51
|
Conticello C, Giuffrida R, Adamo L, Anastasi G, Martinetti D, Salomone E, Colarossi C, Amato G, Gorgone A, Romano A, Iannolo G, De Maria R, Giustolisi R, Gulisano M, Di Raimondo F. NF-κB localization in multiple myeloma plasma cells and mesenchymal cells. Leuk Res 2011; 35:52-60. [DOI: 10.1016/j.leukres.2010.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 05/05/2010] [Accepted: 06/28/2010] [Indexed: 01/02/2023]
|
52
|
Qiu X, Du Y, Lou B, Zuo Y, Shao W, Huo Y, Huang J, Yu Y, Zhou B, Du J, Fu H, Bu X. Synthesis and identification of new 4-arylidene curcumin analogues as potential anticancer agents targeting nuclear factor-κB signaling pathway. J Med Chem 2010; 53:8260-73. [PMID: 21070043 DOI: 10.1021/jm1004545] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A series of curcumin analogues including new 4-arylidene curcumin analogues (4-arylidene-1,7-bisarylhepta-1,6-diene-3,5-diones) were synthesized. Cell growth inhibition assays revealed that most 4-arylidene curcumin analogues can effectively decrease the growth of a panel of lung cancer cells at submicromolar and low micromolar concentrations. High content analysis technology coupled with biochemical studies showed that this new class of 4-arylidene curcumin analogues exhibits significantly improved NF-κB inhibition activity over the parent compound curcumin, at least in part by inhibiting IκB phosphorylation and degradation via IKK blockage; selected 4-arylidene curcumin analogues also reduced the tumorigenic potential of cancer cells in a clonogenic assay.
Collapse
Affiliation(s)
- Xu Qiu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Kontos S, Sotiropoulou-Bonikou G, Kominea A, Melachrinou M, Balampani E, Bonikos D. Coordinated increased expression of Cyclooxygenase2 and nuclear factor κB is a steady feature of urinary bladder carcinogenesis. Adv Urol 2010; 2010:871356. [PMID: 20827306 PMCID: PMC2933857 DOI: 10.1155/2010/871356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 07/15/2010] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVES The inescapable relationship between chronic inflammation and carcinogenesis has long been established. Our objective was to investigate COX-2 and NF-κB immunohistochemical expression in a large series of normal epithelium and bladder carcinomas. METHODS Immunohistochemical methodology was performed on formalin-fixed, paraffin-embedded sections from urinary bladder carcinomas of 140 patients (94 males and 46 females with bladder carcinomas). RESULTS COX-2 expression is increased in the cytoplasm of bladder cells, during loss of cell differentiation (r(s) = 0.61, P-value < .001) and in muscle invasive carcinomas (P-value < .001). A strong positive association between tumor grade and nuclear expression of NFκB has been established. A positive correlation between COX-2 and nuclear NFκB immunoreactivity was observed. CONCLUSIONS The possible coordinated upregulation of NFκB and COX-2, during bladder carcinogenesis, indicates that agents inhibitors of these two molecules may represent a possible new treatment strategy, by virtue of their role in bladder carcinogenesis.
Collapse
Affiliation(s)
- Stylianos Kontos
- Department of Pathology, Medical School, University of Patras, 26504 Rion, Greece, Department of Urology, General Hospital of Nikaia, 18543 Peiraeus, Greece.
| | | | | | | | | | | |
Collapse
|
54
|
Kontos S, Kominea A, Melachrinou M, Balampani E, Sotiropoulou-Bonikou G. Inverse expression of estrogen receptor-β and nuclear factor-κB in urinary bladder carcinogenesis. Int J Urol 2010; 17:801-9. [DOI: 10.1111/j.1442-2042.2010.02603.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
55
|
Nakaya A, Sagawa M, Muto A, Uchida H, Ikeda Y, Kizaki M. The gold compound auranofin induces apoptosis of human multiple myeloma cells through both down-regulation of STAT3 and inhibition of NF-κB activity. Leuk Res 2010; 35:243-9. [PMID: 20542334 DOI: 10.1016/j.leukres.2010.05.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/14/2010] [Accepted: 05/14/2010] [Indexed: 01/29/2023]
Abstract
Constitutive activation of NF-κB and STAT3 plays an important role in the cellular proliferation and survival of multiple myeloma cells. We first found that auranofin (AF), a coordinated gold compound, induced a significant level of cell cycle arrest at G1 phase and subsequent apoptosis of myeloma cells. Further, AF inhibited constitutive and IL-6-induced activation of JAK2 and phosphorylation of STAT3 followed by the decreased expression of Mcl-1. AF down-regulated the activation of NF-κB, and the combination of AF and a specific NF-κB inhibitor resulted in a marked decrease of Mcl-1 expression. These results suggest that AF inhibits both IL-6 induced-JAK/STAT pathway and NF-κB activation in myeloma cells.
Collapse
Affiliation(s)
- Aya Nakaya
- Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
56
|
MLN4924, a NEDD8-activating enzyme inhibitor, is active in diffuse large B-cell lymphoma models: rationale for treatment of NF-{kappa}B-dependent lymphoma. Blood 2010; 116:1515-23. [PMID: 20525923 DOI: 10.1182/blood-2010-03-272567] [Citation(s) in RCA: 264] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action. Treatment of ABC DLBCL cells with MLN4924 resulted in rapid accumulation of pIkappaBalpha, decrease in nuclear p65 content, reduction of nuclear factor-kappaB (NF-kappaB) transcriptional activity, and G(1) arrest, ultimately resulting in apoptosis induction, events consistent with potent NF-kappaB pathway inhibition. Treatment of germinal-center B cell-like (GCB) DLBCL cells resulted in an increase in cellular Cdt-1 and accumulation of cells in S-phase, consistent with cells undergoing DNA rereplication. In vivo administration of MLN4924 to mice bearing human xenograft tumors of ABC- and GCB-DLBCL blocked NAE pathway biomarkers and resulted in complete tumor growth inhibition. In primary human tumor models of ABC-DLBCL, MLN4924 treatment resulted in NF-kappaB pathway inhibition accompanied by tumor regressions. This work describes a novel mechanism of targeted NF-kappaB pathway modulation in DLBCL and provides strong rationale for clinical development of MLN4924 against NF-kappaB-dependent lymphomas.
Collapse
|
57
|
Han SS, Yun H, Son DJ, Tompkins VS, Peng L, Chung ST, Kim JS, Park ES, Janz S. NF-kappaB/STAT3/PI3K signaling crosstalk in iMyc E mu B lymphoma. Mol Cancer 2010; 9:97. [PMID: 20433747 PMCID: PMC2876994 DOI: 10.1186/1476-4598-9-97] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 04/30/2010] [Indexed: 11/21/2022] Open
Abstract
Background Myc is a well known driver of lymphomagenesis, and Myc-activating chromosomal translocation is the recognized hallmark of Burkitt lymphoma, an aggressive form of non-Hodgkin's lymphoma. We developed a model that mimics this translocation event by inserting a mouse Myc cDNA gene into the immunoglobulin heavy chain locus, just upstream of the intronic Eμ enhancer. These mice, designated iMycEμ, readily develop B-cell lymphoma. To study the mechanism of Myc-induced lymphoma, we analyzed signaling pathways in lymphoblastic B-cell lymphomas (LBLs) from iMycEμ mice, and an LBL-derived cell line, iMycEμ-1. Results Nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) were constitutively activated in iMycEμ mice, not only in LBLs but also in the splenic B-lymphocytes of young animals months before tumors developed. Moreover, inhibition of either transcription factor in iMycEμ-1 cells suppressed growth and caused apoptosis, and the abrogation of NF-κB activity reduced DNA binding by both STAT3 and Myc, as well as Myc expression. Inhibition of STAT3 signaling eliminated the activity of both NF-κB and Myc, and resulted in a corresponding decrease in the level of Myc. Thus, in iMycEμ-1 cells NF-κB and STAT3 are co-dependent and can both regulate Myc. Consistent with this, NF-κB and phosphorylated STAT3 were physically associated with one another. In addition, LBLs and iMycEμ-1 cells also showed constitutive AKT phosphorylation. Blocking AKT activation by inhibiting PI3K reduced iMycEμ-1 cell proliferation and caused apoptosis, via downregulation of NF-κB and STAT3 activity and a reduction of Myc levels. Co-treatment with NF-κB, STAT3 or/and PI3K inhibitors led to additive inhibition of iMycEμ-1 cell proliferation, suggesting that these signaling pathways converge. Conclusions Our findings support the notion that constitutive activation of NF-κB and STAT3 depends on upstream signaling through PI3K, and that this activation is important for cell survival and proliferation, as well as for maintaining the level of Myc. Together, these data implicate crosstalk among NF-κB, STAT3 and PI3K in the development of iMycEμ B-cell lymphomas.
