51
|
Nieto B, Forés O, Arró M, Ferrer A. Arabidopsis 3-hydroxy-3-methylglutaryl-CoA reductase is regulated at the post-translational level in response to alterations of the sphingolipid and the sterol biosynthetic pathways. PHYTOCHEMISTRY 2009; 70:53-9. [PMID: 19041104 DOI: 10.1016/j.phytochem.2008.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/11/2008] [Accepted: 10/14/2008] [Indexed: 05/04/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR, EC 1.1.1.34) catalyzes the major rate-limiting step in the mevalonate (MVA) pathway for isoprenoid biosynthesis. Its activity is regulated at different levels, from transcriptional to post-translational. Treatment of Arabidopsis thaliana plants with myriocin, a specific inhibitor of serine palmitoyltransferase (SPT), the first enzyme of sphingolipid biosynthesis, resulted in a concomitant reduction of both HMGR activity and the sterol content, which reveals regulatory cross-talk between these two lipid biosynthesis pathways. Myriocin-induced down-regulation of HMGR activity is exerted at the post-translational level, like the regulatory response of HMGR to enhancement or depletion of the flux through the sterol pathway.
Collapse
Affiliation(s)
- Benjamín Nieto
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmacia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
52
|
Procházková D, Haisel D, Wilhelmová N. Antioxidant protection during ageing and senescence in chloroplasts of tobacco with modulated life span. Cell Biochem Funct 2008; 26:582-90. [PMID: 18512255 DOI: 10.1002/cbf.1481] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
We studied changes in antioxidant protection during ageing and senescence in chloroplasts of tobacco (Nicotiana tabacum L., cv. Wisconsin) with introduced SAG(12) promoter fused with ipt gene for cytokinin synthesis (transgenic plants with increased levels of cytokinins, SAG) or without it (control). Old leaves of SAG plants as well as their chloroplasts maintained higher physiological parameters compared to controls; accordingly, we concluded that their ageing was diverted due to increased cytokinin content. The chloroplast antioxidant protection did not decrease as well. Although antioxidant protection usually decreased in whole leaves of senescing control plants, ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) activity, which maintained the high redox state of ascorbate, increased in chloroplasts of old control leaves.
Collapse
Affiliation(s)
- Dagmar Procházková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | | | |
Collapse
|
53
|
Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum. Biosci Biotechnol Biochem 2008; 72:1571-9. [PMID: 18540102 DOI: 10.1271/bbb.80067] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A farnesyl-diphosphate synthase gene, designated GlFPS, was isolated from a triterpene-producing basidiomycetous fungus, Ganoderma lucidum. The GlFPS cDNA was found to contain an open reading frame of 1,083 bp, encoding a protein of 360 amino acids with a calculated molecular mass of 41.27 kDa. The deduced amino acid sequence of the GlFPS cDNA exhibited a high homology with other fungal FPS genes, and contained four conserved domains. Phylogenetic analysis showed that GlFPS belonged to the basidiomycete FPS group. Competitive PCR revealed that GlFPS was constitutively expressed in the mycelium growth stage, whereas the transcripts of GlFPS accumulated to high levels rapidly during the process of mushroom primordia. Treatment of mycelia with exogenous methyl jasmonate also caused a large accumulation of GlFPS mRNA. Subsequently, promoter analysis indicated that the 5' upstream region of GlFPS possessed various potential regulatory elements associated with physiological and environmental factors. Functional complementation of GlFPS in an ERG20-disrupted yeast strain indicated that the cloned cDNA encoded a farnesyl-diphosphate synthase.
