51
|
Tang M, Dai W, Wu H, Xu X, Jiang B, Wei Y, Qian H, Han L. Transcriptome analysis of tongue cancer based on high‑throughput sequencing. Oncol Rep 2020; 43:2004-2016. [PMID: 32236620 PMCID: PMC7160550 DOI: 10.3892/or.2020.7560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
Tongue cancer is one of the most common types of cancer, but its molecular etiology and pathogenesis remain unclear. The aim of the present study was to elucidate the pathogenesis of tongue cancer and investigate novel potential diagnostic and therapeutic targets. Four matched pairs of tongue cancer and paracancerous tissues were collected for RNA sequencing (RNA-Seq), and the differentially expressed genes were analyzed. The RNA-Seq data of tongue cancer tissues were further analyzed using bioinformatics and reverse transcription-quantitative PCR analysis. The sequenced reads were quantified and qualified in accordance with the analysis demands. The transcriptomes of the tongue cancer tissues and paired paracancerous tissues were analyzed, and 1,700 upregulated and 2,249 downregulated genes were identified. Gene Ontology analysis uncovered a significant enrichment in the terms associated with extracellular matrix (ECM) organization, cell adhesion and collagen catabolic processes. Kyoto Encyclopedia of Genes and Genomes analysis demonstrated that these differentially expressed genes were mainly enriched in the focal adhesion pathway, ECM-receptor interaction pathway, phosphoinositide 3-kinase (PI3K)-Akt pathway, and cell adhesion molecules. Comprehensive analyses of the gene tree and pathway network revealed that the majority of cell cycle genes were upregulated, while the majority of the genes associated with intracellular response, cell adhesion and cell differentiation were downregulated. The ECM-receptor interaction, focal adhesion kinase (FAK) and PI3K-Akt pathways were closely associated with one another and held key positions in differential signaling pathways. The ECM-receptor, FAK and PI3K-Akt signaling pathways were found to synergistically promote tongue cancer occurrence and progression, and may serve as potential diagnostic and therapeutic targets for this type of cancer.
Collapse
Affiliation(s)
- Mingming Tang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Wencheng Dai
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Hao Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xinjiang Xu
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Bin Jiang
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Yingze Wei
- Department of Clinical Pathology, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Hongyan Qian
- Key Laboratory of Cancer Research Center Nantong, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Liang Han
- Department of Head and Neck Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
52
|
Olshina MA, Arkind G, Kumar Deshmukh F, Fainer I, Taranavsky M, Hayat D, Ben-Dor S, Ben-Nissan G, Sharon M. Regulation of the 20S Proteasome by a Novel Family of Inhibitory Proteins. Antioxid Redox Signal 2020; 32:636-655. [PMID: 31903784 DOI: 10.1089/ars.2019.7816] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aims: The protein degradation machinery plays a critical role in the maintenance of cellular homeostasis, preventing the accumulation of damaged or misfolded proteins and controlling the levels of regulatory proteins. The 20S proteasome degradation machinery, which predominates during oxidative stress, is able to cleave any protein with a partially unfolded region, however, uncontrolled degradation of the myriad of potential substrates is improbable. This study aimed to identify and characterize the regulatory mechanism that controls 20S proteasome-mediated degradation. Results: Using a bioinformatic screen based on known 20S proteasome regulators, we have discovered a novel family of 20S proteasome regulators, named catalytic core regulators (CCRs). These regulators share structural and sequence similarities, and coordinate the function of the 20S proteasome by affecting the degradation of substrates. The CCRs are involved in the oxidative stress response via Nrf2, organizing into a feed-forward loop regulatory circuit, with some members stabilizing Nrf2, others being induced by Nrf2, and all of them inhibiting the 20S proteasome. Innovation and Conclusion: These data uncover a new family of regulatory proteins that utilize a fine-tuned mechanism to carefully modulate the activity of the 20S proteasome, in particular under conditions of oxidative stress, ensuring its proper functioning by controlling the degradative flux.
Collapse
Affiliation(s)
- Maya A Olshina
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Galina Arkind
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Irit Fainer
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mark Taranavsky
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Hayat
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics and Biological Computing Unit, Weizmann Institute of Science, Rehovot, Israel
| | - Gili Ben-Nissan
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
53
|
Monzón-Casanova E, Matheson LS, Tabbada K, Zarnack K, Smith CWJ, Turner M. Polypyrimidine tract-binding proteins are essential for B cell development. eLife 2020; 9:e53557. [PMID: 32081131 PMCID: PMC7058386 DOI: 10.7554/elife.53557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Polypyrimidine tract-binding protein 1 (PTBP1) is a RNA-binding protein (RBP) expressed throughout B cell development. Deletion of Ptbp1 in mouse pro-B cells results in upregulation of PTBP2 and normal B cell development. We show that PTBP2 compensates for PTBP1 in B cell ontogeny as deletion of both Ptbp1 and Ptbp2 results in a complete block at the pro-B cell stage and a lack of mature B cells. In pro-B cells PTBP1 ensures precise synchronisation of the activity of cyclin dependent kinases at distinct stages of the cell cycle, suppresses S-phase entry and promotes progression into mitosis. PTBP1 controls mRNA abundance and alternative splicing of important cell cycle regulators including CYCLIN-D2, c-MYC, p107 and CDC25B. Our results reveal a previously unrecognised mechanism mediated by a RBP that is essential for B cell ontogeny and integrates transcriptional and post-translational determinants of progression through the cell cycle.
Collapse
Affiliation(s)
- Elisa Monzón-Casanova
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
- Department of Biochemistry, University of CambridgeCambridgeUnited Kingdom
| | - Louise S Matheson
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| | - Kristina Tabbada
- Next Generation Sequencing Facility, The Babraham InstituteCambridgeUnited Kingdom
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University FrankfurtFrankfurt am MainGermany
| | | | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham InstituteCambridgeUnited Kingdom
| |
Collapse
|
54
|
Carmicheal J, Atri P, Sharma S, Kumar S, Chirravuri Venkata R, Kulkarni P, Salgia R, Ghersi D, Kaur S, Batra SK. Presence and structure-activity relationship of intrinsically disordered regions across mucins. FASEB J 2020; 34:1939-1957. [PMID: 31908009 DOI: 10.1096/fj.201901898rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/18/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Many members of the mucin family are evolutionarily conserved and are often aberrantly expressed and glycosylated in various benign and malignant pathologies leading to tumor invasion, metastasis, and immune evasion. The large size and extensive glycosylation present challenges to study the mucin structure using traditional methods, including crystallography. We offer the hypothesis that the functional versatility of mucins may be attributed to the presence of intrinsically disordered regions (IDRs) that provide dynamism and flexibility and that the IDRs offer potential therapeutic targets. Herein, we examined the links between the mucin structure and function based on IDRs, posttranslational modifications (PTMs), and potential impact on their interactome. Using sequence-based bioinformatics tools, we observed that mucins are predicted to be moderately (20%-40%) to highly (>40%) disordered and many conserved mucin domains could be disordered. Phosphorylation sites overlap with IDRs throughout the mucin sequences. Additionally, the majority of predicted O- and N- glycosylation sites in the tandem repeat regions occur within IDRs and these IDRs contain a large number of functional motifs, that is, molecular recognition features (MoRFs), which directly influence protein-protein interactions (PPIs). This investigation provides a novel perspective and offers an insight into the complexity and dynamic nature of mucins.
Collapse
Affiliation(s)
- Joseph Carmicheal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pranita Atri
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sunandini Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | | | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska.,Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
55
|
Lee MC, Chen YK, Hsu YJ, Lin BR. Niclosamide inhibits the cell proliferation and enhances the responsiveness of esophageal cancer cells to chemotherapeutic agents. Oncol Rep 2019; 43:549-561. [PMID: 31894334 PMCID: PMC6967135 DOI: 10.3892/or.2019.7449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/20/2019] [Indexed: 12/24/2022] Open
Abstract
Niclosamide is an FDA-approved anthelmintic drug, and may elicit antineoplastic effects through direct STAT3 inhibition, which has been revealed in numerous human cancer cells. Chemotherapy is the standard treatment for advanced esophageal cancers, but also causes severe systemic side effects. The present study represents the first study evaluating the anticancer efficacy of niclosamide in esophageal cancers. Through western blot assay, it was demonstrated that niclosamide suppressed the STAT3 signaling pathway in esophageal adenocarcinoma cells (BE3) and esophageal squamous cell carcinoma cells (CE48T and CE81T). In addition, niclosamide inhibited cell proliferation as determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and soft agar colony forming assay, and induced cell apoptosis as determined by Annexin V and PI staining. The induction of p21 and G1 arrest of the cell cycle also was revealed in niclosamide-treated CE81T cells by qPCR and flow cytometric assays, respectively. Furthermore, in the combination analysis of niclosamide and chemotherapeutic agents by MTS assay, low IC50 values were detected in cells co-treated with niclosamide, with the exception of cisplatin-treated CE81T cells. To confirm the results using an apoptosis assay, the apoptotic enhancement of niclosamide was only demonstrated in CE48T cells co-treated with 5-FU, cisplatin, or paclitaxel, and in BE3 cells co-treated with paclitaxel, but not in CE81T cells. These findings indicate a future clinical application of niclosamide in esophageal cancers.
