nationale Vétérinaire de Toulouse, F31076 Toulouse, France
| | - Didier Vilette
- From the Institut National Recherche Agronomique, Unité Mixte Recherche 1225, Interactions Hôtes-Agents Pathogènes, Université Toulouse, Institut National Polytechnique, Ecole Nationale Vétérinaire de Toulouse, F31076 Toulouse, France.
| |
Collapse
|
98
|
Wadsworth JDF, Collinge J. Molecular pathology of human prion disease. Acta Neuropathol 2011; 121:69-77. [PMID: 20694796 PMCID: PMC3015177 DOI: 10.1007/s00401-010-0735-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/28/2022]
Abstract
Human prion diseases are associated with a range of clinical presentations and are classified by both clinicopathological syndrome and aetiology with sub-classification according to molecular criteria. Considerable experimental evidence suggests that phenotypic diversity in human prion disease relates in significant part to the existence of distinct human prion strains encoded by abnormal PrP isoforms with differing physicochemical properties. To date, however, the conformational repertoire of pathological isoforms of wild-type human PrP and the various forms of mutant human PrP has not been fully defined. Efforts to produce a unified international classification of human prion disease are still ongoing. The ability of genetic background to influence prion strain selection together with knowledge of numerous other factors that may influence clinical and neuropathological presentation strongly emphasises the requirement to identify distinct human prion strains in appropriate transgenic models, where host genetic variability and other modifiers of phenotype are removed. Defining how many human prion strains exist allied with transgenic modelling of potentially zoonotic prion strains will inform on how many human infections may have an animal origin. Understanding these relationships will have direct translation to protecting public health.
Collapse
Affiliation(s)
- Jonathan D. F. Wadsworth
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
99
|
Isolation of proteinase K-sensitive prions using pronase E and phosphotungstic acid. PLoS One 2010; 5:e15679. [PMID: 21187933 PMCID: PMC3004958 DOI: 10.1371/journal.pone.0015679] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/21/2010] [Indexed: 11/25/2022] Open
Abstract
Disease-related prion protein, PrPSc, is classically distinguished from its normal cellular precursor, PrPC, by its detergent insolubility and partial resistance to proteolysis. Molecular diagnosis of prion disease typically relies upon detection of protease-resistant fragments of PrPSc using proteinase K, however it is now apparent that the majority of disease-related PrP and indeed prion infectivity may be destroyed by this treatment. Here we report that digestion of RML prion-infected mouse brain with pronase E, followed by precipitation with sodium phosphotungstic acid, eliminates the large majority of brain proteins, including PrPC, while preserving >70% of infectious prion titre. This procedure now allows characterization of proteinase K-sensitive prions and investigation of their clinical relevance in human and animal prion disease without being confounded by contaminating PrPC.
Collapse
|
100
|
Choi YP, Gröner A, Ironside JW, Head MW. Comparison of the level, distribution and form of disease-associated prion protein in variant and sporadic Creutzfeldt-Jakob diseased brain using conformation-dependent immunoassay and Western blot. J Gen Virol 2010; 92:727-32. [PMID: 21123539 DOI: 10.1099/vir.0.026948-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Disease-associated prion protein (PrP(Sc)) can be distinguished from the cellular isoform (PrP(C)) by conformation-dependent immunoassay (CDI). This technique exploits the presence of an epitope, accessible in PrP(C), but only unmasked by denaturation in PrP(Sc). In this study, we investigated PrP(Sc) in different brain regions in variant and sporadic Creutzfeldt-Jakob disease (CJD) by using CDI, and directly compared the results with those obtained using the more commonly employed protease digestion and Western blotting. In general, there was good agreement between the results, although there were certain discrepancies in relative abundance when the regional distribution in variant CJD cases was considered. The results largely confirmed the previously described targeting of different brain regions by variant and sporadic CJD. Additionally, the combination of protease digestion and CDI detection demonstrated, for the first time, the presence of PrP(Sc) in variant CJD brains that is susceptible to proteolysis under standard conditions.
Collapse
Affiliation(s)
- Young Pyo Choi
- National CJD Surveillance Unit, School of Molecular & Clinical Medicine (Pathology), University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|