Collapse
|
54
|
Schmidt A, Gershenzon J. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. PHYTOCHEMISTRY 2007; 68:2649-59. [PMID: 17624381 DOI: 10.1016/j.phytochem.2007.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 05/16/2023]
Abstract
The conifer Picea abies (Norway spruce) employs terpenoid-based oleoresins as part of its constitutive and induced defense responses to herbivores and pathogens. The isoprenyl diphosphate synthases are branch-point enzymes of terpenoid biosynthesis leading to the various terpene classes. We isolated three genes encoding isoprenyl diphosphate synthases from P. abies cDNA libraries prepared from the bark and wood of methyl jasmonate-treated saplings and screened via a homology-based PCR approach using degenerate primers. Enzyme assays of the purified recombinant proteins expressed in Escherichia coli demonstrated that one gene (PaIDS 4) encodes a farnesyl diphosphate synthase and the other two (PaIDS 5 and PaIDS 6) encode geranylgeranyl diphosphate synthases. The sequences have moderate similarity to those of farnesyl diphosphate and geranylgeranyl diphosphate synthases already known from plants, and the kinetic properties of the enzymes are not unlike those of other isoprenyl diphosphate synthases. Of the three genes, only PaIDS 5 displayed a significant increase in transcript level in response to methyl jasmonate spraying, suggesting its involvement in induced oleoresin biosynthesis.
Collapse
Affiliation(s)
- Axel Schmidt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| | | |
Collapse
|
55
|
Kobayashi K, Suzuki M, Tang J, Nagata N, Ohyama K, Seki H, Kiuchi R, Kaneko Y, Nakazawa M, Matsui M, Matsumoto S, Yoshida S, Muranaka T. Lovastatin insensitive 1, a Novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. PLANT & CELL PHYSIOLOGY 2007; 48:322-31. [PMID: 17213228 DOI: 10.1093/pcp/pcm005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Higher plants have two metabolic pathways for isoprenoid biosynthesis: the cytosolic mevalonate (MVA) pathway and the plastidal non-mevalonate (MEP) pathway. Despite the compartmentalization of these two pathways, metabolic flow occurs between them. However, little is known about the mechanisms that regulate the two pathways and the metabolic cross-talk. To identify such regulatory mechanisms, we isolated and characterized the Arabidopsis T-DNA insertion mutant lovastatin insensitive 1 (loi1), which is resistant to lovastatin and clomazone, inhibitors of the MVA and MEP pathways, respectively. The accumulation of the major products of these pathways, i.e. sterols and chlorophyll, was less affected by lovastatin and clomazone, respectively, in loi1 than in the wild type. Furthermore, the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity analysis showed higher activity of HMGR in loi1-1 treated with lovastatin than that in the WT. We consider that the lovastatin-resistant phenotype of loi1-1 was derived from this post-transcriptional up-regulation of HMGR. The LOI1 gene encodes a novel pentatricopeptide repeat (PPR) protein. PPR proteins are thought to regulate the expression of genes encoded in organelle genomes by post-transcriptional regulation in mitochondria or plastids. Our results demonstrate that LOI1 is predicted to localize in mitochondria and has the ability to bind single-stranded nucleic acids. Our investigation revealed that the post-transcriptional regulation of mitochondrial RNA may be involved in isoprenoid biosynthesis in both the MVA and MEP pathways.
Collapse
Affiliation(s)
- Keiko Kobayashi
- RIKEN Plant Science Center, 1-7-22, Suehirocho, Tsurumi-ku, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Suzuki M, Muranaka T. Molecular Genetics of Plant Sterol Backbone Synthesis. Lipids 2006; 42:47-54. [PMID: 17393210 DOI: 10.1007/s11745-006-1000-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
Sterols, which are biosynthesized via the cytoplasmic mevalonate (MVA) pathway, are important structural components of the plasma membrane and precursors of steroid hormones in both vertebrates and plants. Ergosterol and cholesterol are the major sterols in yeast and vertebrates, respectively. In contrast, plants produce a wide variety of phytosterols, which have various functions in plant development. Although the general biosynthetic pathway to plant sterols has been defined, the details of the biochemical, physiological, and developmental functions of genes involved in the biosynthetic network and their regulation are not well understood. Molecular genetic analyses are an effective approach to use when studying these fascinating problems. Since three enzymes, 3-hydroxy-3-methylglutaryl CoA reductase, farnesyl diphosphate synthase, and lanosterol synthase, have been functionally characterized in planta, we reviewed recent progress on these enzymes. Arabidopsis T-DNA and transposon insertion mutants are now widely available. The use of molecular genetics, molecular biology, and bioorganic chemical approaches on these mutants, as well as inhibitors of the MVA pathway, should help us to understand plant sterol biosynthesis comprehensively.
