51
|
Yu Y, Yu Z, Xie M, Wang W, Luo X. Hv1 proton channel facilitates production of ROS and pro-inflammatory cytokines in microglia and enhances oligodendrocyte progenitor cells damage from oxygen-glucose deprivation in vitro. Biochem Biophys Res Commun 2017; 498:1-8. [PMID: 28676401 DOI: 10.1016/j.bbrc.2017.06.197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
The contribution of microglial activation to oligodendrocyte precursor cell (OPC) damage in the brain is considered to be a principal pathophysiological feature of periventricular leukomalacia (PVL). Nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent reactive oxygen species (ROS) produced in microglia has been shown to be significantly toxic to OPCs. The voltage-gated proton channel Hv1 is selectively expressed in microglia and is essential for NOX-dependent ROS production in the central nervous system. This study aimed to investigate the effects of microglial Hv1 deficiency on the protection of OPCs from oxygen-glucose deprivation (OGD)-induced injury in vitro. In the present study, the levels of OGD-induced ROS and pro-inflammatory cytokine production were dramatically lower in Hv1-deficient microglia (Hv1-/-) than in wild-type (WT) microglia. Following OGD, OPCs co-cultured with WT microglia had increased apoptosis and decreased proliferation and maturation, while those co-cultured with Hv1-/- microglia had attenuated apoptosis and greater proliferation and differentiation. Furthermore, the attenuated damage and enhanced regeneration of OPCs were associated with decreases in extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase phosphorylation. These results indicate that the protective effects of Hv1 deficiency on OPCs are due to the suppression of ROS and pro-inflammatory cytokine production in microglia. We thus suggest that the microglial proton channel Hv1 may be a potential therapeutic target in PVL.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
52
|
Mehta P, Piao X. Adhesion G-protein coupled receptors and extracellular matrix proteins: Roles in myelination and glial cell development. Dev Dyn 2017; 246:275-284. [PMID: 27859941 DOI: 10.1002/dvdy.24473] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 01/05/2023] Open
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are a large family of transmembrane proteins that play important roles in many processes during development, primarily through cell-cell and cell-extracellular matrix (ECM) interactions. In the nervous system, they have been linked to the complex process of myelination, both in the central and peripheral nervous system. GPR126 is essential in Schwann cell-mediated myelination in the peripheral nervous system (PNS), while GPR56 is involved in oligodendrocyte development central nervous system (CNS) myelination. VLGR1 is another aGPCR that is associated with the expression of myelin-associated glycoprotein (MAG) which has inhibitory effects on the process of nerve repair. The ECM is composed of a vast array of structural proteins, three of which interact specifically with aGPCRs: collagen III/GPR56, collagen IV/GPR126, and laminin-211/GPR126. As druggable targets, aGPCRs are valuable in their ability to unlock treatment for a wide variety of currently debilitating myelin disorders. Developmental Dynamics 246:275-284, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paulomi Mehta
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
53
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016; 4:71. [PMID: 27551677 PMCID: PMC4923166 DOI: 10.3389/fcell.2016.00071] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/15/2016] [Indexed: 01/01/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
54
|
Frost JL, Schafer DP. Microglia: Architects of the Developing Nervous System. Trends Cell Biol 2016; 26:587-597. [PMID: 27004698 DOI: 10.1016/j.tcb.2016.02.006] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/16/2016] [Accepted: 02/19/2016] [Indexed: 11/18/2022]
Abstract
Microglia are resident macrophages of the central nervous system (CNS), representing 5-10% of total CNS cells. Recent findings reveal that microglia enter the embryonic brain, take up residence before the differentiation of other CNS cell types, and become critical regulators of CNS development. Here, we discuss exciting new work implicating microglia in a range of developmental processes, including regulation of cell number and spatial patterning of CNS cells, myelination, and formation and refinement of neural circuits. Furthermore, we review studies suggesting that these cellular functions result in the modulation of behavior, which has important implications for a variety of neurological disorders.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Dorothy P Schafer
- Department of Neurobiology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
55
|
Domingues HS, Portugal CC, Socodato R, Relvas JB. Oligodendrocyte, Astrocyte, and Microglia Crosstalk in Myelin Development, Damage, and Repair. Front Cell Dev Biol 2016. [PMID: 27551677 DOI: 10.3389/fcell.2016.00071.ecollection2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023] Open
Abstract
Oligodendrocytes are the myelinating glia of the central nervous system. Myelination of axons allows rapid saltatory conduction of nerve impulses and contributes to axonal integrity. Devastating neurological deficits caused by demyelinating diseases, such as multiple sclerosis, illustrate well the importance of the process. In this review, we focus on the positive and negative interactions between oligodendrocytes, astrocytes, and microglia during developmental myelination and remyelination. Even though many lines of evidence support a crucial role for glia crosstalk during these processes, the nature of such interactions is often neglected when designing therapeutics for repair of demyelinated lesions. Understanding the cellular and molecular mechanisms underlying glial cell communication and how they influence oligodendrocyte differentiation and myelination is fundamental to uncover novel therapeutic strategies for myelin repair.
