51
|
Yang W, Jefferson RA, Huttner E, Moore JM, Gagliano WB, Grossniklaus U. An egg apparatus-specific enhancer of Arabidopsis, identified by enhancer detection. PLANT PHYSIOLOGY 2005; 139:1421-32. [PMID: 16258010 PMCID: PMC1283777 DOI: 10.1104/pp.105.068262] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite a central role in angiosperm reproduction, few gametophyte-specific genes and promoters have been isolated, particularly for the inaccessible female gametophyte (embryo sac). Using the Ds-based enhancer-detector line ET253, we have cloned an egg apparatus-specific enhancer (EASE) from Arabidopsis (Arabidopsis thaliana). The genomic region flanking the Ds insertion site was further analyzed by examining its capability to control gusA and GFP reporter gene expression in the embryo sac in a transgenic context. Through analysis of a 5' and 3' deletion series in transgenic Arabidopsis, the sequence responsible for egg apparatus-specific expression was delineated to 77 bp. Our data showed that this enhancer is unique in the Arabidopsis genome, is conserved among different accessions, and shows an unusual pattern of sequence variation. This EASE works independently of position and orientation in Arabidopsis but is probably not associated with any nearby gene, suggesting either that it acts over a large distance or that a cryptic element was detected. Embryo-specific ablation in Arabidopsis was achieved by transactivation of a diphtheria toxin gene under the control of the EASE. The potential application of the EASE element and similar control elements as part of an open-source biotechnology toolkit for apomixis is discussed.
Collapse
Affiliation(s)
- Wei Yang
- CAMBIA, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
52
|
Gonzali S, Novi G, Loreti E, Paolicchi F, Poggi A, Alpi A, Perata P. A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:633-45. [PMID: 16262712 DOI: 10.1111/j.1365-313x.2005.02555.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Sugars acting as signalling molecules regulate many developmental processes in plants, including lateral and adventitious root production. Turanose, a non-metabolizable sucrose analogue, profoundly affects the growth pattern of Arabidopsis seedlings. Turanose-treated seedlings are characterized by a very short primary root and a short hypocotyl showing the production of adventitious roots. A turanose-insensitive (tin) mutant was identified and characterized. Because of a T-DNA insertion and a chromosomal translocation, tin expresses a chimeric form of WOX5, a gene known to be expressed in the root quiescent centre. The tin mutation can be complemented by overexpression of WOX5, suggesting it is a loss-of-function mutant. We found that WOX5 is both turanose- and auxin-inducible. Moreover, turanose insensitivity is associated with altered auxin homeostasis, as demonstrated by the constitutive activation of indole acetic acid (IAA) conjugation and SUPERROOT2 expression in tin. On the basis of turanose effects on wild-type seedlings and the tin molecular and hormonal phenotype, we propose a role for WOX5 in the root apical meristem as a negative trigger of IAA homeostatic mechanisms allowing the maintenance of a restricted area of auxin maximum, which is required for a correct root-formation pattern.
Collapse
Affiliation(s)
- Silvia Gonzali
- Department of Crop Plant Biology, University of Pisa, Via Mariscoglio 34, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
53
|
Nakayama N, Arroyo JM, Simorowski J, May B, Martienssen R, Irish VF. Gene trap lines define domains of gene regulation in Arabidopsis petals and stamens. THE PLANT CELL 2005; 17:2486-506. [PMID: 16055634 PMCID: PMC1197429 DOI: 10.1105/tpc.105.033985] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To identify genes involved in Arabidopsis thaliana petal and stamen organogenesis, we used a gene trap approach to examine the patterns of reporter expression at each stage of flower development of 1765 gene trap lines. In 80 lines, the reporter gene showed petal- and/or stamen-specific expression or lack of expression, or expression in distinct patterns within the petals and/or the stamens, including distinct suborgan domains of expression, such as tissue-specific lines marking epidermis and vasculature, as well as lines demarcating the proximodistal or abaxial/adaxial axes of the organs. Interestingly, reporter gene expression was typically restricted along the proximodistal axis of petals and stamens, indicating the importance of this developmental axis in patterning of gene expression domains in these organs. We identified novel domains of gene expression along the axis marking the midregion of the petals and apical and basal parts of the anthers. Most of the genes tagged in these 80 lines were identified, and their possible functions in petal and/or stamen differentiation are discussed. We also scored the floral phenotypes of the 1765 gene trap lines and recovered two mutants affecting previously uncharacterized genes. In addition to revealing common domains of gene expression, the gene trap lines reported here provide both useful markers and valuable starting points for reverse genetic analyses of the differentiation pathways in petal and stamen development.
Collapse
Affiliation(s)
- Naomi Nakayama
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Conecticut 06520-8104, USA
| | | | | | | | | | | |
Collapse
|
54
|
Rutherford S, Brandizzi F, Townley H, Craft J, Wang Y, Jepson I, Martinez A, Moore I. Improved transcriptional activators and their use in mis-expression traps in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 43:769-88. [PMID: 16115072 DOI: 10.1111/j.1365-313x.2005.02486.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The synthetic transcription factor LhG4 has been used in numerous mis-expression studies in plants. We show that the sequence encoding the LhG4 activation domain, derived from Saccharomyces cerevisiae GAL4, contains several cryptic polyadenylation signals in Arabidopsis. The GAL4-derived sequence was modified according to preferred Arabidopsis codon usage, generating LhG4AtO which was faithfully transcribed in Arabidopsis plants. In protoplasts, LhG4AtO achieved maximum transactivation of the pOp promoter with 10-fold less input DNA than LhG4. The same methods were used to compare 10 other LhG4 derivatives that carried alternative natural or synthetic activation domains. Lh214 and Lh314, which contain synthetic activation domains comprising trimers of a core acidic activation domain, directed threefold more GUS expression from the pOp promoter with 20-fold less input DNA than LhG4. In contrast, when expressed from the CaMV 35S promoter in transgenic plants carrying a pOp-GUS reporter, Lh214 and Lh314 yielded transformants with substantially lower GUS activities than other constructs including LhG4AtO and LhG4 which performed similarly. When incorporated into an enhancer-trapping vector, however, LhG4AtO and Lh314 yielded enhancer traps with approximately twice the frequency of LhG4, suggesting that the modified activation domains offer improved performance when expressed from weaker transcription signals. To increase the number of LhG4 patterns available for mis-expression studies, we describe a population of enhancer-trap lines obtained with LhG4AtO in a pOp-GUS background. We show that enhancer-trap lines can transactivate an unlinked pOp-green fluorescent protein (pOp-GFP) reporter in the pattern predicted by staining for GUS activity.
