51
|
Pethő L, Oláh-Szabó R, Mező G. Influence of the Drug Position on Bioactivity in Angiopep-2-Daunomycin Conjugates. Int J Mol Sci 2023; 24:ijms24043106. [PMID: 36834514 PMCID: PMC9959518 DOI: 10.3390/ijms24043106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
The blood-brain barrier (BBB) is a semipermeable system, and, therefore, most of the active substances are poorly transported through this barrier, resulting in decreased therapeutic effects. Angiopep-2 (TFFYGGSRGKRNNFKTEEY) is a peptide ligand of low-density lipoprotein receptor-related protein-1 (LRP1), which can cross the BBB via receptor-mediated transcytosis and simultaneously target glioblastomas. Angiopep-2 contains three amino groups that have previously been used to produce drug-peptide conjugates, although the role and importance of each position have not yet been investigated. Thus, we studied the number and position of drug molecules in Angiopep-2 based conjugates. Conjugates containing one, two, and three daunomycin molecules conjugated via oxime linkage in all possible variations were prepared. The in vitro cytostatic effect and cellular uptake of the conjugates were investigated on U87 human glioblastoma cells. Degradation studies in the presence of rat liver lysosomal homogenates were also performed in order for us to better understand the structure-activity relationship and to determine the smallest metabolites. Conjugates with the best cytostatic effects had a drug molecule at the N-terminus. We demonstrated that the increasing number of drug molecules does not necessarily increase the efficacy of the conjugates, and proved that modification of the different conjugation sites results in differing biological effectiveness.
Collapse
Affiliation(s)
- Lilla Pethő
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Rita Oláh-Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
| | - Gábor Mező
- ELKH-ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary
- Institute of Chemistry, Faculty of Science, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
52
|
Applications of comet and MTT assays in studying Dunaliella algae species. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
53
|
Soni JP, Nikitha Reddy G, Rahman Z, Sharma A, Spandana A, Phanindranath R, Dandekar MP, Nagesh N, Shankaraiah N. Synthesis and cytotoxicity evaluation of DNA-interactive β-carboline indolyl-3-glyoxamide derivatives: Topo-II inhibition and in silico modelling studies. Bioorg Chem 2023; 131:106313. [PMID: 36516521 DOI: 10.1016/j.bioorg.2022.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022]
Abstract
In a quest for effective cancer targeted drug therapy, a series of new β-carboline tethered indole-3-glyoxylamide derivatives, conjoining salient pharmacophoric properties with prominent cytotoxicity, were synthesized. The in vitro cytotoxic ability of the compounds was established, and many of the compounds exhibited remarkable cytotoxicity (IC50 < 10 μM) on human cancer cell lines like HCT116, A549, SK-MEL-28, and MCF7. Precisely, compound 12x expressed the best cytotoxic potential against melanoma cancer cell line (SK-MEL-28) with an IC50 value of 4.37 μM. In addition, cytotoxicity evaluation against normal kidney cell line (NRK52E) entrenched the cytospecificity and selectivity index of 12x. The traditional apoptosis assays advised morphological and nuclear alterations such as apoptotic body formation, condensed/horseshoe-shaped/fragmented nuclei, and generation of ROS. The flow cytometric analysis revealed significant early and slight late-stage induction of apoptosis. The target-based physiochemical assays indicated the ability of compound 12x to bind with DNA and inhibition of Topoisomerase II. Moreover, molecular modeling studies affirm the excellent DNA intercalation potential and stabilized interactions of 12x with DNA base pairs. In silico prediction of physicochemical parameters revealed the promising drug-like properties of the synthesized derivatives.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - G Nikitha Reddy
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Anamika Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Akella Spandana
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology, Medical Biotechnology Complex, ANNEXE II, Uppal Road, Hyderabad 500007, India.