Collapse
Affiliation(s)
- Helena S Domingues
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Camila C Portugal
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - Renato Socodato
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| | - João B Relvas
- Glial Cell Biology Group, Instituto de Biologia Molecular e Celular, Universidade do PortoPorto, Portugal; Glial Cell Biology Group, Instituto de Investigação e Inovação em Saúde (I3S), Universidade do PortoPorto, Portugal
| |
Collapse
|
56
|
Kota DJ, Prabhakara KS, van Brummen AJ, Bedi S, Xue H, DiCarlo B, Cox CS, Olson SD. Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury. Stem Cells Transl Med 2015; 5:33-44. [PMID: 26586775 DOI: 10.5966/sctm.2015-0065] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/14/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED More than 6.5 million patients are burdened by the physical, cognitive, and psychosocial deficits associated with traumatic brain injury (TBI) in the U.S. Despite extensive efforts to develop neuroprotective therapies for this devastating disorder, there have been no successful outcomes in human clinical trials to date. Retrospective studies have shown that β-adrenergic receptor blockers, specifically propranolol, significantly decrease mortality of TBI through mechanisms not yet fully elucidated but are thought to counterbalance a hyperadrenergic state resulting from a TBI. Conversely, cellular therapies have been shown to improve long-term behavior following TBI, likely by reducing inflammation. Given the nonredundancy in their therapeutic mechanisms, we hypothesized that a combination of acute propranolol followed by mesenchymal stem cells (MSCs) isolated from human bone marrow would have additive effects in treating a rodent model of TBI. We have found that the treatments are well-tolerated individually and in combination with no adverse events. MSCs decrease BBB permeability at 96 hours after injury, inhibit a significant accumulation of activated microglia/macrophage in the thalamic region of the brain both short and long term, and enhance neurogenesis short term. Propranolol decreases edema and reduces the number of fully activated microglia at 7 days and the number of semiactivated microglia at 120 days. Combinatory treatment improved cognitive and memory functions 120 days following TBI. Therefore, the results here suggest a new, efficacious sequential treatment for TBI may be achieved using the β-blocker propranolol followed by MSC treatment. SIGNIFICANCE Despite continuous efforts, traumatic brain injury (TBI) remains the leading cause of death and disability worldwide in patients under the age of 44. In this study, an animal model of moderate-severe TBI was treated with an acute dose of propranolol followed by a delayed dose of human mesenchymal stem cells (MSCs), resulting in improved short- and long-term measurements. These results have direct translational application. They reinforce the inevitable clinical trial of MSCs to treat TBI by demonstrating, among other benefits, a notable decrease in chronic neuroinflammation. More importantly, these results demonstrate that MSCs and propranolol, which is increasingly being used clinically for TBI, are compatible treatments that improve overall outcome.
Collapse
Affiliation(s)
- Daniel J Kota
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alexandra J van Brummen
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Supinder Bedi
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hasen Xue
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Bryan DiCarlo
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Charles S Cox
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Scott D Olson
- Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
57
|
Collagen-glycosaminoglycan matrix implantation promotes angiogenesis following surgical brain trauma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:672409. [PMID: 25309917 PMCID: PMC4182695 DOI: 10.1155/2014/672409] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/29/2022]
Abstract
Surgical brain injury (SBI) is unavoidable during many neurosurgical procedures intrinsically linked to postoperative neurological deficits. We have previously demonstrated that implantation of collagen glycosaminoglycan (CG) following surgical brain injury could significantly promote functional recovery and neurogenesis. In this study we further hypothesized that this scaffold may provide a microenvironment by promoting angiogenesis to favor neurogenesis and subsequent functional recovery. Using the rodent model of surgical brain injury as we previously established, we divided Sprague-Dawley male rats (weighting 300-350 g) into three groups: (1) sham (2) surgical injury with a lesion (L), and (3) L with CG matrix implantation (L + CG). Our results demonstrated that L + CG group showed a statistically significant increase in the density of vascular endothelial cells and blood vessels over time. In addition, tissue concentrations of angiogenic growth factors (such as VEGF, FGF2, and PDGF) significantly increased in L + CG group. These results suggest that implantation of a CG scaffold can promote vascularization accompanied by neurogenesis. This opens prospects for use of CG scaffolds in conditions such as brain injury including trauma and ischemia.
Collapse
|
58
|
Blank T, Prinz M. NF-κB signaling regulates myelination in the CNS. Front Mol Neurosci 2014; 7:47. [PMID: 24904273 PMCID: PMC4033361 DOI: 10.3389/fnmol.2014.00047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/05/2014] [Indexed: 01/12/2023] Open
Abstract
Besides myelination of neuronal axons by oligodendrocytes to facilitate propagation of action potentials, oligodendrocytes also support axon survival and function. A key transcription factor involved in these processes is nuclear factor-κB (NF-κB), a hetero or homodimer of the Rel family of proteins, including p65, c-Rel, RelB, p50, and p52. Under unstimulated, NF-κB remains inactive in the cytoplasm through interaction with NF-κB inhibitors (IκBs). Upon activation of NF-κB the cytoplasmic IκBs gets degradated, allowing the translocation of NF-κB into the nucleus where the dimer binds to the κB consensus DNA sequence and regulates gene transcription. In this review we describe how oligodendrocytes are, directly or indirectly via neighboring cells, regulated by NF-κB signaling with consequences for innate and adaptive immunity and for regulation of cell apoptosis and survival.
Collapse
Affiliation(s)
- Thomas Blank
- Institute of Neuropathology, University of Freiburg Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg Freiburg, Germany ; BIOSS Centre for Biological Signalling Studies, University of Freiburg Freiburg, Germany
| |
Collapse
|
59
|
Peferoen L, Kipp M, van der Valk P, van Noort JM, Amor S. Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 2014; 141:302-13. [PMID: 23981039 DOI: 10.1111/imm.12163] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022] Open
Abstract
Communication between the immune system and the central nervous system (CNS) is exemplified by cross-talk between glia and neurons shown to be essential for maintaining homeostasis. While microglia are actively modulated by neurons in the healthy brain, little is known about the cross-talk between oligodendrocytes and microglia. Oligodendrocytes, the myelin-forming cells in the CNS, are essential for the propagation of action potentials along axons, and additionally serve to support neurons by producing neurotrophic factors. In demyelinating diseases such as multiple sclerosis, oligodendrocytes are thought to be the victims. Here, we review evidence that oligodendrocytes also have strong immune functions, express a wide variety of innate immune receptors, and produce and respond to chemokines and cytokines that modulate immune responses in the CNS. We also review evidence that during stress events in the brain, oligodendrocytes can trigger a cascade of protective and regenerative responses, in addition to responses that elicit progressive neurodegeneration. Knowledge of the cross-talk between microglia and oligodendrocytes may continue to uncover novel pathways of immune regulation in the brain that could be further exploited to control neuroinflammation and degeneration.