Collapse
Affiliation(s)
- Stephen Rutherford
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | | | | | | | | | | | | | | |
Collapse
|
55
|
An G, Jeong DH, Jung KH, Lee S. Reverse genetic approaches for functional genomics of rice. PLANT MOLECULAR BIOLOGY 2005; 59:111-23. [PMID: 16217606 DOI: 10.1007/s11103-004-4037-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 09/30/2004] [Indexed: 05/04/2023]
Abstract
T-DNA and transposable elements e.g., Ds and Tos17, are used to generate a large number of insertional mutant lines in rice. Some carry the GUS or GFP reporter for gene trap or enhancer trap. These reporter systems are valuable for identifying tissue- or organ-preferential genes. Activation tagging lines have also been generated for screening mutants and isolating mutagenized genes. To utilize these resources more efficiently, tagged lines have been produced for reverse genetic approaches. DNA pools of the T-DNA tagged lines and Tos17 lines have been prepared for PCR screening of insertional mutants in a given gene. Tag end sequences (TES) of the inserts have also been produced. TES databases are beneficial for analyzing the function of a large number of rice genes.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
56
|
Buzas DM, Lohar D, Sato S, Nakamura Y, Tabata S, Vickers CE, Stiller J, Gresshoff PM. Promoter trapping in Lotus japonicus reveals novel root and nodule GUS expression domains. PLANT & CELL PHYSIOLOGY 2005; 46:1202-12. [PMID: 15899881 DOI: 10.1093/pcp/pci129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Agrobacterium-based transformation was used to introduce a promoter-less glucuronidase uidA gene (beta-glucuronidase; GUS) into Lotus japonicus. Transgenic plants were screened for GUS activation at different stages after inoculation with its symbiont, Mesorhizobium loti. Functional GUS fusion frequencies ranged from about 2 to 5% of the total number of transgenic lines. These lines provide excellent histological markers for tissue ontogeny analysis. Some of the activations generated GUS expression patterns that correspond to well-known tissue types, such as lateral root and nodule primordia, root tips and developing nodules (line CHEETAH). Others generated GUS activation associated with predictable but previously unknown (i) tissue types, such as the vascular bundle of the nodule (line VASCO); or (ii) expression domains, such as pericycle, nodule primordia, nodule and flower connective/vascular tissue (line FATA MORGANA) or inner root cortex cells in the vicinity of a curled root hair, nodule primordia and nodule cortex (line TIMPA). Putative members of two gene superfamilies, EH (Esp homolog) and AAA ATPase (ATPase associated with various cellular activities), were located next to the CHEETAH and VASCO insertions, respectively, and a nodulin gene, LjENOD40-2, was located next to the FATA MORGANA insertion. We utilized promoter GUS fusions to investigate the genetic regulation of LjENOD40-2 and FATA MORGANA GUS. The LjENOD40-2 promoter defined a novel expression domain and the FATA MORGANA nodule expression was reiterated by the 2 kb sequence upstream of the T-DNA insertion.
Collapse
Affiliation(s)
- Diana Mihaela Buzas
- ARC Centre of Excellence for Integrative Legume Research, The University of Queensland, 4072 Australia.
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. PLANT PHYSIOLOGY 2005; 138:2033-47. [PMID: 16040657 PMCID: PMC1183393 DOI: 10.1104/pp.105.061598] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 05/03/2023]
Abstract
CYP51 exists in all organisms that synthesize sterols de novo. Plant CYP51 encodes an obtusifoliol 14alpha-demethylase involved in the postsqualene sterol biosynthetic pathway. According to the current gene annotation, the Arabidopsis (Arabidopsis thaliana) genome contains two putative CYP51 genes, CYP51A1 and CYP51A2. Our studies revealed that CYP51A1 should be considered an expressed pseudogene. To study the functional importance of the CYP51A2 gene in plant growth and development, we isolated T-DNA knockout alleles for CYP51A2. Loss-of-function mutants for CYP51A2 showed multiple defects, such as stunted hypocotyls, short roots, reduced cell elongation, and seedling lethality. In contrast to other sterol mutants, such as fk/hydra2 and hydra1, the cyp51A2 mutant has only minor defects in early embryogenesis. Measurements of endogenous sterol levels in the cyp51A2 mutant revealed that it accumulates obtusifoliol, the substrate of CYP51, and a high proportion of 14alpha-methyl-delta8-sterols, at the expense of campesterol and sitosterol. The cyp51A2 mutants have defects in membrane integrity and hypocotyl elongation. The defect in hypocotyl elongation was not rescued by the exogenous application of brassinolide, although the brassinosteroid-signaling cascade is apparently not affected in the mutants. Developmental defects in the cyp51A2 mutant were completely rescued by the ectopic expression of CYP51A2. Taken together, our results demonstrate that the Arabidopsis CYP51A2 gene encodes a functional obtusifoliol 14alpha-demethylase enzyme and plays an essential role in controlling plant growth and development by a sterol-specific pathway.
Collapse
Affiliation(s)
- Ho Bang Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Jelesko JG, Carter K, Kinoshita Y, Gruissem W. Frequency and character of alternative somatic recombination fates of paralogous genes during T-DNA integration. Mol Genet Genomics 2005; 274:91-102. [PMID: 15983820 DOI: 10.1007/s00438-005-0001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2004] [Accepted: 04/25/2005] [Indexed: 11/28/2022]
Abstract
A synthetic RBCSB gene cluster was transformed into Arabidopsis in order to simultaneously evaluate the frequency and character of somatic illegitimate recombination, homologous recombination, and targeted gene replacement events associated with T-DNA-mediated transformation. The most frequent type of recombination event observed was illegitimate integration of the T-DNA without activation of the silent DeltaRBCS1B: LUC transgene. Sixteen luc(+) (firefly luciferase positive) T1 plants were isolated. Six of these were due to illegitimate recombination events resulting in a gene trapping effect. Nine resulted from homologous recombination between paralogous RBCSB sequences associated with T-DNA integration. The frequency of somatic homologous recombination associated with T-DNA integration was almost 200 times higher than previously reported rates of meiotic homologous recombination with the same genes. The distribution of (somatic homologous) recombination resolution sites generally fits a fractional interval length model. However, a small region adjacent to an indel showed a significant over-representation of resolution sites, suggesting that DNA mismatch recognition may also play an important role in the positioning of somatic resolution sites. The frequency of somatic resolution within exon-2 was significantly different from that previously observed during meiotic recombination.
Collapse
Affiliation(s)
- John G Jelesko
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA.
| | | | | | | |
Collapse
|
59
|
Engineer CB, Fitzsimmons KC, Schmuke JJ, Dotson SB, Kranz RG. Development and evaluation of a Gal4-mediated LUC/GFP/GUS enhancer trap system in Arabidopsis. BMC PLANT BIOLOGY 2005; 5:9. [PMID: 15941484 PMCID: PMC1164422 DOI: 10.1186/1471-2229-5-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 06/07/2005] [Indexed: 05/02/2023]
Abstract
BACKGROUND Gal4 enhancer trap systems driving expression of LacZ and GFP reporters have been characterized and widely used in Drosophila. However, a Gal4 enhancer trap system in Arabidopsis has not been described in the primary literature. In Drosophila, the reporters possess a Gal4 upstream activation sequence (UAS) as five repeats (5XUAS) and lines that express Gal4 from tissue specific enhancers have also been used for the ectopic expression of any transgene (driven by a 5XUAS). While Gal4 transactivation has been demonstrated in Arabidopsis, wide use of a trap has not emerged in part because of the lack of detailed analysis, which is the purpose of the present study. RESULTS A key feature of this study is the use of luciferase (LUC) as the primary reporter and rsGFP-GUS as secondary reporters. Reporters driven by a 5XUAS are better suited in Arabidopsis than those containing a 1X or 2X UAS. A 5XUAS-LUC reporter is expressed at high levels in Arabidopsis lines transformed with Gal4 driven by the full, enhanced 35S promoter. In contrast, a minimum 35S (containing the TATA region) upstream of Gal4 acts as an enhancer trap system. Luciferase expression in trap lines of the T1, T2, and T3 generations are generally stable but by the T4 generation approximately 25% of the lines are significantly silenced. This silencing is reversed by growing plants on media containing 5-aza-2'-deoxycytidine. Quantitative multiplex RT-PCR on the Gal4 and LUC mRNA indicate that this silencing can occur at the level of Gal4 or LUC transcription. Production of a 10,000 event library and observations on screening, along with the potential for a Gal4 driver system in other plant species are discussed. CONCLUSION The Gal4 trap system described here uses the 5XUAS-LUC and 5XUAS rsGFP-GUS as reporters and allows for in planta quantitative screening, including the rapid monitoring for silencing. We conclude that in about 75% of the cases silencing is at the level of transcription of the Gal4 transgene and is at an acceptable frequency to make the Gal4 trap system in Arabidopsis of value. This system will be useful for the isolation and comprehensive characterization of specific reporter and driver lines.