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India.
| |
Collapse
|
54
|
Costa CMX, Aparecida-Silva C, Gamba LER, de Melo TN, Barbosa G, de Moraes Junior MO, de Oliveira VRT, de Amorim CS, Moraes JA, Barreiro EJ, Lima LM. Design, Synthesis and Phenotypic Profiling of Simplified Gedatolisib Analogues. Pharmaceuticals (Basel) 2023; 16:209. [PMID: 37259357 PMCID: PMC9964390 DOI: 10.3390/ph16020209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 04/19/2025] Open
Abstract
Targeted antitumour therapy has revolutionized the treatment of several types of tumours. Among the validated targets, phosphatidylinositol-3 kinase (PI3K) deserves to be highlighted. Several PI3K inhibitors have been developed for the treatment of cancer, including gedatolisib (4). This inhibitor was elected as a prototype and molecular modifications were planned to design a new series of simplified gedatolisib analogues (5a-f). The analogues were synthesised, and the comparative cytotoxic activity profile was studied in phenotypic models employing solid and nonadherent tumour cell lines. Compound 5f (LASSBio-2252) stood out as the most promising of the series, showing good aqueous solubility (42.38 μM (pH = 7.4); 39.33 μM (pH = 5.8)), good partition coefficient (cLogP = 2.96), cytotoxic activity on human leukemia cell lines (CCRF-CEM, K562 and MOLT-4) and an excellent metabolic stability profile in rat liver microsomes (t1/2 = 462 min; Clapp = 0.058 mL/min/g). The ability of 5f to exert its cytotoxic effect through modulation of the PI3K pathway was demonstrated by flow cytometry analysis in a comparative manner to gedatolisib.
Collapse
Affiliation(s)
- Caroline Marques Xavier Costa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cristiane Aparecida-Silva
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Luis Eduardo Reina Gamba
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Thalita Neves de Melo
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Gisele Barbosa
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Manoel Oliveira de Moraes Junior
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Victoria Regina Thomaz de Oliveira
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Carolinne Souza de Amorim
- Laboratório de Biologia Redox (LABIO-RedOx), Instituto de Ciências Biológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - João A. Moraes
- Laboratório de Biologia Redox (LABIO-RedOx), Instituto de Ciências Biológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Eliezer Jesus Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto Nacional de Ciência e Tecnologia de Fármacos e Medicamentos (INCT-INOFAR), Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, Rio de Janeiro 21941-971, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
55
|
In Vitro Evaluation of the Cytotoxic Potential of Thiosemicarbazide Coordinating Compounds in Hepatocyte Cell Culture. Biomedicines 2023; 11:biomedicines11020366. [PMID: 36830902 PMCID: PMC9953081 DOI: 10.3390/biomedicines11020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
Cancer is a global medical problem and, despite research efforts in the field of tumor treatment, there is currently a shortage of specific anticancer drugs. Most anticancer drugs show significant side effects. The liver is the organ that has central functions in drug metabolism, being a major target of the harmful action of anticancer compounds. In this context, it is essential to evaluate the cytotoxic effects of potential anticancer substances. Therefore, hepatotoxicity and hepatocyte viability were determined in vitro to evaluate the action of seven new local thiosemicarbazide coordination compounds (CCT) on normal liver cells. Doxorubicin was used as a reference substance. The control group consisted of hepatocytes not exposed to CCT action. The cell viability of hepatocytes treated with CCT decreased significantly by 5-12% compared to the control, but was statistically significantly higher by 5-14% compared to doxorubicin, except after CMD-8 and CMT-67 influence, when it does not change. Thus, new local CCT had a selective effect on hepatocytes in vitro and were less hepatotoxic compared to doxorubicin, which may be the basis for further study of its potential in anticancer drugs.
Collapse
|
56
|
Biobran/MGN-3, an Arabinoxylan Rice Bran, Protects against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An In Vitro and In Silico Study. Nutrients 2023; 15:nu15020453. [PMID: 36678324 PMCID: PMC9866808 DOI: 10.3390/nu15020453] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), poses a serious global public health threat for which there is currently no satisfactory treatment. This study examines the efficacy of Biobran/MGN-3 against SARS-CoV-2. Biobran is an arabinoxylan rice bran that has been shown to significantly inhibit the related influenza virus in geriatric subjects. Here, Biobran's anti-SARS-CoV-2 activity was assessed using MTT and plaque reduction assays, RT-PCR, ELISA techniques, and measurements of SARS-CoV-2-related gene expression and protein levels. For Vero E6 cells infected with SARS-CoV-2, Biobran reduced the viral load by 91.9% at a dose of 100 μg/mL, it reduced viral counts (PFU/mL) by 90.6% at 50 μg/mL, and it exhibited a significant selectivity index (EC50/IC50) of 22.5. In addition, Biobran at 10 μg/mL inhibited papain-like proteinase (PLpro) by 87% and ACE2 SARS-CoV-2 S-protein RBD by 90.5%, and it significantly suppressed SARS-CoV-2 gene expression, down-regulating E-gene and RdRp gene expression by 93% each at a dose of 50 μg/mL and inhibiting the E-protein by 91.3%. An in silico docking study was also performed to examine the protein-protein interaction (PPI) between SARS-CoV-2 RBD and DC-SIGN as well as between serine carboxypeptidase and papain-like protease PLpro. Serine carboxypeptidase, an active ingredient in Biobran, was found to interfere with the binding of SARS-CoV-2 to its receptor DC-SIGN on Vero cells, thus preventing the cell entry of SARS-CoV-2. In addition, it impairs the viral replication cycle by binding to PLpro. We conclude that Biobran possesses potent antiviral activity against SARS-CoV-2 in vitro and suggest that Biobran may be able to prevent SARS-CoV-2 infection. This warrants further investigation in clinical trials.