Collapse
Affiliation(s)
- Laura Peferoen
- Pathology Department, VU University Medical Centre, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
60
|
Pang Y, Fan LW, Tien LT, Dai X, Zheng B, Cai Z, Lin RCS, Bhatt A. Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro. Brain Behav 2013; 3:503-14. [PMID: 24392271 PMCID: PMC3869978 DOI: 10.1002/brb3.152] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 06/08/2013] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocyte (OL) development relies on many extracellular cues, most of which are secreted cytokines from neighboring neural cells. Although it is generally accepted that both astrocytes and microglia are beneficial for OL development, there is a lack of understanding regarding whether astrocytes and microglia play similar or distinct roles. The current study examined the effects of astrocytes and microglia on OL developmental phenotypes including cell survival, proliferation, differentiation, and myelination in vitro. Our data reveal that, although both astrocytes- and microglia-conditioned medium (ACDM and MCDM, respectively) protect OL progenitor cells (OPCs) against growth factor withdrawal-induced apoptosis, ACDM is significantly more effective than MCDM in supporting long-term OL survival. In contrast, MCDM preferentially promotes OL differentiation and myelination. These differential effects of ACDM and MCDM on OL development are highlighted by distinct pattern of cytokine/growth factors in the conditioned medium, which correlates with differentially activated intracellular signaling pathways in OPCs upon exposure to the conditioned medium.
Collapse
Affiliation(s)
- Yi Pang
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Lir-Wan Fan
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Xuemei Dai
- Department of Chemistry, Jackson State University Jackson, Mississippi, 39217
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Zhengwei Cai
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Rick C S Lin
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center Jackson, Mississippi, 39216
| | - Abhay Bhatt
- Department of Pediatrics, University of Mississippi Medical Center Jackson, Mississippi, 39216
| |
Collapse
|
61
|
Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci 2013; 33:5980-91. [PMID: 23554479 DOI: 10.1523/jneurosci.1636-12.2013] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
There is compelling evidence that oligodendrocyte apoptosis, in response to CNS inflammation, contributes significantly to the development of the demyelinating disorder multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). Therefore, approaches designed to protect oligodendrocytes would likely have therapeutic value. Activation of pancreatic endoplasmic reticulum kinase (PERK) signaling in response to endoplasmic reticulum (ER) stress increases cell survival under various cytotoxic conditions. Moreover, there is evidence that PERK signaling is activated in oligodendrocytes within demyelinating lesions in multiple sclerosis and EAE. Our previous study demonstrated that CNS delivery of the inflammatory cytokine interferon-γ before EAE onset protected mice against EAE, and this protection was dependent on PERK signaling. In our current study, we sought to elucidate the role of PERK signaling in oligodendrocytes during EAE. We generated transgenic mice that allow for temporally controlled activation of PERK signaling, in the absence of ER stress, specifically in oligodendrocytes. We demonstrated that persistent activation of PERK signaling was not deleterious to oligodendrocyte viability or the myelin of adult animals. Importantly, we found that enhanced activation of PERK signaling specifically in oligodendrocytes significantly attenuated EAE disease severity, which was associated with reduced oligodendrocyte apoptosis, demyelination, and axonal degeneration. This effect was not the result of an altered degree of the inflammatory response in EAE mice. Our results provide direct evidence that activation of PERK signaling in oligodendrocytes is cytoprotective, protecting mice against EAE.
Collapse
|
62
|
Niu J, Wang L, Liu S, Li C, Kong J, Shen HY, Xiao L. An efficient and economical culture approach for the enrichment of purified oligodendrocyte progenitor cells. J Neurosci Methods 2012; 209:241-9. [PMID: 22687939 DOI: 10.1016/j.jneumeth.2012.05.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 05/29/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Oligodendrocyte progenitor cell (OPC) culture has provided a powerful approach to mechanistically investigate the proliferation and differentiation of oligodendroglia. However, existing culture methods (including the traditional shake-off method) have limitations, particularly their low productivities. Therefore, we developed a simplified and highly efficient method to produce a large yield of OPCs with low expense by using specialised modified media, in which B104-conditioned medium (B104-CM) instead of growth factors was used as a mitogenic source for OPC propagation, while a modified OPC isolation-medium was applied to improve the isolation of OPCs. First, we withdrew foetal bovine serum when primary mixed glial cultures were 65-75% confluent and substituted with modified oligodendrocyte growth medium to enrich OPCs. Second, we employed a chemical-based method to isolate and purify OPCs from mixed glial cultures using a modified oligodendrocyte isolation medium. As a result, our approach produced a high yield of purified OPCs, approximately 90-fold higher than that produced via the traditional shake-off method. Importantly, the purified OPCs produced via our modified approach maintained typical capacities of proliferation and differentiation observed in oligodendrocyte lineage cells. Together, our modified method provides a highly efficient approach to OPC culture for oligodendrocyte research.
Collapse
Affiliation(s)
- Jianqin Niu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
63
|
Interferon-γ activates nuclear factor-κ B in oligodendrocytes through a process mediated by the unfolded protein response. PLoS One 2012; 7:e36408. [PMID: 22574154 PMCID: PMC3344863 DOI: 10.1371/journal.pone.0036408] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 04/09/2012] [Indexed: 01/16/2023] Open
Abstract
Our previous studies have demonstrated that the effects of the immune cytokine interferon-γ (IFN-γ) in immune-mediated demyelinating diseases are mediated, at least in part, by the unfolded protein response (UPR) in oligodendrocytes. Data indicate that some biological effects of IFN-γ are elicited through activation of the transcription factor nuclear factor-κB (NF-κB). Interestingly, it has been shown that activation of the pancreatic endoplasmic reticulum kinase (PERK) branch of the UPR triggers NF-κB activation. In this study, we showed that IFN-γ-induced NF-κB activation was associated with activation of PERK signaling in the oligodendroglial cell line Oli-neu. We further demonstrated that blockage of PERK signaling diminished IFN-γ-induced NF-κB activation in Oli-neu cells. Importantly, we showed that NF-κB activation in oligodendrocytes correlated with activation of PERK signaling in transgenic mice that ectopically express IFN-γ in the central nervous system (CNS), and that enhancing IFN-γ-induced activation of PERK signaling further increased NF-κB activation in oligodendrocytes. Additionally, we showed that suppression of the NF-κB pathway rendered Oli-neu cells susceptible to the cytotoxicity of IFN-γ, reactive oxygen species, and reactive nitrogen species. Our results indicate that the UPR is involved in IFN-γ-induced NF-κB activation in oligodendrocytes and suggest that NF-κB activation by IFN-γ represents one mechanism by which IFN-γ exerts its effects on oligodendrocytes in immune-mediated demyelinating diseases.