Collapse
Affiliation(s)
- Cawas B Engineer
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| | - Karen C Fitzsimmons
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| | | | | | - Robert G Kranz
- Washington University, Department of Biology Campus Box 1137, 1 Brookings Drive St. Louis, MO 63130, USA
| |
Collapse
|
60
|
Stone JM, Liang X, Nekl ER, Stiers JJ. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:744-54. [PMID: 15703061 DOI: 10.1111/j.1365-313x.2005.02334.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The recessive Arabidopsis thalianafumonisin B1-resistant (fbr6) mutant was identified by its ability to survive in the presence of a programmed cell death (PCD)-inducing fungal toxin FB1. The fbr6 mutant also displays altered plant architecture in the absence of FB1, most notably elongated petioles and enhanced leaf margin serration. These phenotypes are a result of a T-DNA insertion in the SQUAMOSA promoter binding protein (SBP) domain gene, AtSPL14. AtSPL14 encodes a plant-specific protein with features characteristic of a transcriptional regulator, including a nuclear localization signal sequence, a plant-specific DNA binding domain (the SBP box), and a protein interaction motif (ankyrin repeats). A transiently expressed fusion of the AtSPL14 protein to green fluorescent protein is directed to the plant nucleus. DNA sequences immediately upstream of the translation start site direct expression of the beta-glucuronidase reporter gene primarily in the vascular tissues, consistent with the phenotypes of the fbr6 mutant. AtSPL14 activates transcription in yeast, with a transactivation domain residing within the N-terminal region of the protein. Recombinant AtSPL14 protein binds A. thaliana genomic DNA in vitro in the absence of other proteins. These results indicate that FBR6/SPL14 functions as a transcriptional regulator that plays a role not only in sensitivity to FB1, but also in the development of normal plant architecture.
Collapse
Affiliation(s)
- Julie M Stone
- Department of Biochemistry and Plant Science Initiative, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, NE 68588, USA.
| | | | | | | |
Collapse
|
61
|
Liu PP, Koizuka N, Homrichhausen TM, Hewitt JR, Martin RC, Nonogaki H. Large-scale screening of Arabidopsis enhancer-trap lines for seed germination-associated genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:936-44. [PMID: 15743455 DOI: 10.1111/j.1365-313x.2005.02347.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Enhancer trap is a powerful approach for identifying tissue- and stage-specific gene expression in plants and animals. For Arabidopsis research, beta-glucuronidase (GUS) enhancer-trap lines have been created and successfully used to identify tissue-specific gene expression in many plant organs. However, limited applications of these lines for seed germination research have been reported. This is probably due to the impermeability of the testa to the GUS substrate. By focusing on the stages between testa and endosperm rupture, we were able to circumvent the testa barrier to the GUS substrate and observe diverse tissue-specific gene expression during germination sensu stricto. One hundred and twenty-one positive subpools of 10 lines out of 1130 were isolated. Approximately 4500 plants from these subpools were grown in a greenhouse and one to seven individual plants exhibiting GUS expression in seeds were isolated for each subpool. This library of the Arabidopsis seed enhancer-trap lines is an efficient tool for identifying seed germination-associated genes. The individual lines from this library will be provided to the international seed biology research community. International collaboration to identify the trapped genes using genome-walking PCR and to characterize the gene functions using knockout plants will significantly enhance our understanding of the molecular mechanisms of seed germination.
Collapse
Affiliation(s)
- Po-Pu Liu
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
Now that sequencing of the rice genome is nearly completed, functional analysis of its large number of genes is the next challenge. Because rice is easy to transform, T-DNA has been used successfully to generate insertional mutant lines. Collectively, several laboratories throughout the world have established at least 200,000 T-DNA insertional lines. Some of those carry the GUS or GFP reporters for either gene or enhancer traps. Others are activation tagging lines for gain-of-function mutagenesis when T-DNA is inserted in the intergenic region. A forward genetic approach showed limited success because of somaclonal variations induced during tissue culture. To utilize these resources more efficiently, tagged lines have been produced for reverse genetics approaches. DNA pools of the T-DNA-tagged lines have been prepared for polymerase chain reaction (PCR) screening of insertional mutants in a given gene. Appropriate T-DNA insertion sites are determined by sequencing the region flanking the T-DNA. This information is then used to make databases that are shared with the scientific community. International efforts on seed amplification and maintenance are needed to exploit these valuable materials efficiently.
Collapse
Affiliation(s)
- Gynheung An
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
| | | | | | | |
Collapse
|
63
|
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. THE PLANT CELL 2005; 17:61-76. [PMID: 15598805 PMCID: PMC544490 DOI: 10.1105/tpc.104.026161] [Citation(s) in RCA: 534] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2004] [Accepted: 10/10/2004] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana genome contains five class III homeodomain-leucine zipper genes. We have isolated loss-of-function alleles for each family member for use in genetic analysis. This gene family regulates apical embryo patterning, embryonic shoot meristem formation, organ polarity, vascular development, and meristem function. Genetic analyses revealed a complex pattern of overlapping functions, some of which are not readily inferred by phylogenetic relationships or by gene expression patterns. The PHABULOSA and PHAVOLUTA genes perform overlapping functions with REVOLUTA, whereas the PHABULOSA, PHAVOLUTA, and CORONA/ATHB15 genes perform overlapping functions distinct from REVOLUTA. Furthermore, ATHB8 and CORONA encode functions that are both antagonistic to those of REVOLUTA within certain tissues and overlapping with REVOLUTA in other tissues. Differences in expression patterns explain some of these genetic interactions, whereas other interactions are likely attributable to differences in protein function as indicated by cross-complementation studies.
Collapse
Affiliation(s)
- Michael J Prigge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, An Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
64
|
Gutensohn M, Pahnke S, Kolukisaoglu U, Schulz B, Schierhorn A, Voigt A, Hust B, Rollwitz I, Stöckel J, Geimer S, Albrecht V, Flügge UI, Klösgen RB. Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplasts. Mol Genet Genomics 2004; 272:379-96. [PMID: 15517392 DOI: 10.1007/s00438-004-1068-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 09/11/2004] [Indexed: 11/26/2022]
Abstract
In Arabidopsis thaliana, the Toc34 receptor component of the chloroplast import machinery is encoded by two independent but highly homologous genes, atToc33 and atToc34. We have isolated a T-DNA insertion mutant of atToc33 which is characterized by a pale phenotype, due to reductions in the levels of photosynthetic pigments, and alterations in protein composition. The latter involve not only chloroplast proteins but also some cytosolic polypeptides, including 14-3-3 proteins which, among other functions, have been proposed to be cytosolic targeting factors for nucleus-encoded chloroplast proteins. Within the chloroplast, many, though not all, proteins of the photosynthetic apparatus, as well as proteins not directly involved in photosynthesis, are found in significantly reduced amounts in the mutant. However, the accumulation of other chloroplast proteins is unaffected. This suggests that the atToc33 receptor is responsible for the import of a specific subset of nucleus-encoded chloroplast proteins. Supporting evidence for this conclusion was obtained by antisense repression of the atToc34 gene in the atToc33 mutant, which results in an exacerbation of the phenotype.
Collapse
Affiliation(s)
- M Gutensohn
- Institut für Pflanzenphysiologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Fridborg I, Williams A, Yang A, MacFarlane S, Coutts K, Angell S. Enhancer trapping identifies TRI, an Arabidopsis gene up-regulated by pathogen infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:1086-94. [PMID: 15497401 DOI: 10.1094/mpmi.2004.17.10.1086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Enhancer trap Arabidopsis thaliana plants were screened for genes up-regulated by virus infection. The plants carried T-DNA insertions comprising a minimal -60-bp Cauliflower mosaic virus 35S promoter fused to the beta-glucuronidase (GUS) reporter gene. Approximately 12,000 plants were assayed for GUS activity before and after rub-inoculation with Tobacco rattle virus (TRV) tagged with the green fluorescent protein (GFP). One plant and its progeny consistently showed upregulation of GUS activity in response to TRV-GFP infection, indicating that a virus-responsive enhancer element was "tagged" by the T-DNA in this line. Other viruses, bacteria, and oomycetes, but not wounding, up-regulated GUS activity in the enhancer trap line, indicating that the response was not specific to TRV-GFP infection. A pathogen-inducible, alternatively spliced gene was identified, which we have termed TRI for TRV-induced gene. A pathogen-responsive element was localized to a 1.1-kb region upstream of the T-DNA insertion, and two different cis-acting elements, both implicated in defense responses, were found in the sequence upstream of TRI. Sequence analyses revealed that TRI is similar to ACRE169, a gene that is up-regulated in Cf-9-expressing tobacco when treated with Avr-9, the Cladosporium fulvum elicitor of the Cf-9 resistance response.