Collapse
Affiliation(s)
- Seong-Su Han
- University of Iowa Carver College of Medicine, Department of Pathology, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Pepper C, Hewamana S, Brennan P, Fegan C. NF-kappaB as a prognostic marker and therapeutic target in chronic lymphocytic leukemia. Future Oncol 2009; 5:1027-37. [PMID: 19792971 DOI: 10.2217/fon.09.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chronic lymphocytic leukemia is the most common adult leukemia and is currently incurable with conventional chemotherapeutic agents. Over the last few years, significant discoveries have been made regarding the biology that underpins this disease. These new insights have allowed us to develop more rational prognostic tools and identify promising novel therapeutic targets. In this review, we highlight the importance of both constitutive and inducible DNA binding of the transcription factor NF-kappaB in chronic lymphocytic leukemia. We describe the current knowledge regarding the activity and function of specific NF-kappaB subunits in this disease, and discuss the complex mechanisms that regulate NF-kappaB activation in vivo. In addition, we provide compelling evidence for the utility of the NF-kappaB subunit, Rel A, as a prognostic marker and as a therapeutic target in this disease, and we also describe how this protein may contribute to the drug resistance commonly encountered with this condition.
Collapse
Affiliation(s)
- Chris Pepper
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
| | | | | | | |
Collapse
|
59
|
Heat stress triggers apoptosis by impairing NF-kappaB survival signaling in malignant B cells. Leukemia 2009; 24:187-96. [PMID: 19924145 DOI: 10.1038/leu.2009.227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear factor-kappaB (NF-kappaB) is involved in multiple aspects of oncogenesis and controls cancer cell survival by promoting anti-apoptotic gene expression. The constitutive activation of NF-kappaB in several types of cancers, including hematological malignancies, has been implicated in the resistance to chemo- and radiation therapy. We have previously reported that cytokine- or virus-induced NF-kappaB activation is inhibited by chemical and physical inducers of the heat shock response (HSR). In this study we show that heat stress inhibits constitutive NF-kappaB DNA-binding activity in different types of B-cell malignancies, including multiple myeloma, activated B-cell-like (ABC) type of diffuse large B-cell lymphoma (DLBCL) and Burkitt's lymphoma presenting aberrant NF-kappaB regulation. Heat-induced NF-kappaB inhibition leads to rapid downregulation of the anti-apoptotic protein cellular inhibitor-of-apoptosis protein 2 (cIAP-2), followed by activation of caspase-3 and cleavage of the caspase-3 substrate poly(adenosine diphosphate ribose)polymerase (PARP), causing massive apoptosis under conditions that do not affect viability in cells not presenting NF-kappaB aberrations. NF-kappaB inhibition by the proteasome inhibitor bortezomib and by short-hairpin RNA (shRNA) interference results in increased sensitivity of HS-Sultan B-cell lymphoma to hyperthermic stress. Altogether, the results indicate that aggressive B-cell malignancies presenting constitutive NF-kappaB activity are sensitive to heat-induced apoptosis, and suggest that aberrant NF-kappaB regulation may be a marker of heat stress sensitivity in cancer cells.
Collapse
|
60
|
Barr P, Fisher R, Friedberg J. The Role of Bortezomib in the Treatment of Lymphoma. Cancer Invest 2009; 25:766-75. [DOI: 10.1080/07357900701579570] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
61
|
Sung B, Kunnumakkara AB, Sethi G, Anand P, Guha S, Aggarwal BB. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol Cancer Ther 2009; 8:959-70. [PMID: 19372569 PMCID: PMC2694943 DOI: 10.1158/1535-7163.mct-08-0905] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Curcumin (diferuloylmethane), a yellow pigment in turmeric, has been shown to inhibit the activation of nuclear factor-kappaB (NF-kappaB), a transcription factor closely linked to chemoresistance in multiple myeloma cells. Whether curcumin can overcome chemoresistance and enhance the activity of thalidomide and bortezomib, used to treat patients with multiple myeloma, was investigated in vitro and in xenograft model in nude mice. Our results show that curcumin inhibited the proliferation of human multiple myeloma cells regardless of their sensitivity to dexamethasone, doxorubicin, or melphalan. Curcumin also potentiated the apoptotic effects of thalidomide and bortezomib by down-regulating the constitutive activation of NF-kappaB and Akt, and this correlated with the suppression of NF-kappaB-regulated gene products, including cyclin D1, Bcl-xL, Bcl-2, TRAF1, cIAP-1, XIAP, survivin, and vascular endothelial growth factor. Furthermore, in a nude mice model, we found that curcumin potentiated the antitumor effects of bortezomib (P<0.001, vehicle versus bortezomib+curcumin; P<0.001, bortezomib versus bortezomib+curcumin), and this correlated with suppression of Ki-67 (P<0.001 versus control), CD31 (P<0.001 versus vehicle), and vascular endothelial growth factor (P<0.001 versus vehicle) expression. Collectively, our results suggest that curcumin overcomes chemoresistance and sensitizes multiple myeloma cells to thalidomide and bortezomib by down-regulating NF-kappaB and NF-kappaB-regulated gene products.
Collapse
Affiliation(s)
- Bokyung Sung
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Ajaikumar B. Kunnumakkara
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Gautam Sethi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Preetha Anand
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Sushovan Guha
- Department of Gastrointestinal Medicine and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Bharat B. Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
62
|
Abstract
Nuclear factor kappaB (NF-kappaB) transcription factors have a key role in many physiological processes such as innate and adaptive immune responses, cell proliferation, cell death, and inflammation. It has become clear that aberrant regulation of NF-kappaB and the signalling pathways that control its activity are involved in cancer development and progression, as well as in resistance to chemotherapy and radiotherapy. This article discusses recent evidence from cancer genetics and cancer genome studies that support the involvement of NF-kappaB in human cancer, particularly in multiple myeloma. The therapeutic potential and benefit of targeting NF-kappaB in cancer, and the possible complications and pitfalls of such an approach, are explored.
Collapse
|
63
|
Zhou Y, Uddin S, Zimmerman T, Kang JA, Ulaszek J, Wickrema A. Growth control of multiple myeloma cells through inhibition of glycogen synthase kinase-3. Leuk Lymphoma 2008; 49:1945-53. [PMID: 18728964 DOI: 10.1080/10428190802304966] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Anti-apoptotic pathways play a central role in the survival of multiple myeloma cells. The contribution of PI3-kinase and Akt kinase in mediating myeloma cell survival is well established although the role of glycogen synthase kinase-3 (GSK3) is less defined. In this study we determined the contribution of GSK3 in growth regulation of myeloma cells. We treated six different multiple myeloma cell lines with a Thiadiazolidinone (TDZD), a non-competitive inhibitor of GSK3 and determined its effects on proliferation and apoptosis. In addition we determined the activation of forkhead transcription factors (FOXO) in response to TDZD. TDZD inhibited proliferation and induced apoptosis of all myeloma cell lines. TDZD was also effective in inducing apoptosis of primary myeloma cells whereas CD34 positive normal hematopoietic cells were protected from apoptosis. Furthermore, TDZD-mediated inhibition of GSK3 resulted in dephosphorylation and activation of FOXO3a. In primary myeloma cells FOXO transcription factors were highly phosphorylated where as the levels of GSK3 phosphorylation was quite low. The levels of the pro-apoptotic proteins Fas ligand (FasL) and IkappaBalpha increased after treatment with TDZD in myeloma cell lines. These studies provide the basis for further testing of GSK3 inhibitors in the clinical setting.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
64
|
Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood 2008; 113:4027-37. [PMID: 19096011 DOI: 10.1182/blood-2008-09-179796] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
As multiple myeloma tumors universally dysregulate cyclin D genes we conducted high-throughput chemical library screens for compounds that induce suppression of cyclin D2 promoter transcription. The top-ranked compound was a natural triterpenoid, pristimerin. Strikingly, the early transcriptional response of cells treated with pristimerin closely resembles cellular responses elicited by proteosome inhibitors, with rapid induction of heat shock proteins, activating transcription factor 3 (ATF3), and CHOP. Enzymatic assays and immunoblotting confirm that pristimerin rapidly (< 90 minutes) and specifically inhibits chymotrypsin-like proteosome activity at low concentrations (< 100 nM) and causes accumulation of cellular ubiquitinated proteins. Notably, cytotoxic triterpenoids including pristimerin inhibit NF-kappaB activation via inhibition of IKK alpha or IKK beta, whereas proteosome inhibitors instead suppress NF-kappaB function by impairing degradation of ubiquitinated I kappaB. By inhibiting both IKK and the proteosome, pristimerin causes overt suppression of constitutive NF-kappaB activity in myeloma cells that may mediate its suppression of cyclin D. Multiple myeloma is exquisitely sensitive to proteosome or NF-kappaB pathway inhibition. Consistent with this, pristimerin is potently and selectively lethal to primary myeloma cells (IC(50) < 100 nM), inhibits xenografted plasmacytoma tumors in mice, and is synergistically cytotoxic with bortezomib--providing the rationale for pharmaceutical development of triterpenoid dual-function proteosome/NF-kappaB inhibitors as therapeutics for human multiple myeloma and related malignancies.