Collapse
|
64
|
Bielefeldt-Ohmann H, Smirnova NP, Tolnay AE, Webb BT, Antoniazzi AQ, van Campen H, Hansen TR. Neuro-invasion by a 'Trojan Horse' strategy and vasculopathy during intrauterine flavivirus infection. Int J Exp Pathol 2012; 93:24-33. [PMID: 22264283 DOI: 10.1111/j.1365-2613.2011.00795.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The central nervous system (CNS) is a major target of several important human and animal viral pathogens causing congenital infections. However, despite the importance of neuropathological outcomes, for humans in particular, the pathogenesis, including mode of neuro-invasion, remains unresolved for most congenital virus infections. Using a natural model of congenital infection with an RNA virus, bovine viral diarrhoea virus in pregnant cattle, we sought to delineate the timing and mode of virus neuro-invasion of and spread within the brain of foetuses following experimental respiratory tract infection of the dams at day 75 of pregnancy, a time of maximal risk of tissue pathology without foetal death. Virus antigen was first detected in the foetal brains 14 days postinfection of dams and was initially restricted to amoeboid microglial cells in the periventricular germinal layer. The appearance of these cells was preceded by or concurrent with vasculopathy in the same region. While the affected microvessels were negative for virus antigen, they expressed high levels of the type I interferon-stimulated protein ISG15 and eventually disappeared in parallel with the appearance of microcavitary lesions. Subsequently, the virus spread to neurons and other glial cells. Our findings suggest that the virus enters the CNS via infected microglial precursors, the amoeboid microglial cells, in a 'Trojan horse' mode of invasion and that the microcavitary lesions are associated with loss of periventricular microvasculature, perhaps as a consequence of high, unrestricted induction of interferon-regulated proteins.
Collapse
|
65
|
Kipp M, Amor S, Krauth R, Beyer C. Multiple sclerosis: neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol 2012; 33:1-16. [PMID: 22289667 DOI: 10.1016/j.yfrne.2012.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/19/2011] [Accepted: 01/04/2012] [Indexed: 12/19/2022]
Abstract
The potential of 17β-estradiol and progesterone as neuroprotective factors is well-recognized. Persuasive data comes from in vitro and animal models reflecting a wide range of CNS disorders. These studies have endeavored to translate findings into human therapies. Nonetheless, few human studies show promising results. Evidence for neuroprotection was obtained in multiple sclerosis (MS) patients. This chronic inflammatory and demyelinating disease shows a female-to-male gender prevalence and disturbances in sex steroid production. In MS-related animal models, steroids ameliorate symptoms and protect from demyelination and neuronal damage. Both hormones operate in dampening central and brain-intrinsic immune responses and regulating local growth factor supply, oligodendrocyte and astrocyte function. This complex modulation of cell physiology and system stabilization requires the gamut of steroid-dependent signaling pathways. The identification of molecular and cellular targets of sex steroids and the understanding of cell-cell interactions in the pathogenesis will offer promise of novel therapy strategies.
Collapse
Affiliation(s)
- Markus Kipp
- Institute of Neuroanatomy, RWTH Aachen University, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
66
|
Norazit A, Nguyen M, Dickson C, Tuxworth G, Goss B, Mackay-Sim A, Meedeniya A. Vascular endothelial growth factor and platelet derived growth factor modulates the glial response to a cortical stab injury. Neuroscience 2011; 192:652-60. [DOI: 10.1016/j.neuroscience.2011.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 05/20/2011] [Accepted: 06/11/2011] [Indexed: 12/31/2022]
|
67
|
Defaux A, Zurich MG, Honegger P, Monnet-Tschudi F. Minocycline promotes remyelination in aggregating rat brain cell cultures after interferon-γ plus lipopolysaccharide-induced demyelination. Neuroscience 2011; 187:84-92. [PMID: 21549181 DOI: 10.1016/j.neuroscience.2011.04.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 04/08/2011] [Accepted: 04/22/2011] [Indexed: 12/21/2022]
Abstract
Minocycline has been shown to inhibit microglia reactivity, and to decrease the severity and progression of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. It remained to be examined whether minocycline was also able to promote remyelination. In the present study, myelinating aggregating brain cell cultures were used as a model to study the effects of minocycline on microglial reactivity, demyelination, and remyelination. Cultures were treated simultaneously with two inflammatory agents, interferon-γ (IFN-γ) and lipopolysaccharide (LPS), which caused an inflammatory response accompanied by demyelination. The inflammatory response was characterized by microglial reactivity, upregulation of inflammatory cytokines and iNOS, and increased phophorylation of P38 and P44/42 mitogen activated protein (MAP) kinases. Minocycline inhibited microglial reactivity, and attenuated the increased phophorylation of P38 and P44/42 MAP kinases. Demyelination, determined by a decrease in myelin basic protein (MBP) content and immunoreactivity 48 h after the treatment with the inflammatory agents, was not prevented by minocycline. However, 1 week after demyelination was assessed, the MBP content was restored in presence of minocycline, indicating that remyelination was promoted. Concomitantly, in cultures treated with minocycline, the markers of oligodendrocyte precursors cells (OPCs) and immature oligodendrocytes NG2 and O4, respectively, were decreased compared to cultures treated with the inflammatory agents only. These results suggest that minocycline attenuates microglial reactivity and favors remyelination by enhancing the differentiation of OPCs and immature oligodendrocytes.
Collapse
Affiliation(s)
- A Defaux
- Department of Physiology, University of Lausanne, CH-1005 Lausanne, Switzerland
| | | | | | | |
Collapse
|
68
|
Raasch J, Zeller N, van Loo G, Merkler D, Mildner A, Erny D, Knobeloch KP, Bethea JR, Waisman A, Knust M, Del Turco D, Deller T, Blank T, Priller J, Brück W, Pasparakis M, Prinz M. IkappaB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-kappaB in the central nervous system. ACTA ACUST UNITED AC 2011; 134:1184-98. [PMID: 21310728 DOI: 10.1093/brain/awq359] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases.