Collapse
|
57
|
Wang Y, Li Y, Chen J, Liu H, Zhou Y, Huang C, Liang L, Liu Y, Wang X. Anticancer effect evaluation of iridium(III) complexes targeting mitochondria and endoplasmic reticulum. J Inorg Biochem 2023; 238:112054. [PMID: 36335745 DOI: 10.1016/j.jinorgbio.2022.112054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Ligand HMSPIP (2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) and its iridium(III) complexes [Ir(ppy)2(HMSPIP)]PF6 (ppy = 2-phenylpyridine, Ir1) and [Ir(bzq)2(HMSPIP)]PF6 (bzq = benzo[h]quinoline, Ir2) were synthesized. The complexes were characterized by 1H NMR, 13C NMR, and UV/Vis spectra. The cytotoxicity of the complexes toward cancer cells were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the scratch wound healing and colony-forming were also investigated. MTT assay certificated that the complexes show high toxic effect on the HeLa cells. The cell cycle assay illustrated that the complexes blocked cell growth at G0/G1 phase in HeLa cells. A series of subsequent experiments showed that the complexes first enter the endoplasmic reticulum (ER) and then enter the mitochondria, leading to an increase in intracellular Ca2+ and reactive oxygen species (ROS) content, depolarizing mitochondrial membrane potential (MMP), and ultimately resulting in apoptosis. In addition, the experimental results revealed that the complexes not only increase the level of ROS but also inhibit the production of GSH and eventually produce large amounts of MDA and further leading to cell death. Taken together, we consider that the complexes can be used as potential candidate drugs for HeLa cancer treatment.
Collapse
Affiliation(s)
- Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yizhen Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Ju Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiuzhen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
58
|
Cellular prion protein offers neuroprotection in astrocytes submitted to amyloid β oligomer toxicity. Mol Cell Biochem 2022:10.1007/s11010-022-04631-w. [PMID: 36576715 DOI: 10.1007/s11010-022-04631-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/02/2022] [Indexed: 12/29/2022]
Abstract
The cellular prion protein (PrPC), in its native conformation, performs numerous cellular and cognitive functions in brain tissue. However, despite the cellular prion research in recent years, there are still questions about its participation in oxidative and neurodegenerative processes. This study aims to elucidate the involvement of PrPC in the neuroprotection cascade in the presence of oxidative stressors. For that, astrocytes from wild-type mice and knockout to PrPC were subjected to the induction of oxidative stress with hydrogen peroxide (H2O2) and with the toxic oligomer of the amyloid β protein (AβO). We observed that the presence of PrPC showed resistance in the cell viability of astrocytes. It was also possible to monitor changes in basic levels of metals and associate them with an induced damage condition, indicating the precise role of PrPC in metal homeostasis, where the absence of PrPC leads to metallic unbalance, culminating in cellular vulnerability to oxidative stress. Increased caspase 3, p-Tau, p53, and Bcl2 may establish a relationship between a PrPC and an induced damage condition. Complementarily, it has been shown that PrPC prevents the internalization of AβO and promotes its degradation under oxidative stress induction, thus preventing protein aggregation in astrocytes. It was also observed that the presence of PrPC can be related to translocating SOD1 to cell nuclei under oxidative stress, probably controlling DNA damage. The results of this study suggest that PrPC acts against oxidative stress activating the cellular response and defense by displaying neuroprotection to neurons and ensuring the functionality of astrocytes.
