51
|
Humble SR. Mitochondrial dysfunction in an animal model of diabetic neuropathy is associated with a reduction of neurosteroid synthesis. F1000Res 2017; 6:506. [PMID: 29623189 PMCID: PMC5861509 DOI: 10.12688/f1000research.11056.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 01/28/2023] Open
Abstract
Background: Recent work in a model of diabetic neuropathy revealed that layer 2/3 cortical pyramidal neurones of the pain pathway exhibited reduced endogenous neurosteroid modulation of the GABA AR and exogenously applied neurosteroids had an exaggerated impact. It is postulated that this is related to reduced precursor synthesis, due to mitochondrial dysfunction in diabetic neuropathy. Benzodiazepines are also known to activate neurosteroidogenesis by binding to mitochondrial translocator protein (TSPO). This study explored the differential effect of diazepam on GABA AR modulation via neurosteroidogenesis in diabetic and wild type (WT) mice. Methods: Whole-cell patch-clamp technique was used on slices of neural tissue. Electrophysiological recordings were obtained from layer 2/3 cortical pyramidal neurons of the pain pathway from mice with type-II diabetic neuropathy ( ob/ob) and WT controls aged 60-80 days. Results: There was a key difference in the response of the WT and ob/ob cortical neurons to simultaneous incubation with diazepam and flumazenil. In contrast, diazepam and the 5a-reductase inhibitor finasteride, individually or in combination, produced the same response in both strains. Conclusions: The exaggerated effect of diazepam on GABAergic inhibitory tone in the ob/ob, despite the presence of the GABA AR benzodiazepine antagonist flumazenil is likely observed due to physiological upregulation of key neurosteroidogenic enzymes in response to the reduced pregnenolone synthesis by the mitochondria. By increasing pregnenolone via TSPO activation, it is possible to promote enhanced neurosteroidogenesis and increase GABAergic inhibitory tone via an alternate route. In diabetic neuropathy, mitochondrial dysfunction may play an important role. Enhancing the GABAergic neurosteroid tone could be of potential therapeutic benefit.
Collapse
Affiliation(s)
- Stephen R Humble
- Department of Anaesthetics and Pain Management, Charing Cross Hospital, Imperial College NHS Healthcare Trust London, London, W6 8RF, UK.,Imperial College London, Charing Cross Campus, Margravine Road, London, W6 8RP, UK
| |
Collapse
|
52
|
Classical and Novel TSPO Ligands for the Mitochondrial TSPO Can Modulate Nuclear Gene Expression: Implications for Mitochondrial Retrograde Signaling. Int J Mol Sci 2017; 18:ijms18040786. [PMID: 28387723 PMCID: PMC5412370 DOI: 10.3390/ijms18040786] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
It is known that knockdown of the mitochondrial 18 kDa translocator protein (TSPO) as well as TSPO ligands modulate various functions, including functions related to cancer. To study the ability of TSPO to regulate gene expression regarding such functions, we applied microarray analysis of gene expression to U118MG glioblastoma cells. Within 15 min, the classical TSPO ligand PK 11195 induced changes in expression of immediate early genes and transcription factors. These changes also included gene products that are part of the canonical pathway serving to modulate general gene expression. These changes are in accord with real-time, reverse transcriptase (RT) PCR. At the time points of 15, 30, 45, and 60 min, as well as 3 and 24 h of PK 11195 exposure, the functions associated with the changes in gene expression in these glioblastoma cells covered well known TSPO functions. These functions included cell viability, proliferation, differentiation, adhesion, migration, tumorigenesis, and angiogenesis. This was corroborated microscopically for cell migration, cell accumulation, adhesion, and neuronal differentiation. Changes in gene expression at 24 h of PK 11195 exposure were related to downregulation of tumorigenesis and upregulation of programmed cell death. In the vehicle treated as well as PK 11195 exposed cell cultures, our triple labeling showed intense TSPO labeling in the mitochondria but no TSPO signal in the cell nuclei. Thus, mitochondrial TSPO appears to be part of the mitochondria-to-nucleus signaling pathway for modulation of nuclear gene expression. The novel TSPO ligand 2-Cl-MGV-1 appeared to be very specific regarding modulation of gene expression of immediate early genes and transcription factors.