Collapse
|
65
|
Abstract
The coordinated regulation of cellular protein synthesis and degradation is essential for normal cellular functioning. The ubiquitin proteasome system mediates the intracellular protein degradation that is required for normal cellular homeostasis. The 26S proteasome is a multi-enzyme protease that degrades redundant proteins; conversely, inhibition of proteasomal degradation results in intracellular aggregation of unwanted proteins and cell death. This observation led to the development of proteasome inhibitors as therapeutics for use in cancer. The clinical applicability of targeting proteasomes is exemplified by the recent FDA approval of the first proteasome inhibitor, bortezomib, for the treatment of relapsed/refractory multiple myeloma. Although bortezomib represents a major advance in the treatment of this disease, it can be associated with toxicity and the development of drug resistance. Importantly, extensive preclinical studies suggest that combination therapies can both circumvent drug resistance and reduce toxicity. In addition, promising novel proteasome inhibitors, which are distinct from bortezomib, and exhibit equipotent anti-multiple myeloma activities, are undergoing clinical evaluation in order to improve patient outcome in multiple myeloma. PUBLICATION HISTORY : Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
Collapse
Affiliation(s)
- Dharminder Chauhan
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Giada Bianchi
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth C Anderson
- The Jerome Lipper Multiple Myeloma Center, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
66
|
Abstract
Nuclear Factor kappaB (NF-kappaB) transcription factors are central regulators of lymphocyte proliferation, survival and development. Although normally subject to tight control, constitutive activation of NF-kappaB promotes inappropriate lymphocyte survival and proliferation, and is recognised as key pathological feature in various lymphoid malignancies. Inhibition of NF-kappaB may be an attractive therapeutic approach in these diseases. This review focuses on the mechanisms and functional consequences of NF-kappaB activation in lymphoid malignancies and potential therapeutic strategies for inhibition of NF-kappaB.
Collapse
Affiliation(s)
- Graham Packham
- Cancer Research UK Clinical Centre, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
67
|
Saitoh Y, Yamamoto N, Dewan MZ, Sugimoto H, Martinez Bruyn VJ, Iwasaki Y, Matsubara K, Qi X, Saitoh T, Imoto I, Inazawa J, Utsunomiya A, Watanabe T, Masuda T, Yamamoto N, Yamaoka S. Overexpressed NF-kappaB-inducing kinase contributes to the tumorigenesis of adult T-cell leukemia and Hodgkin Reed-Sternberg cells. Blood 2008; 111:5118-29. [PMID: 18305221 DOI: 10.1182/blood-2007-09-110635] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) transcription factors play important roles in cancer development by preventing apoptosis and facilitating the tumor cell growth. However, the precise mechanisms by which NF-kappaB is constitutively activated in specific cancer cells remain largely unknown. In our current study, we now report that NF-kappaB-inducing kinase (NIK) is overexpressed at the pretranslational level in adult T-cell leukemia (ATL) and Hodgkin Reed-Sternberg cells (H-RS) that do not express viral regulatory proteins. The overexpression of NIK causes cell transformation in rat fibroblasts, which is abolished by a super-repressor form of IkappaBalpha. Notably, depletion of NIK in ATL cells by RNA interference reduces the DNA-binding activity of NF-kappaB and NF-kappaB-dependent transcriptional activity, and efficiently suppresses tumor growth in NOD/SCID/gammac(null) mice. These results indicate that the deregulated expression of NIK plays a critical role in constitutive NF-kappaB activation in ATL and H-RS cells, and suggest also that NIK is an attractive molecular target for cancer therapy.
Collapse
Affiliation(s)
- Yasunori Saitoh
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Zhao X, Qiu W, Kung J, Zhao X, Peng X, Yegappan M, Yen-Lieberman B, Hsi ED. Bortezomib induces caspase-dependent apoptosis in Hodgkin lymphoma cell lines and is associated with reduced c-FLIP expression: A gene expression profiling study with implications for potential combination therapies. Leuk Res 2008; 32:275-85. [PMID: 17659339 DOI: 10.1016/j.leukres.2007.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Revised: 05/10/2007] [Accepted: 05/19/2007] [Indexed: 01/09/2023]
Abstract
The Hodgkin cells and Reed-Sternberg cells (HRS) of classical Hodgkin lymphoma (CHL) are derived from germinal center B cells. The pathogenesis of CHL is unclear but constitutive activation of NFkappaB may contribute. Proteasome inhibition aimed at inhibiting NFkappaB has been shown to result in apoptosis in HRS cells. Here we investigated the effects of bortezomib, a proteasome inhibitor, in HRS cells with a combination of functional assays and gene expression profiling (GEP). Exposure of KMH2 and L428 cells to bortezomib resulted in inhibition of proliferation and induction of apoptosis. Gene expression analysis of KMH2 cells by oligonucleotide cDNA microarrays showed that a limited set of genes were differentially expressed involving several key cellular pathways including cell cycle and apoptosis. Among them, the caspase 8 inhibitor cFLIP was down-regulated and confirmed by Q-PCR. Given the evidence that cFLIP in HRS cells contribute to cells' insensitive to death receptor-mediated apoptosis, we combined bortezomib and TRAIL. This combination caused further down-regulation of cFLIP protein and increased apoptosis in CHL cells demonstrated by PARP p85 immunohistochemistry and immunoblotting. Such apoptotic effects were inhibited by caspase inhibitor z-VAD-FMK, confirming the pro-apoptotic effects of bortezomib and TRAIL are caspase-dependent. Bortezomib has no detectable effect on expression of TRAIL receptor DR4/DR5 in these two cell lines. Tissue microarray analysis of primary Hodgkin lymphomas displayed that 82% cases (95/116) expressed cFLIP in Reed-Sternberg cells. The discovery of apoptotic pathways that can be manipulated by proteasome inhibition provides rationale for the combination of bortezomib and agents such as TRAIL in CHL treatment.
Collapse
|
69
|
Ozpuyan F, Meyer P, Ni H, Al-Masri H, Alkan S. Bortezomib induces apoptosis in T-cell prolymphocytic leukemia (T-PLL). Leuk Lymphoma 2007; 48:2247-50. [PMID: 17990182 DOI: 10.1080/10428190701636484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
70
|
Romagnoli M, Desplanques G, Maïga S, Legouill S, Dreano M, Bataille R, Barillé-Nion S. Canonical Nuclear Factor κB Pathway Inhibition Blocks Myeloma Cell Growth and Induces Apoptosis in Strong Synergy with TRAIL. Clin Cancer Res 2007; 13:6010-8. [DOI: 10.1158/1078-0432.ccr-07-0140] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Manochakian R, Miller KC, Chanan-Khan AA. Clinical Impact of Bortezomib in Frontline Regimens for Patients with Multiple Myeloma. Oncologist 2007; 12:978-90. [PMID: 17766658 DOI: 10.1634/theoncologist.12-8-978] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Standard frontline therapy for multiple myeloma comprises cytoreductive therapy with or without consolidative high-dose therapy plus stem cell transplantation (HDT-SCT). Despite therapeutic advances, the disease remains incurable; most patients relapse following frontline treatment and die within 5 years of diagnosis. New options are required to enhance and prolong response, and improve survival, particularly for elderly patients and those with renal dysfunction. Preclinical studies have demonstrated the ability of bortezomib to enhance the activity of commonly used myeloma agents, an observation validated through clinical studies in both the relapsed and frontline settings. This review focuses on the growing body of clinical evidence showing the effectiveness of bortezomib and bortezomib-based combinations in newly diagnosed patients, characterized by high overall response rates and consistently high rates of complete response. A number of studies incorporating bortezomib as part of induction therapy have demonstrated no adverse impact of bortezomib on stem cell harvest and engraftment in patients proceeding to transplantation. The higher rates of complete response typically associated with bortezomib treatment may potentially improve clinical outcomes in this setting. Final results from ongoing phase III studies of bortezomib-based combinations versus standard regimens will help define the optimal use of bortezomib as a standard component of frontline therapy for multiple myeloma. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Rami Manochakian
- Department of Medicine, Roswell Park Cancer Institute, Elm & Carlton Street, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
72
|
Jourdan M, Moreaux J, Vos JD, Hose D, Mahtouk K, Abouladze M, Robert N, Baudard M, Rème T, Romanelli A, Goldschmidt H, Rossi JF, Dreano M, Klein B. Targeting NF-kappaB pathway with an IKK2 inhibitor induces inhibition of multiple myeloma cell growth. Br J Haematol 2007; 138:160-8. [PMID: 17542984 PMCID: PMC2494583 DOI: 10.1111/j.1365-2141.2007.06629.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The pathophysiologic basis for multiple myeloma (MM) has been attributed to the dysregulation of various paracrine or autocrine growth factor loops and to perturbations in several signal transduction pathways including IkappaB kinase/nuclear factor-kappaB (IKK/NF-kappaB). The present study aimed at investigating the effect of a pharmaceutical IKK2 inhibitor, the anilinopyrimidine derivative AS602868, on the in vitro growth of 14 human MM cell lines (HMCL) and primary cells from 13 patients. AS602868 induced a clear dose-dependent inhibition of MM cell growth on both HMCL and primary MM cells, which was the result of a simultaneous induction of apoptosis and inhibition of the cell cycle progression. Combination of AS602868 with suboptimal doses of melphalan or Velcade showed an additive effect in growth inhibition of HMCL. AS602868 also induced apoptosis of primary myeloma cells. Importantly, AS602868 did not alter the survival of other bone marrow mononuclear cells (CD138(-)) co-cultured with primary MM (CD138(+)) cells, except for CD34(+) haematopoietic stem cells. The results demonstrate the important role of NF-kappaB in maintaining the survival of MM cells and suggest that a pharmacological inhibition of the NF-kappaB pathway by the IKK2 inhibitor AS602868 can efficiently kill HMCL and primary myeloma cells and therefore might represent an innovative approach for treating MM patients.
