51
|
|
52
|
Tudzynski B. Nitrogen regulation of fungal secondary metabolism in fungi. Front Microbiol 2014; 5:656. [PMID: 25506342 PMCID: PMC4246892 DOI: 10.3389/fmicb.2014.00656] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 11/13/2014] [Indexed: 11/13/2022] Open
Abstract
Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability.
Collapse
Affiliation(s)
- Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfaelische Wilhelms-University Muenster Muenster, Germany
| |
Collapse
|
53
|
Michielse CB, Studt L, Janevska S, Sieber CMK, Arndt B, Espino JJ, Humpf HU, Güldener U, Tudzynski B. The global regulator FfSge1 is required for expression of secondary metabolite gene clusters but not for pathogenicity in Fusarium fujikuroi. Environ Microbiol 2014; 17:2690-708. [PMID: 25115968 DOI: 10.1111/1462-2920.12592] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 08/04/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
The plant pathogenic fungus Fusarium fujikuroi is the causal agent of bakanae disease on rice due to its ability to produce gibberellins. Besides these phytohormones, F. fujikuroi is able to produce several other secondary metabolites (SMs). Although much progress has been made in the field of secondary metabolism, the transcriptional regulation of SM biosynthesis is complex and still incompletely understood. Environmental conditions, global as well as pathway-specific regulators and chromatin remodelling have been shown to play major roles. Here, the role of FfSge1, a homologue of the morphological switch regulators Wor1 and Ryp1 in Candida albicans and Histoplasma capsulatum, respectively, is explored with emphasis on secondary metabolism. FfSge1 is not required for formation of conidia and pathogenicity but is involved in vegetative growth. Transcriptome analysis of the mutant Δffsge1 compared with the wild type, as well as comparative chemical analysis between the wild type, Δffsge1 and OE:FfSGE1, revealed that FfSge1 functions as a global activator of secondary metabolism in F. fujikuroi. Double mutants of FfSGE1 and other SM regulatory genes brought insights into the hierarchical regulation of secondary metabolism. In addition, FfSge1 is also required for expression of a yet uncharacterized SM gene cluster containing a non-canonical non-ribosomal peptide synthetase.
Collapse
Affiliation(s)
- Caroline B Michielse
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Lena Studt
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Slavica Janevska
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Christian M K Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Birgit Arndt
- NRW Graduate School of Chemistry, Westfälische Wilhelms-University, Wilhelm-Klemm-Strasse 10, Münster, 48149, Germany.,Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, Münster, 48149, Germany
| | - Jose Juan Espino
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| | - Hans-Ulrich Humpf
- NRW Graduate School of Chemistry, Westfälische Wilhelms-University, Wilhelm-Klemm-Strasse 10, Münster, 48149, Germany.,Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, Münster, 48149, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Germany Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg, 85764, Germany
| | - Bettina Tudzynski
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, Münster, 48143, Germany
| |
Collapse
|
54
|
Niehaus EM, Janevska S, von Bargen KW, Sieber CMK, Harrer H, Humpf HU, Tudzynski B. Apicidin F: characterization and genetic manipulation of a new secondary metabolite gene cluster in the rice pathogen Fusarium fujikuroi. PLoS One 2014; 9:e103336. [PMID: 25058475 PMCID: PMC4109984 DOI: 10.1371/journal.pone.0103336] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022] Open
Abstract
The fungus F. fujikuroi is well known for its production of gibberellins causing the ‘bakanae’ disease of rice. Besides these plant hormones, it is able to produce other secondary metabolites (SMs), such as pigments and mycotoxins. Genome sequencing revealed altogether 45 potential SM gene clusters, most of which are cryptic and silent. In this study we characterize a new non-ribosomal peptide synthetase (NRPS) gene cluster that is responsible for the production of the cyclic tetrapeptide apicidin F (APF). This new SM has structural similarities to the known histone deacetylase inhibitor apicidin. To gain insight into the biosynthetic pathway, most of the 11 cluster genes were deleted, and the mutants were analyzed by HPLC-DAD and HPLC-HRMS for their ability to produce APF or new derivatives. Structure elucidation was carried out be HPLC-HRMS and NMR analysis. We identified two new derivatives of APF named apicidin J and K. Furthermore, we studied the regulation of APF biosynthesis and showed that the cluster genes are expressed under conditions of high nitrogen and acidic pH in a manner dependent on the nitrogen regulator AreB, and the pH regulator PacC. In addition, over-expression of the atypical pathway-specific transcription factor (TF)-encoding gene APF2 led to elevated expression of the cluster genes under inducing and even repressing conditions and to significantly increased product yields. Bioinformatic analyses allowed the identification of a putative Apf2 DNA-binding (“Api-box”) motif in the promoters of the APF genes. Point mutations in this sequence motif caused a drastic decrease of APF production indicating that this motif is essential for activating the cluster genes. Finally, we provide a model of the APF biosynthetic pathway based on chemical identification of derivatives in the cultures of deletion mutants.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | - Slavica Janevska
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
| | - Katharina W. von Bargen
- Westfälische Wilhelms-Universität Münster, Institut für Lebensmittelchemie, Münster, Germany
| | - Christian M. K. Sieber
- Helmholtz Zentrum München (GmbH), Institut für Bioinformatik und Systembiologie, Neuherberg, Germany
| | - Henning Harrer
- Westfälische Wilhelms-Universität Münster, Institut für Lebensmittelchemie, Münster, Germany
| | - Hans-Ulrich Humpf
- Westfälische Wilhelms-Universität Münster, Institut für Lebensmittelchemie, Münster, Germany
- * E-mail: (BT); (HUH)
| | - Bettina Tudzynski
- Westfälische Wilhelms-Universität Münster, Institut für Biologie und Biotechnologie der Pflanzen, Münster, Germany
- * E-mail: (BT); (HUH)
| |
Collapse
|
55
|
Kim Y, Kim H, Son H, Choi GJ, Kim JC, Lee YW. MYT3, a Myb-like transcription factor, affects fungal development and pathogenicity of Fusarium graminearum. PLoS One 2014; 9:e94359. [PMID: 24722578 PMCID: PMC3983115 DOI: 10.1371/journal.pone.0094359] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/12/2014] [Indexed: 11/19/2022] Open
Abstract
We previously characterized members of the Myb protein family, MYT1 and MYT2, in Fusarium graminearum. MYT1 and MYT2 are involved in female fertility and perithecium size, respectively. To expand knowledge of Myb proteins in F. graminearum, in this study, we characterized the functions of the MYT3 gene, which encodes a putative Myb-like transcription factor containing two Myb DNA-binding domains and is conserved in the subphylum Pezizomycotina of Ascomycota. MYT3 proteins were localized in nuclei during most developmental stages, suggesting the role of MYT3 as a transcriptional regulator. Deletion of MYT3 resulted in impairment of conidiation, germination, and vegetative growth compared to the wild type, whereas complementation of MYT3 restored the wild-type phenotype. Additionally, the Δmyt3 strain grew poorly on nitrogen-limited media; however, the mutant grew robustly on minimal media supplemented with ammonium. Moreover, expression level of nitrate reductase gene in the Δmyt3 strain was decreased in comparison to the wild type and complemented strain. On flowering wheat heads, the Δmyt3 strain exhibited reduced pathogenicity, which corresponded with significant reductions in trichothecene production and transcript levels of trichothecene biosynthetic genes. When the mutant was selfed, mated as a female, or mated as a male for sexual development, perithecia were not observed on the cultures, indicating that the Δmyt3 strain lost both male and female fertility. Taken together, these results demonstrate that MYT3 is required for pathogenesis and sexual development in F. graminearum, and will provide a robust foundation to establish the regulatory networks for all Myb-like proteins in F. graminearum.
Collapse
Affiliation(s)
- Yongsoo Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group, Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
56
|
Niehaus EM, von Bargen KW, Espino JJ, Pfannmüller A, Humpf HU, Tudzynski B. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 2014; 98:1749-62. [PMID: 24389666 DOI: 10.1007/s00253-013-5453-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/26/2022]
Abstract
The "bakanae" fungus Fusarium fujikuroi is a common pathogen of rice and produces a variety of mycotoxins, pigments, and phytohormones. Fusaric acid is one of the oldest known secondary metabolites produced by F. fujikuroi and some other Fusarium species. Investigation of its biosynthesis and regulation is of great interest due to its occurrence in cereal-based food and feed. This study describes the identification and characterization of the fusaric acid gene cluster in F. fujikuroi consisting of the PKS-encoding core gene and four co-regulated genes, FUB1-FUB5. Besides fusaric acid, F. fujikuroi produces two fusaric acid-like derivatives: fusarinolic acid and 9,10-dehydrofusaric acid. We provide evidence that these derivatives are not intermediates of the fusaric acid biosynthetic pathway, and that their formation is catalyzed by genes outside of the fusaric acid gene cluster. Target gene deletions of all five cluster genes revealed that not all of them are involved in fusaric acid biosynthesis. We suggest that only two genes, FUB1 and FUB4, are necessary for the biosynthesis. Expression of the FUB genes and production of fusaric acid and the two derivatives are favored under high nitrogen. We show that nitrogen-dependent expression of fusaric acid genes is positively regulated by the nitrogen-responsive GATA transcription factor AreB, and that pH-dependent regulation is mediated by the transcription factor PacC. In addition, fusaric acid production is regulated by two members of the fungal-specific velvet complex: Vel1 and Lae1. In planta expression studies show a higher expression in the favorite host plant rice compared to maize.