Collapse
Affiliation(s)
- Ming-Cheng Lee
- Department of Research and Development, DrSignal BioTechnology Ltd., New Taipei City 23143, Taiwan, R.O.C
| | - Yin-Kai Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan, R.O.C
| | - Yih-Jen Hsu
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10051, Taiwan, R.O.C
| | - Bor-Ru Lin
- Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei 10051, Taiwan, R.O.C
| |
Collapse
|
56
|
Du Y, Lin J, Zhang R, Yang W, Quan H, Zang L, Han Y, Li B, Sun H, Wu J. Ubiquitin specific peptidase 5 promotes ovarian cancer cell proliferation through deubiquitinating HDAC2. Aging (Albany NY) 2019; 11:9778-9793. [PMID: 31727867 PMCID: PMC6874447 DOI: 10.18632/aging.102425] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Globally, epithelial ovarian cancer (EOC) is the most common gynecological malignancy with poor prognosis. The expression and oncogenic roles of ubiquitin specific peptidase 5 (USP5) have been reported in several cancers except EOC. In the current study, USP5 amplification was highly prevalent in patients with EOC and associated with higher mRNA expression of USP5. USP5 amplification and overexpression was positively correlated with poor prognosis of patients of ovarian serous carcinomas. Disruption of USP5 profoundly repressed cell proliferation by inducing cell cycle G0/G1 phase arrest in ovarian cancer cells. Additionally, USP5 knockdown inhibited xenograft growth in nude mice. Knockdown of USP5 decreased histone deacetylase 2 (HDAC2) expression and increased p27 (an important cell cycle inhibitor) expression in vitro and in vivo. The promoting effects of USP5 overexpression on cell proliferation and cell cycle transition, as well as the inhibitory effects of USP5 overexpression on p27 expression were mediated by HDAC2. Moreover, USP5 interacted with HDAC2, and disruption of USP5 enhanced the ubiquitination of HDAC2. HDAC2 protein was positively correlated USP5 protein, and negatively correlated with p27 protein in ovarian serous carcinomas tissues. Collectively, our data suggest the oncogenic function of USP5 and the potential regulatory mechanisms in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Yanhua Du
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, P. R. China
| | - Jun Lin
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Rulin Zhang
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| | - Wanli Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Heng Quan
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| | - Lijuan Zang
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Yaqin Han
- Pathology Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Hong Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P. R. China
| | - Jun Wu
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, P. R. China
| |
Collapse
|
57
|
Wang LF, Yan ZY, Li YL, Wang YH, Zhang SJ, Jia X, Lu L, Shang YX, Wang X, Li YH, Li SY. Inhibition of Obtusifolin on retinal pigment epithelial cell growth under hypoxia. Int J Ophthalmol 2019; 12:1539-1547. [PMID: 31637188 DOI: 10.18240/ijo.2019.10.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 06/11/2019] [Indexed: 12/16/2022] Open
Abstract
AIM To explore the effect of Obtusifolin on retinal pigment epithelial cell growth under hypoxia. METHODS In vitro chemical hypoxia model of ARPE-19 cells was established using cobalt chloride (CoCl2). Cell viability was tested by cell counting kit-8 (CCK-8) assay. Western blot and real-time quantitative polymerase chain reaction were applied to detect proteins and mRNAs respectively. Flow cytometry was used to examine the cell cycle. Secretion of vascular endothelial growth factor (VEGF) was tested by using enzyme linked immunosorbent assay (ELISA). RESULTS Under the chemical hypoxia model established by CoCl2, hypoxia inducible factor-1α (HIF-1α) mRNA and protein levels was up-regulated. Cell viability was increased and the proportion of S phase was higher. Obtusifolin could reduce cell viability under hypoxic conditions and arrest cells in G1 phase. Obtusifolin reduced the expression of Cyclin D1 and proliferating cell nuclear antigen (PCNA) in the hypoxic environment and increased the expression of p53 and p21. The levels of VEGF, VEGFR2 and eNOS proteins and mRNA were significantly increased under hypoxia while Obtusifolin inhibited the increasing. CONCLUSION Obtusifolin can inhibit cell growth under hypoxic conditions and down-regulate HIF-1/VEGF/eNOS secretions in ARPE-19 cells.
Collapse
Affiliation(s)
- Li-Fei Wang
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Zhong-Yang Yan
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Ya-Lin Li
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Yan-Hui Wang
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Sheng-Juan Zhang
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Xin Jia
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Lu Lu
- Diabetic Eye Disease Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Yan-Xia Shang
- Diabetic Eye Disease Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Xin Wang
- Corneal Disease Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Yun-Huan Li
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Shan-Yu Li
- Fundus Surgery Ward, Hebei Provincial Eye Hospital, Xingtai 054001, Hebei Province, China
| |
Collapse
|
58
|
Kulke M, Uhrhan M, Geist N, Brüggemann D, Ohler B, Langel W, Köppen S. Phosphorylation of Fibronectin Influences the Structural Stability of the Predicted Interchain Domain. J Chem Inf Model 2019; 59:4383-4392. [PMID: 31509400 DOI: 10.1021/acs.jcim.9b00555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As a key player in cell adhesion, the glycoprotein fibronectin is involved in the complex mechanobiology of the extracellular matrix. Although the function of many modules in the fibronectin molecule has already been understood, the structure and biological relevance of the C-terminal cross-linked region (CTXL) still remains unclear. It is known that fibronectin is only phosphorylated in the CTXL domain, but no results have been presented to date, which indicate a biological function based on this phosphorylation. For the first time, we introduce a structural model of the CTXL region in fibronectin, which we obtained by exhaustive replica exchange molecular dynamics simulations (TIGER2hs). The sampling revealed a conformational landscape of the dimerization module, and the global minimum state showed an umbrella-like module body and conspicuous structural region with two feet. We observed that the CTXL foot region exhibits a structural stability in its physiological state, which disappears upon changes in the phosphorylation state. Thus, our in silico studies enabled us to show that the flexibility of the CTXL region is guided by phosphorylation. These results indicate an in vivo function of the CTXL domain in protein binding and cell adhesion, which is controlled by phosphorylation.
Collapse
Affiliation(s)
- Martin Kulke
- Biophysical Chemistry , University of Greifswald , Greifswald 17487 , Germany
| | | | - Norman Geist
- Biophysical Chemistry , University of Greifswald , Greifswald 17487 , Germany
| | | | - Bastian Ohler
- Biophysical Chemistry , University of Greifswald , Greifswald 17487 , Germany
| | - Walter Langel
- Biophysical Chemistry , University of Greifswald , Greifswald 17487 , Germany
| | | |
Collapse
|
59
|
Liang Z, Li X, Chen J, Cai H, Zhang L, Li C, Tong J, Hu W. PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer. Transl Cancer Res 2019; 8:2059-2072. [PMID: 35116955 PMCID: PMC8799135 DOI: 10.21037/tcr.2019.09.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
Abstract
Background This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC). Methods Bioinformatics analysis was performed. Cell culture and plasmid construction were conducted for cell transfection. mRNA and protein expression, cell proliferation, migration, and cell cycle were detected. Mice models were also constructed. The relationship between PRC1 and the prognosis of NSCLC patients was analyzed. Results PRC1 expression was higher in tumor tissues than adjacent non-tumor tissues (P<0.05). Cells transfected with the high-expression PRC1 plasmid (TOPO-PRC1 group) had the stronger ability of proliferation and migration (P<0.05) along with a lower incidence of stay at the G2/M phase (P<0.05) than the low-expression PRC1 plasmid. Mice models showed tumors obtained from mice in the TOPO-PRC1 group significantly grew faster, larger, and heavier (P<0.05) than the low-expression PRC1 group. Among the 150 NSCLC patients, patients with the higher PRC1 expression were more likely to have lymph node metastasis occur (P<0.05) and progress into an advanced stage (P<0.05), and showed shorter survival (P<0.05). Moreover, the TOPO-PRC1 group had a lower phosphorylation level, and a lower expression of Cip1/p21 (P<0.05) and Kip1/p27 (P<0.01). Conclusions PRC1 could promote cell proliferation and cell cycle progression through FAK-paxillin pathway molecules and the regulation of the phosphorylation level of p21/p27-pRB family molecules. PRC1 might be a new and promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhigang Liang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Xinjian Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jian Chen
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Haina Cai
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Liqun Zhang
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Chenwei Li
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Jingjie Tong
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| | - Wentao Hu
- Department of Thoracic Surgery, Ningbo First Hospital, Ningbo 315000, China
| |
Collapse
|
60
|
Wen Z, Jiang R, Huang Y, Wen Z, Rui D, Liao X, Ling Z. Inhibition of lung cancer cells and Ras/Raf/MEK/ERK signal transduction by ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7). Respir Res 2019; 20:194. [PMID: 31443651 PMCID: PMC6708200 DOI: 10.1186/s12931-019-1165-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/13/2019] [Indexed: 12/11/2022] Open
Abstract
Background The aim of this study was to investigate the effects and mechanisms of ectonucleoside triphosphate phosphohydrolase-7 (ENTPD7) on lung cancer cells. Methods The expression characteristics of ENTPD7 and its effect on the survival of lung cancer patients were analyzed by referring to The Cancer Genome Atlas (TCGA). Streptavidin-peroxidase (SP) staining was performed to detect the ENTPD7 protein in tumor tissues and adjacent tissues. Plasmid transfection technology was also applied to silence ENTPD7 gene. Crystal violet staining and flow cytometry were performed to determine cell proliferation and apoptosis. Tumor-bearing nude mice model was established to investigate the effect of sh-ENTPD7 on tumors. Results The results showed that patients with low levels of ENTPD7 had higher survival rates. ENTPD7 was up-regulated in lung cancer tissues and cells. Down-regulation of the expression of ENTPD7 inhibited proliferation but promoted apoptosis of lung cancer cell. Silencing ENTPD7 also inhibited the expression levels of Ras and Raf proteins and the phosphorylation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK). Tumor-bearing nude mice experiments showed that silencing ENTPD7 had an inhibitory effect on lung cancer cells. Conclusions ENTPD7 was overexpressed in lung cancer cells. Down-regulating ENTPD7 could inhibit lung cancer cell proliferation and promote apoptosis via inhibiting the Ras/Raf/MEK/ERK pathway.