Collapse
Affiliation(s)
- Ingela Fridborg
- Department of Disease and Stress Biology, John Innes Centre, Norwich, NR4 7UH, U.K
| | | | | | | | | | | |
Collapse
|
66
|
Eamens AL, Blanchard CL, Dennis ES, Upadhyaya NM. A bidirectional gene trap construct suitable for T-DNA and Ds-mediated insertional mutagenesis in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2004; 2:367-80. [PMID: 17168884 DOI: 10.1111/j.1467-7652.2004.00081.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A construct suitable for genome-wide transfer-DNA (T-DNA) and subsequent transposon-based (Ds) gene trapping has been developed for use in rice (Oryza sativa). This T-DNA/Ds construct contains: Ds terminal sequences immediately inside T-DNA borders for subsequent Ds mobilization; promoterless green fluorescent protein (sgfpS65T) and beta-glucuronidase (uidA) reporter genes, each fused to an intron (from Arabidopsis GPA1 gene) to enable bidirectional gene trapping by T-DNA or Ds; an ampicillin resistance gene (bla) and a bacterial origin of replication (ori) to serve as the plasmid rescue system; an intron-containing hygromycin phosphotransferase gene (hph) as a selectable marker or Ds tracer; and an intron-containing barnase gene in the binary vector backbone (VB) to select against transformants carrying unwanted VB sequences. More than a threefold increase over previously reported reporter gene-based gene trapping efficiencies was observed in primary T-DNA/Ds transformant rice lines, returning an overall reporter gene expression frequency of 23%. Of the plant organs tested, 3.3-7.4% expressed either reporter at varying degrees of organ or tissue specificity. Approximately 70% of the right border (RB) flanking sequence tags (FSTs) retained 1-6 bp of the RB repeat and 30% of the left border (LB) FSTs retained 5-23 bp of the LB repeat. The remaining FSTs carried deletions of 2-84 bp inside the RB or 1-97 bp inside the LB. Transposition of Ds from the original T-DNA was evident in T-DNA/Ds callus lines super-transformed with a transposase gene (Ac) construct, as indicated by gene trap reporter activity and rescue of new FSTs in the resulting double transformant lines.
Collapse
Affiliation(s)
- Andrew L Eamens
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
67
|
Hunt L, Otterhag L, Lee JC, Lasheen T, Hunt J, Seki M, Shinozaki K, Sommarin M, Gilmour DJ, Pical C, Gray JE. Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms. THE NEW PHYTOLOGIST 2004; 162:643-654. [PMID: 33873763 DOI: 10.1111/j.1469-8137.2004.01069.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
• PI-PLCs synthesise the calcium releasing second messenger IP3 . We investigated the expression patterns of the Arabidopsis PI-PLC gene family and measured in vitro activity of encoded enzymes. • Gene specific RT-PCR and promoter-GUS fusions were used to analyse AtPLC gene expression patterns. The five available AtPLC cDNAs were expressed as fusion proteins in Escherichia coli. • All members of the AtPLC gene family were expressed in multiple organs of the plant. AtPLC1, and AtPLC5 expression was localized to the vascular cells of roots and leaves with AtPLC5::GUS also detected in the guard cells. AtPLC4::GUS was detected in pollen and cells of the stigma surface. In seedlings, AtPLC2 and AtPLC3 were constitutively expressed, while AtPLCs 1, 4 and 5 were induced by abiotic stresses. AtPLC1-5 were all shown to have phospholipase C activity in the presence of calcium ions. • AtPLCs showed limited tissue specific expression and expression of at least three genes was increased by abiotic stress. The differing calcium sensitivities of recombinant AtPLC protein activities may provide a mechanism for generating calcium signatures.
Collapse
Affiliation(s)
- L Hunt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - L Otterhag
- Department of Plant Biochemistry, Lund University PO Box 124, SE-221 00 Lund, Sweden
| | - J C Lee
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - T Lasheen
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - J Hunt
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - M Seki
- RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - K Shinozaki
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - M Sommarin
- Department of Plant Biochemistry, Lund University PO Box 124, SE-221 00 Lund, Sweden
| | - D J Gilmour
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C Pical
- Department of Plant Biochemistry, Lund University PO Box 124, SE-221 00 Lund, Sweden
| | - J E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
68
|
Jin WZ, Wang SM, Xu M, Duan RJ, Wu P. Characterization of enhancer trap and gene trap harboring Ac/Ds transposon in transgenic rice. JOURNAL OF ZHEJIANG UNIVERSITY. SCIENCE 2004; 5:390-399. [PMID: 14994426 DOI: 10.1631/jzus.2004.0390] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Insertion mutagenesis has become one of the most popular methods for gene functions analysis. Here we report a two-element Ac/Ds transposon system containing enhancer trap and gene trap for gene tagging in rice. The excision of Ds element was examined by PCR amplification. The excision frequency of Ds element varied from 0% to 40% among 20 F(2) populations derived from 11 different Ds parents. Southern blot analysis revealed that more than 70% of excised Ds elements reinserted into rice genome and above 70% of the reinserted Ds elements were located at different positions of the chromosome in rice. The result of histochemical GUS analysis indicated that 28% of enhancer trap and 22% of gene trap tagging plants displayed GUS activity in leaves, roots, flowers or seeds. The GUS positive lines will be useful for identifying gene function in rice.
Collapse
Affiliation(s)
- Wei-zheng Jin
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | |
Collapse
|
69
|
Alvarado MC, Zsigmond LM, Kovács I, Cséplö A, Koncz C, Szabados LM. Gene trapping with firefly luciferase in Arabidopsis. Tagging of stress-responsive genes. PLANT PHYSIOLOGY 2004; 134:18-27. [PMID: 14730060 PMCID: PMC316285 DOI: 10.1104/pp.103.027151] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Revised: 07/18/2003] [Accepted: 09/11/2003] [Indexed: 05/21/2023]
Abstract
To monitor the expression of T-DNA-tagged plant genes in vivo, a collection of 20,261 transgenic lines of Arabidopsis (Columbia-0) were generated with the promoter trap vector pTluc, which carries a promoterless firefly luc (luciferase) reporter gene linked to the right T-DNA border. By detection of bioluminescence in 3-week-old seedlings, 753 lines were identified showing constitutive, organ-specific, and stress-responsive luciferase expression patterns. To facilitate the identification of well-defined luciferase expression patterns, a pooled seed stock was established. Several lines showed sugar, salt, and abscisic acid (ABA)-inducible luciferase activity. Segregation analysis of 215 promoter trap lines indicated that about 50% of plants contained single insertions, whereas 40% carried two and 10% carried three or more T-DNA tags. Sequencing the T-DNA insert junctions isolated from 17 luciferase-expressing lines identified T-DNA tags in 5'- and 3'-transcribed domains and translational gene fusions generated by T-DNA insertions in exons and introns of Arabidopsis genes. Tissue specific expression of eight wild-type Arabidopsis genes was confirmed to be similar to the luminescence patterns observed in the corresponding luciferase-tagged lines. Here, we describe the characterization of a transcriptional luc reporter gene fusion with the WBC-type ABC transporter gene At1g17840. Expression of wild-type and luciferase-tagged At1g17840 alleles revealed similar induction by salt, glucose, and ABA treatments and gibberellin-mediated down-regulation of ABA-induced expression. These results illustrate that luciferase gene traps are well suited for monitoring the expression of stress-responsive Arabidopsis genes in vivo.