Collapse
Affiliation(s)
- Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | | | | | | | | | | |
Collapse
|
57
|
|
58
|
The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 2014; 170:55-60. [DOI: 10.1016/j.ijfoodmicro.2013.10.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 01/13/2023]
|
59
|
Michielse CB, Pfannmüller A, Macios M, Rengers P, Dzikowska A, Tudzynski B. The interplay between the GATA transcription factors AreA, the global nitrogen regulator and AreB in Fusarium fujikuroi. Mol Microbiol 2013; 91:472-93. [PMID: 24286256 DOI: 10.1111/mmi.12472] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2013] [Indexed: 11/30/2022]
Abstract
Nitrogen metabolite repression (NMR) in filamentous fungi is controlled by the GATA transcription factors AreA and AreB. While AreA mainly acts as a positive regulator of NMR-sensitive genes, the role of AreB is not well understood. We report the characterization of AreB and its interplay with AreA in the gibberellin-producing fungus Fusarium fujikuroi. The areB locus produces three different transcripts that each code for functional proteins fully complementing the areB deletion mutant that influence growth and secondary metabolism. However, under nitrogen repression, the AreB isoforms differ in subcellular localization indicating distinct functions under these conditions. In addition, AreA and two isoforms of AreB colocalize in the nucleus under low nitrogen, but their nuclear localization disappears under conditions of high nitrogen. Using a bimolecular fluorescence complementation (BiFC) approach we showed for the first time that one of the AreB isoforms interacts with AreA when starved of nitrogen. Cross-species complementation revealed that some AreB functions are retained between F. fujikuroi and Aspergillus nidulans while others have diverged. By comparison to other fungi where AreB was postulated to function as a negative counterpart of AreA, AreB can act as both repressor and activator of transcription in F. fujikuroi.
Collapse
Affiliation(s)
- C B Michielse
- Institute of Biology and Biotechnology of Plants, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | | | | | | | | | | |
Collapse
|
60
|
Two histone deacetylases, FfHda1 and FfHda2, are important for Fusarium fujikuroi secondary metabolism and virulence. Appl Environ Microbiol 2013; 79:7719-34. [PMID: 24096420 PMCID: PMC3837819 DOI: 10.1128/aem.01557-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Histone modifications are crucial for the regulation of secondary metabolism in various filamentous fungi. Here we studied the involvement of histone deacetylases (HDACs) in secondary metabolism in the phytopathogenic fungus Fusarium fujikuroi, a known producer of several secondary metabolites, including phytohormones, pigments, and mycotoxins. Deletion of three Zn(2+)-dependent HDAC-encoding genes, ffhda1, ffhda2, and ffhda4, indicated that FfHda1 and FfHda2 regulate secondary metabolism, whereas FfHda4 is involved in developmental processes but is dispensable for secondary-metabolite production in F. fujikuroi. Single deletions of ffhda1 and ffhda2 resulted not only in an increase or decrease but also in derepression of metabolite biosynthesis under normally repressing conditions. Moreover, double deletion of both the ffhda1 and ffhda2 genes showed additive but also distinct phenotypes with regard to secondary-metabolite biosynthesis, and both genes are required for gibberellic acid (GA)-induced bakanae disease on the preferred host plant rice, as Δffhda1 Δffhda2 mutants resemble the uninfected control plant. Microarray analysis with a Δffhda1 mutant that has lost the major HDAC revealed differential expression of secondary-metabolite gene clusters, which was subsequently verified by a combination of chemical and biological approaches. These results indicate that HDACs are involved not only in gene silencing but also in the activation of some genes. Chromatin immunoprecipitation with the Δffhda1 mutant revealed significant alterations in the acetylation state of secondary-metabolite gene clusters compared to the wild type, thereby providing insights into the regulatory mechanism at the chromatin level. Altogether, manipulation of HDAC-encoding genes constitutes a powerful tool to control secondary metabolism in filamentous fungi.
Collapse
|
61
|
A sensing role of the glutamine synthetase in the nitrogen regulation network in Fusarium fujikuroi. PLoS One 2013; 8:e80740. [PMID: 24260467 PMCID: PMC3829961 DOI: 10.1371/journal.pone.0080740] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/05/2013] [Indexed: 11/29/2022] Open
Abstract
In the plant pathogenic ascomycete Fusarium fujikuroi the synthesis of several economically important secondary metabolites (SM) depends on the nitrogen status of the cells. Of these SMs, gibberellin and bikaverin synthesis is subject to nitrogen catabolite repression (NCR) and is therefore only executed under nitrogen starvation conditions. How the signal of available nitrogen quantity and quality is sensed and transmitted to transcription factors is largely unknown. Earlier work revealed an essential regulatory role of the glutamine synthetase (GS) in the nitrogen regulation network and secondary metabolism as its deletion resulted in total loss of SM gene expression. Here we present extensive gene regulation studies of the wild type, the Δgln1 mutant and complementation strains of the gln1 deletion mutant expressing heterologous GS-encoding genes of prokaryotic and eukaryotic origin or 14 different F. fujikuroi gln1 copies with site-directed mutations. All strains were grown under different nitrogen conditions and characterized regarding growth, expression of NCR-responsive genes and biosynthesis of SM. We provide evidence for distinct roles of the GS in sensing and transducing the signals to NCR-responsive genes. Three site directed mutations partially restored secondary metabolism and GS-dependent gene expression, but not glutamine formation, demonstrating for the first time that the catalytic and regulatory roles of GS can be separated. The distinct mutant phenotypes show that the GS (1) participates in NH4+-sensing and transducing the signal towards NCR-responsive transcription factors and their subsequent target genes; (2) affects carbon catabolism and (3) activates the expression of a distinct set of non-NCR GS-dependent genes. These novel insights into the regulatory role of the GS provide fascinating perspectives for elucidating regulatory roles of GS proteins of different organism in general.
Collapse
|
62
|
Giese H, Sondergaard TE, Sørensen JL. The AreA transcription factor in Fusarium graminearum regulates the use of some nonpreferred nitrogen sources and secondary metabolite production. Fungal Biol 2013; 117:814-21. [DOI: 10.1016/j.funbio.2013.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/26/2013] [Accepted: 10/18/2013] [Indexed: 01/06/2023]
|
63
|
Disruption of the nitrogen regulatory gene AcareA in Acremonium chrysogenum leads to reduction of cephalosporin production and repression of nitrogen metabolism. Fungal Genet Biol 2013; 61:69-79. [PMID: 24161729 DOI: 10.1016/j.fgb.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/26/2023]
Abstract
AcareA, encoding a homologue of the fungal nitrogen regulatory GATA zinc-finger proteins, was cloned from Acremonium chrysogenum. Gene disruption and genetic complementation revealed that AcareA was required for nitrogen metabolism and cephalosporin production. Disruption of AcareA resulted in growth defect in the medium using nitrate, uric acid and low concentration of ammonium, glutamine or urea as sole nitrogen source. Transcriptional analysis showed that the transcription of niaD/niiA was increased drastically when induced with nitrate in the wild-type and AcareA complemented strains but not in AcareA disruption mutant. Consistent with the reduction of cephalosporin production, the transcription of pcbAB, cefD2, cefEF and cefG encoding the enzymes for cephalosporin production was reduced in AcareA disruption mutant. Band shift assays showed that AcAREA bound to the promoter regions of niaD, niiA and the bidirectional promoter region of pcbAB-pcbC. Sequence analysis showed that all the AcAREA binding sites contain the consensus GATA elements. These results indicated that AcAREA plays an important role both in the regulation of nitrogen metabolism and cephalosporin production in A. chrysogenum.