Collapse
Affiliation(s)
- Zhongwei Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Rongfang Jiang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Ying Huang
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhineng Wen
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Dong Rui
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Xiaoxiao Liao
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China
| | - Zhougui Ling
- Department of Respiratory and Critical Care Medicine, the Fourth Affiliated Hospital of Guangxi Medical University, No. 1 Liushi Road, Liuzhou, 545005, Guangxi Province, China.
| |
Collapse
|
61
|
Kreis NN, Louwen F, Yuan J. The Multifaceted p21 (Cip1/Waf1/ CDKN1A) in Cell Differentiation, Migration and Cancer Therapy. Cancers (Basel) 2019; 11:cancers11091220. [PMID: 31438587 PMCID: PMC6770903 DOI: 10.3390/cancers11091220] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/15/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Loss of cell cycle control is characteristic of tumorigenesis. The protein p21 is the founding member of cyclin-dependent kinase inhibitors and an important versatile cell cycle protein. p21 is transcriptionally controlled by p53 and p53-independent pathways. Its expression is increased in response to various intra- and extracellular stimuli to arrest the cell cycle ensuring genomic stability. Apart from its roles in cell cycle regulation including mitosis, p21 is involved in differentiation, cell migration, cytoskeletal dynamics, apoptosis, transcription, DNA repair, reprogramming of induced pluripotent stem cells, autophagy and the onset of senescence. p21 acts either as a tumor suppressor or as an oncogene depending largely on the cellular context, its subcellular localization and posttranslational modifications. In the present review, we briefly mention the general functions of p21 and summarize its roles in differentiation, migration and invasion in detail. Finally, regarding its dual role as tumor suppressor and oncogene, we highlight the potential, difficulties and risks of using p21 as a biomarker as well as a therapeutic target.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany.
| | - Frank Louwen
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, University Hospital, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
62
|
Efficient and robust preparation of tyrosine phosphorylated intrinsically disordered proteins. Biotechniques 2019; 67:16-22. [PMID: 31092000 DOI: 10.2144/btn-2019-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are subject to post-translational modifications. This allows the same polypeptide to be involved in different interaction networks with different consequences, ranging from regulatory signalling networks to the formation of membrane-less organelles. We report a robust method for co-expression of modification enzyme and SUMO-tagged IDPs with a subsequent purification procedure that allows for the production of modified IDP. The robustness of our protocol is demonstrated using a challenging system: RNA polymerase II C-terminal domain (CTD); that is, a low-complexity repetitive region with multiple phosphorylation sites. In vitro phosphorylation approaches fail to yield multiple-site phosphorylated CTD, whereas our in vivo protocol allows the rapid production of near homogeneous phosphorylated CTD at a low cost. These samples can be used in functional and structural studies.
Collapse
|
63
|
Kulkarni V, Kulkarni P. Intrinsically disordered proteins and phenotypic switching: Implications in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:63-84. [PMID: 31521237 DOI: 10.1016/bs.pmbts.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is now well established that intrinsically disordered proteins (IDPs) that constitute a large part of the proteome across the three kingdoms, play critical roles in several biological processes including phenotypic switching. However, dysregulated expression of IDPs that engage in promiscuous interactions can lead to pathological states. In this chapter, using cancer as a paradigm, we discuss how IDP conformational dynamics and the resultant conformational noise can modulate phenotypic switching. Thus, contrary to the prevailing wisdom that phenotypic switching is highly deterministic (has a genetic underpinning) in cancer, emerging evidence suggests that non-genetic mechanisms, at least in part due to the conformational noise, may also be a confounding factor in phenotypic switching.
Collapse
Affiliation(s)
- Vivek Kulkarni
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, United States.
| |
Collapse
|
64
|
Kolli RT, Glenn TC, Brown BT, Kaur SP, Barnett LM, Lash LH, Cummings BS. Bromate-induced Changes in p21 DNA Methylation and Histone Acetylation in Renal Cells. Toxicol Sci 2019; 168:460-473. [PMID: 30649504 PMCID: PMC6432867 DOI: 10.1093/toxsci/kfz016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bromate (BrO3-) is a water disinfection byproduct (DBP) previously shown to induce nephrotoxicity in vitro and in vivo. We recently showed that inhibitors of DNA methyltransferase 5-aza-2'-deoxycytidine (5-Aza) and histone deacetylase trichostatin A (TSA) increased BrO3- nephrotoxicity whereas altering the expression of the cyclin-dependent kinase inhibitor p21. Human embryonic kidney cells (HEK293) and normal rat kidney (NRK) cells were sub-chronically exposed to BrO3- or epigenetic inhibitors for 18 days, followed by 9 days of withdrawal. DNA methylation was studied using a modification of bisulfite amplicon sequencing called targeted gene bisulfite sequencing. Basal promoter methylation in the human p21 promoter region was substantially lower than that of the rat DNA. Furthermore, 5-Aza decreased DNA methylation in HEK293 cells at the sis-inducible element at 3 distinct CpG sites located at 691, 855, and 895 bp upstream of transcription start site (TSS). 5-Aza also decreased methylation at the rat p21 promoter about 250 bp upstream of the p21 TSS. In contrast, sub-chronic BrO3- exposure failed to alter methylation in human or rat renal cells. BrO3- exposure altered histone acetylation in NRK cells at the p21 TSS, but not in HEK293 cells. Interestingly, changes in DNA methylation induced by 5-Aza persisted after its removal; however, TSA- and BrO3--induced histone hyperacetylation returned to basal levels after 3 days of withdrawal. These data demonstrate novel sites within the p21 gene that are epigenetically regulated and further show that significant differences exist in the epigenetic landscape between rat and human p21, especially with regards to toxicant-induced changes in histone acetylation.
Collapse
Affiliation(s)
- Ramya T Kolli
- Department of Pharmaceutical and Biomedical Sciences
- Interdisciplinary Toxicology Program
- National Institute of Environmental Health Sciences, Building 101, 111 TW Alexander Drive, Durham, NC 27709
| | - Travis C Glenn
- Interdisciplinary Toxicology Program
- Environmental Health Science
| | - Bradley T Brown
- College of Pharmacy, University of Georgia, Athens, Georgia 30602
| | | | - Lillie M Barnett
- Department of Pharmaceutical and Biomedical Sciences
- Interdisciplinary Toxicology Program
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University, Detroit, Michigan 48201
| | - Brian S Cummings
- Department of Pharmaceutical and Biomedical Sciences
- Interdisciplinary Toxicology Program
| |
Collapse
|
65
|
Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol 2019; 8:rsob.180112. [PMID: 30185601 PMCID: PMC6170502 DOI: 10.1098/rsob.180112] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Since their characterization as conserved modules that regulate progression through the eukaryotic cell cycle, cyclin-dependent protein kinases (CDKs) in higher eukaryotic cells are now also emerging as significant regulators of transcription, metabolism and cell differentiation. The cyclins, though originally characterized as CDK partners, also have CDK-independent roles that include the regulation of DNA damage repair and transcriptional programmes that direct cell differentiation, apoptosis and metabolic flux. This review compares the structures of the members of the CDK and cyclin families determined by X-ray crystallography, and considers what mechanistic insights they provide to guide functional studies and distinguish CDK- and cyclin-specific activities. Aberrant CDK activity is a hallmark of a number of diseases, and structural studies can provide important insights to identify novel routes to therapy.
Collapse
Affiliation(s)
- Daniel J Wood
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
66
|
Taglieri L, Saccoliti F, Nicolai A, Peruzzi G, Madia VN, Tudino V, Messore A, Di Santo R, Artico M, Taurone S, Salvati M, Costi R, Scarpa S. Discovery of a pyrimidine compound endowed with antitumor activity. Invest New Drugs 2019; 38:39-49. [PMID: 30900116 DOI: 10.1007/s10637-019-00762-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Recently, some synthetic nitrogen-based heterocyclic molecules, such as PJ34, have shown pronounced antitumor activity. Therefore, we designed and synthesized new derivatives characterized by a nitrogen-containing scaffold and evaluated their antiproliferative properties in tumor cells. We herein report the effects of three newly synthesized compounds on cell lines from three different human cancers: triple-negative breast cancer, colon carcinoma and glioblastoma. We found that two of these compounds did not affect proliferation, while the third significantly inhibited replication of the three cell lines. Moreover, this third molecule at 20 μM led to the upregulation of p21 and p27 and blockage of the cell cycle at G0/G1; in addition, it induced apoptosis in all three cell lines when used at higher concentrations (30-50 μM). The results demonstrate that this compound is a potent inhibitor of replication, an inducer of apoptosis and a negative regulator of cell cycle progression for cancer cells of different histotypes. Our data suggest a potential role for this new molecule as an interesting and powerful tool for new approaches in treating various cancers.