Collapse
Affiliation(s)
- Jenni Raasch
- Department of Neuropathology, University of Freiburg, Breisacher Str. 64, D-79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Deierborg T, Roybon L, Inacio AR, Pesic J, Brundin P. Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes. Neuroscience 2010; 171:1386-96. [PMID: 20883748 DOI: 10.1016/j.neuroscience.2010.09.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 01/19/2023]
Abstract
Brain damage, such as ischemic stroke, enhances proliferation of neural stem/progenitor cells (NSPCs) in the subventricular zone (SVZ). To date, no reliable in vitro systems, which can be used to unravel the potential mechanisms underlying this lesion-induced effect, have been established. Here, we developed an ex vivo method to investigate how the proliferation of NSPCs changes over time after experimental stroke or excitotoxic striatal lesion in the adult rat brain by studying the effects of microglial cells derived from an injured brain on NSPCs. We isolated NSPCs from the SVZ of brains with lesions and analyzed their growth and differentiation when cultured as neurospheres. We found that NSPCs isolated from the brains 1-2 weeks following injury consistently generated more and larger neurospheres than those harvested from naive brains. We attributed these effects to the presence of microglial cells in NSPC cultures that originated from injured brains. We suggest that the effects are due to released factors because we observed increased proliferation of NSPCs isolated from non-injured brains when they were exposed to conditioned medium from cultures containing microglial cells derived from injured brains. Furthermore, we found that NSPCs derived from injured brains were more likely to differentiate into neurons and oligodendrocytes than astrocytes. Our ex vivo system reliably mimics what is observed in vivo following brain injury. It constitutes a powerful tool that could be used to identify factors that promote NSPC proliferation and differentiation in response to injury-induced activation of microglial cells, by using tools such as proteomics and gene array technology.
Collapse
Affiliation(s)
- T Deierborg
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
70
|
Jeon NR, Koppula S, Kim BW, Park SH, Lee HW, Choi DK. MMHD [(S,E)-2-methyl-1-(2-methylthiazol-4-yl) hexa-1,5-dien-ol], a novel synthetic compound derived from epothilone, suppresses nuclear factor-kappaB-mediated cytokine expression in lipopolysaccharide-stimulated BV-2 microglia. J Pharmacol Sci 2010; 112:158-66. [PMID: 20134118 DOI: 10.1254/jphs.09239fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The effects of MMHD [(S,E)-2-methyl-1-(2-methylthiazol-4-yl) hexa-1,5-dien-ol], a novel synthetic compound derived from epothilone, was investigated for its effects on the expression of proinflammatory mediators in lipopolysaccharide-stimulated BV-2 microglia. MMHD attenuated the expressions of inducible nitric oxide synthase and cyclooxygenase-2 mRNA and protein without affecting cell viability. Moreover, MMHD suppressed nuclear factor-kappaB (NF-kappaB) activation via the translocation of p65 into the nucleus. These results indicate that MMHD exerts anti-inflammatory properties by suppressing the transcription of proinflammatory cytokine genes through the NF-kappaB signaling pathway.
Collapse
Affiliation(s)
- Na-Ra Jeon
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | | | | | | | | |
Collapse
|
71
|
Gas6 deficiency increases oligodendrocyte loss and microglial activation in response to cuprizone-induced demyelination. J Neurosci 2008; 28:5195-206. [PMID: 18480276 DOI: 10.1523/jneurosci.1180-08.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The TAM family of receptor protein tyrosine kinases comprises three known members, namely Tyro3, Axl, and Mer. These receptors are widely expressed in the nervous system, including by oligodendrocytes, the cell type responsible for myelinating the CNS. We examined the potential role of the TAM family and of their principle cognate ligand, Gas6 (growth arrest gene 6), in modulating the phenotype of the cuprizone model of demyelination. We found that the expression profiles of Axl, Mer, and Gas6 mRNA were increased in the corpus callosum in a temporal profile correlating with the increased migration and proliferation of microglia/macrophages in this model. In contrast, expression of Tyro3 decreased, correlating with the loss of oligodendrocytes. Gas6 both promoted in vitro survival of oligodendrocytes (39.3 +/- 3.1 vs 11.8 +/- 2.4%) and modulated markers of activation in purified cultures of microglia (tumor necrosis factor alpha mRNA expression was reduced approximately 48%). In Gas6-/- mice subjected to cuprizone-challenge, demyelination was greater than in control mice, within the rostral region of the corpus callosum, as assessed by luxol fast blue staining (myelination reduced by 36%) and by ultrastructural analysis. An increased loss of Gst-pi (glutathione S-transferase-pi)-positive oligodendrocytes was also identified throughout the corpus callosum of Gas6-/- mice. Microglial marker expression (ionized calcium-binding adapter molecule 1) was increased in Gas6-/- mice but was restricted to the rostral corpus callosum. Therefore, TAM receptor activation and regulation can independently influence both oligodendrocyte survival and the microglial response after CNS damage.
Collapse
|
72
|
Oligodendrocyte Generation Is Differentially Influenced by Toll-Like Receptor (TLR) 2 and TLR4-Mediated Intraspinal Macrophage Activation. J Neuropathol Exp Neurol 2007; 66:1124-35. [DOI: 10.1097/nen.0b013e31815c2530] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
73
|
Mémet S. NF-kappaB functions in the nervous system: from development to disease. Biochem Pharmacol 2006; 72:1180-95. [PMID: 16997282 DOI: 10.1016/j.bcp.2006.09.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2006] [Revised: 08/31/2006] [Accepted: 09/05/2006] [Indexed: 01/01/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) is an ubiquitously expressed dimeric molecule with post-translationally regulated activity. Its role in the immune system and host defense has been well characterized over the last two decades. In contrast, our understanding of the function of this transcription factor in the nervous system (NS) is only emerging. Given their cytoplasmic retention and nuclear translocation upon stimulus, NF-kappaB members are likely to exert an important role in transduction of signals from synaptic terminals to nucleus, to initiate transcriptional responses. This report describes recent findings deciphering the diverse functions of NF-kappaB in NS development and activity, which range from the control of cell growth, survival and inflammatory response to synaptic plasticity, behavior and cognition. Particular attention is given to the specific roles of NF-kappaB in the various cells of the NS, e.g. neurons and glia. Current knowledge of the contribution of NF-kappaB to several neurodegenerative disorders, such as Alzheimer's, Parkinson's and Huntington's diseases is also summarized.