Collapse
|
64
|
Influence of carbohydrates on secondary metabolism in Fusarium avenaceum. Toxins (Basel) 2013; 5:1655-63. [PMID: 24064720 PMCID: PMC3798878 DOI: 10.3390/toxins5091655] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 09/16/2013] [Accepted: 09/16/2013] [Indexed: 01/07/2023] Open
Abstract
Fusarium avenaceum is a widespread pathogen of important crops in the temperate climate zones that can produce many bioactive secondary metabolites, including moniliformin, fusarin C, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol), chlamydosporol, aurofusarin and enniatins. Here, we examine the production of these secondary metabolites in response to cultivation on different carbon sources in order to gain insight into the regulation and production of secondary metabolites in F. avenaceum. Seven monosaccharides (arabinose, xylose, fructose, sorbose, galactose, mannose, glucose), five disaccharides (cellobiose, lactose, maltose, sucrose and trehalose) and three polysaccharides (dextrin, inulin and xylan) were used as substrates. Three F. avenaceum strains were used in the experiments. These were all able to grow and produce aurofusarin on the tested carbon sources. Moniliformin and enniatins were produced on all carbon types, except on lactose, which suggest a common conserved regulation mechanism. Differences in the strains was observed for production of fusarin C, 2-AOD-3-ol, chlamydosporol and antibiotic Y, which suggests that carbon source plays a role in the regulation of their biosynthesis.
Collapse
|
65
|
Matić S, Spadaro D, Prelle A, Gullino ML, Garibaldi A. Light affects fumonisin production in strains of Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides isolated from rice. Int J Food Microbiol 2013; 166:515-23. [PMID: 24055868 DOI: 10.1016/j.ijfoodmicro.2013.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/24/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Three Fusarium species associated with bakanae disease of rice (Fusarium fujikuroi, Fusarium proliferatum, and Fusarium verticillioides) were investigated for their ability to produce fumonisins (FB1 and FB2) under different light conditions, and for pathogenicity. Compared to darkness, the conditions that highly stimulated fumonisin production were yellow and green light in F. verticillioides strains; white and blue light, and light/dark alternation in F. fujikuroi and F. proliferatum strains. In general, all light conditions positively influenced fumonisin production with respect to the dark. Expression of the FUM1 gene, which is necessary for the initiation of fumonisin production, was in accordance with the fumonisin biosynthetic profile. High and low fumonisin-producing F. fujikuroi strains showed typical symptoms of bakanae disease, abundant fumonisin-producing F. verticillioides strains exhibited chlorosis and stunting of rice plants, while fumonisin-producing F. proliferatum strains were asymptomatic on rice. We report that F. fujikuroi might be an abundant fumonisin producer with levels comparable to that of F. verticillioides and F. proliferatum, highlighting the need of deeper mycotoxicological analyses on rice isolates of F. fujikuroi. Our results showed for the first time the influence of light on fumonisin production in isolates of F. fujikuroi, F. proliferatum, and F. verticillioides from rice.
Collapse
Affiliation(s)
- Slavica Matić
- Agroinnova, Centre of Competence for the Innovation in the Agro-Environmental Sector, University of Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (To), Italy; Dept. of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (To), Italy
| | | | | | | | | |
Collapse
|
66
|
Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus EM, Espino JJ, Huß K, Michielse CB, Albermann S, Wagner D, Bergner SV, Connolly LR, Fischer A, Reuter G, Kleigrewe K, Bald T, Wingfield BD, Ophir R, Freeman S, Hippler M, Smith KM, Brown DW, Proctor RH, Münsterkötter M, Freitag M, Humpf HU, Güldener U, Tudzynski B. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 2013; 9:e1003475. [PMID: 23825955 PMCID: PMC3694855 DOI: 10.1371/journal.ppat.1003475] [Citation(s) in RCA: 321] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 05/18/2013] [Indexed: 12/17/2022] Open
Abstract
The fungus Fusarium fujikuroi causes "bakanae" disease of rice due to its ability to produce gibberellins (GAs), but it is also known for producing harmful mycotoxins. However, the genetic capacity for the whole arsenal of natural compounds and their role in the fungus' interaction with rice remained unknown. Here, we present a high-quality genome sequence of F. fujikuroi that was assembled into 12 scaffolds corresponding to the 12 chromosomes described for the fungus. We used the genome sequence along with ChIP-seq, transcriptome, proteome, and HPLC-FTMS-based metabolome analyses to identify the potential secondary metabolite biosynthetic gene clusters and to examine their regulation in response to nitrogen availability and plant signals. The results indicate that expression of most but not all gene clusters correlate with proteome and ChIP-seq data. Comparison of the F. fujikuroi genome to those of six other fusaria revealed that only a small number of gene clusters are conserved among these species, thus providing new insights into the divergence of secondary metabolism in the genus Fusarium. Noteworthy, GA biosynthetic genes are present in some related species, but GA biosynthesis is limited to F. fujikuroi, suggesting that this provides a selective advantage during infection of the preferred host plant rice. Among the genome sequences analyzed, one cluster that includes a polyketide synthase gene (PKS19) and another that includes a non-ribosomal peptide synthetase gene (NRPS31) are unique to F. fujikuroi. The metabolites derived from these clusters were identified by HPLC-FTMS-based analyses of engineered F. fujikuroi strains overexpressing cluster genes. In planta expression studies suggest a specific role for the PKS19-derived product during rice infection. Thus, our results indicate that combined comparative genomics and genome-wide experimental analyses identified novel genes and secondary metabolites that contribute to the evolutionary success of F. fujikuroi as a rice pathogen.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Christian M. K. Sieber
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Katharina W. von Bargen
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Lena Studt
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Eva-Maria Niehaus
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jose J. Espino
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kathleen Huß
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Caroline B. Michielse
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Dominik Wagner
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sonja V. Bergner
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Lanelle R. Connolly
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Andreas Fischer
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Gunter Reuter
- Institut of Genetics/Developmental Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Karin Kleigrewe
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Till Bald
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Brenda D. Wingfield
- Department of Genetics, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Ron Ophir
- Institute of Plant Sciences, Genomics, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Stanley Freeman
- Department of Plant Pathology, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen, Plant Biochemistry and Biotechnology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kristina M. Smith
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Daren W. Brown
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Robert H. Proctor
- National Center for Agricultural Utilization Research, United States Department of Agriculture, Peoria, Illinois, United States of America
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Hans-Ulrich Humpf
- Institute for Food Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, Münster, Germany
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Bettina Tudzynski
- Institut für Biologie und Biotechnologie der Pflanzen, Molecular Biology and Biotechnology of Fungi, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
67
|
Albermann S, Elter T, Teubner A, Krischke W, Hirth T, Tudzynski B. Characterization of novel mutants with an altered gibberellin spectrum in comparison to different wild-type strains of Fusarium fujikuroi. Appl Microbiol Biotechnol 2013; 97:7779-90. [PMID: 23636694 DOI: 10.1007/s00253-013-4917-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 11/30/2022]
Abstract
The rice pathogen Fusarium fujikuroi is known for producing a wide range of secondary metabolites such as pigments, mycotoxins, and a group of phytohormones, the gibberellic acids (GAs). Bioactive forms of these diterpenes are responsible for hyperelongation of rice stems, yellowish chlorotic leaves, and reduced grain formation during the bakanae disease leading to severely decreased crop yields. GAs are also successfully applied in agriculture and horticulture as plant growth regulators to enhance crop yields, fruit size, and to induce earlier flowering. In this study, six F. fujikuroi wild-type and mutant strains differing in GA yields and the spectrum of produced GAs were cultivated in high-quality lab fermenters for optimal temperature and pH control and compared regarding their growth, GA production, and GA gene expression levels. Comparative analysis of the six strains revealed that strain 6314/ΔDES/ΔPPT1, holding mutations in two GA biosynthetic genes and an additional deletion of the 4'-phosphopantetheinyl transferase gene PPT1, exhibits the highest total GA amount. Expression studies of two GA biosynthesis genes, CPS/KS and DES, showed a constantly high expression level for both genes under production conditions (nitrogen limitation) in all strains. By cultivating these genetically engineered mutant strains, we were able to produce not only mixtures of different bioactive GAs (GA3, GA4, and GA7) but also pure GA4 or GA7. In addition, we show that the GA yields are not only determined by different production rates, but also by different decomposition rates of the end products GA3, GA4, and GA7 explaining the varying GA levels of genetically almost identical mutant strains.