Collapse
Affiliation(s)
- Masashi Suzuki
- Metabolic Diversity Research Team, RIKEN Plant Science Center, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
57
|
Manzano D, Busquets A, Closa M, Hoyerová K, Schaller H, Kamínek M, Arró M, Ferrer A. Overexpression of farnesyl diphosphate synthase in Arabidopsis mitochondria triggers light-dependent lesion formation and alters cytokinin homeostasis. PLANT MOLECULAR BIOLOGY 2006; 61:195-213. [PMID: 16786301 DOI: 10.1007/s11103-006-6263-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 12/31/2005] [Indexed: 05/10/2023]
Abstract
To investigate the role of mitochondrial farnesyl diphosphate synthase (FPS) in plant isoprenoid biosynthesis we characterized transgenic Arabidopsis thaliana plants overexpressing FPS1L isoform. This overexpressed protein was properly targeted to mitochondria yielding a mature and active form of the enzyme of 40 kDa. Leaves from transgenic plants grown under continuous light exhibited symptoms of chlorosis and cell death correlating to H(2)O(2) accumulation, and leaves detached from the same plants displayed accelerated senescence. Overexpression of FPS in mitochondria also led to altered leaf cytokinin profile, with a reduction in the contents of physiologically active trans-zeatin- and isopentenyladenine-type cytokinins and their corresponding riboside monophosphates as well as enhanced levels of cis-zeatin 7-glucoside and storage cytokinin O-glucosides. Overexpression of 3-hydroxy-3-methylglutaryl coenzyme A reductase did not prevent chlorosis in plants overexpressing FPS1L, but did rescue accelerated senescence of detached leaves and restored wild-type levels of cytokinins. We propose that the overexpression of FPS1L leads to an enhanced uptake and metabolism of mevalonic acid-derived isopentenyl diphosphate and/or dimethylallyl diphosphate by mitochondria, thereby altering cytokinin homeostasis and causing a mitochondrial dysfunction that renders plants more sensitive to the oxidative stress induced by continuous light.
Collapse
Affiliation(s)
- David Manzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Jing HC, Schippers JHM, Hille J, Dijkwel PP. Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2915-23. [PMID: 16172137 DOI: 10.1093/jxb/eri287] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ethylene can only induce senescence in leaves that have reached a defined age. Thus, ethylene-induced senescence depends on age-related changes (ARCs) of individual leaves. The relationship between ethylene and age in the induction of leaf senescence was tested in Arabidopsis Ler-0, Col-0, and Ws-0 accessions as well as in eight old (onset of leaf death) mutants, isolated from the Ler-0 background. Plants with a constant final age of 24 d were exposed to ethylene for 3-16 d. The wild-type accessions showed a common response to the ethylene treatment. Increasing ethylene treatments of 3-12 d caused an increase in the number of yellow leaves. However, an ethylene exposure time of 16 d resulted in a decrease in the amount of yellowing. Thus, ethylene can both positively and negatively influence ARCs and the subsequent induction of leaf senescence, depending on the length of the treatment. The old mutants showed altered responses to the ethylene treatments. old1 and old11 were hypersensitive to ethylene in the triple response assay and a 12-d ethylene exposure resulted in a decrease in the amount of yellow leaves. The other six mutants did not show a decrease in yellow leaves with an ethylene treatment of 16 d. The results revealed that the effect of ethylene on the induction of senescence can be modified by at least eight genes.