Collapse
Affiliation(s)
- Sylvie Mémet
- Unité de Mycologie Moléculaire, FRE CNRS 2849, Department of Infection and Epidemiology, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
74
|
Wennström M, Hellsten J, Ekstrand J, Lindgren H, Tingström A. Corticosterone-induced inhibition of gliogenesis in rat hippocampus is counteracted by electroconvulsive seizures. Biol Psychiatry 2006; 59:178-86. [PMID: 16431219 DOI: 10.1016/j.biopsych.2005.08.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 07/08/2005] [Accepted: 08/16/2005] [Indexed: 01/05/2023]
Abstract
BACKGROUND Volumetric changes and glial pathology have been reported in the central nervous system (CNS) of patients with depressive disorder, an illness often associated with elevated glucocorticoid levels. Glucocorticoids reduce gliogenesis in the adult rat CNS. Electroconvulsive seizure (ECS)-treatment, an animal model for the antidepressant treatment electroconvulsive therapy, can enhance proliferation of glial cells. This study examined glial cell proliferation in response to ECS in rats whose glucocorticoid levels were elevated to mimic the conditions seen in depression. METHODS Rats were injected daily for seven days with either corticosterone or vehicle. ECS- or sham- treatment was given once daily during the first five days. Proliferating cells in the hippocampus were labeled with bromodeoxyuridine and analyzed for co-labeling with the glial cell markers NG2, Ox42, S-100beta and Rip. RESULTS ECS counteracted the glucocorticoid-induced inhibition of NG2+, Ox42+ and Rip+ cell proliferation, and the gliogenesis rate was restored to baseline levels. Volumetric changes in rats treated with ECS were detected. CONCLUSIONS Our results show that ECS-treatment affects the proliferation of glial cells even in the presence of elevated levels of glucocorticoids. This result adds to an increasing number of studies suggesting that antidepressant treatment can counteract degenerative processes associated with major depression.
Collapse
Affiliation(s)
- Malin Wennström
- Molecular Psychiatry Unit, Wallenberg Neuroscience Center, S-22184, Lund, Sweden
| | | | | | | | | |
Collapse
|
75
|
Zhang X, Surguladze N, Slagle-Webb B, Cozzi A, Connor JR. Cellular iron status influences the functional relationship between microglia and oligodendrocytes. Glia 2006; 54:795-804. [PMID: 16958088 DOI: 10.1002/glia.20416] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously, we have reported that there is a spatiotemporal relationship between iron accumulation in microglia and oligodendrocytes during normal development and in remyelination following injury. This in vivo observation has prompted us to develop a cell culture model to test the relationship between iron status of microglia and survival of oligodendrocytes. We found that conditioned media from iron-loaded microglia increases the survival of oligodendrocytes; but conditioned media from iron loaded activated microglia is toxic to oligodendrocytes. In the trophic condition, one of the proteins released by iron-loaded microglia is H-ferritin, and transfecting the microglia with siRNA for H-ferritin blocks the trophic response on oligodendrocytes. Lipopolysaccharide (LPS) activation decreases the amount of H-ferritin that is released from microglia and increases the release of the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1. LPS activation of iron-enriched microglia results in the activation of NF-kB and greater release of cytokines when compared with that of control microglia; whereas treating microglia with an iron chelator is associated with less NF-kB activation and less release of cytokines. These results indicate that microglia play an important role in iron homoeostasis and that their iron status can influence how microglia influence growth and survival of oligodendrocytes. The results further indicate that ferritin, released by microglia, is a significant source of iron for oligodendrocytes.
Collapse
Affiliation(s)
- X Zhang
- Department of Neurosurgery, College of Medicine, Pennsylvania State University, M.S. Hershey Medical Center, Hershey, PA 17033-0850, USA
| | | | | | | | | |
Collapse
|
76
|
Lu ZY, Yu SP, Wei JF, Wei L. Age-related neural degeneration in nuclear-factor κB p50 knockout mice. Neuroscience 2006; 139:965-78. [PMID: 16533569 DOI: 10.1016/j.neuroscience.2005.12.062] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 12/09/2005] [Accepted: 12/30/2005] [Indexed: 11/21/2022]
Abstract
Nuclear factor-kappaB is a transcription factor that regulates a variety of genes involved not only with immune and inflammatory responses, but also in cell survival. Nuclear-factor kappaB in the CNS is an area of current research interest; however, its role in age-related neural degeneration is obscure. The present study examines developmental degeneration changes in wild type and nuclear factor-kappaB p50 subunit knockout mice (p50-/-) using various morphological methodologies. P50-/- mice appeared normal at birth. At 6 and 10 months old, the body weight of p50-/- mice was significantly less than that of wild type mice and they started to die from aging. Consistently, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling positive cells in the cortex were significantly more in p50-/- mice than that in wild type mice, and neuronal cells in the cortex, hippocampus and caudate nucleus-putamen decreased in p50-/- mice. Fewer myelinated axons of the optic nerve were found in p50-/- mice than in wild type mice at 6 months. In p50-/- mice, morphological examinations showed: 1) aging and degenerative changes in the cortex and hippocampus including increased lipofuscin granules in neural cytoplasm, 2) abnormal capillaries, 3) dark and watery alterations and organelle accumulations, 4) apoptotic glia cells, and 5) terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling and caspase-3 positive neurons. These results suggest that nuclear-factor kappaB may play an important role in neurovascular development, cell survival, and the aging process in the CNS. This new evidence linking nuclear-factor kappaB to myelination and aging may be of considerable importance for several areas of basic and clinical neuroscience.