Collapse
Affiliation(s)
- Michel Jourdan
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
| | - Jérôme Moreaux
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
| | - John De Vos
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- UFR de Médecine
Université Montpellier IMontpellier F-34060,FR
| | - Dirk Hose
- Medizinische Klinik und Poliklinik V
Universitätsklinikum HeidelbergUniversitätsklinikum Heidelberg
INF410
69115 Heidelberg,DE
| | - Karène Mahtouk
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
| | - Matthieu Abouladze
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
| | - Nicolas Robert
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
| | - Marion Baudard
- Department of Hematology and Clinical Oncology
CHRU MontpellierMontpellier,FR
| | - Thierry Rème
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
| | | | - Hartmut Goldschmidt
- Medizinische Klinik und Poliklinik V
Universitätsklinikum HeidelbergUniversitätsklinikum Heidelberg
INF410
69115 Heidelberg,DE
| | - Jean-François Rossi
- UFR de Médecine
Université Montpellier IMontpellier F-34060,FR
- Department of Hematology and Clinical Oncology
CHRU MontpellierMontpellier,FR
| | - Michel Dreano
- SERONO INTERNATIONAL SA, Serono International SA
Serono International SAGeneva,CH
| | - Bernard Klein
- Biothérapie des cellules souches normales et cancéreuses
INSERM : U847Institut de recherche en biothérapieUniversité Montpellier ICHRU MontpellierCentre de recherche Inserm
99, rue puech villa
34197 MONTPELLIER CEDEX 5,FR
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- UFR de Médecine
Université Montpellier IMontpellier F-34060,FR
- * Correspondence should be adressed to: Bernard Klein
| |
Collapse
|
73
|
Au GG, Lincz LF, Enno A, Shafren DR. Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br J Haematol 2007; 137:133-41. [PMID: 17391493 DOI: 10.1111/j.1365-2141.2007.06550.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oncolytic viruses are attractive biological agents for the control of human malignancy. This study assessed the capacity of Coxsackievirus A21 (CVA21) to target and destroy multiple myeloma (MM) and precursor aberrant plasma cells in vitro using established MM cell lines and 15 patient bone marrow (BM) biopsies [n = 10 MM and five monoclonal gammopathy of undetermined significance (MGUS)]. Cell surface analysis revealed that all tumour cells lines expressed high levels of intercellular adhesion molecule-1 (ICAM-1) and decay-accelerating factor (DAF), the receptor molecules to which CVA21 can bind, leading to subsequent cell-entry and infection. MM cell lines were remarkably susceptible to CVA21 lytic infection, producing 100-1000-fold increases in viral progeny within 24 h. In contrast, normal peripheral blood cells were refractile to CVA21 infection. Furthermore, challenge of patient BM biopsies with CVA21 for 48 h resulted in specific purging of up to 98.7% of CD138+ plasma cells, with no significant decrease in progenitor cell function. Data generated in this study suggests that CVA21 virotherapy may have potential applications as a systemic anti-tumour agent for MM, or in the ex vivo purging of malignant plasma cells prior to autologous stem cell transplantation.
Collapse
Affiliation(s)
- Gough G Au
- The Picornaviral Research Unit, School of Biomedical Sciences, Faculty of Health, The University of Newcastle, Newcastle, NSW, Australia.
| | | | | | | |
Collapse
|
74
|
Voorhees PM, Orlowski RZ. Emerging Data on the Use of Anthracyclines in Combination with Bortezomib in Multiple Myeloma. ACTA ACUST UNITED AC 2007; 7 Suppl 4:S156-62. [PMID: 17562254 DOI: 10.3816/clm.2007.s.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since the inception of infusional vincristine/doxorubicin/pulsed dexamethasone (VAD) for the treatment of multiple myeloma, anthracyclines have remained an important class of antimyeloma agents. More recently, the introduction of pegylated liposomal doxorubicin with improved pharmacokinetic characteristics has led to the development of newer anthracycline-containing regimens with improved toxicity profiles. Bortezomib, a first in class reversible inhibitor of the proteasome, has also emerged as an important novel agent for the treatment of multiple myeloma and is currently approved for patients with relapsed/refractory disease progressing after 1 previous therapy. Although both classes of agents have potent proapoptotic activity, they also induce activation of an antiapoptotic prosurvival program that limits their own efficacy, a process known as inducible chemotherapy resistance. Importantly, in preclinical studies, each of these drugs has been shown to attenuate chemotherapy resistance induced by the other, and combinations of the 2 have demonstrated striking synergistic activity. Furthermore, early phase I/II clinical trials have shown impressive activity of pegylated liposomal doxorubicin and conventional doxorubicin in combination with bortezomib in patients with newly diagnosed and relapsed/refractory myeloma. Phase II/III clinical trials evaluating these regimens in patients with newly diagnosed and relapsed/refractory disease have recently completed accrual and will better define the role of these combinations in myeloma therapy. Herein, we review the preclinical data supporting the use of bortezomib with anthracyclines and the promising clinical data with these combinations.
Collapse
Affiliation(s)
- Peter M Voorhees
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
75
|
Ustundag Y, Bronk SF, Gores GJ. Proteasome inhibition-induces endoplasmic reticulum dysfunction and cell death of human cholangiocarcinoma cells. World J Gastroenterol 2007; 13:851-7. [PMID: 17352013 PMCID: PMC4065919 DOI: 10.3748/wjg.v13.i6.851] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine if proteasome inhibition induces apoptosis in human cholangiocarcinoma cells, and if so, to elucidate the cellular mechanisms.
METHODS: Studies were performed in the human KMCH, KMBC, and Mz-ChA-1 cholangiocarcinoma, and normal rat cell lines. MG132, a peptide aldehyde, which inhibits the chymotrypsin-like activity of the proteaosome was employed for this study. Apoptosis was assessed morphologically by 4’-6-Diamidino-2-phenylindole (DAPI) nuclear staining and fluorescence microscopy. Mitochondrial membrane potential was examined using a fluorescent unquenching assay. Ultrastructural changes during cell death were examined using transmission electron microscopy (TEM). Caspase 3/7 activity was assessed using an enzymatic-based fluorescent assay. Cytosolic-free calcium concentrations were measured using Fura-2 and digitized fluorescent microscopy.
RESULTS: MG132, a proteasome inhibitor, induced apoptosis in all the cholangiocarcinoma cell lines examined. In contrast, minimal cytotoxicity was observed in normal rat cholangiocytes. Apoptosis was time- and -concentration-dependent. There was no change in the mitochondrial membrane potential between treated and untreated cells. Ultrastructural examination by transmission electron microscopy displayed the classic features of apoptosis, but in addition, there was also dramatic vacuolization of the endoplasmic reticulum (ER). Unexpectedly, no increase in caspase 3/7 activity was observed in MG132 treated cells, nor did the pancaspase inhibitor, Q-VD-OPh prevent cell death. The protein synthesis inhibitor, cycloheximide, blocked apoptosis induced by proteosome inhibitor indicating that ER dysfunction was dependent upon the formation of new proteins.
CONCLUSION: Proteosome inhibition induces ER dysfunction and caspase-independent cell death selectively in human cholangiocarcinoma cells. Proteasome inhibitors warrant evaluation as anticancer agents for the treatment of human cholangiocarcinoma.
Collapse
Affiliation(s)
- Yucel Ustundag
- Mayo Clinic College of Medicine, 200 First Street SW, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
76
|
Duus J, Bahar HI, Venkataraman G, Ozpuyan F, Izban KF, Al-Masri H, Maududi T, Toor A, Alkan S. Analysis of expression of heat shock protein-90 (HSP90) and the effects of HSP90 inhibitor (17-AAG) in multiple myeloma. Leuk Lymphoma 2007; 47:1369-78. [PMID: 16923571 DOI: 10.1080/10428190500472123] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heat shock protein 90 (HSP90) is required for structural folding and maintenance of conformational integrity of various proteins, including several associated with cellular signaling. Recent studies utilizing 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of HSP90, demonstrated an antitumor effect in solid tumors. To test whether HSP90 could be targeted in multiple myeloma (MM) patients, we first investigated expression of HSP90 by immunofluorescence and flow cytometric analysis in a myeloma cell line (U266) and primary myeloma cells. Following demonstration of HSP90 expression in myeloma cells, archival samples of 32 MM patients were analysed by immunoperoxidase staining. Myeloma cells in all patients showed strong cytoplasmic expression of HSP90 in all samples and 55% also demonstrated concurrent nuclear immunopositivity. Treatment of U266 and primary MM cells with 17AAG resulted in significantly increased apoptosis compared to untreated control cells. Analysis of anti-apoptotic BCL2 family proteins and akt in MM cells incubated with 17-AAG revealed down-regulation of BCL-2, BCL-XL, MCL-1 and akt. Furthermore, although a low concentration of bortezomib resulted in no cell death, a combination of 17AAG and bortezomib treatment revealed a synergistic apoptotic effect on the U266 cell line. These data suggest that targeted inhibition of HSP90 may prove to be a valid and innovative strategy for the development of future therapeutic options for MM patients.