Collapse
Affiliation(s)
- Sabine Albermann
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms Universiät Münster, Schlossplatz 8, 48143, Münster, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Isolation of genes related to abscisic acid production inBotrytis cinereaTB-3-H8 by cDNA-AFLP. J Basic Microbiol 2013; 54:204-14. [DOI: 10.1002/jobm.201200311] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/14/2012] [Indexed: 01/04/2023]
|
69
|
Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 2013; 79:2777-88. [PMID: 23417004 DOI: 10.1128/aem.03110-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
DASH (Drosophila, Arabidopsis, Synechocystis, human) cryptochromes (cry-DASHs) constitute a subgroup of the photolyase cryptochrome family with diverse light-sensing roles, found in most taxonomical groups. The genome of Fusarium fujikuroi, a phytopathogenic fungus with a rich secondary metabolism, contains a gene encoding a putative cry-DASH, named CryD. The expression of the cryD gene is induced by light in the wild type, but not in mutants of the "white collar" gene wcoA. Targeted ΔcryD mutants show light-dependent phenotypic alterations, including changes in morphology and pigmentation, which disappear upon reintroduction of a wild-type cryD allele. In addition to microconidia, the colonies of the ΔcryD mutants produced under illumination and nitrogen starvation large septated spores called macroconidia, absent in wild-type colonies. The ΔcryD mutants accumulated similar amounts of carotenoids to the control strain under constant illumination, but produced much larger amounts of bikaverin under nitrogen starvation, indicating a repressing role for CryD in this biosynthetic pathway. Additionally, a moderate photoinduction of gibberellin production was exhibited by the wild type but not by the ΔcryD mutants. The phenotypic alterations of the ΔcryD mutants were only noticeable in the light, as expected from the low expression of cryD in the dark, but did not correlate with mRNA levels for structural genes of the bikaverin or gibberellin biosynthetic pathways, suggesting the participation of CryD in posttranscriptional regulatory mechanisms. This is the first report on the participation of a cry-DASH protein in the regulation of fungal secondary metabolism.
Collapse
|
70
|
Albermann S, Linnemannstöns P, Tudzynski B. Strategies for strain improvement in Fusarium fujikuroi: overexpression and localization of key enzymes of the isoprenoid pathway and their impact on gibberellin biosynthesis. Appl Microbiol Biotechnol 2012; 97:2979-95. [PMID: 22983595 DOI: 10.1007/s00253-012-4377-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/14/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022]
Abstract
The rice pathogen Fusarium fujikuroi is known to produce a wide range of secondary metabolites, such as the pigments bikaverin and fusarubins, the mycotoxins fusarins and fusaric acid, and the phytohormones gibberellic acids (GAs), which are applied as plant growth regulators in agri- and horticulture. The development of high-producing strains is a prerequisite for the efficient biotechnological production of GAs. In this work, we used different molecular approaches for strain improvement to directly affect expression of early isoprenoid genes as well as GA biosynthetic genes. Overexpression of the first GA pathway gene ggs2, encoding geranylgeranyl diphosphate synthase 2, or additional integration of ggs2 and cps/ks, the latter encoding the bifunctional ent-copalyldiphosphate synthase/ent-kaurene synthase, revealed an enhanced production level of 150%. However, overexpression of hmgR and fppS, encoding the key enzymes of the mevalonate pathway, hydroxymethylglutaryl coenzyme A reductase, and farnesyldiphosphate synthase, resulted in a reduced production level probably due to a negative feedback regulation of HmgR. Subsequent deletion of the transmembrane domains of HmgR and overexpression of the remaining catalytic domain led to an increased GA content (250%). Using green fluorescent protein and mCherry fusion constructs, we localized Cps/Ks in the cytosol, Ggs2 in small point-like structures, which are not the peroxisomes, and HmgR at the endoplasmatic reticulum. In summary, it was shown for the first time that amplification or truncation of key enzymes of the isoprenoid and GA pathway results in elevated production levels (2.5-fold). Fluorescence microscopy revealed localization of the key enzymes in different compartments.
Collapse
Affiliation(s)
- Sabine Albermann
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | | | | |
Collapse
|
71
|
Progress on nitrogen regulation gene expression of plant pathogenic fungi under nitrogen starvation. YI CHUAN = HEREDITAS 2012; 34:848-56. [DOI: 10.3724/sp.j.1005.2012.00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Min K, Shin Y, Son H, Lee J, Kim JC, Choi GJ, Lee YW. Functional analyses of the nitrogen regulatory gene areA in Gibberella zeae. FEMS Microbiol Lett 2012; 334:66-73. [DOI: 10.1111/j.1574-6968.2012.02620.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 06/13/2012] [Accepted: 06/13/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Kyunghun Min
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Yungin Shin
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| | - Jungkwan Lee
- Department of Applied Biology; Dong-A University; Busan; Korea
| | - Jin-Cheol Kim
- Eco-friendly New Materials Research Group; Division of Convergence Chemistry; Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; Daejeon; Korea
| | - Gyung Ja Choi
- Eco-friendly New Materials Research Group; Division of Convergence Chemistry; Research Center for Biobased Chemistry; Korea Research Institute of Chemical Technology; Daejeon; Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology and Center for Fungal Pathogenesis; Seoul National University; Seoul; Korea
| |
Collapse
|
73
|
Macios M, Caddick MX, Weglenski P, Scazzocchio C, Dzikowska A. The GATA factors AREA and AREB together with the co-repressor NMRA, negatively regulate arginine catabolism in Aspergillus nidulans in response to nitrogen and carbon source. Fungal Genet Biol 2012; 49:189-98. [DOI: 10.1016/j.fgb.2012.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 12/30/2011] [Accepted: 01/06/2012] [Indexed: 11/16/2022]
|
74
|
Horst RJ, Zeh C, Saur A, Sonnewald S, Sonnewald U, Voll LM. The Ustilago maydis Nit2 homolog regulates nitrogen utilization and is required for efficient induction of filamentous growth. EUKARYOTIC CELL 2012; 11:368-80. [PMID: 22247264 PMCID: PMC3294441 DOI: 10.1128/ec.05191-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
Abstract
Nitrogen catabolite repression (NCR) is a regulatory strategy found in microorganisms that restricts the utilization of complex and unfavored nitrogen sources in the presence of favored nitrogen sources. In fungi, this concept has been best studied in yeasts and filamentous ascomycetes, where the GATA transcription factors Gln3p and Gat1p (in yeasts) and Nit2/AreA (in ascomycetes) constitute the main positive regulators of NCR. The reason why functional Nit2 homologs of some phytopathogenic fungi are required for full virulence in their hosts has remained elusive. We have identified the Nit2 homolog in the basidiomycetous phytopathogen Ustilago maydis and show that it is a major, but not the exclusive, positive regulator of nitrogen utilization. By transcriptome analysis of sporidia grown on artificial media devoid of favored nitrogen sources, we show that only a subset of nitrogen-responsive genes are regulated by Nit2, including the Gal4-like transcription factor Ton1 (a target of Nit2). Ustilagic acid biosynthesis is not under the control of Nit2, while nitrogen starvation-induced filamentous growth is largely dependent on functional Nit2. nit2 deletion mutants show the delayed initiation of filamentous growth on maize leaves and exhibit strongly compromised virulence, demonstrating that Nit2 is required to efficiently initiate the pathogenicity program of U. maydis.
Collapse
Affiliation(s)
- Robin J Horst
- Division of Biochemistry, Friedrich-Alexander-University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
75
|
García-Martínez J, Ádám AL, Avalos J. Adenylyl cyclase plays a regulatory role in development, stress resistance and secondary metabolism in Fusarium fujikuroi. PLoS One 2012; 7:e28849. [PMID: 22291883 PMCID: PMC3266886 DOI: 10.1371/journal.pone.0028849] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 11/16/2011] [Indexed: 01/23/2023] Open
Abstract
The ascomycete fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces secondary metabolites of biotechnological interest, such as gibberellins, bikaverin, and carotenoids. Production of these metabolites is regulated by nitrogen availability and, in a specific manner, by other environmental signals, such as light in the case of the carotenoid pathway. A complex regulatory network controlling these processes is recently emerging from the alterations of metabolite production found through the mutation of different regulatory genes. Here we show the effect of the targeted mutation of the acyA gene of F. fujikuroi, coding for adenylyl cyclase. Mutants lacking the catalytic domain of the AcyA protein showed different phenotypic alterations, including reduced growth, enhanced production of unidentified red pigments, reduced production of gibberellins and partially derepressed carotenoid biosynthesis in the dark. The phenotype differs in some aspects from that of similar mutants of the close relatives F. proliferatum and F. verticillioides: contrary to what was observed in these species, ΔacyA mutants of F. fujikuroi showed enhanced sensitivity to oxidative stress (H2O2), but no change in heavy metal resistance or in the ability to colonize tomato tissue, indicating a high versatility in the regulatory roles played by cAMP in this fungal group.