Collapse
Affiliation(s)
- Hai-Chun Jing
- Molecular Biology of Plants, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN, Haren, The Netherlands
| | | | | | | |
Collapse
|
59
|
Abstract
Isoprenoids represent the oldest class of known low molecular-mass natural products synthesized by plants. Their biogenesis in plastids, mitochondria and the endoplasmic reticulum-cytosol proceed invariably from the C5 building blocks, isopentenyl diphosphate and/or dimethylallyl diphosphate according to complex and reiterated mechanisms. Compounds derived from the pathway exhibit a diverse spectrum of biological functions. This review centers on advances obtained in the field based on combined use of biochemical, molecular biology and genetic approaches. The function and evolutionary implications of this metabolism are discussed in relation with seminal informations gathered from distantly but related organisms.
Collapse
Affiliation(s)
- Florence Bouvier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357) et Université Louis Pasteur, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | | | | |
Collapse
|
60
|
Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R. Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. PLANT PHYSIOLOGY 2005; 138:2033-47. [PMID: 16040657 PMCID: PMC1183393 DOI: 10.1104/pp.105.061598] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 05/03/2023]
Abstract
CYP51 exists in all organisms that synthesize sterols de novo. Plant CYP51 encodes an obtusifoliol 14alpha-demethylase involved in the postsqualene sterol biosynthetic pathway. According to the current gene annotation, the Arabidopsis (Arabidopsis thaliana) genome contains two putative CYP51 genes, CYP51A1 and CYP51A2. Our studies revealed that CYP51A1 should be considered an expressed pseudogene. To study the functional importance of the CYP51A2 gene in plant growth and development, we isolated T-DNA knockout alleles for CYP51A2. Loss-of-function mutants for CYP51A2 showed multiple defects, such as stunted hypocotyls, short roots, reduced cell elongation, and seedling lethality. In contrast to other sterol mutants, such as fk/hydra2 and hydra1, the cyp51A2 mutant has only minor defects in early embryogenesis. Measurements of endogenous sterol levels in the cyp51A2 mutant revealed that it accumulates obtusifoliol, the substrate of CYP51, and a high proportion of 14alpha-methyl-delta8-sterols, at the expense of campesterol and sitosterol. The cyp51A2 mutants have defects in membrane integrity and hypocotyl elongation. The defect in hypocotyl elongation was not rescued by the exogenous application of brassinolide, although the brassinosteroid-signaling cascade is apparently not affected in the mutants. Developmental defects in the cyp51A2 mutant were completely rescued by the ectopic expression of CYP51A2. Taken together, our results demonstrate that the Arabidopsis CYP51A2 gene encodes a functional obtusifoliol 14alpha-demethylase enzyme and plays an essential role in controlling plant growth and development by a sterol-specific pathway.