Collapse
Affiliation(s)
- Z-Y Lu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
77
|
Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neuroscience 2005; 135:47-58. [PMID: 16054770 DOI: 10.1016/j.neuroscience.2005.05.023] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/08/2005] [Accepted: 05/12/2005] [Indexed: 11/17/2022]
Abstract
We have previously demonstrated that progesterone significantly increases the rate of myelination in organotypic slice cultures of 7-day-old rat and mouse cerebellum. Here, we show that progesterone (20microM) stimulates the proliferation of oligodendrocyte precursors in cultured cerebellar slices of 7-day-old rats. The steroid increased the number of pre-oligodendrocytes (NG2(+), O4(+)) and to some extent of oligodendrocyte precursors, corresponding to an earlier developmental stage (nestin(+), PDGFalphaR(+), NG2(+), O4(-)). Progesterone stimulated the proliferation of both NG2(+) and O4(+) cells as shown by increased double-immunolabeling with the cell proliferation marker Ki67. The mitogenic effect of progesterone was inhibited by the progesterone receptor antagonist mifepristone (10microM) and could not be mimicked by its GABA-active metabolite 3alpha,5alpha-tetrahydroprogesterone (allopregnanolone), even at the high concentration of 50microM. Results indicate that progesterone first strongly and transiently stimulates the proliferation of oligodendrocyte precursors, and that it may thereafter accelerate their maturation into myelinating oligodendrocytes. Although oligodendrocyte precursors may be a direct target for the actions of progesterone, their number may also be indirectly influenced by the effects of the steroid on neurons and microglial cells, since treatment of the cerebellar slices with progesterone enhanced staining of the neuronal cytoskeleton marker microtubule-associated protein-2 and increased the number of OX-42(+) microglia. A small percentage (about 0.1%) of the NG2(+) cells transiently became OX-42(+) in response to progesterone. These results point to novel mechanisms by which progesterone may promote myelination in the CNS, specifically by stimulating the proliferation and maturation of oligodendrocyte precursors into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- A M Ghoumari
- INSERM U488, Batiment Gregory Pincus, 80 rue du Général Leclerc, 94276 Bicêtre, France.
| | | | | |
Collapse
|
78
|
Hamanoue M, Yoshioka A, Ohashi T, Eto Y, Takamatsu K. NF-kappaB prevents TNF-alpha-induced apoptosis in an oligodendrocyte cell line. Neurochem Res 2004; 29:1571-6. [PMID: 15260136 DOI: 10.1023/b:nere.0000029571.39497.56] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nuclear factor kappa beta (NF-kappaB) inhibits apoptosis in sensory, hippocampal, and striatal neurons of the central nervous system. Although several apoptotic stimuli have been shown to activate NF-kappaB in oligodendrocytes, the function of NF-kappaB in this cell type remains unknown. In this study, we introduced plasmids expressing either the p50- or p65-subunit of human NF-kappaB into Central Glia-4 (CG-4)--a rat oligodendrocyte precursor cell line-and determined the influence of NF-kappaB function on tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. Expression of NF-kappaB markedly prevented CG-4 apoptosis, with p50 being more effective than p65. This anti-apoptotic activity was repressed by IkappaB-alpha, an inhibitor of NF-kappaB. These results imply that NF-kappaB acts as a potent inhibitor of TNF-induced apoptosis in oligodendrocytes.
Collapse
Affiliation(s)
- Makoto Hamanoue
- Department of Physiology, Toho University, School of Medicine, 5-21-16 Ohmori-nishi, Ohta-ku, Tokyo 143-8540, Japan.
| | | | | | | | | |
Collapse
|
79
|
Morgan SC, Taylor DL, Pocock JM. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 2004; 90:89-101. [PMID: 15198670 DOI: 10.1111/j.1471-4159.2004.02461.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microglia, the resident macrophage of the brain, can release substances that aid neuronal development, differentiation and survival. We have investigated the effects of non-activated microglia on the survival of cultured rat cerebellar granule neurones. Microglial-conditioned medium, collected from primary rat microglial cultures, was used to treat 7-day-in-vitro neurones, and neuronal viability and proliferation was assessed following a further 1 or 7 days in culture. Microglial-conditioned medium enhanced neuronal survival by up to 50% compared with untreated neurones and this effect was completely abated by pretreatment of the microglia with l-leucine methyl ester. The expression of the proliferation marker Ki-67 increased in neuronal cultures treated with microglial-conditioned medium suggesting enhanced proliferation of precursor neurones. Microglial-induced neuronal proliferation could be attenuated by specific inhibition of mitogen-activated protein kinase or phosphatidylinositol-3-kinase/Akt signalling pathways, and by selective fractionation and immunodepletion of the microglial-conditioned medium. Activation of the Notch pathway was enhanced as antibody against the Notch ligand, delta-1, prevented the microglial-induced neuronal proliferation. These results show that microglia release stable neurotrophic factors that can promote neuronal precursor cell proliferation.
Collapse
Affiliation(s)
- Sarah C Morgan
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK
| | | | | |
Collapse
|
80
|
van Doorn J, Gilhuis HJ, Koster JG, Wesseling P, Reddingius RE, Gresnigt MG, Bloemen RJ, van Muijen GNP, van Buul-Offers SC. Differential patterns of insulin-like growth factor-I and -II mRNA expression in medulloblastoma. Neuropathol Appl Neurobiol 2004; 30:503-12. [PMID: 15488026 DOI: 10.1111/j.1365-2990.2004.00571.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Insulin-like growth factors (IGFs) play an important role in tumour growth and development. We hypothesized that this is also the case for medulloblastomas, which are highly malignant cerebellar brain tumours usually occurring in children. In these tumours the expression patterns of IGF-I and -II mRNA were studied. Tumour specimens obtained from 12 children and two adults at diagnosis were hybridized in situ with digoxigenin-labelled cRNA probes for hIGF-I and hIGF-II mRNAs. In all cases, tumour cells showed abundant expression of IGF-I mRNA. Nine of the 14 tumours showed variable but significant IGF-II expression. In these tumours, the hybridization signal almost exclusively colocalized with a subpopulation of Ki-M1P positive cells that were identified as ramified microglia (RM) cells. In the five tumours without IGF-II expression, microglia/brain macrophages with a more rounded amoeboid-like morphology predominated. RM cells in normal cerebellar tissues, residing abundantly in areas of the white and, to a less extent, in the grey matter, were IGF-II mRNA-negative. These RM cells showed a thinner and more extensively branched appearance and were more evenly distributed than those encountered in medulloblastoma. Probably, during the transformation from the resting ramified towards the amoeboid morphology (or vice versa) IGF-II mRNA expression is only temporarily induced. The physiological meaning of the induction of IGF-II mRNA expression by these cells in medulloblastoma remains unclear but any IGF-II peptide synthesized could exert unfavourable mitogenic and antiapoptotic effects on adjacent tumour cells. However, in this relatively small number of cases we could not find any indications for a relationship between clinical characteristics of the various cases and the extent of IGF-II mRNA expression.