Collapse
Affiliation(s)
| | - Attila L. Ádám
- Mycology Group of the Hungarian Academy of Sciences, Agricultural Biotechnology Center, Institute of Plant Protection, Szent István University, Gödöllő, Hungary
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
- * E-mail:
| |
Collapse
|
76
|
Brock NL, Tudzynski B, Dickschat JS. Biosynthesis of sesqui- and diterpenes by the gibberellin producer Fusarium fujikuroi. Chembiochem 2011; 12:2667-76. [PMID: 21990128 DOI: 10.1002/cbic.201100516] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Indexed: 11/12/2022]
Abstract
The fungus Fusarium fujikuroi IMI58289 emits a complex pattern of volatile terpenoids including two major compounds, the sesquiterpene alcohol α-acorenol and the diterpene ent-kaurene. ent-Kaurene is the precursor for the phytohormone gibberellic acid (GA(3)) and is produced from geranylgeranyl diphosphate (GGPP) via ent-copalyl diphosphate by the bifunctional ent-copalyl diphosphate/ent-kaurene synthase (CPS/KS). Several structurally related diterpenes were identified as side products of the CPS/KS. Deletion of the cps/ks gene or the whole GA(3) biosynthetic gene cluster resulted in completely abolished diterpene production. Mutants with deletions of the cytochrome P450 monooxygenase gene P450-4, which is responsible for the three oxidation steps from ent-kaurene to ent-kaurenoic acid en route to GA(3), accumulate diterpene hydrocarbons. Feeding with [6,6,6-(2) H(3)] mevalonolactone gave insights into the stereochemistry of the GGPP cyclisation, which operates with a chair-chair-"antipodal" fold. A rational biosynthetic scheme for all identified sesquiterpenes demonstrated their formation from farnesyl diphosphate (FPP) via three alternative initial cyclisations. Genome sequencing revealed the presence of five putative sesquiterpene synthase genes in the F. fujikuroi genome. The structures of several trace compounds from other classes have been identified as new natural products; these were delineated from their mass spectra and unambiguously assigned by comparison to synthetic references.
Collapse
Affiliation(s)
- Nelson L Brock
- Institut für Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | | | | |
Collapse
|
77
|
Tri6 is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog 2011; 7:e1002266. [PMID: 21980289 PMCID: PMC3182926 DOI: 10.1371/journal.ppat.1002266] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 07/28/2011] [Indexed: 11/20/2022] Open
Abstract
In F. graminearum, the transcriptional regulator Tri6 is encoded within the trichothecene gene cluster and regulates genes involved in the biosynthesis of the secondary metabolite deoxynivalenol (DON). The Tri6 protein with its Cys2His2 zinc-finger may also conform to the class of global transcription regulators. This class of global transcriptional regulators mediate various environmental cues and generally responds to the demands of cellular metabolism. To address this issue directly, we sought to find gene targets of Tri6 in F. graminearum grown in optimal nutrient conditions. Chromatin immunoprecipitation followed by Illumina sequencing (ChIP-Seq) revealed that in addition to identifying six genes within the trichothecene gene cluster, Tri1, Tri3, Tri6, Tri7, Tri12 and Tri14, the ChIP-Seq also identified 192 additional targets potentially regulated by Tri6. Functional classification revealed that, among the annotated genes, ∼40% are associated with cellular metabolism and transport and the rest of the target genes fall into the category of signal transduction and gene expression regulation. ChIP-Seq data also revealed Tri6 has the highest affinity toward its own promoter, suggesting that this gene could be subject to self-regulation. Electro mobility shift assays (EMSA) performed on the promoter of Tri6 with purified Tri6 protein identified a minimum binding motif of GTGA repeats as a consensus sequence. Finally, expression profiling of F. graminearum grown under nitrogen-limiting conditions revealed that 49 out of 198 target genes are differentially regulated by Tri6. The identification of potential new targets together with deciphering novel binding sites for Tri6, casts new light into the role of this transcriptional regulator in the overall growth and development of F. graminearum. Our knowledge of mechanisms involved in the activation and biosynthesis of DON comes largely from in vitro culture studies. Cumulated knowledge suggests that the physiological status of the fungus and the availability of nutrients are the main determining factors for DON production. Integration of various environmental cues to coordinate expression of secondary metabolic genes is thought to be mediated by a combination of global and pathway-specific transcription factors. While the global transcriptional factors respond to broad range of environmental cues such as the availability of carbon and nitrogen, the pathway-specific transcriptional factors regulate genes within a gene cluster. In F. graminearum, the transcriptional regulator Tri6 is encoded within the trichothecene gene cluster and regulates genes involved in the synthesis and transport of DON. In this report, we utilized ChIP-Seq to demonstrate that Tri6 can potentially bind to promoters and regulate genes not involved in the synthesis of DON and furthermore, many of these non-trichothecene genes are involved in various aspects of cellular metabolism, including transport and energy. Expression profiling revealed that many of the target genes are differentially regulated by Tri6, thus validating our hypothesis that Tri6 is a global regulator involved in cellular metabolism.
Collapse
|
78
|
Zhao W, Xu JW, Zhong JJ. Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions. BIORESOURCE TECHNOLOGY 2011; 102:8185-8190. [PMID: 21742489 DOI: 10.1016/j.biortech.2011.06.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 06/10/2011] [Accepted: 06/14/2011] [Indexed: 05/31/2023]
Abstract
The effect of nitrogen limitation on the production of the antitumor compounds, ganoderic acids (GAs), by Ganoderma lucidum and on transcription levels of triterpene biosynthesis genes in this mushroom was investigated. At 3mM glutamine, a maximal content of GA-Mk, GA-T, GA-S, and GA-Me was 2.16, 11.76, 31.09, and 7.04 μg/mg cell dry weight, respectively, which was 2.8-, 5.8-, 8.3-, and 5.1-fold that obtained at 60mM glutamine. The transcription levels of biosynthetic genes encoding 3-hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, squalene synthase, lanosterol synthase, and a putative nitrogen regulator, AreA, were up-regulated by 37-, 18-, 4.5-, 3.2-, and 13-fold, respectively, in nitrogen limitation conditions, suggesting that increased GAs biosynthesis may result from higher expression of those genes. This study demonstrated a useful strategy for enhancing GAs production and provided useful information for further investigation on its biosynthesis regulation.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | | | | |
Collapse
|
79
|
Bayram O, Braus GH. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 2011; 36:1-24. [PMID: 21658084 DOI: 10.1111/j.1574-6976.2011.00285.x] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Filamentous fungi produce a number of small bioactive molecules as part of their secondary metabolism ranging from benign antibiotics such as penicillin to threatening mycotoxins such as aflatoxin. Secondary metabolism can be linked to fungal developmental programs in response to various abiotic or biotic external triggers. The velvet family of regulatory proteins plays a key role in coordinating secondary metabolism and differentiation processes such as asexual or sexual sporulation and sclerotia or fruiting body formation. The velvet family shares a protein domain that is present in most parts of the fungal kingdom from chytrids to basidiomycetes. Most of the current knowledge derives from the model Aspergillus nidulans where VeA, the founding member of the protein family, was discovered almost half a century ago. Different members of the velvet protein family interact with each other and the nonvelvet protein LaeA, primarily in the nucleus. LaeA is a methyltransferase-domain protein that functions as a regulator of secondary metabolism and development. A comprehensive picture of the molecular interplay between the velvet domain protein family, LaeA and other nuclear regulatory proteins in response to various signal transduction pathway starts to emerge from a jigsaw puzzle of several recent studies.
Collapse
Affiliation(s)
- Ozgür Bayram
- Institut für Mikrobiologie und Genetik, Abteilung Molekulare Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
80
|
|
81
|
Yin W, Keller NP. Transcriptional regulatory elements in fungal secondary metabolism. J Microbiol 2011; 49:329-39. [PMID: 21717315 DOI: 10.1007/s12275-011-1009-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/15/2011] [Indexed: 01/19/2023]
Abstract
Filamentous fungi produce a variety of secondary metabolites of diverse beneficial and detrimental activities to humankind. The genes required for a given secondary metabolite are typically arranged in a gene cluster. There is considerable evidence that secondary metabolite gene regulation is, in part, by transcriptional control through hierarchical levels of transcriptional regulatory elements involved in secondary metabolite cluster regulation. Identification of elements regulating secondary metabolism could potentially provide a means of increasing production of beneficial metabolites, decreasing production of detrimental metabolites, aid in the identification of 'silent' natural products and also contribute to a broader understanding of molecular mechanisms by which secondary metabolites are produced. This review summarizes regulation of secondary metabolism associated with transcriptional regulatory elements from a broad view as well as the tremendous advances in discovery of cryptic or novel secondary metabolites by genomic mining.