Collapse
Affiliation(s)
- Ludovica Taglieri
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Francesco Saccoliti
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Alice Nicolai
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
- Department of Sensory Organs, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Giovanna Peruzzi
- Italian Institute of Technology, Center for Life Nanoscience@Sapienza, Viale Regina Elena 324, 00161, Rome, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Valeria Tudino
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Samanta Taurone
- Department of Sensory Organs, Sapienza University, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maurizio Salvati
- Department of Human Neurosciences, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Susanna Scarpa
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena 324, 00161, Rome, Italy
| |
Collapse
|
67
|
Kiszel P, Fiesel S, Voit S, Waechtler B, Meier T, Oelschlaegel T, Schraeml M, Engel AM. Transient gene expression using valproic acid in combination with co-transfection of SV40 large T antigen and human p21CIP
/p27KIP. Biotechnol Prog 2019; 35:e2786. [DOI: 10.1002/btpr.2786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/17/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Petra Kiszel
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Sonja Fiesel
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Susanne Voit
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Beate Waechtler
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Thomas Meier
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Tobias Oelschlaegel
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Michael Schraeml
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| | - Alfred M. Engel
- R&D Cell Culture Technology of Centralized and Point of Care Solutions; Roche Diagnostics GmbH; Penzberg Germany
| |
Collapse
|
68
|
Sharma DK, Siddiqui MQ, Gadewal N, Choudhary RK, Varma AK, Misra HS, Rajpurohit YS. Phosphorylation of deinococcal RecA affects its structural and functional dynamics implicated for its roles in radioresistance of Deinococcus radiodurans. J Biomol Struct Dyn 2019; 38:114-123. [PMID: 30688163 DOI: 10.1080/07391102.2019.1568916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Deinococcus RecA (DrRecA) protein is a key repair enzyme and contributes to efficient DNA repair of Deinococcus radiodurans. Phosphorylation of DrRecA at Y77 (tyrosine 77) and T318 (threonine 318) residues modifies the structural and conformational switching that impart the efficiency and activity of DrRecA. Dynamics comparisons of DrRecA with its phosphorylated analogues support the idea that phosphorylation of Y77 and T318 sites could change the dynamics and conformation plasticity of DrRecA. Furthermore, docking studies showed that phosphorylation increases the binding preference of DrRecA towards dATP versus ATP and for double-strand DNA versus single-strand DNA. This work supporting the idea that phosphorylation can modulate the crucial functions of this protein and having good concordance with the experimental data. AbbreviationsDrRecADeinococcus RecADSBDNA double-strand breakshDNAheteroduplex DNASTYPKserine/threonine/tyrosine protein kinaseT318threonine 318Y77tyrosine 77Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Nikhil Gadewal
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Rajan Kumar Choudhary
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Ashok Kumar Varma
- Advance Centre for Treatment Research and Education in Cancer, Kharghar, Maharashtra, India
| | - Hari Sharan Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,Department of Atomic Energy, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
69
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
70
|
Watanabe S, Yamaguchi S, Fujii N, Eguchi N, Katsuta H, Sugishima S, Iwasaka T, Kaku T. Nuclear co-expression of p21 and p27 induced effective cell-cycle arrest in T24 cells treated with BCG. Cytotechnology 2019; 71:219-229. [PMID: 30603918 DOI: 10.1007/s10616-018-0278-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/08/2018] [Indexed: 11/26/2022] Open
Abstract
A proposed mechanism underlying the effect of bacillus Calmette-Guérin (BCG) treatment for bladder cancer cells is as follows: BCG-induced crosslinking of cell-surface receptors results in the activation of signaling cascades, including cell-cycle regulators. However, the clinical significance of cell-cycle regulators such as p21 and p27 is controversial. Here we investigated the relationship between BCG exposure and p21 and p27. We used confocal laser microscopy to examine the expression levels of pKi67, p21 and p27 in T24 cells (derived from human urothelial carcinoma) exposed six times to BCG. We performed dual immunofluorescence staining methods for p21 and p27 and observed the localization of nuclear and cytoplasm expressions. We investigated the priority of p27 over p21 regarding nuclear expression by using p27 Stealth RNAi™ (p27-siRNA). With 2-h BCG exposure, the nuclear-expression level of p21 and p27 was highest, while pKi67 was lowest. The percentage of double nuclear-expression of p21 and p27 in BCG cells was significantly higher than that in control cells during the 1st to 6th exposure (P < 0.05), and the expression of pKi67 showed the opposite of this pattern. Approximately 10% of the nuclear p21 was independent of p27, whereas the cytoplasmic p21 was dependent on p27. Our results suggested that the nuclear co-expression of p21 and p27 caused effective cell-cycle arrest, and thus the evaluation of the nuclear co-expression of p21 and p27 might help determine the effectiveness of BCG treatment.
Collapse
Affiliation(s)
- Sumiko Watanabe
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan.
| | - Shota Yamaguchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Naoto Fujii
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Natsuki Eguchi
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Hitoshi Katsuta
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Setsuo Sugishima
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| | - Tsuyoshi Iwasaka
- Department of Obstetrics and Gynecology, Takagi Hospital, 141-11, Sakemi, Okawa City, Fukuoka, 831-0016, Japan
| | - Tsunehisa Kaku
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka City, 812-8582, Japan
| |
Collapse
|
71
|
Jia Q, Yang F, Huang W, Zhang Y, Bao B, Li K, Wei F, Zhang C, Jia H. Low Levels of Sox2 are required for Melanoma Tumor-Repopulating Cell Dormancy. Theranostics 2019; 9:424-435. [PMID: 30809284 PMCID: PMC6376184 DOI: 10.7150/thno.29698] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/03/2018] [Indexed: 01/29/2023] Open
Abstract
Tumorigenic cells, when facing a hostile environment, may enter a dormant state, leading to long-term tumor survival, relapse, and metastasis. To date, the molecular mechanism of tumor cell dormancy remains poorly understood. Methods: A soft, 3-dimentional (3D) fibrin gel culture system was used to mechanically select and grow highly malignant and tumorigenic melanoma tumor-repopulating cells (TRCs). We cultured control melanoma TRCs, TRCs with Sox2 knockdown, TRCs with Sox2 knockout, and a 2D control for in vitro and in vivo experiments. Western blotting, immunofluorescence, and flow cytometry analysis were performed to examine TRC dormancy and exit from dormancy. Results: Under a low-expression condition, we show that Sox2, a stemness molecule participates in dormancy regulation of highly tumorigenic cells that can repopulate a tumor (TRCs). Intriguingly, complete depletion of Sox2 via knockout results in dormancy exit and growth resumption of melanoma TRCs in culture and elevation of melanoma TRC apoptosis. Mice that are injected subcutaneously with Sox2-depleted melanoma TRCs do not form tumors and survive much longer than those injected with melanoma TRCs. We found that complete depletion of Sox2 promotes nuclear translocation of phosphorylated STAT3, where it binds to the p53 gene promoter, thus activating the p53-caspase3 cascade. Conclusion: These findings provide a novel insight into the role of the Sox2 gene in tumor cell stemness, tumor dormancy, and apoptosis.
Collapse
Affiliation(s)
- Qiong Jia
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomechanical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fang Yang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomechanical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wei Huang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yao Zhang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomechanical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Binghao Bao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ke Li
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomechanical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Fuxiang Wei
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomechanical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Cunyu Zhang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomechanical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
72
|
Wang J, Song C, Cao X, Li H, Cai H, Ma Y, Huang Y, Lan X, Lei C, Ma Y, Bai Y, Lin F, Chen H. MiR-208b regulates cell cycle and promotes skeletal muscle cell proliferation by targeting CDKN1A. J Cell Physiol 2018; 234:3720-3729. [PMID: 30317561 DOI: 10.1002/jcp.27146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/05/2018] [Indexed: 01/18/2023]
Abstract
Skeletal muscle is the most abundant tissue in the body. The development of skeletal muscle cell is complex and affected by many factors. A sea of microRNAs (miRNAs) have been identified as critical regulators of myogenesis. MiR-208b, a muscle-specific miRNA, was reported to have a connection with fiber type determination. However, whether miR-208b has effect on proliferation of muscle cell was under ascertained. In our study, cyclin-dependent kinase inhibitor 1A (CDKN1A), which participates in cell cycle regulation, was predicted and then validated as one target gene of miR-208b. We found that overexpression of miR-208b increased the expression of cyclin D1, cyclin E1, and cyclin-dependent kinase 2 at the levels of messenger RNA and protein in cattle primary myoblasts in vivo and in vitro. Flow cytometry showed that forced expression of miR-208b increased the percentage of cells at the S phase and decreased the percentage of cells at the G0/G1 phase. These results indicated that miR-208b participates in the cell cycle regulation of cattle primary myoblast cells. 5-Ethynyl-20-deoxyuridine and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed that overexpression of miR-208b promoted the proliferation of cattle primary myoblasts. Therefore, we conclude that miR-208b participates in the cell cycle and proliferation regulation of cattle primary skeletal muscle cell through the posttranscriptional downregulation of CDKN1A.
Collapse
Affiliation(s)
- Jian Wang
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chengchuang Song
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiukai Cao
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Li
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hanfang Cai
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yilei Ma
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yun Ma
- College of Life Sciences, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Yueyu Bai
- Animal Health Supervision in Henan Province, Zhengzhou, China
| | - Fengpeng Lin
- Bureau of Animal Husbandry of Biyang County, Biyang, China
| | - Hong Chen
- Shaanxi Key Laboratory of Agricultural Molecular Biology, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
73
|
Zhao C, Shen Q. Overexpression of small ubiquitin‑like modifier 2 ameliorates high glucose‑induced reductions in cardiomyocyte proliferation via the transforming growth factor‑β/Smad pathway. Mol Med Rep 2018; 18:4877-4885. [PMID: 30280191 PMCID: PMC6236294 DOI: 10.3892/mmr.2018.9522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Hyperglycemia may induce diabetic cardiomyopathy (DC). In the current study, the mechanism underlying the alleviation of high glucose (HG)-induced impairments in the proliferation of H9c2 embryo cardiomyocyte proliferation by small ubiquitin-like modifier 2 (SUMO2) overexpression was investigated. H9c2 cell morphology was identified as classical long shuttle type by optical microscopy. The viability of HG-injured H9c2 cells was evaluated by a Cell Counting Kit-8 assay and the results indicated that viability was inhibited in a dose-dependent (5.6, 10, 20 and 30 mmol/l) and time-dependent (6, 12 and 24 h) manner. H9c2 cells treated with 20 mmol/l HG for 24 h were selected for subsequent experiments due to the extent of injury caused at a low density. Flow cytometry was conducted to confirm cell cycle arrest between G1/S phases and apoptosis promotion in HG-injured H9c2 cells, and the subsequent alleviating effect of SUMO2 overexpression on these HG-induced effects. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to detect mRNA and protein expression levels of cell cycle-and apoptosis-associated factors. The results indicated that the expression ofthe cell cycle-associated factors CyclinA2 and C-Myc was upregulated, and cyclin-dependent kinase inhibitor 1a was downregulated. The expression of the apoptosis-associated factor Bcl-2 was upregulated, while Bcl-2-associated X and caspase-3 expression was downregulated, by SUMO2 overexpression. Furthermore, the effect of SUMO2 overexpression on the transforming growth factor (TGF)-β/Smad pathway was also determined using RT-qPCR and western blot analysis. The results indicated the mRNA and protein levels of TGF-β1 and Smad3 in HG-injured H9c2 cells were significantly decreased following SUMO2 overexpression. Thus, the results demonstrated that overexpression of SUMO2 may alleviate H9c2 cardiomyocyte cell cycle arrest and apoptosis promotion induced by HG via regulation of cell cycle- and apoptosis-associated factors, as well as inhibition of the TGF-β/Smad pathway. These results may therefore provide a novel strategy for the protection of cardiomyocytes and may aid the diagnosis and prognosis of patients with DC.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| | - Qile Shen
- Department of Geriatric, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200336, P.R. China
| |
Collapse
|
74
|
Disproportionate feedback interactions govern cell‐type specific proliferation in mammalian cells. FEBS Lett 2018; 592:3248-3263. [DOI: 10.1002/1873-3468.13241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 11/07/2022]
|
75
|
Zamora-Briseño JA, Reyes-Hernández SJ, Zapata LCR. Does water stress promote the proteome-wide adjustment of intrinsically disordered proteins in plants? Cell Stress Chaperones 2018; 23:807-812. [PMID: 29860709 PMCID: PMC6111090 DOI: 10.1007/s12192-018-0918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Plant response to water stress involves the activation of mechanisms expected to help them cope with water scarcity. Among these mechanisms, proteome-wide adjustment is well known. This includes actions to save energy, protect cellular and molecular components, and maintain vital functions of the cell. Intrinsically disordered proteins, which are proteins without a rigid three-dimensional structure, are seen as emerging multifunctional cellular components of proteomes. They are highly abundant in eukaryotic proteomes, and numerous functions for these proteins have been proposed. Here, we discuss several reasons why the collection of intrinsically disordered proteins in a proteome (disordome) could be subjected to an active regulation during conditions of water scarcity in plants. We also discuss the potential misinterpretations of disordome content estimations made so far due to bias-prone data and the need for reliable analysis based on experimental data in order to acknowledge the plasticity nature of the disordome.