Collapse
|
53
|
Mazure NM. VDAC in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:665-673. [PMID: 28283400 DOI: 10.1016/j.bbabio.2017.03.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/21/2017] [Accepted: 03/03/2017] [Indexed: 12/23/2022]
Abstract
The voltage-dependent anion channel (VDAC) is a pore located at the outer membrane of the mitochondrion. It allows the entry and exit of numerous ions and metabolites between the cytosol and the mitochondrion. Flux through the pore occurs in an active way: first, it depends on the open or closed state and second, on the negative or positive charges of the different ion species passing through the pore. The flux of essential metabolites, such as ATP, determines the functioning of the mitochondria to a noxious stimulus. Moreover, VDAC acts as a platform for many proteins and in so doing supports glycolysis and prevents apoptosis by interacting with hexokinase, or members of the Bcl-2 family, respectively. VDAC is thus involved in the choice the cells make to survive or die, which is particularly relevant to cancer cells. For these reasons, VDAC has become a potential therapeutic target to fight cancer but also other diseases in which mitochondrial metabolism is modified. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- N M Mazure
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS UMR7284, INSERM U1081, University of Nice, France; CNRS GDR 3697 Micronit, France.
| |
Collapse
|
54
|
Molecular Biology Digest of Cell Mitophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:233-258. [PMID: 28526134 DOI: 10.1016/bs.ircmb.2016.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The homeostasis of eukaryotic cells relies on efficient mitochondrial function. The control of mitochondrial quality is framed by the combination of distinct but interdependent mechanisms spanning biogenesis, regulation of dynamic network, and finely tuned degradation either through ubiquitin-proteasome system or autophagy (mitophagy). There is continuous evolution on the pathways orchestrating the mitochondrial response to stress signals and the organelle adaptation to quality control during acute and subtle dysfunctions. Notably, it remains indeed ill-defined whether active mitophagy leads to cell survival or death by defective mitochondrial degradation. Above all, uncharted is whether and how pharmacologically tackle these mechanisms may lead to conceive novel therapeutic strategies for treating conditions associated with the defective mitochondria. Here, we attempt to provide a chronological and comprehensive overview of the determining discoveries, which have led to the current knowledge of mitophagy.
Collapse
|
55
|
Abstract
Uric acid is a damage-associated molecular pattern (DAMP), released from ischemic tissues and dying cells which, when crystalized, is able to activate the NLRP3 inflammasome. Soluble uric acid (sUA) is found in high concentrations in the serum of great apes, and even higher in some diseases, before the appearance of crystals. In the present study, we sought to investigate whether uric acid, in the soluble form, could also activate the NLRP3 inflammasome and induce the production of IL-1β. We monitored ROS, mitochondrial area and respiratory parameters from macrophages following sUA stimulus. We observed that sUA is released in a hypoxic environment and is able to induce IL-1β release. This process is followed by production of mitochondrial ROS, ASC speck formation and caspase-1 activation. Nlrp3-/- macrophages presented a protected redox state, increased maximum and reserve oxygen consumption ratio (OCR) and higher VDAC protein levels when compared to WT and Myd88-/- cells. Using a disease model characterized by increased sUA levels, we observed a correlation between sUA, inflammasome activation and fibrosis. These findings suggest sUA activates the NLRP3 inflammasome. We propose that future therapeutic strategies for renal fibrosis should include strategies that block sUA or inhibit its recognition by phagocytes.
Collapse
|
56
|
Guo CH, Bai L, Wu HH, Yang J, Cai GH, Zeng SX, Wang X, Wu SX, Ma W. Midazolam and ropivacaine act synergistically to inhibit bone cancer pain with different mechanisms in rats. Oncol Rep 2016; 37:249-258. [PMID: 27841001 DOI: 10.3892/or.2016.5241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 10/24/2016] [Indexed: 11/06/2022] Open
Abstract
Analgesic strategy of a single drug analgesia in bone cancer pain (BCP) has shifted to combined analgesia with different drugs which have different mechanism. After tumor cell inculation, the activation of signal transducer and activator of transcription (STAT3) and extracellular signal-regulated kinase (ERK) signaling pathway are involved in the development and maintenance of BCP, whereas a decrease in the expression of spinal STAT3 and ERK through using their specific blocker, lead to attenuation of BCP. Hence, in this study, we clarified that intrathecal (i.t.) injection of midazolam (MZL) and ropivacaine (Ropi) induces synergistic analgesia on BCP and is accompanied with different mechanisms of these analgesic effect. Hargreaves heat test was used to detect the analgesic effect of single dose of i.t. MZL, Ropi and their combination on the BCP rats. At consecutive daily administration experiment, thermal hyperalgesia was recorded, and immunohistochemical staining was used to detect the expression of c-Fos, spinal glial fibrillary acidic protein (GFAP) and ionized calcium binding adapter molecule-1 (IBA-1). Then, western blot analysis was used to examine spinal TSPO, GFAP, IBA-1, pERK/ERK and pSTAT3/STAT3 levels on day 14 after tumor cell inoculation. i.t. MZL or Ropi showed a short-term analgesia dose-dependently, and MZL displayed better effect on inhibition of pSTAT3 expression than pERK, but Ropi was just the reverse, then consecutive daily administrations of their combination acted synergistically to attenuate thermal hyperalgesia with downregulated spinal 'neuron-astrocytic activation' in the BCP rats. i.t. co-delivery of MZL and Ropi shows synergistic analgesia on the BCP with the inhibition of spinal 'neuron-astrocytic activation'. Spinal different signaling pathway inhibition for MZL and Ropi may be involved in this process.