Collapse
Affiliation(s)
- Wenbing Yin
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
82
|
Regulation of trichothecene biosynthesis in Fusarium: recent advances and new insights. Appl Microbiol Biotechnol 2011; 91:519-28. [PMID: 21691790 DOI: 10.1007/s00253-011-3397-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 05/23/2011] [Accepted: 05/23/2011] [Indexed: 01/14/2023]
Abstract
Trichothecenes are toxic secondary metabolites produced by filamentous fungi mainly belonging to the Fusarium genus. Production of these mycotoxins occurs during infection of crops and is a threat to human and animal health. Although the pathway for biosynthesis of trichothecenes is well established, the regulation of the Tri genes implicated in the pathway remains poorly understood. Most of the Tri genes are gathered in a cluster which contains two transcriptional regulators controlling the expression of the other Tri genes. The regulation of secondary metabolites biosynthesis in most fungal genera has been recently shown to be controlled by various regulatory systems in response to external environment. The control of the "Tri cluster" by non-cluster regulators in Fusarium was not clearly demonstrated until recently. This review covers the recent advances concerning the regulation of trichothecene biosynthesis in Fusarium and highlights the potential implication of various general regulatory circuits. Further studies on the role of these regulatory systems in the control of trichothecene biosynthesis might be useful in designing new strategies to reduce mycotoxin accumulation.
Collapse
|
83
|
Multifactorial induction of an orphan PKS-NRPS gene cluster in Aspergillus terreus. ACTA ACUST UNITED AC 2011; 18:198-209. [PMID: 21236704 DOI: 10.1016/j.chembiol.2010.12.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 11/16/2010] [Accepted: 12/13/2010] [Indexed: 12/26/2022]
Abstract
Mining the genome of the pathogenic fungus Aspergillus terreus revealed the presence of an orphan polyketide-nonribosomal-peptide synthetase (PKS-NRPS) gene cluster. Induced expression of the transcriptional activator gene adjacent to the PKS-NRPS gene was not sufficient for the activation of the silent pathway. Monitoring gene expression, metabolic profiling, and using a lacZ reporter strain allowed for the systematic investigation of physiological conditions that eventually led to the discovery of isoflavipucine and dihydroisoflavipucine. Phytotoxin formation is only activated in the presence of certain amino acids, stimulated at alkaline pH, but strictly repressed in the presence of glucose. Global carbon catabolite repression by CreA cannot be abolished by positive-acting factors such as PacC and overrides the pathway activator. Gene inactivation and stable isotope labeling experiments unveiled the molecular basis for flavipucine/fruit rot toxin biosynthesis.
Collapse
|
84
|
The pH regulatory factor Pac1 regulates Tri gene expression and trichothecene production in Fusarium graminearum. Fungal Genet Biol 2010; 48:275-84. [PMID: 21126599 DOI: 10.1016/j.fgb.2010.11.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/23/2010] [Accepted: 11/24/2010] [Indexed: 11/20/2022]
Abstract
Fungi manage the adaptation to extra-cellular pH through the PacC transcription factor, a key component of the pH regulatory system. PacC regulates the production of various secondary metabolites in filamentous fungi. In the important cereal pathogen Fusarium graminearum, the production of trichothecene is induced only under acidic pH conditions. Here, we examined the role of the PacC homologue from F. graminearum, FgPac1, on the regulation of trichothecene production. An FgΔPac1 deletion mutant was constructed in F. graminearum which showed a reduced development under neutral and alkaline pH, increased sensitivity to H(2)O(2) and an earlier Tri gene induction and toxin accumulation at acidic pH. A strain expressing the FgPac1(c) constitutively active form of Pac1 exhibited a strongly repressed Tri gene expression and reduced toxin accumulation at acidic pH. These results demonstrate that Pac1 negatively regulates Tri gene expression and toxin production in F. graminearum.
Collapse
|
85
|
Rios-Iribe EY, Flores-Cotera LB, Chávira MMG, González-Alatorre G, Escamilla-Silva EM. Inductive effect produced by a mixture of carbon source in the production of gibberellic acid by Gibberella fujikuroi. World J Microbiol Biotechnol 2010; 27:1499-505. [PMID: 25187149 DOI: 10.1007/s11274-010-0603-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Gibberellic acid has been known since 1954 but its effect on rice still remains very important in the agricultural world. Gibberellic acid (GA3) is the main secondary metabolite produced by the Gibberella fujikuroi fungus. This hormone is of great importance in agriculture and the brewing industry, due to its fast and strong effects at low concentrations (μg) on the processes of growth stimulation, flowering, stem elongation, and germination of seeds, among others. Plant promoters of growth production such as the gibberellins, especially the GA3 are a priority in obtaining better harvests in the agricultural area and by extension, improving the food industry. Three routes to obtaining GA3 have been reported: extraction from plants, chemical synthesis and microbial fermentation. The latter being the most common method used to produce GA3. In this investigation, glucose-corn oil mixture was used as a carbon source on the basis of 40 g of carbon in a 7 L stirred tank bioreactor. A pH of 3.5, 29°C, 600 min(-1) agitation and 1 vvm aeration were maintained and controlled with a biocontroller connected to the bioreactor, throughout the entire culture time. The carbon source mixture affected the fermentation time as well as the production of the GAs. The production of 380 mg GA3L(-1) after 288 h of fermentation was obtained when the glucose-corn oil mixture was employed contrasting the 136 mg GA3L(-1) at 264 h of culture when only glucose was used.
Collapse
Affiliation(s)
- Erika Y Rios-Iribe
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Col. Las Campanas Apartado Postal 184, C.P. 76010, Querétaro, Querétaro, Mexico
| | | | | | | | | |
Collapse
|
86
|
The bZIP transcription factor MeaB mediates nitrogen metabolite repression at specific loci. EUKARYOTIC CELL 2010; 9:1588-601. [PMID: 20729292 DOI: 10.1128/ec.00146-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Fusarium fujikuroi, bikaverin (BIK) biosynthesis is subject to repression by nitrogen. Unlike most genes subject to nitrogen metabolite repression, it has been shown that transcription of bik biosynthetic genes is not AreA dependent. Searching for additional transcription factors that may be involved in nitrogen regulation, we cloned and characterized the orthologue of Aspergillus nidulans meaB, which encodes a bZIP transcription factor. Two transcripts are derived from F. fujikuroi meaB: the large transcript (meaB(L)) predominates under nitrogen-sufficient conditions and the smaller transcript (meaB(S)) under nitrogen limitation, in an AreA-dependent manner. MeaB is specifically translocated to the nucleus under nitrogen-sufficient conditions in both F. fujikuroi and A. nidulans. Deletion of meaB resulted in partial upregulation of several nitrogen-regulated genes, but only in the ΔmeaB ΔareA double mutant were the bikaverin genes significantly upregulated in the presence of glutamine. These data demonstrate that MeaB and AreA coordinately mediate nitrogen metabolite repression and, importantly, that independently of AreA, MeaB can mediate nitrogen metabolite repression at specific loci in F. fujikuroi.
Collapse
|
87
|
Troncoso C, González X, Bömke C, Tudzynski B, Gong F, Hedden P, Rojas MC. Gibberellin biosynthesis and gibberellin oxidase activities in Fusarium sacchari, Fusarium konzum and Fusarium subglutinans strains. PHYTOCHEMISTRY 2010; 71:1322-1331. [PMID: 20570295 DOI: 10.1016/j.phytochem.2010.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 05/02/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
Several isolates of three Fusarium species associated with the Gibberella fujikuroi species complex were characterized for their ability to synthesize gibberellins (GAs): Fusarium sacchari (mating population B), Fusarium konzum (mating population I) and Fusarium subglutinans (mating population E). Of these, F. sacchari is phylogenetically related to Fusarium fujikuroi and is grouped in the Asian clade of the complex, while F. konzum and F. subglutinans are only distantly related to Fusarium fujikuroi and belong to the American clade. Variability was found between the different F. sacchari strains tested. Five isolates (B-12756; B-1732, B-7610, B-1721 and B-1797) were active in GA biosynthesis and accumulated GA(3) in the culture fluid (2.76-28.4 microg/mL), while two others (B-3828 and B-1725) were inactive. GA(3) levels in strain B-12756 increased by 2.9 times upon complementation with ggs2 and cps-ks genes from F. fujikuroi. Of six F. konzum isolates tested, three (I-10653; I-11616; I-11893) synthesized GAs, mainly GA(1), at a low level (less than 0.1 microg/mL). Non-producing F. konzum strains contained no GA oxidase activities as found for the two F. subglutinans strains tested. These results indicate that the ability to produce GAs is present in other species of the G. fujikuroi complex beside F. fujikuroi, but might differ significantly in different isolates of the same species.