Collapse
|
76
|
LncRNA MIR100HG promotes cell proliferation in triple-negative breast cancer through triplex formation with p27 loci. Cell Death Dis 2018; 9:805. [PMID: 30042378 PMCID: PMC6057987 DOI: 10.1038/s41419-018-0869-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/10/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits poor prognosis, with high metastasis and low survival. Long non-coding RNAs (lncRNAs) play critical roles in tumor progression. Here, we identified lncRNA MIR100HG as a pro-oncogene for TNBC progression. Knockdown of MIR100HG decreased cell proliferation and induced cell arrest in the G1 phase, whereas overexpression of MIR100HG significantly increased cell proliferation. Furthermore, MIR100HG regulated the p27 gene to control the cell cycle, and subsequently impacted the progression of TNBC. In analyzing its underlying mechanism, bioinformatics prediction and experimental data demonstrated that MIR100HG participated in the formation of RNA–DNA triplex structures. MIR100HG in The Cancer Genome Atlas (TCGA) and breast cancer cell lines showed higher expression in TNBC than in other tumor types with poor prognosis. In conclusion, our data indicated a novel working pattern of lncRNA in TNBC progression, which may be a potential therapeutic target in such cancers.
Collapse
|
77
|
Qian L, Zhu Y. Computer-aided drug design and inhibitive effect of a novel nitrogenous heterocyclic compound and its mechanism on glioma U251 cells and breast cancer MCF-7 cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1931-1939. [PMID: 29983547 PMCID: PMC6027699 DOI: 10.2147/dddt.s168130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Glioma and breast cancer are severe malignant cancerous tumors that highlight the importance of developing new anti-cancer drugs. The aim of this study was to explore the effects of a novel nitrogenous heterocyclic compound on glioma and breast cancer cells and to determine its mechanism of action. Methods We designed and synthesized a novel nitrogenous heterocyclic compound, 3-(4-amino-1H-benzo[d]imidazole-2-carboxamido)-4-oxo-3,4-dihydroimidazo[5,1-d][1,2,3,5] tetrazine-8-carboxamide, based on alkylglycerone phosphate synthase (AGPS) using computer-aided drug design (CADD), and we measured its effect on the proliferation, invasion, cell cycle and apoptosis of U251 glioma and MCF-7 breast cancer cells. In addition, the compound’s effect on the expression of tumor-related mRNA, circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) was explored. Results It was found that the nitrogenous heterocyclic compound could induce cell cycle arrest at the G2/M phase of U251/MCF-7 cells and activate apoptosis. Real-time PCR showed that the expression levels of tumor-related mRNA, circRNAs and lncRNAs were impacted. Conclusion We concluded that the nitrogenous heterocyclic compound inhibits the proliferation and invasion of U251 glioma and MCF-7 breast cancer cells through the induction of apoptosis and cell cycle arrest by regulating tumor-related genes.
Collapse
Affiliation(s)
- Liyu Qian
- Department of Tumor Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China,
| | - Yu Zhu
- Tianjin Key Laboratory of Cerebral Vessels and Neuraldegenerative Disease, Department of Clinical Laboratory, Tianjin Huanhu Hospital, Tianjin 300350, China,
| |
Collapse
|
78
|
Li Y, Huang J, Zeng B, Yang D, Sun J, Yin X, Lu M, Qiu Z, Peng W, Xiang T, Li H, Ren G. PSMD2 regulates breast cancer cell proliferation and cell cycle progression by modulating p21 and p27 proteasomal degradation. Cancer Lett 2018; 430:109-122. [PMID: 29777785 DOI: 10.1016/j.canlet.2018.05.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/27/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Alterations in the ubiquitin-proteasome system (UPS) and UPS-associated proteins have been implicated in the development of many human malignancies. In this study, we investigated the expression profiles of 797 UPS-related genes using HiSeq data from The Cancer Genome Atlas and identified that PSMD2 was markedly upregulated in breast cancer. High PSMD2 expression was significantly correlated with poor prognosis. Gene set enrichment analysis revealed that transcriptome signatures involving proliferation, cell cycle, and apoptosis were critically enriched in specimens with elevated PSMD2. Consistently, PSMD2 knockdown inhibited cell proliferation and arrested cell cycle at G0/G1 phase in vitro, as well as suppressed tumor growth in vivo. Rescue assays demonstrated that the cell cycle arrest caused by silencing PSMD2 partially resulted from increased p21 and/or p27. Mechanically, PSMD2 physically interacted with p21 and p27 and mediated their ubiquitin-proteasome degradation with the cooperation of USP14. Notably, intratumor injection of therapeutic PSMD2 small interfering RNA effectively delayed xenograft tumor growth accompanied by p21 and p27 upregulation. These data provide novel insight into the role of PSMD2 in breast cancer and suggest that PSMD2 may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yunhai Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Pneumology Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Beilei Zeng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dejuan Yang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuedong Yin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengqi Lu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyan Peng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
79
|
Güçlü H, Doganlar ZB, Gürlü VP, Özal A, Dogan A, Turhan MA, Doganlar O. Effects of cisplatin-5-fluorouracil combination therapy on oxidative stress, DNA damage, mitochondrial apoptosis, and death receptor signalling in retinal pigment epithelium cells. Cutan Ocul Toxicol 2018; 37:291-304. [PMID: 29606027 DOI: 10.1080/15569527.2018.1456548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Combination therapies of cisplatin with 5-FU (PF) are an effective solution and have been widely used for the treatment of various categories of cancer including anal, gastrointestinal, and oral cancer, as well as head and neck tumors. The effects of combined PF treatment on vital intracellular signalling pathways in nontargeted cells remain unclear. The aim of this study is to explain the possible mechanisms by which combined PF treatment results in retinal toxicity and to investigate the effects of PF on important vital signalling pathways in ARPE 19 retinal pigmented epithelial cells. MATERIALS AND METHODS We analysed the cellular and molecular effects of PF on cell viability, oxidative stress, gene repair response, and induction of apoptosis in ARPE 19 cells using molecular probe fluorescent staining, cell cytometer, RAPD, qRT-PCR, and western blot assays. RESULTS We determined that PF causes excessive generation of reactive oxygen species (ROS) and prevents ROS scavenging by suppressing antioxidant systems. We found induction of DNA damage, particularly mismatch and double strand break repair, in ARPE 19 cells treated with PF. In this study, PF also induced both the intrinsic apoptosis pathway and death receptor signalling in ARPE 19 cells. CONCLUSIONS Our data proved that PF causes cytotoxicity and genotoxicity, at both the cellular and molecular levels, in ARPE 19 cells following particularly prolonged treatment (48 h). Additionally, our results suggest key molecular signals for prevention strategies that can be developed to reduce the severe side effects of PF chemotherapy.
Collapse
Affiliation(s)
- Hande Güçlü
- a Department of Ophthalmology, Faculty of Medicine , Trakya University , Edirne , Turkey
| | - Zeynep Banu Doganlar
- b Department of Medical Biology, Faculty of Medicine , Trakya University , Edirne , Turkey
| | - Vuslat Pelitli Gürlü
- a Department of Ophthalmology, Faculty of Medicine , Trakya University , Edirne , Turkey
| | - Altan Özal
- a Department of Ophthalmology, Faculty of Medicine , Trakya University , Edirne , Turkey
| | - Ayten Dogan
- b Department of Medical Biology, Faculty of Medicine , Trakya University , Edirne , Turkey
| | - Meryem Aysenur Turhan
- b Department of Medical Biology, Faculty of Medicine , Trakya University , Edirne , Turkey
| | - Oguzhan Doganlar
- b Department of Medical Biology, Faculty of Medicine , Trakya University , Edirne , Turkey
| |
Collapse
|
80
|
Osthole inhibits gastric cancer cell proliferation through regulation of PI3K/AKT. PLoS One 2018; 13:e0193449. [PMID: 29590128 PMCID: PMC5873990 DOI: 10.1371/journal.pone.0193449] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 02/12/2018] [Indexed: 02/06/2023] Open
Abstract
Osthole is an active compound isolated from Chinese herb Cnidium monnieri (L.) Cusson, and had been reported to possess antitumor effect. However, the effect of osthole on the gastric cancer cells has not been investigated. In this study, the effects of osthole on the proliferation of human gastric cancer cells were tested. The data showed that osthole treatment significantly inhibited the proliferation of gastric cancer cells and resulted in the cell cycle arrest at G2/M phase in a dose-dependent manner. Western-blot study showed that the expression of cyclin B1 and cdc2 was markedly reduced by osthole. Moreover, expression of PI3K and pAKT was also significantly suppressed, and the results indicated that the inhibition of pAKT, cyclin B1, and cdc2 levels by osthole was notably enhanced by a PI3K inhibitor. These results demonstrate that osthole could inhibit gastric cancer cells proliferation via induction of cell cycle arrest at G2/M phase by the reduction of PI3K/AKT.