Collapse
Affiliation(s)
- Martha C Alvarado
- Institute of Plant Biology, Biological Research Center, Temesvári krt. 62, 6726-Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
70
|
Verica JA, Chae L, Tong H, Ingmire P, He ZH. Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1732-46. [PMID: 14576286 PMCID: PMC300728 DOI: 10.1104/pp.103.028530] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Arabidopsis cell wall-associated kinase (WAK) and WAK-like kinase (WAKL) family of receptor-like kinase genes encodes transmembrane proteins with a cytoplasmic serine/threonine kinase domain and an extracellular region containing epidermal growth factor-like repeats. Previous studies have suggested that some WAK members are involved in plant defense and heavy metal responses, whereas others are required for cell elongation and plant development. The WAK/WAKL gene family consists of 26 members in Arabidopsis and can be divided into four groups. Here, we describe the characterization of group 2 members that are composed of a cluster of seven tandemly arrayed WAKL genes. The predicted WAKL proteins are highly similar in their cytoplasmic region but are more divergent in their predicted extracellular ligand-binding region. WAKL7 encodes a truncated WAKL isoform that is predicted to be secreted from the cytoplasm. Ratios of nonsynonymous to synonymous substitutions suggest that the extracellular region is subject to diversifying selection. Comparison of the WAKL and WAK gene clusters suggests that they arose independently. Protein gel-blot and immunolocalization analyses suggest that WAKL6 is associated with the cell wall. Histochemical analyses of WAKL promoters fused with the beta-glucuronidase reporter gene have shown that the expressions of WAKL members are developmentally regulated and tissue specific. Unlike WAK members whose expressions were found predominately in green tissues, WAKL genes are highly expressed in roots and flowers. The expression of WAKL5 and WAKL7 can be induced by wounding stress and by the salicylic acid analog 2,6-dichloroisonicotinic acid in an nonexpressor of pathogenesis-related gene 1-dependent manner, suggesting that they, like some WAK members, are wound inducible and can be defined as pathogenesis-related genes.
Collapse
Affiliation(s)
- Joseph A Verica
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, California 94132, USA
| | | | | | | | | |
Collapse
|
71
|
Ayre BG, Blair JE, Turgeon R. Functional and phylogenetic analyses of a conserved regulatory program in the phloem of minor veins. PLANT PHYSIOLOGY 2003; 133:1229-39. [PMID: 14526110 PMCID: PMC281618 DOI: 10.1104/pp.103.027714] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 07/07/2003] [Accepted: 07/18/2003] [Indexed: 05/18/2023]
Abstract
The minor-vein phloem of mature leaves is developmentally and physiologically distinct from the phloem in the rest of the vascular system. Phloem loading of transport sugars occurs in the minor veins, and consistent with this, galactinol synthase is expressed in the minor veins of melon (Cucumis melo) as part of the symplastic-loading mechanism that operates in this species. A galactinol synthase promoter from melon drives gene expression in the minor-vein companion cells of both transgenic tobacco (Nicotiana tabacum) and Arabidopsis. Neither of these plants use galactinol in the phloem-loading process, implying that the promoter responds to a minor-vein-specific regulatory cascade that is highly conserved across a broad range of eudicotyledons. Detailed analysis of this promoter by truncation and mutagenesis identified three closely coupled sequences that unambiguously modulate tissue specificity. These sequences cooperate in a combinatorial fashion: two promote expression throughout the vascular system of the plant, whereas the third functions to repress expression in the larger bundles. In a complementary approach, phylogenetic footprinting was used to obtain single-nucleotide resolution of conserved sites in orthologous promoters from diverse members of the Cucurbitaceae. This comparative analysis confirmed the importance of the closely coupled sites but also revealed other highly conserved sequences that may modulate promoter strength or contribute to expression patterns outside of the phloem. The conservation of this regulatory design among species that phloem load by different mechanisms supports a model for organismal development in which tissues and cell types are controlled by relatively ancient and conserved paradigms but expression of genes influencing final form and function are relatively plastic.
Collapse
Affiliation(s)
- Brian G Ayre
- Department of Plant Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | |
Collapse
|
72
|
Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Li X, Zhou DX, Wang S, Zhang Q. Development of enhancer trap lines for functional analysis of the rice genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:418-27. [PMID: 12887592 DOI: 10.1046/j.1365-313x.2003.01808.x] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Enhancer trapping has provided a powerful strategy for identifying novel genes and regulatory elements. In this study, we adopted an enhancer trap system, consisting of the GAL4/VP16-UAS elements with GUS as the reporter, to generate a trapping population of rice. Currently, 31 443 independent transformants were obtained from two cultivars using Agrobacterium-mediated T-DNA insertion. PCR tests and DNA blot hybridization showed that about 94% of the transformants contained T-DNA insertions. The transformants carried, on average, two copies of the T-DNA, and 42% of the transformants had single-copy insertions. Histochemical assays of approximately 1000 T0 plants revealed various patterns of the reporter gene expression, including expression in only one tissue, and simultaneously in two or more tissues. The expression pattern of the reporter gene in T1 families corresponded well with the T0 plants and segregated in a 3 : 1 Mendelian ratio in majority of the T1 families tested. The frequency of reporter gene expression in the enhancer trap lines was much higher than that in gene trap lines reported previously. Analysis of flanking sequences of T-DNA insertion sites from about 200 transformants showed that almost all the sequences had homology with the sequences in the rice genome databases. Morphologically conspicuous mutations were observed in about 7.5% of the 2679 T1 families that were field-tested, and segregation in more than one-third of the families fit the 3 : 1 ratio. It was concluded that GAL4/VP16-UAS elements provided a useful system for enhancer trap in rice.
Collapse
Affiliation(s)
- Changyin Wu
- National Key Laboratory of Crop Genetic Improvement, National Center of Crop Molecular Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Tang W, Perry SE. Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study. J Biol Chem 2003; 278:28154-9. [PMID: 12743119 DOI: 10.1074/jbc.m212976200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AGL15 (for AGAMOUS-like 15) is currently the only reported member of the plant MADS domain family of transcriptional regulators that preferentially accumulates during embryo development. Additionally, AGL15 is one of the more divergent members of the MADS domain family, including within the DNA-binding domain. Previous studies have shown that MADS domain proteins bind to DNA sequences with an overall consensus of CC(A/T)6GG (called a CArG motif). Nonetheless, different MADS domain proteins exhibit similar yet distinct binding site preferences that may be critical for differential gene regulation. To determine the consensus sequence preferentially bound by AGL15 in vitro, PCR-assisted binding site selection assays were performed. AGL15 was observed to prefer a CArG motif with a longer A/T-rich core and is to date the only plant MADS domain protein having such a preference. Next, the Arabidopsis genome data base was searched for genes containing AGL15 binding sites as candidates for direct regulation by AGL15. One gene, DTA4 (for Downstream Target of AGL15-4), was identified by this method, and then confirmed as a direct target of AGL15 in vivo.
Collapse
Affiliation(s)
- Weining Tang
- Department of Agronomy, University of Kentucky, Lexington, Kentucky 40546-0312, USA
| | | |
Collapse
|
74
|
Yamamoto YY, Tsuhara Y, Gohda K, Suzuki K, Matsui M. Gene trapping of the Arabidopsis genome with a firefly luciferase reporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:273-283. [PMID: 12848831 DOI: 10.1046/j.1365-313x.2003.01797.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Experiments with gene-trap vectors containing the firefly luciferase (LUC) reporter genes were carried out with the aim of analyzing functions of the Arabidopsis genome. Studies with protein fusion-type trap vectors as well as an internal ribosome entry site (IRES)-assisted non-fusion-type vector revealed that both types of vectors were suitable for gene trapping in Arabidopsis, although there were some differences in trapping efficiencies. The established trap lines were subjected to analyses for light responses, demonstrating the powerful and unique applications of a LUC-trapping system. A systematic survey of the insertion sites of the T-DNAs in LUC-expressing lines revealed 12-41% gene-trapping efficiencies depending on the vector. We demonstrate that the LUC-trapping system provides a unique system with which to monitor temporal expression of plant genes.