Collapse
|
59
|
Mambwe D, Korkor CM, Mabhula A, Ngqumba Z, Cloete C, Kumar M, Barros PL, Leshabane M, Coertzen D, Taylor D, Gibhard L, Njoroge M, Lawrence N, Reader J, Moreira DR, Birkholtz LM, Wittlin S, Egan TJ, Chibale K. Novel 3-Trifluoromethyl-1,2,4-oxadiazole Analogues of Astemizole with Multi-stage Antiplasmodium Activity and In Vivo Efficacy in a Plasmodium berghei Mouse Malaria Infection Model. J Med Chem 2022; 65:16695-16715. [PMID: 36507890 DOI: 10.1021/acs.jmedchem.2c01516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iterative medicinal chemistry optimization of an ester-containing astemizole (AST) analogue 1 with an associated metabolic instability liability led to the identification of a highly potent 3-trifluoromethyl-1,2,4-oxadiazole analogue 23 (PfNF54 IC50 = 0.012 μM; PfK1 IC50 = 0.040 μM) displaying high microsomal metabolic stability (HLM CLint < 11.6 μL·min-1·mg-1) and > 1000-fold higher selectivity over hERG compared to AST. In addition to asexual blood stage activity, the compound also shows activity against liver and gametocyte life cycle stages and demonstrates in vivo efficacy in Plasmodium berghei-infected mice at 4 × 50 mg·kg-1 oral dose. Preliminary interrogation of the mode of action using live-cell microscopy and cellular heme speciation revealed that 23 could be affecting multiple processes in the parasitic digestive vacuole, with the possibility of a novel target at play in the organelles associated with it.
Collapse
Affiliation(s)
- Dickson Mambwe
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Constance M Korkor
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Amanda Mabhula
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Zama Ngqumba
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Cleavon Cloete
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Malkeet Kumar
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | - Paula Ladeia Barros
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, CEP 40296-710 Salvador, Brazil
| | - Meta Leshabane
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Dina Coertzen
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Dale Taylor
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Liezl Gibhard
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Diogo Rodrigo Moreira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz (Fiocruz), Instituto Gonçalo Moniz, CEP 40296-710 Salvador, Brazil
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics & Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland.,University of Basel, 4003 Basel, Switzerland
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kelly Chibale
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa.,Drug Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory 7925, South Africa.,South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch 7701, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
60
|
de Melo Santana B, Pieretti JC, Gomes RN, Cerchiaro G, Seabra AB. Cytotoxicity towards Breast Cancer Cells of Pluronic F-127/Hyaluronic Acid Hydrogel Containing Nitric Oxide Donor and Silica Nanoparticles Loaded with Cisplatin. Pharmaceutics 2022; 14:pharmaceutics14122837. [PMID: 36559330 PMCID: PMC9780945 DOI: 10.3390/pharmaceutics14122837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The incorporation of both nitric oxide (NO) donor (S-nitrosoglutathione, GSNO) and silica nanoparticles loaded with cisplatin (SiO2@CisPt NPs) into a polymeric matrix represents a suitable approach to creating a drug-delivery system with sustained and localized drug release against tumor cells. Herein, we report the synthesis, characterization, and cytotoxicity evaluation of Pluronic F-127/hyaluronic acid hydrogel containing GSNO and SiO2@CisPt NPs against breast cancer cells. SiO2@CisPt NPs were successfully synthesized, revealing a spherical morphology with an average size of 158 ± 20 nm. Both GSNO and SiO2@CisPt NPs were incorporated into the thermoresponsive Pluronic/hyaluronic hydrogel for sustained and localized release of both NO and cisplatin. The kinetics of NO release from a hydrogel matrix revealed spontaneous and sustained release of NO at the millimolar range for 24 h. The MTT assay showed concentration-dependent cytotoxicity of the hydrogel. The combination of GSNO and SiO2@CisPt incorporated into a polymeric matrix decreased the cell viability 20% more than the hydrogel containing only GSNO or SiO2@CisPt. At 200 µg/mL, this combination led to a critical cell viability of 30%, indicating a synergistic effect between GSNO and SiO2@CisPt NPs in the hydrogel matrix, and, therefore, highlighting the potential application of this drug-delivery system in the field of biomedicine.