Collapse
Affiliation(s)
- J Duus
- Department of Pathology and Laboratory Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Zavrski I, Jakob C, Kaiser M, Fleissner C, Heider U, Sezer O. Molecular and clinical aspects of proteasome inhibition in the treatment of cancer. Recent Results Cancer Res 2007; 176:165-76. [PMID: 17607924 DOI: 10.1007/978-3-540-46091-6_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The proteasome is a multicatalytic threonine protease responsible for intracellular protein turnover in eukaryotic cells, including the processing and degradation of several proteins involved in cell cycle control and the regulation of apoptosis. Preclinical studies have shown that the treatment with proteasome inhibitors results in decreased proliferation, induction of apoptosis, and sensitization of tumor cells against conventional chemotherapeutic agents and irradiation. The effects were conferred to stabilization of p21, p27, Bax, p53, I-KB, and the resulting inhibition of the nuclear factor-KB (NF-KB) activation. Bortezomib is the first proteasome inhibitor that has entered clinical trials. In multiple myeloma, both the FDA (United States Food and Drug Administration) and EMEA (European Medicine Evaluation Agency) granted an approval for the use of bortezomib (Velcade, Millennium Pharmaceuticals, Cambridge, MA, USA) for the treatment of relapsed multiple myeloma. At present, clinical trials are examining the activity in a variety of solid tumors and hematological malignancies.
Collapse
Affiliation(s)
- Ivana Zavrski
- Department of Hematology and Oncology, Charité Universitätsmedizin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
78
|
Bhardwaj A, Sethi G, Vadhan-Raj S, Bueso-Ramos C, Takada Y, Gaur U, Nair AS, Shishodia S, Aggarwal BB. Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 2006; 109:2293-302. [PMID: 17164350 DOI: 10.1182/blood-2006-02-003988] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whether resveratrol, a component of red grapes, berries, and peanuts, could suppress the proliferation of multiple myeloma (MM) cells by interfering with NF-kappaB and STAT3 pathways, was investigated. Resveratrol inhibited the proliferation of human multiple myeloma cell lines regardless of whether they were sensitive or resistant to the conventional chemotherapy agents. This stilbene also potentiated the apoptotic effects of bortezomib and thalidomide. Resveratrol induced apoptosis as indicated by accumulation of sub-G(1) population, increase in Bax release, and activation of caspase-3. This correlated with down-regulation of various proliferative and antiapoptotic gene products, including cyclin D1, cIAP-2, XIAP, survivin, Bcl-2, Bcl-xL, Bfl-1/A1, and TRAF2. In addition, resveratrol down-regulated the constitutive activation of AKT. These effects of resveratrol are mediated through suppression of constitutively active NF-kappaB through inhibition of IkappaBalpha kinase and the phosphorylation of IkappaBalpha and of p65. Resveratrol inhibited both the constitutive and the interleukin 6-induced activation of STAT3. When we examined CD138(+) plasma cells from patients with MM, resveratrol inhibited constitutive activation of both NF-kappaB and STAT3, leading to down-regulation of cell proliferation and potentiation of apoptosis induced by bortezomib and thalidomide. These mechanistic findings suggest that resveratrol may have a potential in the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Anjana Bhardwaj
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Recent leaps in elucidating the biology of myeloma, particularly the intracellular pathways and the complex interaction with the bone marrow microenvironment, have resulted in an unprecedented surge of novel, targeted therapies and therapeutic regimens. There are currently over 30 new agents being tested in the treatment of multiple myeloma (MM). Many of these are novel, targeted agents that have demonstrated significant efficacy and prolonged survival. In this review, we summarize the current understanding of the mechanisms of action of novel therapies being tested in the preclinical and clinical settings in MM. These include agents that act directly on the intracellular signaling pathways, cell maintenance processes, and cell surface receptors. Finally, we present the clinical responses to some of these agents when used alone or in combination in clinical trials of patients with MM. Indeed, MM has become a model disease for the development of novel, therapeutic agents.
Collapse
Affiliation(s)
| | - Irene M. Ghobrial
- Harvard Medical School,
Boston, MA,
USA
- Jerome Lipper Multiple Myeloma Center,
Department of Medical Oncology,
Dana Farber Cancer Institute,
Boston, MA,
USA
| | - Kenneth C. Anderson
- Harvard Medical School,
Boston, MA,
USA
- Jerome Lipper Multiple Myeloma Center,
Department of Medical Oncology,
Dana Farber Cancer Institute,
Boston, MA,
USA
- *Kenneth C. Anderson:
| |
Collapse
|
80
|
Bassères DS, Baldwin AS. Nuclear factor-κB and inhibitor of κB kinase pathways in oncogenic initiation and progression. Oncogene 2006; 25:6817-30. [PMID: 17072330 DOI: 10.1038/sj.onc.1209942] [Citation(s) in RCA: 538] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abundant data support a key role for the transcription factor nuclear factor-kappaB (NF-kappaB) signaling pathway in controlling the initiation and progression of human cancer. NF-kappaB and associated regulatory proteins such as IkappaB kinase (IKK) are activated downstream of many oncoproteins and there is much evidence for the activation of NF-kappaB-dependent target genes in a variety of solid tumors and hematologic malignancies. This review focuses on the mechanisms by which the NF-kappaB pathway is activated in cancer and on the oncogenic functions controlled by activated NF-kappaB. Additionally, the effects of NF-kappaB activation in tumors relative to cancer therapy are also discussed.
Collapse
Affiliation(s)
- D S Bassères
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7295, USA
| | | |
Collapse
|
81
|
Nagy K, Székely-Szüts K, Izeradjene K, Douglas L, Tillman M, Barti-Juhász H, Dominici M, Spano C, Luca Cervo G, Conte P, Houghton JA, Mihalik R, Kopper L, Peták I. Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of smac/DIABLO from the mitochondria. Pathol Oncol Res 2006; 12:133-42. [PMID: 16998592 DOI: 10.1007/bf02893359] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 09/08/2006] [Indexed: 02/02/2023]
Abstract
The synergistic interaction between proteasome inhibitors and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising approach to induce cell death in tumor cells. However, the molecular and biochemical mechanisms of this synergism have been proven to be cell type specific. We therefore focused our investigation on TRAIL-resistant colon carcinoma cells in this study. DNA fragmentation, mitochondrial membrane depolarization and increased caspase-3-like enzyme activity was exclusively induced only by combined treatment with proteasome inhibitors (epoxomicin, MG132, bortezomib/PS-341) and TRAIL. The expression level of anti-apoptotic proteins (XIAP, survivin, Bcl-2, Bcl-XL), regulated by NF-kappaB transcription factor, was not effected by any of these treatments. TRAIL alone induced only partial activation of caspase-3 (p20), while the combination of TRAIL and proteasome inhibition led to the full proteolytic activation of caspase-3 (p17). Only the combination treatment induced marked membrane depolarization and the release of cytochrome c, HtrA2/Omi and Smac/DIABLO. Apoptosis-inducing factor (AIF) was not released in any of these conditions. These results are consistent with a model where the full activation of caspase-3 by caspase-8 is dependent on the release of Smac/DIABLO in response to the combined treatment. This molecular mechanism, independent of the inhibition NF-kappaB activity, may provide rationale for the combination treatment of colon carcinomas with proteasome inhibitors and recombinant TRAIL or agonistic antibody of TRAIL receptors.
Collapse
Affiliation(s)
- Katalin Nagy
- Ist Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Keutgens A, Robert I, Viatour P, Chariot A. Deregulated NF-kappaB activity in haematological malignancies. Biochem Pharmacol 2006; 72:1069-80. [PMID: 16854381 DOI: 10.1016/j.bcp.2006.06.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 06/07/2006] [Accepted: 06/09/2006] [Indexed: 01/22/2023]
Abstract
The NF-kappaB family of transcription factors plays key roles in the control of cell proliferation and apoptosis. Constitutive NF-kappaB activation is a common feature for most haematological malignancies and is therefore believed to be a crucial event for enhanced proliferation and survival of these malignant cells. In this review, we will describe the molecular mechanisms underlying NF-kappaB deregulation in haematological malignancies and will highlight what is still unclear in this field, 20 years after the discovery of this transcription factor.