Collapse
Affiliation(s)
- Yoshiharu Y Yamamoto
- Plant Function Exploration Team, Plant Functional Genomics Research Group, Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suyehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
75
|
Michael TP, McClung CR. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. PLANT PHYSIOLOGY 2003; 132:629-39. [PMID: 12805593 PMCID: PMC167003 DOI: 10.1104/pp.021006] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2003] [Revised: 02/21/2003] [Accepted: 03/01/2003] [Indexed: 05/18/2023]
Abstract
The circadian clock synchronizes the internal biology of an organism with the environment and has been shown to be widespread among organisms. Microarray experiments have shown that the circadian clock regulates mRNA abundance of about 10% of the transcriptome in plants, invertebrates, and mammals. In contrast, the circadian clock regulates the transcription of the virtually all cyanobacterial genes. To determine the extent to which the circadian clock controls transcription in Arabidopsis, we used in vivo enhancer trapping. We found that 36% of our enhancer trap lines display circadian-regulated transcription, which is much higher than estimates of circadian regulation based on analysis of steady-state mRNA abundance. Individual lines identified by enhancer trapping exhibit peak transcription rates at circadian phases spanning the complete circadian cycle. Flanking genomic sequence was identified for 23 enhancer trap lines to identify clock-controlled genes (CCG-ETs). Promoter analysis of CCG-ETs failed to predict new circadian clock response elements (CCREs), although previously defined CCREs, the CCA1-binding site, and the evening element were identified. However, many CCGs lack either the CCA1-binding site or the evening element; therefore, the presence of these CCREs is insufficient to confer circadian regulation, and it is clear that additional elements play critical roles.
Collapse
Affiliation(s)
- Todd P Michael
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
76
|
Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. PLANT & CELL PHYSIOLOGY 2003; 44:463-72. [PMID: 12773632 DOI: 10.1093/pcp/pcg064] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have previously generated a large pool of T-DNA insertional lines in rice. In this study, we screened those T-DNA pools for rice mutants that had defective chlorophylls. Among the 1,995 lines examined in the T2 generation, 189 showed a chlorophyll-deficient phenotype that segregated as a single recessive locus. Among the mutants, 10 lines were beta-glucuronidase (GUS)-positive in the leaves. Line 9-07117 has a T-DNA insertion into the gene that is highly homologous to XANTHA-F in barley and CHLH in Arabidopsis: This OsCHLH gene encodes the largest subunit of the rice Mg-chelatase, a key enzyme in the chlorophyll branch of the tetrapyrrole biosynthetic pathway. In the T2 and T3 generations, the chlorina mutant phenotypes are co-segregated with the T-DNA. We have identified two additional chlorina mutants that have a Tos17 insertion in the OsCHLH gene. Those phenotypes were co-segregated with Tos17 in the progeny. GUS assays and RNA blot analysis showed that expression of the OsCHLH gene is light inducible, while TEM analysis revealed that the thylakoid membrane of the mutant chloroplasts is underdeveloped. The chlorophyll content was very low in the OschlH mutants. This is the first report that T-DNA insertional mutagenesis can be used for functional analysis of rice genes.
Collapse
Affiliation(s)
- Ki-Hong Jung
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 790-784 Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Kocsis MG, Ranocha P, Gage DA, Simon ES, Rhodes D, Peel GJ, Mellema S, Saito K, Awazuhara M, Li C, Meeley RB, Tarczynski MC, Wagner C, Hanson AD. Insertional inactivation of the methionine s-methyltransferase gene eliminates the s-methylmethionine cycle and increases the methylation ratio. PLANT PHYSIOLOGY 2003; 131:1808-15. [PMID: 12692340 PMCID: PMC166937 DOI: 10.1104/pp.102.018846] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2002] [Revised: 12/26/2002] [Accepted: 12/28/2002] [Indexed: 05/17/2023]
Abstract
Methionine (Met) S-methyltransferase (MMT) catalyzes the synthesis of S-methyl-Met (SMM) from Met and S-adenosyl-Met (Ado-Met). SMM can be reconverted to Met by donating a methyl group to homocysteine (homo-Cys), and concurrent operation of this reaction and that mediated by MMT sets up the SMM cycle. SMM has been hypothesized to be essential as a methyl donor or as a transport form of sulfur, and the SMM cycle has been hypothesized to guard against depletion of the free Met pool by excess Ado-Met synthesis or to regulate Ado-Met level and hence the Ado-Met to S-adenosylhomo-Cys ratio (the methylation ratio). To test these hypotheses, we isolated insertional mmt mutants of Arabidopsis and maize (Zea mays). Both mutants lacked the capacity to produce SMM and thus had no SMM cycle. They nevertheless grew and reproduced normally, and the seeds of the Arabidopsis mutant had normal sulfur contents. These findings rule out an indispensable role for SMM as a methyl donor or in sulfur transport. The Arabidopsis mutant had significantly higher Ado-Met and lower S-adenosylhomo-Cys levels than the wild type and consequently had a higher methylation ratio (13.8 versus 9.5). Free Met and thiol pools were unaltered in this mutant, although there were moderate decreases (of 30%-60%) in free serine, threonine, proline, and other amino acids. These data indicate that the SMM cycle contributes to regulation of Ado-Met levels rather than preventing depletion of free Met.
Collapse
Affiliation(s)
- Michael G Kocsis
- Horticultural Sciences Department, University of Florida, Gainesville 32611, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
79
|
Geisler M, Jablonska B, Springer PS. Enhancer trap expression patterns provide a novel teaching resource. PLANT PHYSIOLOGY 2002; 130:1747-53. [PMID: 12481057 PMCID: PMC1540270 DOI: 10.1104/pp.011197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A collection of Arabidopsis enhancer trap transposants has been identified for use as a teaching tool. This collection serves to assist students in understanding the patterning and organization of plant tissues and cells, and will be useful in plant anatomy, morphology, and developmental biology courses. Each transposant exhibits reporter gene expression in a specific tissue, cell type, or domain, and these lines collectively offer a glimpse of compartments of gene expression. Some compartments correspond to classical definitions of botanical anatomy and can assist in anatomical identification. Other patterns of reporter gene expression are more complex and do not necessarily correspond to known anatomical features. The sensitivity of the beta-glucuronidase histochemical stain provides the student with a colorful and direct way to visualize difficult aspects of plant development and anatomy, and provides the teacher with an invaluable tool for a practical laboratory session.
Collapse
Affiliation(s)
- Matt Geisler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521-0124, USA
| | | | | |
Collapse
|
80
|
Hartweck LM, Scott CL, Olszewski NE. Two O-linked N-acetylglucosamine transferase genes of Arabidopsis thaliana L. Heynh. have overlapping functions necessary for gamete and seed development. Genetics 2002; 161:1279-91. [PMID: 12136030 PMCID: PMC1462182 DOI: 10.1093/genetics/161.3.1279] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Arabidopsis SECRET AGENT (SEC) and SPINDLY (SPY) proteins are similar to animal O-linked N-acetylglucosamine transferases (OGTs). OGTs catalyze the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to Ser/Thr residues of proteins. In animals, O-GlcNAcylation has been shown to affect protein activity, stability, and/or localization. SEC protein expressed in Escherichia coli had autocatalytic OGT activity. To determine the function of SEC in plants, two tDNA insertional mutants were identified and analyzed. Although sec mutant plants did not exhibit obvious phenotypes, sec and spy mutations had a synthetic lethal interaction. This lethality was incompletely penetrant in gametes and completely penetrant postfertilization. The rate of both female and male sec spy gamete transmission was higher in plants heterozygous for both mutations than in plants heterozygous for sec and homozygous for spy. Double-mutant embryos aborted at various stages of development and no double-mutant seedlings were obtained. These results indicate that OGT activity is required during gametogenesis and embryogenesis with lethality occurring when parentally derived SEC, SPY, and/or O-GlcNAcylated proteins become limiting.