Collapse
Affiliation(s)
- Ho Bang Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Cowan AK, Freeman M, Björkman PO, Nicander B, Sitbon F, Tillberg E. Effects of senescence-induced alteration in cytokinin metabolism on source-sink relationships and ontogenic and stress-induced transitions in tobacco. PLANTA 2005; 221:801-14. [PMID: 15770486 DOI: 10.1007/s00425-005-1489-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Accepted: 12/23/2004] [Indexed: 05/04/2023]
Abstract
Senescence and reserve mobilization are integral components of plant development, are basic strategies in stress mitigation, and regulated at least in part by cytokinin. In the present study the effect of altered cytokinin metabolism caused by senescence-specific autoregulated expression of the Agrobacterium tumefaciens IPT gene under control of the P(SAG12) promoter (P(SAG12)-IPT) on seed germination and the response to a water-deficit stress was studied in tobacco (Nicotiana tabacum L.). Cytokinin levels, sugar content and composition of the leaf strata within the canopy of wild-type and P(SAG12)-IPT plants confirmed the reported altered source-sink relations. No measurable difference in sugar and pigment content of discs harvested from apical and basal leaves was evident 72 h after incubation with (+)-ABA or in darkness, indicating that expression of the transgene was not restricted to senescing leaves. No difference in quantum efficiency, photosynthetic activity, accumulation of ABA, and stomatal conductance was apparent in apical, middle and basal leaves of either wild-type or P(SAG12)-IPT plants after imposition of a mild water stress. However, compared to wild-type plants, P(SAG12)-IPT plants were slower to adjust biomass allocation. A stress-induced increase in root:shoot ratio and specific leaf area (SLA) occurred more rapidly in wild-type than in P(SAG12)-IPT plants reflecting delayed remobilization of leaf reserves to sink organs in the transformant. P(SAG12)-IPT seeds germinated more slowly even though abscisic acid (ABA) content was 50% that of the wild-type seeds confirming cytokinin-induced alterations in reserve remobilization. Thus, senescence is integral to plant growth and development and an increased endogenous cytokinin content impacts source-sink relations to delay ontogenic transitions wherein senescence in a necessary process.
Collapse
Affiliation(s)
- A Keith Cowan
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 7080, Uppsala, 750 07, Sweden
| | | | | | | | | | | |
Collapse
|
62
|
Enfissi EMA, Fraser PD, Lois LM, Boronat A, Schuch W, Bramley PM. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:17-27. [PMID: 17168896 DOI: 10.1111/j.1467-7652.2004.00091.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The genetic manipulation of both the mevalonic acid (MVA) and methylerythritol-4-phosphate (MEP) pathways, leading to the formation of isopentenyl diphosphate (IPP), has been achieved in tomato using 3-hydroxymethylglutaryl CoA (hmgr-1) and 1-deoxy-d-xylulose-5-phosphate synthase (dxs) genes, respectively. Transgenic plants containing an additional hmgr-1 from Arabidopsis thaliana, under the control of the cauliflower mosaic virus (CaMV) 35S constitutive promoter, contained elevated phytosterols (up to 2.4-fold), but IPP-derived isoprenoids in the plastid were unaltered. Transgenic lines containing a bacterial dxs targeted to the plastid with the tomato dxs transit sequence resulted in an increased carotenoid content (1.6-fold), which was inherited in the next generation. Phytoene and beta-carotene exhibited the greatest increases (2.4- and 2.2-fold, respectively). Extra-plastidic isoprenoids were unaffected in these lines. These data are discussed with respect to the regulation, compartmentalization and manipulation of isoprenoid biosynthetic pathways and their relevance to plant biotechnology.
Collapse
Affiliation(s)
- Eugenia M A Enfissi
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | | | | | |
Collapse
|
63
|
Leivar P, González VM, Castel S, Trelease RN, López-Iglesias C, Arró M, Boronat A, Campos N, Ferrer A, Fernàndez-Busquets X. Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase. PLANT PHYSIOLOGY 2005; 137:57-69. [PMID: 15618432 PMCID: PMC548838 DOI: 10.1104/pp.104.050245] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plants produce diverse isoprenoids, which are synthesized in plastids, mitochondria, endoplasmic reticulum (ER), and the nonorganellar cytoplasm. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) catalyzes the synthesis of mevalonate, a rate-limiting step in the cytoplasmic pathway. Several branches of the pathway lead to the synthesis of structurally and functionally varied, yet essential, isoprenoids. Several HMGR isoforms have been identified in all plants examined. Studies based on gene expression and on fractionation of enzyme activity suggested that subcellular compartmentalization of HMGR is an important intracellular channeling mechanism for the production of the specific classes of isoprenoids. Plant HMGR has been shown previously to insert in vitro into the membrane of microsomal vesicles, but the final in vivo subcellular localization(s) remains controversial. To address the latter in Arabidopsis (Arabidopsis thaliana) cells, we conducted a multipronged microscopy and cell fractionation approach that included imaging of chimeric HMGR green fluorescent protein localizations in transiently transformed cell leaves, immunofluorescence confocal microscopy in wild-type and stably transformed seedlings, immunogold electron microscopy examinations of endogenous HMGR in seedling cotyledons, and sucrose density gradient analyses of HMGR-containing organelles. Taken together, the results reveal that endogenous Arabidopsis HMGR is localized at steady state within ER as expected, but surprisingly also predominantly within spherical, vesicular structures that range from 0.2- to 0.6-microm diameter, located in the cytoplasm and within the central vacuole in differentiated cotyledon cells. The N-terminal region, including the transmembrane domain of HMGR, was found to be necessary and sufficient for directing HMGR to ER and the spherical structures. It is believed, although not directly demonstrated, that these vesicle-like structures are derived from segments of HMGR-ER. Nevertheless, they represent a previously undescribed subcellular compartment likely capable of synthesizing mevalonate, which provides new evidence for multiorganelle compartmentalization of the isoprenoid biosynthetic pathways in plants.