Collapse
Affiliation(s)
- Aurore Keutgens
- Laboratory of Medical Chemistry, Center for Cellular and Molecular Therapy, Center for Biomedical Integrative Genoproteomics, University of Liege, Tour de Pathologie, +3 B23, CHU Sart-Tilman, 4000 Liège, Belgium
| | | | | | | |
Collapse
|
83
|
Camps C, Iranzo V, Bremnes RM, Sirera R. Anorexia–Cachexia syndrome in cancer: implications of the ubiquitin–proteasome pathway. Support Care Cancer 2006; 14:1173-83. [PMID: 16819628 DOI: 10.1007/s00520-006-0097-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Accepted: 05/31/2006] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Malnutrition is a common problem in cancer patients. Its incidence varies according to disease stage (between 15 and 90%) and is considered a possible prognostic factor for therapeutic response and survival. It is also one of the causes contributing to the increase in morbidity and mortality in patients. Tumor cachexia is defined as a nutritional defect caused by tumor growth in the patient and presents as a significant weight loss. This weight loss is mainly caused by a degradation of skeletal muscle proteins. CONCLUSION The ubiquitin-proteasome system is the most important pathway of protein degradation. As a regulatory system governing protein half-life, it is involved in the regulation of the cell cycle, signal transmission, immune system response, apoptosis, and oncogenesis. Knowledge of the molecular pathways involved in the induction of cancer-associated cachexia will favor a more rational approach to its treatment as well as possible quality of life and survival benefit for the patient.
Collapse
Affiliation(s)
- Carlos Camps
- Servicio de Oncología Médica, Consorcio Hospital General Universitario de Valencia, Av. Tres Cruces s/n, 46014, Valencia, Spain.
| | | | | | | |
Collapse
|
84
|
|
85
|
Sun C, Hu Y, Liu X, Wu T, Wang Y, He W, Wei W. Resveratrol downregulates the constitutional activation of nuclear factor-kappaB in multiple myeloma cells, leading to suppression of proliferation and invasion, arrest of cell cycle, and induction of apoptosis. ACTA ACUST UNITED AC 2006; 165:9-19. [PMID: 16490592 DOI: 10.1016/j.cancergencyto.2005.06.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Accepted: 06/14/2005] [Indexed: 11/25/2022]
Abstract
Resveratrol has been proposed to act as a chemopreventive agent in numerous epidemiologic studies and has been shown to inhibit proliferation of various tumor cells in vitro. In the present study, we investigated the antitumor effects of resveratrol on multiple myeloma (MM) cells and the mechanisms involved. Our findings indicated that resveratrol inhibited proliferation of tumor cells in a dose- [corrected] dependent manner by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and [3H]thymidine incorporation assay. Resveratrol also enhanced the inhibitory effect of dexamethasone on the growth of MM cells by MTT assay. Flow cytometric analysis demonstrated that resveratrol arrested the cells at the G1 and S phases of the cell cycle. Because nuclear factor-kappaB (NF-kappaB) plays a key role in cell survival and proliferation of human MM cells, we tested the effect of resveratrol on NF-kappaB expression by Western blot analysis and immunofluorescence. NF-kappaB was constitutively active in all human MM cell lines examined, and resveratrol down-regulated NF-kappaB expression in all cell lines. Resveratrol also down-regulated the expression of NF-kappaB-regulated gene products by Western blot analysis, gelatin zymography, and enzyme-linked immunosorbent assay, including interleukin-6, Bcl-2, Bcl-xL, XIAP, c-IAP, vascular endothelial growth factor (VEGF), and matrix metalloproteinase-9 (MMP-9), which modulates an array of signals controlling cellular survival and proliferation and tumor promotion. Indeed, annexin V-fluoroisothyocyanate and Transwell invasion analyses revealed that incubation of MM cells with resveratrol resulted in apoptotic cell death and inhibition of invasion. In conclusion, these data suggest that resveratrol is an effective in vitro inhibitor of NF-kappaB in human MM cells. Resveratrol plays a role in suppressing the proliferation of MM cells and induces apoptosis, thus providing the molecular basis for the treatment of MM patients with this compound.
Collapse
Affiliation(s)
- Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | |
Collapse
|
86
|
Venkataraman G, Maududi T, Ozpuyan F, Bahar HI, Izban KF, Qin JZ, Alkan S. Induction of apoptosis and down regulation of cell cycle proteins in mantle cell lymphoma by flavopiridol treatment. Leuk Res 2006; 30:1377-84. [PMID: 16624404 DOI: 10.1016/j.leukres.2006.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/25/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
Typical mantle cell lymphoma (MCL) is a distinct B-cell non-Hodgkin's lymphoma associated with over-expression of cyclin D1 related to translocation between the IgH and BCL-1 genes. Due to the important functional interaction between cyclin D1 and cyclin dependent kinases, cyclin dependent kinase inhibitors such as flavopiridol are under consideration for treatment of patients with MCL. The present study investigated the in vitro effects of flavopiridol on the MCL cell line (JeKo-1). Flavopiridol at a dose of 10nmol/L induced apoptosis by 6h of treatment as noted by flow cytometric analysis, morphologic examination and Western blotting. The cleavage of procaspase-3 and PARP and the decrease of flavopiridol-induced apoptosis by pan-caspase inhibition suggested that the caspase pathway serves an important role in the apoptotic process. Furthermore, MCL cells exposed to flavopiridol showed down regulation of key cell cycle proteins acting at the restriction point control between the G1 and S phases. The onset of flavopiridol-induced apoptosis also coincided with the down regulation of Mcl-1, anti-apoptotic protein. Collectively, our data indicates that flavopiridol may have significant therapeutic potential in the context of MCL.
Collapse
Affiliation(s)
- Girish Venkataraman
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Abstract
Nuclear factor-kappaB (NF-kappaB), a stress-regulated transcription factor belonging to the Rel family, has a pivotal role in the control of the inflammatory and the innate immune responses. Its activation rapidly induces the transcription of a variety of genes encoding cell adhesion molecules, inflammatory and chemotactic cytokines, cytokine receptors, and enzymes that produce inflammatory mediators. More recently, NF-kappaB activation has been connected with multiple aspects of oncogenesis, including the control of cell proliferation, migration, cell cycle progression, and apoptosis. Interestingly, NF-kappaB is constitutively activated in several types of cancer cells, including hematological and epithelial malignancies. In addition, activation of NF-kappaB in cancer cells by chemotherapy or radiation therapy has been associated with the acquisition of resistance to apoptosis, which has emerged as a significant impediment to effective cancer treatment. Selective cyclopentenone inhibitors of the IkappaB kinase, the key enzyme controlling NF-kappaB activation, were recently shown to be potent inducers of apoptosis in chemoresistant lymphoid malignancies. Increasing evidence, summarized in this review, indicates that the development of selective NF-kappaB inhibitors may represent a promising therapeutic tool to sensitize tumor cells to apoptosis and increase the efficacy of conventional anticancer drugs in a wide spectrum of malignancies.
Collapse
Affiliation(s)
- Roberto Piva
- Department of Pathology and Center for Experimental Research and Medical Studies (CERMS), University of Turin, Turin, Italy
| | | | | |
Collapse
|
88
|
Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G. Targeting NF-κB in hematologic malignancies. Cell Death Differ 2006; 13:748-58. [PMID: 16498458 DOI: 10.1038/sj.cdd.4401874] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transcription factor nuclear factor kappa B (NF-kappaB) can intervene in oncogenesis by virtue of its capacity to regulate the expression of a plethora of genes that modulate apoptosis, and cell survival as well as proliferation, inflammation, tumor metastasis and angiogenesis. Different reports demonstrate the intrinsic activation of NF-kappaB in lymphoid and myeloid malignancies, including preneoplastic conditions such as myelodysplastic syndromes, underscoring its implication in malignant transformation. Targeting intrinsic NF-kappaB activation, as well as its upstream and downstream regulators, may hence constitute an additional approach to the oncologist's armamentarium. Several small inhibitors of the NF-kappaB-activatory kinase IkappaB kinase, of the proteasome, or of the DNA binding of NF-kappaB subunits are under intensive investigation. Currently used cytotoxic agents can induce NF-kappaB activation as an unwarranted side effect, which confers apoptosis suppression and hence resistance to these drugs. Thus, NF-kappaB inhibitory molecules may be clinically useful, either as single therapeutic agents or in combination with classical chemotherapeutic agents, for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- T Braun
- Centre National de la Recherche Scientifique, UMR8125, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
The proteasome, a multicatalytic proteinase complex, is responsible for the majority of intracellular protein degradation. Pharmacologic inhibitors of the proteasome possess in vitro and in vivo antitumor activity, and bortezomib, the first such agent to undergo clinical testing, has significant efficacy against multiple myeloma and non-Hodgkin lymphoma (NHL). Preclinical studies demonstrate that proteasome inhibition potentiates the activity of other cancer therapeutics, in part by downregulating chemoresistance pathways. Early clinical studies of bortezomib-based combinations, showing encouraging activity, support this observation. Molecular characterization of resistance to proteasome inhibitors has revealed novel therapeutic targets for sensitizing malignancies to these agents, such as the heat shock pathway. Below, we review the pharmacologic, preclinical, and clinical data that have paved the way for the use of proteasome inhibitors for cancer therapy; outline strategies aimed at enhancing the efficacy of proteasome inhibitors; and review other potential targets in the ubiquitin proteasome pathway for the treatment of cancer.