Collapse
Affiliation(s)
- Lynn M Hartweck
- Department of Plant Biology and Plant Molecular Genetics Institute, University of Minnesota, 220 Biological Sciences Center, 1445 Gortner Avenue, St Paul, MN 55108, USA
| | | | | |
Collapse
|
81
|
Holt BF, Boyes DC, Ellerström M, Siefers N, Wiig A, Kauffman S, Grant MR, Dangl JL. An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Dev Cell 2002; 2:807-17. [PMID: 12062092 DOI: 10.1016/s1534-5807(02)00174-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Plants recognize many pathogens through the action of a diverse family of proteins called disease resistance (R) genes. The Arabidopsis R gene RPM1 encodes resistance to specific Pseudomonas syringae strains. We describe an RPM1-interacting protein that is an ortholog of TIP49a, previously shown to interact with the TATA binding protein (TBP) complex and to modulate c-myc- and beta-catenin-mediated signaling in animals. Reduction of Arabidopsis TIP49a (AtTIP49a) mRNA levels results in measurable increases of two R-dependent responses without constitutively activating defense responses, suggesting that AtTIP49a can act as a negative regulator of at least some R functions. Further, AtTIP49a is essential for both sporophyte and female gametophyte viability. Thus, regulators of R function overlap with essential modulators of plant development.
Collapse
Affiliation(s)
- Ben F Holt
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Franco-Zorrilla JM, Cubas P, Jarillo JA, Fernández-Calvín B, Salinas J, Martínez-Zapater JM. AtREM1, a member of a new family of B3 domain-containing genes, is preferentially expressed in reproductive meristems. PLANT PHYSIOLOGY 2002; 128:418-27. [PMID: 11842146 PMCID: PMC148905 DOI: 10.1104/pp.010323] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2001] [Revised: 06/13/2001] [Accepted: 08/11/2001] [Indexed: 05/20/2023]
Abstract
We have isolated and characterized AtREM1, the Arabidopsis ortholog of the cauliflower (Brassica oleracea) BoREM1. AtREM1 belongs to a large gene family of more than 20 members in Arabidopsis. The deduced AtREM1 protein contains several repeats of a B3-related domain, and it could represent a new class of regulatory proteins only found in plants. Expression of AtREM1 is developmentally regulated, being first localized in a few central cells of vegetative apical meristems, and later expanding to the whole inflorescence meristem, as well as primordia and organs of third and fourth floral whorls. This specific expression pattern suggests a role in the organization of reproductive meristems, as well as during flower organ development.
Collapse
Affiliation(s)
- José M Franco-Zorrilla
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Campus de la Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Twyman RM, Kohli A, Stoger E, Christou P. Foreign DNA: integration and expression in transgenic plants. GENETIC ENGINEERING 2002; 24:107-36. [PMID: 12416303 DOI: 10.1007/978-1-4615-0721-5_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Affiliation(s)
- Richard M Twyman
- Molecular Biotechnology Unit, John Innes Centre, Norwich, NR4 7UH United Kingdom
| | | | | | | |
Collapse
|
84
|
Abstract
In contrast to the conservation of floral organ order in angiosperm flowers, nectary glands can be found in various floral and extrafloral positions. Since in Arabidopsis, the nectary develops only at the base of stamens, its specification was assayed with regard to the floral homeotic ABC selector genes. We show that the nectary can form independently of any floral organ identity gene but is restricted to the ‘third whorl’ domain in the flower. This domain is, in part, specified redundantly by LEAFY and UNUSUAL FLORAL ORGANS. Even though nectary glands arise from cells previously expressing the B class genes, their proper development requires the down-regulation of B class gene activity. While CRABS CLAW is essential for nectary gland formation, its ectopic expression is not sufficient to induce ectopic nectary formation. We show that in Arabidopsis multiple factors act to restrict the nectary to the flower, and surprisingly, some of these factors are LEAFY and UNUSUAL FLORAL ORGANS.
Collapse
Affiliation(s)
- S F Baum
- Section of Plant Biology, Universsity of California Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
85
|
Tax FE, Vernon DM. T-DNA-associated duplication/translocations in Arabidopsis. Implications for mutant analysis and functional genomics. PLANT PHYSIOLOGY 2001; 126:1527-38. [PMID: 11500551 PMCID: PMC117152 DOI: 10.1104/pp.126.4.1527] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2001] [Revised: 03/23/2001] [Accepted: 04/26/2001] [Indexed: 05/18/2023]
Abstract
T-DNA insertion mutants have become a valuable resource for studies of gene function in Arabidopsis. In the course of both forward and reverse genetic projects, we have identified novel interchromosomal rearrangements in two Arabidopsis T-DNA insertion lines. Both rearrangements were unilateral translocations associated with the left borders of T-DNA inserts that exhibited normal Mendelian segregation. In one study, we characterized the embryo-defective88 mutation. Although emb88 had been mapped to chromosome I, molecular analysis of DNA adjacent to the T-DNA left border revealed sequence from chromosome V. Simple sequence length polymorphism mapping of the T-DNA insertion demonstrated that a >40-kbp region of chromosome V had inserted with the T-DNA into the emb88 locus on chromosome I. A similar scenario was observed with a prospective T-DNA knockout allele of the LIGHT-REGULATED RECEPTOR PROTEIN KINASE (LRRPK) gene. Whereas wild-type LRRPK is on lower chromosome IV, mapping of the T-DNA localized the disrupted LRRPK allele to chromosome V. In both these cases, the sequence of a single T-DNA-flanking region did not provide an accurate picture of DNA disruption because flanking sequences had duplicated and inserted, with the T-DNA, into other chromosomal locations. Our results indicate that T-DNA insertion lines--even those that exhibit straightforward genetic behavior--may contain an unexpectedly high frequency of rearrangements. Such duplication/translocations can interfere with reverse genetic analyses and provide misleading information about the molecular basis of mutant phenotypes. Simple mapping and polymerase chain reaction methods for detecting such rearrangements should be included as a standard step in T-DNA mutant analysis.
Collapse
Affiliation(s)
- F E Tax
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721
| | | |
Collapse
|
86
|
Ishikawa A, Okamoto H, Iwasaki Y, Asahi T. A deficiency of coproporphyrinogen III oxidase causes lesion formation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:89-99. [PMID: 11489187 DOI: 10.1046/j.1365-313x.2001.01058.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We isolated an Arabidopsis lesion initiation 2 (lin2) mutant, which develops lesion formation on leaves and siliques in a developmentally regulated and light-dependent manner. The phenotype of the lin2 plants resulted from a single nuclear recessive mutation, and LIN2 was isolated by a T-DNA tagging approach. LIN2 encodes coproporphyrinogen III oxidase, a key enzyme in the biosynthetic pathway of chlorophyll and heme, a tetrapyrrole pathway, in Arabidopsis. The lin2 plants express cytological and molecular markers associated with the defense responses, usually activated by pathogen infection. These results demonstrate that a porphyrin pathway impairment is responsible for the lesion initiation phenotype, which leads to the activation of defense responses, in Arabidopsis. Lesion formation was not suppressed, and was even enhanced when accumulation of salicylic acid (SA) was prevented in lin2 plants by the expression of an SA-degrading salicylate hydroxylase (nahG) gene. This suggests that the lesion formation triggered in lin2 plants is determined prior to or independently of the accumulation of SA but that the accumulation is required to limit the spread of lesions in lin2 plants.
Collapse
Affiliation(s)
- A Ishikawa
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan.
| | | | | | | |
Collapse
|
87
|
Zheng SJ, Henken B, Sofiari E, Jacobsen E, Krens FA, Kik C. Molecular characterization of transgenic shallots (Allium cepa L.) by adaptor ligation PCR (AL-PCR) and sequencing of genomic DNA flanking T-DNA borders. Transgenic Res 2001; 10:237-45. [PMID: 11437280 DOI: 10.1023/a:1016633410041] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA 105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66 bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.