Collapse
|
81
|
Abstract
Alpha-synuclein (α-SYN) is the main component of anomalous protein aggregates (Lewy bodies) that play a crucial role in several neurodegenerative diseases (synucleinopathies) like Parkinson’s disease and multiple system atrophy. However, the mechanisms involved in its transcriptional regulation are poorly understood. We investigated here the role of the cyclin-dependent kinase (Cdk) inhibitor and transcriptional regulator p27Kip1 (p27) in the regulation of α-SYN expression. We observed that selective deletion of p27 by CRISPR/Cas9 technology in neural cells resulted in increased levels of α-SYN. Knock-down of the member of the same family p21Cip1 (p21) also led to increased α-SYN levels, indicating that p27 and p21 collaborate in the repression of α-SYN transcription. We demonstrated that this repression is mediated by the transcription factor E2F4 and the member of the retinoblastoma protein family p130 and that it is dependent of Cdk activity. Chromatin immunoprecipitation analysis revealed specific binding sites for p27, p21 and E2F4 in the proximal α-SYN gene promoter. Finally, luciferase assays revealed a direct action of p27, p21 and E2F4 in α-SYN gene expression. Our findings reveal for the first time a negative regulatory mechanism of α-SYN expression, suggesting a putative role for cell cycle regulators in the etiology of synucleinopathies.
Collapse
|
82
|
Lu H, Yang XF, Tian XQ, Tang SL, Li LQ, Zhao S, Zheng HC. The in vitro and vivo anti-tumor effects and molecular mechanisms of suberoylanilide hydroxamic acid (SAHA) and MG132 on the aggressive phenotypes of gastric cancer cells. Oncotarget 2018; 7:56508-56525. [PMID: 27447743 PMCID: PMC5302865 DOI: 10.18632/oncotarget.10643] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Here, we found that both SAHA and MG132 synergistically inhibited proliferation, glycolysis and mitochondrial oxidization, induced cell cycle arrest and apoptosis in MGC-803 and MKN28 cells. SAHA increased cell migration and invasionat a low concentration. SAHA induced the overexpression of acetyl histone 3 and 4, which were recruited to p21, p27, Cyclin D1, c-myc and nanog promoters to transcriptionally up-regulate the former two and down-regulate the latter three. The expression of acetyl-histone 3 and 4 was increased during gastric carcinogenesis and positively correlated with cancer differentiation. SAHA and MG132 exposure suppressed tumor growth by inhibiting proliferation and inducing apoptosis in nude mice, increased serum ALT and AST levels and decreased hemaglobin level, white blood cell and neutrophil numbers. These data indicated that SAHA and MG132 in vivo and vitro synergistically induced cytotoxicity and apoptosis, suppressed proliferation, growth, migration and invasion of gastric cancer cells. Therefore, they might potentially be employed as chemotherapeutic agents if the hepatic injury and the killing effects of peripheral blood cells are avoided or ameliorated.
Collapse
Affiliation(s)
- Hang Lu
- Cancer Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xue-Feng Yang
- Cancer Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiao-Qing Tian
- Cancer Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shou-Long Tang
- Cancer Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Lian-Qian Li
- Department of Surgery, Panjin Central Hospital, Panjin, China
| | - Shuang Zhao
- Cancer Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hua-Chuan Zheng
- Cancer Center, The Key Laboratory of Brain and Spinal Cord Injury of Liaoning Province, and Laboratory Animal Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.,Life Science Institute of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
83
|
Overexpression of riboflavin transporter 2 contributes toward progression and invasion of glioma. Neuroreport 2018; 27:1167-73. [PMID: 27584688 DOI: 10.1097/wnr.0000000000000674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human riboflavin transporter 2 (RFT2) encoded by the SLC52A3 gene is a member of the SLC52 family that has been shown to play a key role in riboflavin homeostasis. Recently, a number of studies have shown that RFT2 is important in the development of several cancers, including esophageal squamous cell carcinoma, gastric cancer, and cervical cancer. However, its expression and function in glioma have not yet been explored. In this study, we found that RFT2 was overexpressed in glioma samples compared with normal brain tissue. Furthermore, RFT2 expression was correlated with WHO grade (P<0.001). Silencing of RFT2 resulted in inhibition of glioma cell proliferation through promotion of cell cycle arrest and apoptosis. Expression of proteins known to regulate cell cycle or apoptosis including p21, p27, BCL-2, and BAX was notably altered in RFT2-depleted cells. Furthermore, silencing of RFT2 impeded the migration and invasion of glioma cells through suppression of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression. In addition to blocking cell proliferation in vitro, reduction of RFT2 levels also decreased tumor growth in vivo. These data suggest that RFT2 could be an attractive therapeutic target for the treatment of glioma.
Collapse
|
84
|
Majumdar A, Mukhopadhyay S. Fluorescence Depolarization Kinetics to Study the Conformational Preference, Structural Plasticity, Binding, and Assembly of Intrinsically Disordered Proteins. Methods Enzymol 2018; 611:347-381. [DOI: 10.1016/bs.mie.2018.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
85
|
Functional Analysis of Human Hub Proteins and Their Interactors Involved in the Intrinsic Disorder-Enriched Interactions. Int J Mol Sci 2017; 18:ijms18122761. [PMID: 29257115 PMCID: PMC5751360 DOI: 10.3390/ijms18122761] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022] Open
Abstract
Some of the intrinsically disordered proteins and protein regions are promiscuous interactors that are involved in one-to-many and many-to-one binding. Several studies have analyzed enrichment of intrinsic disorder among the promiscuous hub proteins. We extended these works by providing a detailed functional characterization of the disorder-enriched hub protein-protein interactions (PPIs), including both hubs and their interactors, and by analyzing their enrichment among disease-associated proteins. We focused on the human interactome, given its high degree of completeness and relevance to the analysis of the disease-linked proteins. We quantified and investigated numerous functional and structural characteristics of the disorder-enriched hub PPIs, including protein binding, structural stability, evolutionary conservation, several categories of functional sites, and presence of over twenty types of posttranslational modifications (PTMs). We showed that the disorder-enriched hub PPIs have a significantly enlarged number of disordered protein binding regions and long intrinsically disordered regions. They also include high numbers of targeting, catalytic, and many types of PTM sites. We empirically demonstrated that these hub PPIs are significantly enriched among 11 out of 18 considered classes of human diseases that are associated with at least 100 human proteins. Finally, we also illustrated how over a dozen specific human hubs utilize intrinsic disorder for their promiscuous PPIs.
Collapse
|
86
|
Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H. Efficient Generation of Glucose-Responsive Beta Cells from Isolated GP2 + Human Pancreatic Progenitors. Cell Rep 2017; 19:36-49. [PMID: 28380361 DOI: 10.1016/j.celrep.2017.03.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 12/29/2022] Open
Abstract
Stem cell-based therapy for type 1 diabetes would benefit from implementation of a cell purification step at the pancreatic endoderm stage. This would increase the safety of the final cell product, allow the establishment of an intermediate-stage stem cell bank, and provide a means for upscaling β cell manufacturing. Comparative gene expression analysis revealed glycoprotein 2 (GP2) as a specific cell surface marker for isolating pancreatic endoderm cells (PECs) from differentiated hESCs and human fetal pancreas. Isolated GP2+ PECs efficiently differentiated into glucose responsive insulin-producing cells in vitro. We found that in vitro PEC proliferation declines due to enhanced expression of the cyclin-dependent kinase (CDK) inhibitors CDKN1A and CDKN2A. However, we identified a time window when reducing CDKN1A or CDKN2A expression increased proliferation and yield of GP2+ PECs. Altogether, our results contribute tools and concepts toward the isolation and use of PECs as a source for the safe production of hPSC-derived β cells.
Collapse
Affiliation(s)
- Jacqueline Ameri
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC, B10, 22184 Lund, Sweden
| | - Rehannah Borup
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Christy Prawiro
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Cyrille Ramond
- INSERM U1016, University Paris-Descartes, Cochin Institute, 75014 Paris, France
| | - Karen A Schachter
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Raphael Scharfmann
- INSERM U1016, University Paris-Descartes, Cochin Institute, 75014 Paris, France
| | - Henrik Semb
- The Danish Stem Cell Center (DanStem), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, BMC, B10, 22184 Lund, Sweden.
| |
Collapse
|
87
|
Uversky VN. The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll-Mr. Hyde" behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy 2017; 13:2115-2162. [PMID: 28980860 DOI: 10.1080/15548627.2017.1384889] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathological developments leading to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are associated with misbehavior of several key proteins, such as SOD1 (superoxide dismutase 1), TARDBP/TDP-43, FUS, C9orf72, and dipeptide repeat proteins generated as a result of the translation of the intronic hexanucleotide expansions in the C9orf72 gene, PFN1 (profilin 1), GLE1 (GLE1, RNA export mediator), PURA (purine rich element binding protein A), FLCN (folliculin), RBM45 (RNA binding motif protein 45), SS18L1/CREST, HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1), HNRNPA2B1 (heterogeneous nuclear ribonucleoprotein A2/B1), ATXN2 (ataxin 2), MAPT (microtubule associated protein tau), and TIA1 (TIA1 cytotoxic granule associated RNA binding protein). Although these proteins are structurally and functionally different and have rather different pathological functions, they all possess some levels of intrinsic disorder and are either directly engaged in or are at least related to the physiological liquid-liquid phase transitions (LLPTs) leading to the formation of various proteinaceous membrane-less organelles (PMLOs), both normal and pathological. This review describes the normal and pathological functions of these ALS- and FTLD-related proteins, describes their major structural properties, glances at their intrinsic disorder status, and analyzes the involvement of these proteins in the formation of normal and pathological PMLOs, with the ultimate goal of better understanding the roles of LLPTs and intrinsic disorder in the "Dr. Jekyll-Mr. Hyde" behavior of those proteins.