Collapse
Affiliation(s)
- Peter M Voorhees
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA.
| | | |
Collapse
|
90
|
Liang MC, Bardhan S, Pace EA, Rosman D, Beutler JA, Porco JA, Gilmore TD. Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochem Pharmacol 2005; 71:634-45. [PMID: 16360644 DOI: 10.1016/j.bcp.2005.11.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/10/2005] [Accepted: 11/15/2005] [Indexed: 01/04/2023]
Abstract
Transcription factor NF-kappaB is constitutively active in many human chronic inflammatory diseases and cancers. Epoxyquinone A monomer (EqM), a synthetic derivative of the natural product epoxyquinol A, has previously been shown to be a potent inhibitor of tumor necrosis factor-alpha (TNF-alpha)-induced activation of NF-kappaB, but the mechanism by which EqM inhibits NF-kappaB activation was not known. In this report, we show that EqM blocks activation of NF-kappaB by inhibiting two molecular targets: IkappaB kinase IKKbeta and NF-kappaB subunit p65. EqM inhibits TNF-alpha-induced IkappaBalpha phosphorylation and degradation by targeting IKKbeta, and an alanine substitution for Cys179 in the activation loop of IKKbeta makes it resistant to EqM-mediated inhibition. EqM also directly inhibits DNA binding by p65, but not p50; moreover, replacement of Cys38 in p65 with Ser abolishes EqM-mediated inhibition of DNA binding. Pretreatment of cells with reducing agent dithiothreitol dose-dependently reduces EqM-mediated inhibition of NF-kappaB, further suggesting that EqM directly modifies the thiol group of Cys residues in protein targets. Modifications of the exocyclic alkene of EqM substantially reduce EqM's ability to inhibit NF-kappaB activation. In the human SUDHL-4 lymphoma cell line, EqM inhibits both proliferation and NF-kappaB DNA binding, and activates caspase-3 activity. EqM also effectively inhibits the growth of human leukemia, kidney, and colon cancer cell lines in the NCI's tumor cell panel. Among six colon cancer cell lines, those with low amounts of constitutive NF-kappaB DNA-binding activity are generally more sensitive to growth inhibition by EqM. Taken together, these results suggest that EqM inhibits growth and induces cell death in tumor cells through a mechanism that involves inhibition of NF-kappaB activity at multiple steps in the signaling pathway.
Collapse
Affiliation(s)
- Mei-Chih Liang
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Ito K, Nakazato T, Xian MJ, Yamada T, Hozumi N, Murakami A, Ohigashi H, Ikeda Y, Kizaki M. RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 2005; 65:4417-24. [PMID: 15899834 DOI: 10.1158/0008-5472.can-05-0072] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.
Collapse
Affiliation(s)
- Keisuke Ito
- Division of Hematology, Department of Internal Medicine and Pathology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Amit-Vazina M, Shishodia S, Harris D, Van Q, Wang M, Weber D, Alexanian R, Talpaz M, Aggarwal BB, Estrov Z. Atiprimod blocks STAT3 phosphorylation and induces apoptosis in multiple myeloma cells. Br J Cancer 2005; 93:70-80. [PMID: 15970928 PMCID: PMC2361492 DOI: 10.1038/sj.bjc.6602637] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) accounts for 1 % of all cancer deaths. Although treated aggressively, almost all myelomas eventually recur and become resistant to treatment. Atiprimod (2-(3-Diethylaminopropyl)-8,8-dipropyl-2-azaspiro[4,5] decane dimaleate) has exerted anti-inflammatory activities and inhibited oeteoclast-induced bone resorption in animal models and been well tolerated in patients with rheumatoid arthritis in phase I clinical trials. Therefore, we investigated its activity in MM cells and its mechanism of action. We found that Atiprimod inhibited proliferation of the myeloma cell lines U266-B1, OCI-MY5, MM-1, and MM-1R in a time- and dose-dependent manner. Atiprimod blocked U266-B1 myeloma cells in the G0/G1 phase, preventing cell cycle progression. Furthermore, Atiprimod inhibited signal transducer and activator of transcription (STAT) 3 activation, blocking the signalling pathway of interleukin-6, which contributes to myeloma cell proliferation and survival, and downregulated the antiapoptotic proteins Bcl-2, Bcl-XL, and Mcl-1. Incubation of U266-B1 myeloma cells with Atiprimod induced apoptosis through the activation of caspase 3 and subsequent cleavage of the DNA repair enzyme poly(adenosine diphosphate-ribose) polymerase. Finally, Atiprimod suppressed myeloma colony-forming cell proliferation in fresh marrow cells from five patients with newly diagnosed MM in a dose-dependent fashion. These data suggest that Atiprimod has a role in future therapies for MM.
Collapse
Affiliation(s)
- M Amit-Vazina
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - S Shishodia
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - D Harris
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Q Van
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - M Wang
- Department Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - D Weber
- Department Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - R Alexanian
- Department Lymphoma/Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - M Talpaz
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - B B Aggarwal
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Z Estrov
- Department of Bioimmunotherapy, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
- Department of Leukemia, Unit 428, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; E-mail:
| |
Collapse
|
93
|
Shishodia S, Amin HM, Lai R, Aggarwal BB. Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 2005; 70:700-13. [PMID: 16023083 DOI: 10.1016/j.bcp.2005.04.043] [Citation(s) in RCA: 353] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 04/14/2005] [Indexed: 12/19/2022]
Abstract
Human mantle cell lymphoma (MCL), an aggressive B cell non-Hodgkin's lymphoma, is characterized by the overexpression of cyclin D1 which plays an essential role in the survival and proliferation of MCL. Because of MCL's resistance to current chemotherapy, novel approaches are needed. Since MCL cells are known to overexpress NF-kappaB regulated gene products (including cyclin D1), we used curcumin, a pharmacologically safe agent, to target NF-kappaB in a variety of MCL cell lines. All four MCL cell lines examined had overexpression of cyclin D1, constitutive active NF-kappaB and IkappaB kinase and phosphorylated forms of IkappaBalpha and p65. This correlated with expression of TNF, IkappaBalpha, Bcl-2, Bcl-xl, COX-2 and IL-6, all regulated by NF-kappaB. On treatment of cells with curcumin, however, downregulated constitutive active NF-kappaB and inhibited the consitutively active IkappaBalpha kinase (IKK), and phosphorylation of IkappaBalpha and p65. Curcumin also inhibited constitutive activation of Akt, needed for IKK activation. Consequently, the expression of all NF-kappaB-regulated gene products, were downregulated by the polyphenol leading to the suppression of proliferation, cell cycle arrest at the G1/S phase of the cell cycle and induction of apoptosis as indicated by caspase activation, PARP cleavage, and annexin V staining. That NF-kappaB activation is directly linked to the proliferation of cells, is also indicated by the observation that peptide derived from the IKK/NEMO-binding domain and p65 suppressed the constitutive active NF-kappaB complex and inhibited the proliferation of MCL cells. Constitutive NF-kappaB activation was found to be due to TNF, as anti-TNF antibodies inhibited both NF-kappaB activation and proliferation of cells. Overall, our results indicate that curcumin inhibits the constitutive NF-kappaB and IKK leading to suppression of expression of NF-kappaB-regulated gene products that results in the suppression of proliferation, cell cycle arrest, and induction of apoptosis in MCL.
Collapse
Affiliation(s)
- Shishir Shishodia
- Cytokine Research Section, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
94
|
Whang PG, Gamradt SC, Gates JJ, Lieberman JR. Effects of the proteasome inhibitor bortezomib on osteolytic human prostate cancer cell metastases. Prostate Cancer Prostatic Dis 2005; 8:327-34. [PMID: 16130017 DOI: 10.1038/sj.pcan.4500823] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prostate adenocarcinoma is the most common malignancy diagnosed in males, and bone metastases remain a significant source of morbidity and mortality in this population. The ubiquitin-proteasome cascade is responsible for the degradation of intracellular proteins, and this pathway is thought to play an essential role in the development of malignancies by altering the levels of various proteins involved in the regulation of cell division. Proteasome inhibitors represent a class of chemotherapeutic agents that have been shown to inhibit tumor growth by a number of different mechanisms. Using a murine intratibial injection model, we examined the effects of the proteasome inhibitor bortezomib on the establishment and progression of osteolytic bone lesions induced by human CaP cells (PC-3 cell line). In this study, the intravenous administration of bortezomib (1 mg/kg) did not prevent the initial formation of osteolytic lesions but did appear to inhibit their growth in a time-dependent fashion. In contrast, bortezomib therapy effectively inhibited the establishment and progression of subcutaneous PC-3 tumors, which served as a positive control. These results suggest that proteasome inhibitors such as bortezomib may represent a novel adjunctive therapy for the treatment of osteolytic skeletal metastases, especially when treatment is initiated early during the disease process.