Collapse
Affiliation(s)
- Pablo Leivar
- Departament de Bioquímica i Biologia Molecular, Facultat de Química, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Manzano D, Fernández-Busquets X, Schaller H, González V, Boronat A, Arró M, Ferrer A. The metabolic imbalance underlying lesion formation in Arabidopsis thaliana overexpressing farnesyl diphosphate synthase (isoform 1S) leads to oxidative stress and is triggered by the developmental decline of endogenous HMGR activity. PLANTA 2004; 219:982-992. [PMID: 15605175 DOI: 10.1007/s00425-004-1301-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 04/16/2004] [Indexed: 05/24/2023]
Abstract
Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase isoform 1S (FPS1S) in transgenic A. thaliana (L.) Heynh. leads to necrotic lesion formation in leaves in planta and to premature senescence in detached leaves [A. Masferrer et al. (2002) Plant J 30:123-132]. Here we report that leaves of plants overexpressing FPS1S with symptoms of necrosis show increased H2O2 formation and induction of both the pathogenesis-related 1 (PR-1) and the alternative oxidase 1a (AOX1a) genes. These findings indicate that plants overexpressing FPS1S should be considered as lesion-mimic mutants and lead us to propose that H2O2 is the main inducing agent of necrosis in these plants. The onset of necrosis appears in a developmentally regulated manner that correlates with the developmental decline of endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity. Accordingly, constitutive overexpression of HMGR in plants overexpressing FPS1S prevents both necrosis and premature senescence. These observations demonstrate that both phenotypes are due to an insufficient supply of mevalonic acid and support the notion that the metabolic imbalance associated with FPS1S overexpression is, in fact, triggered by the developmental decline of HMGR activity. We also show that overexpression of FPS1S alleviates growth inhibition caused by overexpression of the catalytic domain of isoform HMGR1S. Overall, our results reinforce the view that the levels of specific intermediates of the mevalonic acid pathway must be strictly controlled, particularly those located at branch-point positions, in order to avoid deleterious effects on plant growth and development.
Collapse
Affiliation(s)
- David Manzano
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, 08028, Spain
| | | | | | | | | | | | | |
Collapse
|
65
|
Schaller H. New aspects of sterol biosynthesis in growth and development of higher plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2004; 42:465-76. [PMID: 15246059 DOI: 10.1016/j.plaphy.2004.05.012] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 05/06/2004] [Indexed: 05/08/2023]
Abstract
The characterization of the enzymatic components of plant sterol biosynthesis, the phenotypic description of a set of Arabidopsis thaliana sterol mutants, and consequently, the identification of aspects of growth and development influenced by sterols have been in recent years a very fruitful area of research. The overall data obtained in the field have shown an essential role of sterols at the cellular level in hormone signaling, organized divisions and embryo patterning. Indeed, current research efforts strongly suggest that membrane bound proteins implicated in polarized auxin transport or ethylene signaling have altered activity or functionality in a modified sterolic environment.