Collapse
Affiliation(s)
- Claudia Troncoso
- Laboratorio de Bioorgánica, Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
88
|
Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU, Tudzynski B. FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 2010; 77:972-94. [PMID: 20572938 DOI: 10.1111/j.1365-2958.2010.07263.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Besides industrially produced gibberellins (GAs), Fusarium fujikuroi is able to produce additional secondary metabolites such as the pigments bikaverin and neurosporaxanthin and the mycotoxins fumonisins and fusarin C. The global regulation of these biosynthetic pathways is only poorly understood. Recently, the velvet complex containing VeA and several other regulatory proteins was shown to be involved in global regulation of secondary metabolism and differentiation in Aspergillus nidulans. Here, we report on the characterization of two components of the F. fujikuroi velvet-like complex, FfVel1 and FfLae1. The gene encoding this first reported LaeA orthologue outside the class of Eurotiomycetidae is upregulated in ΔFfvel1 microarray-studies and FfLae1 interacts with FfVel1 in the nucleus. Deletion of Ffvel1 and Fflae1 revealed for the first time that velvet can simultaneously act as positive (GAs, fumonisins and fusarin C) and negative (bikaverin) regulator of secondary metabolism, and that both components affect conidiation and virulence of F. fujikuroi. Furthermore, the velvet-like protein FfVel2 revealed similar functions regarding conidiation, secondary metabolism and virulence as FfVel1. Cross-genus complementation studies of velvet complex component mutants between Fusarium, Aspergillus and Penicillium support an ancient origin for this complex, which has undergone a divergence in specific functions mediating development and secondary metabolism.
Collapse
Affiliation(s)
- Philipp Wiemann
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Daren W Brown
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Karin Kleigrewe
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Jin Woo Bok
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Nancy P Keller
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Hans-Ulrich Humpf
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| | - Bettina Tudzynski
- Institut für Botanik, Westfälische Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, GermanyInstitut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 45, D-48149 Münster, GermanyBacterial Foodborne Pathogens and Mycology Research, USDA/ARS, 1815 N University St, Peoria, IL 61604, USADepartment of Medical Microbiology and ImmunologyDepartment of Bacteriology, University of Wisconsin, 1550 Linden Dr, Madison, WI 53706-1521, USA
| |
Collapse
|
89
|
Avalos J, Estrada AF. Regulation by light in Fusarium. Fungal Genet Biol 2010; 47:930-8. [PMID: 20460165 DOI: 10.1016/j.fgb.2010.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/04/2010] [Accepted: 05/04/2010] [Indexed: 01/05/2023]
Abstract
The genus Fusarium stands out as research model for pathogenesis and secondary metabolism. Light stimulates the production of some Fusarium metabolites, such as the carotenoids, and in many species it influences the production of asexual spores and sexual fruiting bodies. As found in other fungi with well-known photoresponses, the Fusarium genomes contain several genes for photoreceptors, among them a set of White Collar (WC) proteins, a cryptochrome, a photolyase, a phytochrome and two presumably photoactive opsins. The mutation of the opsin genes produced no apparent phenotypic alterations, but the loss of the only WC-1 orthologous protein eliminated the photoinduced expression of the photolyase and opsin genes. In contrast to other carotenogenic species, lack of the WC photoreceptor did not impede the light-induced accumulation of carotenoids, but produced alterations in conidiation, animal pathogenicity and nitrogen-regulated secondary metabolism. The regulation and functional role of other Fusarium photoreceptors is currently under investigation.
Collapse
Affiliation(s)
- Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41080 Seville, Spain.
| | | |
Collapse
|
90
|
Lale G, Gadre R. Enhanced production of gibberellin A4 (GA4) by a mutant of Gibberella fujikuroi in wheat gluten medium. J Ind Microbiol Biotechnol 2009; 37:297-306. [PMID: 19967447 DOI: 10.1007/s10295-009-0673-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Mutants of Gibberella fujikuroi with different colony characteristics, morphology and pigmentation were generated by exposure to UV radiation. A mutant, Mor-189, was selected based on its short filament length, relatively high gibberellin A(4) (GA(4)) and gibberellin A(3) (GA(3)) production, as well as its lack of pigmentation. Production of GA(4) by Mor-189 was studied using different inorganic and organic nitrogen sources, carbon sources and by maintaining the pH of the fermentation medium using calcium carbonate. Analysis of GA(4) and GA(3) was done by reversed-phase high-performance liquid chromatography and LC-MS. The mutants of G. fujikuroi produced more GA(4) when the pH of the medium was maintained above 5. During shake flask studies, the mutant Mor-189 produced 210 mg l(-1) GA(4) in media containing wheat gluten as the nitrogen source and glucose as the carbon source. Fed-batch fermentation in a 14 l agitated fermenter was performed to evaluate the applicability of the mutant Mor-189 for the production of GA(4). In 7-day fed-batch fermentation, 600 mg l(-1) GA(4) were obtained in the culture filtrate. The concentration of GA(4) and GA(3) combined was 713 mg l(-1), of which GA(4) accounted for 84% of the total gibberellin. These values are substantially higher than those published previously. The present study indicated that, along with maintenance of pH and controlled glucose feeding, the use of wheat gluten as the sole nitrogen source considerably enhances GA(4) production by the mutant Mor-189.
Collapse
Affiliation(s)
- Geetanjali Lale
- Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune, 411008, India
| | | |
Collapse
|
91
|
Stimulation of bikaverin production by sucrose and by salt starvation in Fusarium fujikuroi. Appl Microbiol Biotechnol 2009; 85:1991-2000. [DOI: 10.1007/s00253-009-2282-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/21/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
|
92
|
Lorenz N, Haarmann T, Pazoutová S, Jung M, Tudzynski P. The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. PHYTOCHEMISTRY 2009; 70:1822-32. [PMID: 19695648 DOI: 10.1016/j.phytochem.2009.05.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/14/2009] [Accepted: 05/26/2009] [Indexed: 05/02/2023]
Abstract
Ergot alkaloids and their derivatives have been traditionally used as therapeutic agents in migraine, blood pressure regulation and help in childbirth and abortion. Their production in submerse culture is a long established biotechnological process. Ergot alkaloids are produced mainly by members of the genus Claviceps, with Claviceps purpurea as best investigated species concerning the biochemistry of ergot alkaloid synthesis (EAS). Genes encoding enzymes involved in EAS have been shown to be clustered; functional analyses of EAS cluster genes have allowed to assign specific functions to several gene products. Various Claviceps species differ with respect to their host specificity and their alkaloid content; comparison of the ergot alkaloid clusters in these species (and of clavine alkaloid clusters in other genera) yields interesting insights into the evolution of cluster structure. This review focuses on recently published and also yet unpublished data on the structure and evolution of the EAS gene cluster and on the function and regulation of cluster genes. These analyses have also significant biotechnological implications: the characterization of non-ribosomal peptide synthetases (NRPS) involved in the synthesis of the peptide moiety of ergopeptines opened interesting perspectives for the synthesis of ergot alkaloids; on the other hand, defined mutants could be generated producing interesting intermediates or only single peptide alkaloids (instead of the alkaloid mixtures usually produced by industrial strains).
Collapse
Affiliation(s)
- Nicole Lorenz
- Westf. Wilhelms-Universität, Institut für Botanik, Münster, Germany
| | | | | | | | | |
Collapse
|
93
|
Bömke C, Tudzynski B. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. PHYTOCHEMISTRY 2009; 70:1876-93. [PMID: 19560174 DOI: 10.1016/j.phytochem.2009.05.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/05/2009] [Accepted: 05/23/2009] [Indexed: 05/07/2023]
Abstract
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. GAs were first isolated as metabolites of a fungal rice pathogen, Gibberella fujikuroi, since renamed Fusarium fujikuroi. Although higher plants and the fungus produce structurally identical GAs, significant differences in their GA pathways, enzymes involved and gene regulation became apparent with the identification of GA biosynthetic genes in Arabidopsis thaliana and F. fujikuroi. Recent identifications of GA biosynthetic gene clusters in two other fungi, Phaeosphaeria spp. and Sphaceloma manihoticola, and the high conservation of GA cluster organization in these distantly related fungal species indicate that fungi evolved GA and other diterpene biosynthetic pathways independently from plants. Furthermore, the occurrence of GAs and recent identification of the first GA biosynthetic genes in the bacterium Bradyrhizobium japonicum make it possible to study evolution of GA pathways in general. In this review, we summarize our current understanding of the GA biosynthesis pathway, specifically the genes and enzymes involved as well as gene regulation and localization in the genomes of different fungi and compare it with that in higher and lower plants and bacteria.