Collapse
Affiliation(s)
- P G Whang
- Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
95
|
Miura H, Maeda M, Yamamoto N, Yamaoka S. Distinct IκB kinase regulation in adult T cell leukemia and HTLV-I-transformed cells. Exp Cell Res 2005; 308:29-40. [PMID: 15878527 DOI: 10.1016/j.yexcr.2005.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 11/29/2022]
Abstract
We have recently shown constitutive IkappaB kinase (IKK) activation and aberrant p52 expression in adult T cell leukemia (ATL) cells that do not express human T cell leukemia virus type I (HTLV-I) Tax, but the mechanism of IKK activation in these cells has remained unknown. Here, we demonstrate distinct regulation of IKK activity in ATL and HTLV-I-transformed T cells in response to protein synthesis inhibition or arsenite treatment. Protein synthesis inhibition for 4 h by cycloheximide (CHX) barely affects IKK activity in Tax-positive HTLV-I-transformed cells, while it diminishes IKK activity in Tax-negative ATL cells. Treatment of ATL cells with a proteasome inhibitor MG132 prior to protein synthesis inhibition reverses the inhibitory effect of CHX, and MG132 alone greatly enhances IKK activity. In addition, treatment of HTLV-I-transformed cells with arsenite for 1 h results in down-regulation of IKK activity without affecting Tax expression, while 8 h of arsenite treatment does not impair IKK activity in ATL cells. These results indicate that a labile protein sensitive to proteasome-dependent degradation governs IKK activation in ATL cells, and suggest a molecular mechanism of IKK activation in ATL cells distinct from that in HTLV-I-transformed T cells.
Collapse
Affiliation(s)
- Hideyasu Miura
- Department of Molecular Virology, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | |
Collapse
|
96
|
Tatetsu H, Okuno Y, Nakamura M, Matsuno F, Sonoki T, Taniguchi I, Uneda S, Umezawa K, Mitsuya H, Hata H. Dehydroxymethylepoxyquinomicin, a novel nuclear factor-κB inhibitor, induces apoptosis in multiple myeloma cells in an IκBα-independent manner. Mol Cancer Ther 2005; 4:1114-20. [PMID: 16020669 DOI: 10.1158/1535-7163.mct-04-0198] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) is constitutively activated in multiple myeloma cells. Several proteasome inhibitors have been shown to be effective against multiple myeloma and may act by inhibiting degradation of IkappaBalpha. Here, we examined the biological effects of a new type of NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), which is reported to directly inhibit the cytoplasm-to-nucleus translocation of NF-kappaB. A multiple myeloma cell line, 12PE, which is defective for IkappaBalpha protein, was utilized to determine if IkappaBalpha is concerned with the action of DHMEQ. Meanwhile, U266 was used as a multiple myeloma cell line with normal IkappaBalpha. A proteasome inhibitor, gliotoxin, which is an inhibitor of degradation of phosphorylated IkappaBalpha, failed to inhibit translocation of NF-kappaB in 12PE. In contrast, DHMEQ equally inhibited translocation of NF-kappaB to the nucleus and induced apoptosis to both multiple myeloma cell lines, suggesting that apoptosis resulting from DHMEQ is IkappaBalpha independent. DHMEQ also induced apoptosis in freshly isolated multiple myeloma cells. After DHMEQ treatment, cleavage of caspase-3 and down-regulation of cyclin D1 were observed in both cell lines. In addition, administration of DHMEQ resulted in a significant reduction in tumor volume in a plasmacytoma mice model compared with control mice. Our results show that DHMEQ could potentially be a new type of molecular target agent for multiple myeloma.
Collapse
Affiliation(s)
- Hiro Tatetsu
- Department of Hematology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Piva R, Gianferretti P, Ciucci A, Taulli R, Belardo G, Santoro MG. 15-Deoxy-Δ12,14-prostaglandin J2 induces apoptosis in human malignant B cells: an effect associated with inhibition of NF-κB activity and down-regulation of antiapoptotic proteins. Blood 2005; 105:1750-8. [PMID: 15498850 DOI: 10.1182/blood-2004-04-1360] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AbstractCyclopentenone prostaglandins are potent inhibitors of nuclear factor-κB (NF-κB), a transcription factor with a critical role in promoting inflammation and connected with multiple aspects of oncogenesis and cancer cell survival. In the present report, we investigated the role of NF-κB in the antineoplastic activity of the cyclopentenone prostaglandin 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) in multiple myeloma (MM) and Burkitt lymphoma (BL) cells expressing constitutively active NF-κB. 15d-PGJ2 was found to suppress constitutive NF-κB activity and potently induce apoptosis in both types of B-cell malignancies. 15d-PGJ2-induced apoptosis occurs through multiple caspase activation pathways involving caspase-8 and caspase-9, and is prevented by pretreatment with the pan-caspase inhibitor ZVAD (z-Val-Ala-Asp). NF-κB inhibition is accompanied by rapid down-regulation of NF-κB-dependent antiapoptotic gene products, including cellular inhibitor-of-apoptosis protein 1 (cIAP-1), cIAP-2, X-chromosome-linked inhibitor-of-apoptosis protein (XIAP), and FLICE-inhibitory protein (cFLIP). These effects were mimicked by the proteasome inhibitor MG-132, but not by the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist troglitazone, suggesting that 15d-PGJ2-induced apoptosis is independent of PPAR-γ. Knockdown of the NF-κB p65-subunit by lentiviral-mediated shRNA interference also resulted in apoptosis induction in malignant B cells with constitutively active NF-κB. The results indicate that inhibition of NF-κB plays a major role in the proapoptotic activity of 15d-PGJ2 in aggressive B-cell malignancies characterized by aberrant regulation of NF-κB. (Blood. 2005;105:1750-1758)
Collapse
Affiliation(s)
- Roberto Piva
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
98
|
van de Donk NW, Lokhorst HM, Nijhuis EH, Kamphuis MM, Bloem AC. Geranylgeranylated Proteins are Involved in the Regulation of Myeloma Cell Growth. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.429.11.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Purpose: Prenylation is essential for membrane localization and participation of proteins in various signaling pathways. This study examined the role of farnesylated and geranylgeranylated proteins in the regulation of myeloma cell proliferation.
Experimental Design: Antiproliferative and apoptotic effects of various modulators of farnesylated and geranylgeranylated proteins were investigated in myeloma cells.
Results: Depletion of geranylgeranylpyrophosphate inhibited myeloma cell proliferation through accumulation of cells in G1 phase of the cell cycle and loss of cells in S phase. In contrast, depletion of farnesylpyrophosphate had no or only minor effects. Furthermore, inhibition of geranylgeranyl transferase I activity was more effective in reducing myeloma cell growth when compared with inhibition of farnesyl transferase activity. This indicates that protein geranylgeranylation is important for myeloma cell proliferation and cell cycle progression through G1. Geranylgeranylated target proteins involved in the control of proliferation include GTPases, such as Rac-1, Cdc42, and RhoA. Inhibition of Rho, Rac, and Cdc42 GTPases by toxin B reduced proliferation, without affecting cell viability, whereas specific inhibition of Rho GTPases by C3 exoenzyme was without effect. This suggests a role for Rac and/or Cdc42 GTPases in myeloma cell growth. Rac-1 activity was found in all myeloma cell lines and was suppressed by the depletion of intracellular pools of geranylgeranylpyrophosphate, whereas interleukin-6 rapidly induced Rac-1 activation. Furthermore, dominant-negative Tat-Rac-1 reduced myeloma cell proliferation, whereas constitutively active Tat-Rac-1 enhanced proliferation.
Conclusion: These results indicate that protein geranylgeranylation is essential for myeloma cell proliferation and suggest that Rac-1 is a regulator of myeloma cell growth.
Collapse
Affiliation(s)
| | - Henk M. Lokhorst
- 3Hematology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | |
Collapse
|
99
|
Taniguchi I, Hata H, Sonoki T. Down-regulation of Cyclin D3 by Small-interfering RNA Induces Cell Cycle Arrest and Apoptosis through the Dissociation of p27Kip1 in a t(6; 14) (p21; q32) Positive Myeloma Cell Line. J Clin Exp Hematop 2005. [DOI: 10.3960/jslrt.45.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
100
|
Yinjun L, Jie J, Yungui W. Triptolide inhibits transcription factor NF-kappaB and induces apoptosis of multiple myeloma cells. Leuk Res 2005; 29:99-105. [PMID: 15541481 DOI: 10.1016/j.leukres.2004.05.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Accepted: 05/04/2004] [Indexed: 11/19/2022]
Abstract
Triptolide has been reported to be effective in the treatment of auto-immune diseases. This study investigates the cytotoxic function of triptolide on multiple myeloma (MM) cells. We found that triptolide inhibited the proliferation of both RPMI8226 and U266 cells in a dose-dependent manner (10-80 ng/mL). Triptolide induced apoptosis in MM cells through activation of the cystein protease caspase 8, 9 and 3, and subsequent cleavage of the DNA repair enzyme poly (ADP-ribose) polymerase. Apoptosis was confirmed with cell-cycle analysis and annexin V staining. Moreover, triptolide down-regulated nuclear factor (NF)-kappaB activity in MM cell lines. In addition, triptolide also induced chemosensitivity to doxorubicin and suppressed cell proliferation of fresh MM cells. Therefore, triptolide appears to be a potent inducer of apoptosis in myeloma cells, and might have some benefit in the treatment of myeloma patients.
Collapse
Affiliation(s)
- Lou Yinjun
- Department of Hematology, Institute of Hematology, The First Affiliated Hospital of ZheJiang University, Hangzhou, ZheJiang 310003, China
| | | | | |
Collapse
|