Collapse
Affiliation(s)
- Hubert Schaller
- Département Isoprénoïdes, Institut de Biologie Moléculaire des Plantes (IBMP/CNRS), Institut de Botanique, 28, rue Goethe, 67083 Strasbourg, France.
| |
Collapse
|
66
|
Suzuki M, Kamide Y, Nagata N, Seki H, Ohyama K, Kato H, Masuda K, Sato S, Kato T, Tabata S, Yoshida S, Muranaka T. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:750-761. [PMID: 14871314 DOI: 10.1111/j.1365-313x.2004.02003.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the first committed step in the cytosolic isoprenoid biosynthesis pathway in higher plants. To understand the contribution of HMGR to plant development, we isolated T-DNA insertion mutants for HMG1 and HMG2. The hmg1 and hmg2 mutants were both more sensitive than the wild type (WT) to lovastatin, an inhibitor of HMGR. The hmg2 mutant showed no visible phenotype under normal growth conditions. In contrast, the hmg1 mutant exhibited dwarfing, early senescence, and sterility. Expression of senescence-associated genes 12 (SAG12), a marker gene for senescence, was induced in the hmg1 mutant at an earlier stage than in the WT. Levels of trans-cytokinins--hormones known to inhibit senescence--were not lower in hmg1. The mutant did not have the typical appearance of brassinosteroid (BR)-deficient mutants, except for a dwarf phenotype, because of the suppression of cell elongation. The expression of several genes involved in cell elongation was suppressed in hmg1. WT plants treated exogenously with inhibitors of sterol biosynthesis had similar gene expression and sterility characteristics as the hmg1 mutants. Pleiotropic phenotypes were rescued by feeding with squalene, the precursor of sterols and triterpenoids. The sterol levels in hmg1 mutants were lower than in the WT. These findings suggest that HMG1 plays a critical role in triterpene biosynthesis, and that sterols and/or triterpenoids contribute to cell elongation, senescence, and fertility.
Collapse
Affiliation(s)
- Masashi Suzuki
- Plant Science Center, RIKEN, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Hoth S, Ikeda Y, Morgante M, Wang X, Zuo J, Hanafey MK, Gaasterland T, Tingey SV, Chua NH. Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana. FEBS Lett 2003; 554:373-80. [PMID: 14623097 DOI: 10.1016/s0014-5793(03)01194-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytokinins have been implicated in developmental and growth processes in plants including cell division, chloroplast biogenesis, shoot meristem initiation and senescence. The regulation of these processes requires changes in cytokinin-responsive gene expression. Here, we induced the expression of a bacterial isopentenyl transferase gene, IPT, in transgenic Arabidopsis thaliana seedlings to study the regulation of genome-wide gene expression in response to endogenous cytokinin. Using MPSS (massively parallel signature sequencing) we identified 823 and 917 genes that were up- and downregulated, respectively, following 24 h of IPT induction. When comparing the response to cytokinin after 6 and 24 h, we identified different clusters of genes showing a similar course of regulation. Our study provides researchers with the opportunity to rapidly assess whether genes of interest are regulated by cytokinins.