Collapse
Affiliation(s)
- Vladimir N Uversky
- a Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute , Morsani College of Medicine , University of South Florida , Tampa , FL , USA.,b Institute for Biological Instrumentation of the Russian Academy of Sciences , Pushchino, Moscow region , Russia
| |
Collapse
|
88
|
Kang TH, Yoon G, Kang IA, Oh HN, Chae JI, Shim JH. Natural Compound Licochalcone B Induced Extrinsic and Intrinsic Apoptosis in Human Skin Melanoma (A375) and Squamous Cell Carcinoma (A431) Cells. Phytother Res 2017; 31:1858-1867. [PMID: 29027311 DOI: 10.1002/ptr.5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
Abstract
Licochalcone B (Lico B), which is normally isolated from the roots of Glycyrrhiza inflata (Chinese Licorice), generally classified into organic compounds including retrochalcones. Potential pharmacological properties of Lico B include anti-inflammatory, anti-bacterial, anti-oxidant, and anti-cancer activities. However, its biological effects on melanoma and squamous cell carcinoma (SCC) are unknown. Based on these known facts, this study investigated the role of Lico B in apoptosis, through the extrinsic and intrinsic pathways and additional regulation of specificity protein 1 in human skin cancer cell lines. Annexin V/7-aminoactinomycin D staining, western blot analysis, mitochondrial membrane potential assay, and an anchorage-independent cell transformation assay demonstrated that Lico B treatment of human melanoma and SCC cells significantly inhibited cell proliferation and induced apoptotic cell death. More specifically, Lico B induced apoptosis through the regulation of specificity protein 1 and apoptosis-related proteins including CCAAT/enhancer-binding protein homologous protein, death receptors, and poly (ADP-ribose) polymerase. These results indicate that Lico B has apoptotic effect on A375 and A431 skin cancer cells, suggesting the potential value of Lico B for the treatment of human melanoma and SCC. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tae-Ho Kang
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - In-A Kang
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, 651-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam, 534-729, Korea
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| |
Collapse
|
89
|
Ni N, Song H, Wang X, Xu X, Jiang Y, Sun J. Up-regulation of long noncoding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21. Biomed Pharmacother 2017; 96:1371-1379. [PMID: 29196104 DOI: 10.1016/j.biopha.2017.11.060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/27/2017] [Accepted: 11/10/2017] [Indexed: 11/25/2022] Open
Abstract
Accumulating evidences have suggested that focally amplified lncRNA on chromosome 1 (FALEC) serves as an oncogenic long non-coding RNA (lncRNA) and has been identified to be dysregulated in various tumors. However, the expression, clinical values, and biological function of FALEC in melanoma are still unknown. In this study we detected the expression level of FALEC in tumor tissues and cell lines and measured the prognostic value of FALEC for melanoma patients and the biological effects of FALEC on melanoma cell proliferation, cell cycle, and apoptosis. Our results indicated that FALEC was more highly expressed in melanoma tissues and cell lines than in non-neoplastic nevi tissues and normal cell lines. Moreover, functional assays showed that silenced FALEC suppressed the proliferation of melanoma cells, resulted in cell cycle arrest, and induced apoptosis. Mechanically, we discovered that FALEC boosted melanoma progression via epigenetically repressing p21 through recruiting EZH2 to the promoter of p21. Generally, our results suggested that FALEC acted as an oncogene in melanoma and had the potential to be a prognostic biomarker and therapeutic target for melanoma.
Collapse
Affiliation(s)
- Nana Ni
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, China
| | - Hao Song
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xiaopo Wang
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Xiulian Xu
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yiqun Jiang
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jianfang Sun
- Department of Pathology, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
90
|
Liu Y, Yang M, Cheng H, Sun N, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2017; 1865:1291-1303. [PMID: 28867216 DOI: 10.1016/j.bbapap.2017.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/27/2017] [Indexed: 12/29/2022]
Abstract
Enzymatically driven post-translated modifications (PTMs) usually happen within the intrinsically disordered regions of a target protein and can modulate variety of protein functions. Late embryogenesis abundant (LEA) proteins are a family of the plant intrinsically disordered proteins (IDPs). Despite their important roles in plant stress response, there is currently limited knowledge on the presence and functional and structural effects of phosphorylation on LEA proteins. In this study, we identified three phosphorylation sites (Ser90, Tyr136, and Thr266) in the soybean PM18 protein that belongs to the group-3 LEA proteins. In yeast expression system, PM18 protein increased the salt tolerance of yeast, and the phosphorylation of this protein further enhanced its protective function. Further analysis revealed that Ser90 and Tyr136 are more important than Thr266, and these two sites might work cooperatively in regulating the salt resistance function of PM18. The circular dichroism analysis showed that PM18 protein was disordered in aqueous media, and phosphorylation did not affect the disordered status of this protein. However, phosphorylation promoted formation of more helical structure in the presence of sodium dodecyl sulfate (SDS) or trifluoroethanol (TFE). Furthermore, in dedicated in vitro experiments, phosphorylated PM18 protein was able to better protect lactate dehydrogenase (LDH) from the inactivation induced by the freeze-thaw cycles than its un- or dephosphorylated forms. All these data indicate that phosphorylation may have regulatory effects on the stress-tolerance-related function of LEA proteins. Therefore, further studies are needed to shed more light on functional and structural roles of phosphorylation in LEA proteins.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Meiyan Yang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Nanhai Ave 3688, Shenzhen, Guangdong 518060, China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL, USA; Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region 142290, Russia; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russia.
| |
Collapse
|
91
|
Taglieri L, Rubinacci G, Giuffrida A, Carradori S, Scarpa S. The kinesin Eg5 inhibitor K858 induces apoptosis and reverses the malignant invasive phenotype in human glioblastoma cells. Invest New Drugs 2017; 36:28-35. [DOI: 10.1007/s10637-017-0517-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023]
|
92
|
Bencivenga D, Caldarelli I, Stampone E, Mancini FP, Balestrieri ML, Della Ragione F, Borriello A. p27 Kip1 and human cancers: A reappraisal of a still enigmatic protein. Cancer Lett 2017; 403:354-365. [DOI: 10.1016/j.canlet.2017.06.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
|
93
|
Lu C, He Y, Duan J, Yang Y, Zhong C, Zhang J, Liao W, Huang X, Zhu R, Li M. Expression of Wnt3a in hepatocellular carcinoma and its effects on cell cycle and metastasis. Int J Oncol 2017; 51:1135-1145. [PMID: 28902357 PMCID: PMC5592886 DOI: 10.3892/ijo.2017.4112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
Invasion and metastasis are the primary causes of mortality from hepatocellular carcinoma (HCC). Effective inhibition against participants in the tumourigenesis and metastasis process is critical for treatment of HCC. Wnt3a is involved in the development and metastasis of many malignant tumours. However, the specific mechanisms of Wnt3a-mediated cell proliferation, invasion and metastasis in HCC remain unclear. In this study, we found that Wnt3a and its target gene c-Myc showed higher expression in tumour tissues than normal liver tissues in HCC patients; 71.8% of the cases studied had high Wnt3a and c-Myc expression levels (n=32); Wnt3a expression positively correlated with its target genes MMP-7 and c-Myc. Intriguingly, the expression of Wnt3a, MMP-7 and c-Myc is significantly correlated with Notch3 and Hes1 expression. In vitro experiments showed that Wnt3a was highly expressed in MHcc97H and SK-Hep-1 cells. Therefore, Wnt3a expression was silenced with siRNA, and then, MTT, flow cytometry, wound healing and Transwell assays were performed to analyse cell proliferation, cycle, migration and invasion. The results demonstrated that downregulation of Wnt3a expression inhibited cell viability and induced G0/G1 cell cycle arrest via decreased expression of cyclin D1 and c-Myc and increased expression of p21 and p27. In addition, deletion of Wnt3a significantly inhibited migration and invasion by downregulating MMP-2/-7/-9 expression via the MAPK (p38, ERK1/2 and JNK) pathway. In conclusion, our data show that Wnt3a is involved in HCC development. Wnt3a may be an effective target for treatment of HCC.
Collapse
Affiliation(s)
- Caijie Lu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Yifeng He
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Juan Duan
- Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yongguang Yang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Chunqiang Zhong
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Jian Zhang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Weiguo Liao
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Xiaojie Huang
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
94
|
An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations. Biophys J 2017; 113:550-557. [PMID: 28793210 DOI: 10.1016/j.bpj.2017.06.042] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/31/2017] [Accepted: 06/13/2017] [Indexed: 12/12/2022] Open
Abstract
Intrinsically disordered proteins play important roles throughout biology, yet our understanding of the relationship between their sequences, structural properties, and functions remains incomplete. The dynamic nature of these proteins, however, makes them difficult to characterize structurally. Many disordered proteins can attain both compact and expanded conformations, and the level of expansion may be regulated and important for function. Experimentally, the level of compaction and shape is often determined either by small-angle x-ray scattering experiments or pulsed-field-gradient NMR diffusion measurements, which provide ensemble-averaged estimates of the radius of gyration and hydrodynamic radius, respectively. Often, these experiments are interpreted using molecular simulations or are used to validate them. We here provide, to our knowledge, a new and efficient method to calculate the hydrodynamic radius of a disordered protein chain from a model of its structural ensemble. In particular, starting from basic concepts in polymer physics, we derive a relationship between the radius of gyration of a structure and its hydrodynamic ratio, which in turn can be used, for example, to compare a simulated ensemble of conformations to NMR diffusion measurements. The relationship may also be valuable when using NMR diffusion measurements to restrain molecular simulations.