Collapse
Affiliation(s)
- Christiane Bömke
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Münster, Germany
| | | |
Collapse
|
94
|
Schönig B, Vogel S, Tudzynski B. Cpc1 mediates cross-pathway control independently of Mbf1 in Fusarium fujikuroi. Fungal Genet Biol 2009; 46:898-908. [PMID: 19679194 DOI: 10.1016/j.fgb.2009.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
The deletion of glnA, encoding the glutamine synthetase (GS), had led to the down-regulation of genes involved in secondary metabolism and up-regulation of cpc1, the cross-pathway control transcription factor. In the present study, a Deltacpc1 mutant was created and used for transcriptional profiling by macroarray analysis. Most of the Cpc1 target genes were amino acid biosynthesis genes besides a homologue of the multi-protein bridging factor MBF1 that binds to the yeast Cpc1 homologue GCN4. We show that Deltambf1 mutants exhibit no Cpc1-related phenotype and that both proteins do not interact with each other in Fusarium fujikuroi. Moreover, results presented here suggest that Cpc1 is not responsible for the GS-dependent down-regulation of secondary metabolism and that its role is focused on the activation of amino acid biosynthesis in response to the amino acid status of the cell. Surprisingly, cross-pathway control is repressed by nitrogen limitation in an AreA-dependent manner.
Collapse
Affiliation(s)
- Birgit Schönig
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, 48149 Münster, Germany
| | | | | |
Collapse
|
95
|
Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B. Biosynthesis of the red pigment bikaverin inFusarium fujikuroi: genes, their function and regulation. Mol Microbiol 2009; 72:931-46. [DOI: 10.1111/j.1365-2958.2009.06695.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Loss of gibberellin production in Fusarium verticillioides (Gibberella fujikuroi MP-A) is due to a deletion in the gibberellic acid gene cluster. Appl Environ Microbiol 2008; 74:7790-801. [PMID: 18952870 PMCID: PMC2607190 DOI: 10.1128/aem.01819-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fusarium verticillioides (Gibberella fujikuroi mating population A [MP-A]) is a widespread pathogen on maize and is well-known for producing fumonisins, mycotoxins that cause severe disease in animals and humans. The species is a member of the Gibberella fujikuroi species complex, which consists of at least 11 different biological species, termed MP-A to -K. All members of this species complex are known to produce a variety of secondary metabolites. The production of gibberellins (GAs), a group of diterpenoid plant hormones, is mainly restricted to Fusarium fujikuroi (G. fujikuroi MP-C) and Fusarium konzum (MP-I), although most members of the G. fujikuroi species complex contain the GA biosynthesis gene cluster or parts of it. In this work, we show that the inability to produce GAs in F. verticillioides (MP-A) is due to the loss of a majority of the GA gene cluster as found in F. fujikuroi. The remaining part of the cluster consists of the full-length F. verticillioides des gene (Fvdes), encoding the GA(4) desaturase, and the coding region of FvP450-4, encoding the ent-kaurene oxidase. Both genes share a high degree of sequence identity with the corresponding genes of F. fujikuroi. The GA production capacity of F. verticillioides was restored by transforming a cosmid with the entire GA gene cluster from F. fujikuroi, indicating the existence of an active regulation system in F. verticillioides. Furthermore, the GA(4) desaturase gene des from F. verticillioides encodes an active enzyme which was able to restore the GA production in a corresponding des deletion mutant of F. fujikuroi.
Collapse
|
97
|
Regulation of carotenogenesis and secondary metabolism by nitrogen in wild-type Fusarium fujikuroi and carotenoid-overproducing mutants. Appl Environ Microbiol 2008; 75:405-13. [PMID: 19047398 DOI: 10.1128/aem.01089-08] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The fungus Fusarium fujikuroi (Gibberella fujikuroi MP-C) produces metabolites of biotechnological interest, such as gibberellins, bikaverins, and carotenoids. Gibberellin and bikaverin productions are induced upon nitrogen exhaustion, while carotenoid accumulation is stimulated by light. We evaluated the effect of nitrogen availability on carotenogenesis in comparison with bikaverin and gibberellin production in the wild type and in carotenoid-overproducing mutants (carS). Nitrogen starvation increased carotenoid accumulation in all strains tested. In carS strains, gibberellin and bikaverin biosynthesis patterns differed from those of the wild type and paralleled the expression of key genes for both pathways, coding for geranylgeranyl pyrophosphate (GGPP) and kaurene synthases for the former and a polyketide synthase for the latter. These results suggest regulatory connections between carotenoid biosynthesis and nitrogen-controlled biosynthetic pathways in this fungus. Expression of gene ggs1, which encodes a second GGPP synthase, was also derepressed in the carS mutants, suggesting the participation of Ggs1 in carotenoid biosynthesis. The carS mutations did not affect genes for earlier steps of the terpenoid pathway, such as fppS or hmgR. Light induced carotenoid biosynthesis in the wild type and carRA and carB levels in the wild-type and carS strains irrespective of nitrogen availability.
Collapse
|
98
|
Tsavkelova EA, Bömke C, Netrusov AI, Weiner J, Tudzynski B. Production of gibberellic acids by an orchid-associated Fusarium proliferatum strain. Fungal Genet Biol 2008; 45:1393-403. [DOI: 10.1016/j.fgb.2008.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 07/03/2008] [Accepted: 07/15/2008] [Indexed: 10/21/2022]
|
99
|
Bömke C, Rojas MC, Gong F, Hedden P, Tudzynski B. Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl Environ Microbiol 2008; 74:5325-39. [PMID: 18567680 PMCID: PMC2546651 DOI: 10.1128/aem.00694-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 06/14/2008] [Indexed: 11/20/2022] Open
Abstract
Gibberellins (GAs) are tetracyclic diterpenoid phytohormones that were first identified as secondary metabolites of the fungus Fusarium fujikuroi (teleomorph, Gibberella fujikuroi). GAs were also found in the cassava pathogen Sphaceloma manihoticola, but the spectrum of GAs differed from that in F. fujikuroi. In contrast to F. fujikuroi, the GA biosynthetic pathway has not been studied in detail in S. manihoticola, and none of the GA biosynthetic genes have been cloned from the species. Here, we present the identification of the GA biosynthetic gene cluster from S. manihoticola consisting of five genes encoding a bifunctional ent-copalyl/ent-kaurene synthase (CPS/KS), a pathway-specific geranylgeranyl diphosphate synthase (GGS2), and three cytochrome P450 monooxygenases. The functions of all of the genes were analyzed either by a gene replacement approach or by complementing the corresponding F. fujikuroi mutants. The cluster organization and gene functions are similar to those in F. fujikuroi. However, the two border genes in the Fusarium cluster encoding the GA(4) desaturase (DES) and the 13-hydroxylase (P450-3) are absent in the S. manihoticola GA gene cluster, consistent with the spectrum of GAs produced by this fungus. The close similarity between the two GA gene clusters, the identical gene functions, and the conserved intron positions suggest a common evolutionary origin despite the distant relatedness of the two fungi.
Collapse
Affiliation(s)
- Christiane Bömke
- Westfälische Wilhelms-Universität Münster, Institut für Botanik, Schlossgarten 3, 48149 Münster, Germany
| | | | | | | | | |
Collapse
|
100
|
Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. EUKARYOTIC CELL 2008; 7:1831-46. [PMID: 18689524 DOI: 10.1128/ec.00130-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In filamentous fungi, the GATA-type transcription factor AreA plays a major role in the transcriptional activation of genes needed to utilize poor nitrogen sources. In Fusarium fujikuroi, AreA also controls genes involved in the biosynthesis of gibberellins, a family of diterpenoid plant hormones. To identify more genes responding to nitrogen limitation or sufficiency in an AreA-dependent or -independent manner, we examined changes in gene expression of F. fujikuroi wild-type and DeltaareA strains by use of a Fusarium verticillioides microarray representing approximately 9,300 genes. Analysis of the array data revealed sets of genes significantly down- and upregulated in the areA mutant under both N starvation and N-sufficient conditions. Among the downregulated genes are those involved in nitrogen metabolism, e.g., those encoding glutamine synthetase and nitrogen permeases, but also those involved in secondary metabolism. Besides AreA-dependent genes, we found an even larger set of genes responding to N starvation and N-sufficient conditions in an AreA-independent manner. To study the impact of NMR on AreA activity, we examined the expression of several AreA target genes in the wild type and in areA and nmr deletion and overexpression mutants. We show that NMR interacts with AreA as expected but affects gene expression only in early growth stages. This is the first report on genome-wide expression studies examining the influence of AreA on nitrogen-responsive gene expression in a genome-wide manner in filamentous fungi.
Collapse
|