Collapse
Affiliation(s)
- Chi-Hua Guo
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Bai
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Huang-Hui Wu
- Department of Anesthesiology, Fuzhou General Hospital of Nanjing Military Region, Fuzhou, Fujian 350025, P.R. China
| | - Jing Yang
- Institute of Neuroscience, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China
| | - Guo-Hong Cai
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Si-Xiang Zeng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Sheng-Xi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Ma
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
57
|
Kosek E, Martinsen S, Gerdle B, Mannerkorpi K, Löfgren M, Bileviciute-Ljungar I, Fransson P, Schalling M, Ingvar M, Ernberg M, Jensen KB. The translocator protein gene is associated with symptom severity and cerebral pain processing in fibromyalgia. Brain Behav Immun 2016; 58:218-227. [PMID: 27448744 DOI: 10.1016/j.bbi.2016.07.150] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO) is upregulated during glia activation in chronic pain patients. TSPO constitutes the rate-limiting step in neurosteroid synthesis, thus modulating synaptic transmission. Related serotonergic mechanisms influence if pro- or anti-nociceptive neurosteroids are produced. This study investigated the effects of a functional genetic polymorphism regulating the binding affinity to the TSPO, thus affecting symptom severity and cerebral pain processing in fibromyalgia patients. Gene-to-gene interactions with a functional polymorphism of the serotonin transporter gene were assessed. Fibromyalgia patients (n=126) were genotyped regarding the polymorphisms of the TSPO (rs6971) and the serotonin transporter (5-HTTLPR/rs25531). Functional magnetic resonance imaging (n=24) was used to study brain activation during individually calibrated pressure pain. Compared to mixed/low TSPO affinity binders, the high TSPO affinity binders rated more severe pain (p=0.016) and fibromyalgia symptoms (p=0.02). A significant interaction was found between the TSPO and the serotonin transporter polymorphisms regarding pain severity (p<0.0001). Functional connectivity analyses revealed that the TSPO high affinity binding group had more pronounced pain-evoked functional connectivity in the right frontoparietal network, between the dorsolateral prefrontal area and the parietal cortex. In conclusion, fibromyalgia patients with the TSPO high affinity binding genotype reported a higher pain intensity and more severe fibromyalgia symptoms compared to mixed/low affinity binders, and this was modulated by interaction with the serotonin transporter gene. To our knowledge this is the first evidence of functional genetic polymorphisms affecting pain severity in FM and our findings are in line with proposed glia-related mechanisms. Furthermore, the functional magnetic resonance findings indicated an effect of translocator protein on the affective-motivational components of pain perception.
Collapse
Affiliation(s)
- Eva Kosek
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden; Stockholm Spine Center, Löwenströmska Hospital, 198 84 Upplands Väsby, Sweden.
| | - Sofia Martinsen
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| | - Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.
| | - Kaisa Mannerkorpi
- Department of Health and Rehabilitation/Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden; University of Gothenburg Centre for Person-centred Care (GPCC), Sahlgrenska Academy, Gothenburg, Sweden.
| | - Monika Löfgren
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, SE-182 88 Stockholm, Sweden.
| | - Indre Bileviciute-Ljungar
- Department of Clinical Sciences, Karolinska Institutet and Department of Rehabilitation Medicine, Danderyd Hospital, SE-182 88 Stockholm, Sweden.
| | - Peter Fransson
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | - Martin Ingvar
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| | - Malin Ernberg
- Department of Dental Medicine, Karolinska Institutet, and Scandinavian Center for Orofacial Neurosciences (SCON), SE-141 04 Huddinge, Sweden.
| | - Karin B Jensen
- Department of Clinical Neuroscience and Osher Center, Karolinska Insitutet, Department of Neuroradiology, Karolinska University Hospital, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
58
|
The multiple assemblies of VDAC: from conformational heterogeneity to β-aggregation and amyloid formation. Biochem Soc Trans 2016; 44:1531-1540. [PMID: 27911736 DOI: 10.1042/bst20160114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
From their cellular localisation, to their atomic structure and their involvement in mitochondrial-driven cell death, voltage-dependent anion channels (VDACs) have challenged the scientific community with enigmas and paradoxes for over four decades. VDACs form active monomer channels in lipid bilayers, but they can also organise in multimeric assemblies. What induces, regulates and/or controls the monomer-multimer dynamics at the cellular level is not known. However, these state transitions appear to be relevant for mitochondria in making life or death decisions and for driving developmental processes. This review starts with a general introduction on VDACs and continues by examining VDAC oligomerisation/aggregation in light of recent discussions on VDAC-β-amyloid interactions and their involvement in Alzheimer's disease.