Collapse
Affiliation(s)
- S J Zheng
- Plant Research International, Wageningen University and Research Center, The Netherlands
| | | | | | | | | | | |
Collapse
|
88
|
He Y, Tang W, Swain JD, Green AL, Jack TP, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. PLANT PHYSIOLOGY 2001; 126:707-16. [PMID: 11402199 PMCID: PMC111161 DOI: 10.1104/pp.126.2.707] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Revised: 03/26/2001] [Accepted: 04/03/2001] [Indexed: 05/18/2023]
Abstract
The last phase of leaf development, generally referred to as leaf senescence, is an integral part of plant development that involves massive programmed cell death. Due to a sharp decline of photosynthetic capacity in a leaf, senescence limits crop yield and forest plant biomass production. However, the biochemical components and regulatory mechanisms underlying leaf senescence are poorly characterized. Although several approaches such as differential cDNA screening, differential display, and cDNA subtraction have been employed to isolate senescence-associated genes (SAGs), only a limited number of SAGs have been identified, and information regarding the regulation of these genes is fragmentary. Here we report on the utilization of enhancer trap approach toward the identification and analysis of SAGs. We have developed a sensitive large-scale screening method and have screened 1,300 Arabidopsis enhancer trap lines and have identified 147 lines in which the reporter gene GUS (beta-glucuronidase) is expressed in senescing leaves but not in non-senescing ones. We have systematically analyzed the regulation of beta-glucuronidase expression in 125 lines (genetically, each contains single T-DNA insertion) by six senescence-promoting factors, namely abscisic acid, ethylene, jasmonic acid, brassinosteroid, darkness, and dehydration. This analysis not only reveals the complexity of the regulatory circuitry but also allows us to postulate the existence of a network of senescence-promoting pathways. We have also cloned three SAGs from randomly selected enhancer trap lines, demonstrating that reporter expression pattern reflects the expression pattern of the endogenous gene.
Collapse
Affiliation(s)
- Y He
- Plant Physiology/Biochemistry/Molecular Biology Program, Department of Agronomy and Tobacco and Health Research Institute, University of Kentucky, Lexington, Kentucky 40546-0236, USA
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops.
Collapse
Affiliation(s)
- A Pereira
- Plant Research International, Wageningen, The Netherlands.
| |
Collapse
|
90
|
Abstract
Gene knockout is considered to be a major component of the functional genomics toolbox, and is aimed at revealing the function of genes discovered through large-scale sequencing programs. In the past few years, several Arabidopsis populations mutagenized with insertion elements, such as the T-DNA of Agrobacterium or transposons, have been produced. These large populations are routinely screened for insertions into specific genes, allowing mass-isolation of knockout lines. Although many Arabidopsis knockouts have already been obtained, few of them have been reported to present informative phenotypes that provide a direct clue to gene function. Although functional redundancy explains the lack of phenotypical alterations in some cases, it also appears that many mutations are conditional and/or do not alter plant morphology even in the presence of severe physiological defects. Consequently, gene knockout per se is not sufficient to assess gene function and must be integrated into a more global approach for determining biological functions.
Collapse
Affiliation(s)
- N Bouché
- INRA, Laboratoire de Biologie Cellulaire, Route de Saint Cyr, 78026, Versailles, France
| | | |
Collapse
|
91
|
Swaminathan K, Yang Y, Grotz N, Campisi L, Jack T. An enhancer trap line associated with a D-class cyclin gene in Arabidopsis. PLANT PHYSIOLOGY 2000; 124:1658-67. [PMID: 11115883 PMCID: PMC59864 DOI: 10.1104/pp.124.4.1658] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Revised: 07/13/2000] [Accepted: 08/22/2000] [Indexed: 05/19/2023]
Abstract
In yeast and animals, cyclins have been demonstrated to be important regulators of cell cycle progression. In recent years, a large number of A-, B-, and D-class cyclins have been isolated from a variety of plant species. One class of cyclins, the D-class cyclins, is important for progression through G1 phase of the cell cycle. In Arabidopsis, four D-class cyclins have been isolated and characterized (CYCLIN-D1;1, CYCLIN-D2;1, CYCLIN-D3;1, and CYCLIN-D4;1). In this report we describe the characterization of a fifth D-class cyclin gene, CYCLIN-D3;2 (CYCD3;2), from Arabidopsis. An enhancer trap line, line 5580, contains a T-DNA insertion in CYCD3;2. Enhancer trap line 5580 exhibits expression in young vegetative and floral primordia. In line 5580, T-DNA is inserted in the first exon of the CYCD3;2 gene; in homozygous 5580 plants CYCD3;2 RNA is not detectable. Even though CYCD3;2 gene function is eliminated, homozygous 5580 plants do not exhibit an obvious growth or developmental phenotype. Via in situ hybridization we demonstrate that CYCD3;2 RNA is expressed in developing vegetative and floral primordia. In addition, CYCD3;2 is also capable of rescuing a yeast strain that is deficient in G1 cyclin activity.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Base Sequence
- Blotting, Northern
- Cyclin D3
- Cyclins/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genetic Complementation Test
- Homozygote
- In Situ Hybridization
- Molecular Sequence Data
- Mutagenesis, Insertional
- Mutation
- Phenotype
- Plants/genetics
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, DNA
- Tissue Distribution
Collapse
Affiliation(s)
- K Swaminathan
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | | | | | | | |
Collapse
|
92
|
Zolman BK, Yoder A, Bartel B. Genetic analysis of indole-3-butyric acid responses in Arabidopsis thaliana reveals four mutant classes. Genetics 2000; 156:1323-37. [PMID: 11063705 PMCID: PMC1461311 DOI: 10.1093/genetics/156.3.1323] [Citation(s) in RCA: 211] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Indole-3-butyric acid (IBA) is widely used in agriculture because it induces rooting. To better understand the in vivo role of this endogenous auxin, we have identified 14 Arabidopsis mutants that are resistant to the inhibitory effects of IBA on root elongation, but that remain sensitive to the more abundant auxin indole-3-acetic acid (IAA). These mutants have defects in various IBA-mediated responses, which allowed us to group them into four phenotypic classes. Developmental defects in the absence of exogenous sucrose suggest that some of these mutants are impaired in peroxisomal fatty acid chain shortening, implying that the conversion of IBA to IAA is also disrupted. Other mutants appear to have normal peroxisomal function; some of these may be defective in IBA transport, signaling, or response. Recombination mapping indicates that these mutants represent at least nine novel loci in Arabidopsis. The gene defective in one of the mutants was identified using a positional approach and encodes PEX5, which acts in the import of most peroxisomal matrix proteins. These results indicate that in Arabidopsis thaliana, IBA acts, at least in part, via its conversion to IAA.
Collapse
Affiliation(s)
- B K Zolman
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | |
Collapse
|
93
|
Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G. T-DNA insertional mutagenesis for functional genomics in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 22:561-70. [PMID: 10886776 DOI: 10.1046/j.1365-313x.2000.00767.x] [Citation(s) in RCA: 461] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We have produced 22 090 primary transgenic rice plants that carry a T-DNA insertion, which has resulted in 18 358 fertile lines. Genomic DNA gel-blot and PCR analyses have shown that approximately 65% of the population contains more than one copy of the inserted T-DNA. Hygromycin resistance tests revealed that transgenic plants contain an average of 1.4 loci of T-DNA inserts. Therefore, it can be estimated that approximately 25 700 taggings have been generated. The binary vector used in the insertion contained the promoterless beta-glucuronidase (GUS) reporter gene with an intron and multiple splicing donors and acceptors immediately next to the right border. Therefore, this gene trap vector is able to detect a gene fusion between GUS and an endogenous gene, which is tagged by T-DNA. Histochemical GUS assays were carried out in the leaves and roots from 5353 lines, mature flowers from 7026 lines, and developing seeds from 1948 lines. The data revealed that 1.6-2.1% of tested organs were GUS-positive in the tested organs, and that their GUS expression patterns were organ- or tissue-specific or ubiquitous in all parts of the plant. The large population of T-DNA-tagged lines will be useful for identifying insertional mutants in various genes and for discovering new genes in rice.
Collapse
Affiliation(s)
- J S Jeon
- National Research Laboratory of Plant Functional Genomics, Division of Molecular and Life Sciences, Pohang University of Science and Technology (POSTECH), Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|