Collapse
Affiliation(s)
- Stefan Hoth
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ. Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. THE PLANT CELL 2003; 15:2866-84. [PMID: 14630967 PMCID: PMC282818 DOI: 10.1105/tpc.016253] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 09/29/2003] [Indexed: 05/17/2023]
Abstract
Volatile components, such as terpenoids, are emitted from aerial parts of plants and play a major role in the interaction between plants and their environment. Analysis of the composition and emission pattern of volatiles in the model plant Arabidopsis showed that a range of volatile components are released, primarily from flowers. Most of the volatiles detected were monoterpenes and sesquiterpenes, which in contrast to other volatiles showed a diurnal emission pattern. The active terpenoid metabolism in wild-type Arabidopsis provoked us to conduct an additional set of experiments in which transgenic Arabidopsis overexpressing two different terpene synthases were generated. Leaves of transgenic plants constitutively expressing a dual linalool/nerolidol synthase in the plastids (FaNES1) produced linalool and its glycosylated and hydroxylated derivatives. The sum of glycosylated components was in some of the transgenic lines up to 40- to 60-fold higher than the sum of the corresponding free alcohols. Surprisingly, we also detected the production and emission of nerolidol, albeit at a low level, suggesting that a small pool of its precursor farnesyl diphosphate is present in the plastids. Transgenic lines with strong transgene expression showed growth retardation, possibly as a result of the depletion of isoprenoid precursors in the plastids. In dual-choice assays with Myzus persicae, the FaNES1-expressing lines significantly repelled the aphids. Overexpression of a typical cytosolic sesquiterpene synthase resulted in the production of only trace amounts of the expected sesquiterpene, suggesting tight control of the cytosolic pool of farnesyl diphosphate, the precursor for sesquiterpenoid biosynthesis. This study further demonstrates the value of Arabidopsis for studies of the biosynthesis and ecological role of terpenoids and provides new insights into their metabolism in wild-type and transgenic plants.
Collapse
Affiliation(s)
- Asaph Aharoni
- Plant Research International, 6700 AA, Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Zhao Y, Ye H, Li G, Chen D, Liu Y. Cloning and enzymology analysis of farnesyl pyrophosphate synthase gene from a superior strain ofArtemisia annua L. CHINESE SCIENCE BULLETIN-CHINESE 2003. [DOI: 10.1007/bf03183336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
70
|
Abstract
The multitude of metabolites found in living organisms and the calculated, unexpected small number of genes identified during genome sequencing projects discomfit biologists. Several processes on the transcription and translation level lead to the formation of isoenzymes and can therefore explain at least parts of this surprising result. However, poor enzyme specificity may also contribute to metabolome diversity. In former studies, when enzymes were isolated from natural sources, impure protein preparations were hold responsible for broad enzyme specificity. Nowadays, highly purified enzymes are available by molecular biological methods such as heterologous expression in host organisms and they can be thoroughly analyzed. During biochemical analysis of heterologously expressed enzymes poor specificity was observed for enzymes involved in fruit ripening, e.g. in flavour and color formation. Surprisingly broad specificity was shown for the reactants in the case of alcohol acyl-CoA transferase, O-methyltransferase, glucosyltransferase, P450 monooxygenases as well as polyketide synthases and for the product in the case of monoterpene synthases. Literature data confirm the assumption of limited specificity for enzymes involved in metabolism and bioformation of secondary metabolites. It is concluded that metabolome diversity is caused by low enzyme specificity but availability of suitable substrates due to compartmentation has also taken into account.
Collapse
Affiliation(s)
- Wilfried Schwab
- Lehrstuhl für Lebensmittelchemie, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
71
|
Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence--a genomics approach. PLANT BIOTECHNOLOGY JOURNAL 2003; 1:3-22. [PMID: 17147676 DOI: 10.1046/j.1467-7652.2003.00004.x] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Senescence in green plants is a complex and highly regulated process that occurs as part of plant development or can be prematurely induced by stress. In the last decade, the main focus of research has been on the identification of senescence mutants, as well as on genes that show enhanced expression during senescence. Analysis of these is beginning to expand our understanding of the processes by which senescence functions. Recent rapid advances in genomics resources, especially for the model plant species Arabidopsis, are providing scientists with a dazzling array of tools for the identification and functional analysis of the genes and pathways involved in senescence. In this review, we present the current understanding of the mechanisms by which plants control senescence and the processes that are involved.
Collapse
|