Collapse
|
59
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
60
|
Rizzo F, Ronchi D, Salani S, Nizzardo M, Fortunato F, Bordoni A, Stuppia G, Del Bo R, Piga D, Fato R, Bresolin N, Comi GP, Corti S. Selective mitochondrial depletion, apoptosis resistance, and increased mitophagy in human Charcot-Marie-Tooth 2A motor neurons. Hum Mol Genet 2016; 25:4266-4281. [PMID: 27506976 DOI: 10.1093/hmg/ddw258] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 01/10/2023] Open
Abstract
Charcot-Marie-Tooth 2A (CMT2A) is an inherited peripheral neuropathy caused by mutations in MFN2, which encodes a mitochondrial membrane protein involved in mitochondrial network homeostasis. Because MFN2 is expressed ubiquitously, the reason for selective motor neuron (MN) involvement in CMT2A is unclear. To address this question, we generated MNs from induced pluripotent stem cells (iPSCs) obtained from the patients with CMT2A as an in vitro disease model. CMT2A iPSC-derived MNs (CMT2A-MNs) exhibited a global reduction in mitochondrial content and altered mitochondrial positioning without significant differences in survival and axon elongation. RNA sequencing profiles and protein studies of key components of the apoptotic executioner program (i.e. p53, BAX, caspase 8, cleaved caspase 3, and the anti-apoptotic marker Bcl2) demonstrated that CMT2A-MNs are more resistant to apoptosis than wild-type MNs. Exploring the balance between mitochondrial biogenesis and the regulation of autophagy-lysosome transcription, we observed an increased autophagic flux in CMT2A-MNs that was associated with increased expression of PINK1, PARK2, BNIP3, and a splice variant of BECN1 that was recently demonstrated to be a trigger for mitochondrial autophagic removal. Taken together, these data suggest that the striking reduction in mitochondria in MNs expressing mutant MFN2 is not the result of impaired biogenesis, but more likely the consequence of enhanced mitophagy. Thus, these pathways represent possible novel molecular therapeutic targets for the development of an effective cure for this disease.
Collapse
Affiliation(s)
- Federica Rizzo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sabrina Salani
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andreina Bordoni
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Stuppia
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Piga
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Romana Fato
- Department of Pharmacy and Biotecnology (FaBiT), University of Bologna, Bologna, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
61
|
Fan Z, Calsolaro V, Atkinson RA, Femminella GD, Waldman A, Buckley C, Trigg W, Brooks DJ, Hinz R, Edison P. Flutriciclamide (18F-GE180) PET: First-in-Human PET Study of Novel Third-Generation In Vivo Marker of Human Translocator Protein. J Nucl Med 2016; 57:1753-1759. [DOI: 10.2967/jnumed.115.169078] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/10/2016] [Indexed: 12/27/2022] Open
|
62
|
Li F, Liu J, Liu N, Kuhn LA, Garavito RM, Ferguson-Miller S. Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry 2016; 55:2821-31. [PMID: 27074410 DOI: 10.1021/acs.biochem.6b00142] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translocator protein 18 kDa (TSPO) was previously known as the peripheral benzodiazepine receptor (PBR) in eukaryotes, where it is mainly localized to the mitochondrial outer membrane. Considerable evidence indicates that it plays regulatory roles in steroidogenesis and apoptosis and is involved in various human diseases, such as metastatic cancer, Alzheimer's and Parkinson's disease, inflammation, and anxiety disorders. Ligands of TSPO are widely used as diagnostic tools and treatment options, despite there being no clear understanding of the function of TSPO. An ortholog in the photosynthetic bacterium Rhodobacter was independently discovered as the tryptophan-rich sensory protein (TspO) and found to play a role in the response to changes in oxygen and light conditions that regulate photosynthesis and respiration. As part of this highly conserved protein family found in all three kingdoms, the rat TSPO is able to rescue the knockout phenotype in Rhodobacter, indicating functional as well as structural conservation. Recently, a major breakthrough in the field was achieved: the determination of atomic-resolution structures of TSPO from different species by several independent groups. This now allows us to reexamine the function of TSPO with a molecular perspective. In this review, we focus on recently determined structures of TSPO and their implications for potential functions of this ubiquitous multifaceted protein. We suggest that TSPO is an ancient bacterial receptor/stress sensor that has developed additional interactions, partners, and roles in its mitochondrial outer membrane environment in eukaryotes.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Nan Liu
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Computer Science and Engineering, Michigan State University , East Lansing, Michigan 48824-1319, United States.,Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1319, United States
| | - Leslie A Kuhn
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Computer Science and Engineering, Michigan State University , East Lansing, Michigan 48824-1319, United States
| | - R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|