Collapse
|
95
|
Uversky VN. Intrinsic Disorder, Protein-Protein Interactions, and Disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 110:85-121. [PMID: 29413001 DOI: 10.1016/bs.apcsb.2017.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
It is recognized now that biologically active proteins without stable tertiary structure (known as intrinsically disordered proteins, IDPs) and hybrid proteins containing ordered domains and intrinsically disordered protein regions (IDPRs) are important players found in any given proteome. These IDPs/IDPRs possess functions that complement functional repertoire of their ordered counterparts, being commonly related to recognition, as well as control and regulation of various signaling pathways. They are interaction masters, being able to utilize a wide spectrum of interaction mechanisms, ranging from induced folding to formation of fuzzy complexes where significant levels of disorder are preserved, to polyvalent stochastic interactions playing crucial roles in the liquid-liquid phase transitions leading to the formation of proteinaceous membrane-less organelles. IDPs/IDPRs are tightly controlled themselves via various means, including alternative splicing, precisely controlled expression and degradation, binding to specific partners, and posttranslational modifications. Distortions in the regulation and control of IDPs/IDPRs, as well as their aberrant interactivity are commonly associated with various human diseases. This review presents some aspects of the intrinsic disorder-based functionality and dysfunctionality, paying special attention to the normal and pathological protein-protein interactions.
Collapse
Affiliation(s)
- Vladimir N Uversky
- USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| |
Collapse
|
96
|
Liu Y, Wu J, Sun N, Tu C, Shi X, Cheng H, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. J Proteome Res 2017; 16:2393-2409. [PMID: 28525284 DOI: 10.1021/acs.jproteome.6b01045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) play a variety of important physiological roles in all living organisms. However, there is no comprehensive analysis of the abundance of IDPs associated with environmental stress in plants. Here, we show that a set of heat-stable proteins (i.e., proteins that do not denature after boiling at 100 °C for 10 min) was present in R0mm and R15mm radicles (i.e., before radicle emergence and 15 mm long radicles) of soybean (Glycine max) seeds. This set of 795 iTRAQ-quantified heat-stable proteins contained a high proportion of wholly or highly disordered proteins (15%), which was significantly higher than that estimated for the whole soybean proteome containing 55,787 proteins (9%). The heat-stable proteome of soybean radicles that contain many IDPs could protect lactate dehydrogenase (LDH) during freeze-thaw cycles. Comparison of the 795 heat-stable proteins in the R0mm and R15mm soybean radicles revealed that many of these proteins changed abundance during seedling growth with 170 and 89 proteins being more abundant in R0mm and R15mm, respectively. KEGG analysis identified 18 proteins from the cysteine and methionine metabolism pathways and nine proteins from the phenylpropanoid biosynthesis pathway. As an important type of IDP related to stress, 30 late embryogenesis abundant proteins were also found. Ten selected proteins with high levels of predicted intrinsic disorder were able to efficiently protect LDH from the freeze-thaw-induced inactivation, but the protective ability was not correlated with the disorder content of these proteins. These observations suggest that protection of the enzymes and other proteins in a stressed cell can be one of the biological functions of plant IDPs.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Jiahui Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York14260, United States
| | - Xiaoying Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard MDC07, Tampa, Florida 33612, United States
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
97
|
Induction of p53-Independent Apoptosis and G1 Cell Cycle Arrest by Fucoidan in HCT116 Human Colorectal Carcinoma Cells. Mar Drugs 2017; 15:md15060154. [PMID: 28555064 PMCID: PMC5484104 DOI: 10.3390/md15060154] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 12/24/2022] Open
Abstract
It is well known that fucoidan, a natural sulfated polysaccharide present in various brown algae, mediates anticancer effects through the induction of cell cycle arrest and apoptosis. Nevertheless, the role of tumor suppressor p53 in the mechanism action of fucoidan remains unclear. Here, we investigated the anticancer effect of fucoidan on two p53 isogenic HCT116 (p53+/+ and p53-/-) cell lines. Our results showed that inhibition of cell viability, induction of apoptosis and DNA damage by treatment with fucoidan were similar in two cell lines. Flow cytometric analysis revealed that fucoidan resulted in G1 arrest in the cell cycle progression, which correlated with the inhibition of phosphorylation of retinoblastoma protein (pRB) and concomitant association of pRB with the transcription factor E2Fs. Furthermore, treatment with fucoidan obviously upregulated the expression of cyclin-dependent kinase (CDK) inhibitors, such as p21WAF1/CIP1 and p27KIP1, which was paralleled by an enhanced binding with CDK2 and CDK4. These events also commonly occurred in both cell lines, suggesting that fucoidan triggered G1 arrest and apoptosis in HCT116 cells by a p53-independent mechanism. Thus, given that most tumors exhibit functional p53 inactivation, fucoidan could be a possible therapeutic option for cancer treatment regardless of the p53 status.
Collapse
|
98
|
Yang X, Ye X, Sun L, Gao F, Li Y, Ji X, Wang X, Feng Y, Wang X. Downregulation of serum RAB27B confers improved prognosis and is associated with hepatocellular carcinoma progression through PI3K-AKT-P21 signaling. Oncotarget 2017; 8:61118-61132. [PMID: 28977851 PMCID: PMC5617411 DOI: 10.18632/oncotarget.18010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
Previous study revealed that elevated expression of RAB27B in tissues is correlated with hepatocellular carcinoma (HCC) progression; however, the mechanisms involved in promoting HCC development are still unclear. Moreover, HCC tissues are not readily obtained during routine diagnosis. Therefore, to further explore its potential value in early diagnosis, we examined RAB27B expression in patient sera. First, the correlation between serum RAB27B expression and survival, as well as TNM and Barcelona Clinic Liver Cancer stages, were evaluated in patients with HCC. Second, lentiviral vector plasmids carrying interference sequences and plasmids harboring the complete open reading frame of RAB27B were designed to knockdown or overexpress RAB27B in BEL7402 or HuH-7 cells to determine its biological function. Compared with healthy controls and patients with chronic hepatitis B infection, serum RAB27B was significantly increased in patients with HCC. After down-regulating expression of RAB27B, the proliferation of BEL7402 cells was remarkably inhibited both in vitro and in vivo. Additionally, activation of the PI3K/AKT pathway was significantly diminished. Moreover, cell cycle progression of the knockdown cells was notably arrested in the G1/S phase, and upregulation of p21 contributed to this effect. Restoration experiments to recover RAB27B expression revealed opposing results. These findings indicated RAB27B might regulate cell cycle through the PI3K/AKT/p21 pathway by releasing cytokines via exocytosis, thereby modulating the proliferation of HCC cells. RAB27B could potentially be a valuable serum biomarker for the early diagnosis of, and a therapeutic target in, HCC.
Collapse
Affiliation(s)
- Xue Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xieqiong Ye
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Le Sun
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fangyuan Gao
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuxin Li
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaomin Ji
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xuejiang Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| | - Ying Feng
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xianbo Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
99
|
Minervini G, Lopreiato R, Bortolotto R, Falconieri A, Sartori G, Tosatto SCE. Novel interactions of the von Hippel-Lindau (pVHL) tumor suppressor with the CDKN1 family of cell cycle inhibitors. Sci Rep 2017; 7:46562. [PMID: 28425505 PMCID: PMC5397843 DOI: 10.1038/srep46562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Germline inactivation of the von Hippel-Lindau (VHL) tumor suppressor predisposes patients to develop different highly vascularized cancers. pVHL targets the hypoxia-inducible transcription factor (HIF-1α) for degradation, modulating the activation of various genes involved in hypoxia response. Hypoxia plays a relevant role in regulating cell cycle progression, inducing growth arrest in cells exposed to prolonged oxygen deprivation. However, the exact molecular details driving this transition are far from understood. Here, we present novel interactions between pVHL and the cyclin-dependent kinase inhibitor family CDKN1 (p21, p27 and p57). Bioinformatics analysis, yeast two-hybrid screening and co-immunoprecipitation assays were used to predict, dissect and validate the interactions. We found that the CDKN1 proteins share a conserved region mimicking the HIF-1α motif responsible for pVHL binding. Intriguingly, a p27 site-specific mutation associated to cancer is shown to modulate this novel interaction. Our findings suggest a new connection between the pathways regulating hypoxia and cell cycle progression.
Collapse
Affiliation(s)
- Giovanni Minervini
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Antonella Falconieri
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.,CNR Institute of Neuroscience, Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
100
|
Cancer/Testis Antigens: "Smart" Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Int J Mol Sci 2017; 18:ijms18040740. [PMID: 28362316 PMCID: PMC5412325 DOI: 10.3390/ijms18040740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs are a group of proteins that are typically restricted to the testis in the normal adult but are aberrantly expressed in several types of cancers. Interestingly, >90% of CTAs are predicted to belong to the realm of intrinsically disordered proteins (IDPs), which do not have unique structures and exist as highly dynamic conformational ensembles, but are known to play important roles in several biological processes. Using prostate-associated gene 4 (PAGE4) as an example of a disordered CTA, we highlight how IDP conformational dynamics may regulate phenotypic heterogeneity in PCa cells, and how it may be exploited both as a potential biomarker as well as a promising therapeutic target in PCa. We also discuss how in addition to intrinsic disorder and post-translational modifications, structural and functional variability induced in the CTAs by alternate splicing represents an important feature that might have different roles in different cancers. Although it is clear that significant additional work needs to be done in the outlined direction, this novel concept emphasizing (multi)functionality as an important trait in selecting a biomarker underscoring the theranostic potential of CTAs that is latent in their structure (or, more appropriately, the lack thereof), and casts them as next generation or “smart” biomarker candidates.
Collapse
|