Collapse
Affiliation(s)
- J van Doorn
- Department of Metabolic and Endocrine Diseases, Wilhelmina Children's Hospital/University Medical Centre Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
|
82
|
|
83
|
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system, represent a large portion of the total number of cells in the human brain. Using cell-specific markers and antibodies to ventral homeodomain transcription factors, NKX2.1 and DLX2, we show here that a subpopulation of early oligodendrocyte progenitor cells (OPCs) in the human telencephalon may originate in the ganglionic eminence (GE). DLX2-labeled OPCs form a well-delineated stream of cells connecting the GE subventricular zone (SVZ) to the cortical intermediate zone through the anterior cortical SVZ. This population of cells is labeled by early OPCs markers, PDGFRalpha, Olig1, and NG2, and not with either neuronal, astrocyte, or late OPCs markers. Intriguingly, numerous CD68(+) microglia/macrophages, nestin(+) neural stem cells, and CD34(+) hematopoietic stem cells (HSCs) are also present in both the GE stream and the cortical SVZ. These cells could be colabeled with DLX2 as well as early OPCs markers. A separate subpopulation of early OPCs, present in the GE and cortical SVZ, did not express either DLX2 or CD68. These findings suggest that different subpopulations of early OPCs, characterized with different sets of transcription factors and cell-specific markers, are present in human forebrain. These subpopulations may have different origins; one may originate in the cortical SVZ, while others may come from the GE and/or outside the CNS as hematopoietic stem cells.
Collapse
Affiliation(s)
- Sonja Rakic
- Department of Neuroscience, University of Connecticut Medical School, Farmington, Connecticut 06030, USA
| | | |
Collapse
|
84
|
Rezaie P, Dean A. Periventricular leukomalacia, inflammation and white matter lesions within the developing nervous system. Neuropathology 2002; 22:106-32. [PMID: 12416551 DOI: 10.1046/j.1440-1789.2002.00438.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Periventricular leukomalacia (PVL) occurring in premature infants, represents a major precursor for neurological and intellectual impairment, and cerebral palsy in later life. The disorder is characterized by multifocal areas of necrosis found deep in the cortical white matter, which are often symmetrical and occur adjacent to the lateral ventricles. There is no known cure for PVL. Factors predisposing to PVL include birth trauma, asphyxia and respiratory failure, cardiopulmonary defects, premature birth/low birthweight, associated immature cerebrovascular development and lack of appropriate autoregulation of cerebral blood flow in response to hypoxic-ischemic insults. The intrinsic vulnerability of oligodendrocyte precursors is considered as central to the pathogenesis of PVL. These cells are susceptible to a variety of injurious stimuli including free radicals and excitotoxicity induced by hypoxic-ischemic injury (resulting from cerebral hypoperfusion), lack of trophic stimuli, as well as secondary associated events involving microglial and astrocytic activation and the release of pro-inflammatory cytokines TNF-alpha and IL-6. It is yet unclear whether activated astrocytes and microglia act as principal participants in the development of PVL lesions, or whether they are representatives of an incidental pathological response directed towards repair of tissue injury in PVL. Nevertheless, the accumulated evidence points to a pathological contribution of microglia towards damage. The topography of lesions in PVL most likely reflects a combination of the relatively immature cerebrovasculature together with a failure in perfusion and/or hypoxia during the greatest period of vulnerability occurring around mid-to-late gestation. Mechanisms underlying the pathogenesis of PVL have so far been related to prenatal ischemic injury to the brain initiated within the third trimester, which result in global cognitive and developmental delay and motor disturbances. Over the past few years, several epidemiological and experimental studies have implicated intrauterine infection and chorioamnionitis as causative in the pathogenesis of PVL. In particular, recent investigations have shown that inflammatory responses in the fetus and neonate can contribute towards neonatal brain injury and development-related disabilities including cerebral palsy. This review presents current concepts on the pathogenesis of PVL and emphasizes the increasing evidence for an inflammatory pathogenic component to this disorder, either resulting from hypoxic-ischemic injury or from infection. These findings provide the basis for clinical approaches targeted at protecting the premature brain from inflammatory damage, which may prove beneficial for treating PVL, if identified early in pathogenesis.
Collapse
Affiliation(s)
- Payam Rezaie
- Department of Neuropathology, Institute of Psychiatry, King's College London, UK.
| | | |
Collapse
|
85
|
Nicholas RS, Stevens S, Wing MG, Compston DA. Microglia-derived IGF-2 prevents TNFalpha induced death of mature oligodendrocytes in vitro. J Neuroimmunol 2002; 124:36-44. [PMID: 11958820 DOI: 10.1016/s0165-5728(02)00011-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factor-2 (IGF-2) present in media conditioned by non-activated and interferon gamma (IFN gamma)-treated microglia reduces galactocerebroside(+) (GalC) oligodendrocyte apoptosis in cultures derived both from the CG4 cell line and primary rat cortices. Microglia-derived IGF-2 also acts in each culture system to block GalC(+) oligodendrocyte toxicity resulting from soluble microglial-derived tumour necrosis factor alpha (TNF alpha). IGF-2 inhibits TNF alpha-induced c-Jun kinase (JNK) activation of the CG4 cell line. Microglial activation results in the release of soluble factors that are potentially toxic to oligodendrocytes but this may be offset by the production of soluble factors that protect these vulnerable cells. Allowing for extrapolation of these in vitro findings to intact tissue, our observations suggest one mechanism for limiting bystander damage in the context of inflammatory brain disease.
Collapse
Affiliation(s)
- R S Nicholas
- Neurology Unit, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | | | | | | |
Collapse
|