Collapse
|
61
|
Dos Santos LA, Dos Santos GS, Fernandes GAB, Corrêa MF, de Faria Almeida CA, Fernandes L, Marcourakis T, Fernandes JPS, Garcia RCT. Neurotoxicity Assessment of 1-[(2,3-Dihydro-1-Benzofuran-2-yl)Methyl]Piperazine (LINS01 Series) Derivatives and their Protective Effect on Cocaine-Induced Neurotoxicity Model in SH-SY5Y Cell Culture. Neurotox Res 2022; 40:1653-1663. [PMID: 36342586 DOI: 10.1007/s12640-022-00601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Excessive levels of dopamine in the synaptic cleft, induced by cocaine for example, activates dopaminergic receptors, mainly D1R, D2R, and D3R subtypes, contributing to neurotoxic effects. New synthetic 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazine derivatives (the LINS01 compounds), designed as histaminergic receptor (H3R) ligands, are also dopaminergic receptor ligands, mainly D2R and D3R. This study aims to evaluate the neurotoxicity of these new synthetic LINS01 compounds (LINS01003, LINS01004, LINS01011, and LINS01018), as well as to investigate their protective potential on a cocaine model of dopamine-induced neurotoxicity using SH-SY5Y cell line culture. Neurotoxicity was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH), and automated cell counting with fluorescent dyes (acridyl orange and propidium iodide) assays. Concentration-response curves (CRCs) were performed for all LINS compounds and cocaine using MTT assay. The results show that LINS series did not decrease cell viability after 48h of exposure-except for 100 µM LINS01018, which was discontinued from the study. Likewise, MTT, LDH, and fluorescent dyes staining showed no difference is cell viability for LINS compounds at 10 µM. When incubated with 2.5 mM cocaine (lethal concentration 50) for 48h, 10 µM of each LINS compound, metoclopramide (D2R antagonist) and haloperidol (D2R/D3R antagonist), ameliorated cocaine-induced neurotoxicity. However, only metoclopramide, haloperidol, and LINS01011 compound significantly decreased LDH released in the culture medium, suggesting that this new synthetic compound presents a more robust effect. This preliminary in vitro neurotoxicity study suggests that LINS01 compounds are not neurotoxic, and that they play a promising role in preventing cocaine-induced neurotoxicity.
Collapse
Affiliation(s)
- Laísa Aliandro Dos Santos
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Gabriela Salles Dos Santos
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Gustavo Ariel Borges Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Michelle Fidelis Corrêa
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Liliam Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Tania Marcourakis
- Departament of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| |
Collapse
|
62
|
Bonanni D, Pinzi L, Rastelli G. Development of machine learning classifiers to predict compound activity on prostate cancer cell lines. J Cheminform 2022; 14:77. [PMID: 36348374 PMCID: PMC9641853 DOI: 10.1186/s13321-022-00647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Prostate cancer is the most common type of cancer in men. The disease presents good survival rates if treated at the early stages. However, the evolution of the disease in its most aggressive variant remains without effective therapeutic answers. Therefore, the identification of novel effective therapeutics is urgently needed. On these premises, we developed a series of machine learning models, based on compounds with reported highly homogeneous cell-based antiproliferative assay data, able to predict the activity of ligands towards the PC-3 and DU-145 prostate cancer cell lines. The data employed in the development of the computational models was finely-tuned according to a series of thresholds for the classification of active/inactive compounds, to the number of features to be implemented, and by using 10 different machine learning algorithms. Models’ evaluation allowed us to identify the best combination of activity thresholds and ML algorithms for the classification of active compounds, achieving prediction performances with MCC values above 0.60 for PC-3 and DU-145 cells. Moreover, in silico models based on the combination of PC-3 and DU-145 data were also developed, demonstrating excellent precision performances. Finally, an analysis of the activity annotations reported for the ligands in the curated datasets were conducted, suggesting associations between cellular activity and biological targets that might be explored in the future for the design of more effective prostate cancer antiproliferative agents.
Collapse
|
63
|
Bains M, Kaur J, Akhtar A, Kuhad A, Sah SP. Anti-inflammatory effects of ellagic acid and vanillic acid against quinolinic acid-induced rat model of Huntington's disease by targeting IKK-NF-κB pathway. Eur J Pharmacol 2022; 934:175316. [DOI: 10.1016/j.ejphar.2022.175316] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
|
64
|
Duró C, Jernei T, Szekeres KJ, Láng GG, Oláh-Szabó R, Bősze S, Szabó I, Hudecz F, Csámpai A. Synthesis and SAR Analysis of Novel 4-Hydroxytamoxifen Analogues Based on Their Cytotoxic Activity and Electron-Donor Character. Molecules 2022; 27:6758. [PMID: 36235291 PMCID: PMC9573586 DOI: 10.3390/molecules27196758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Utilizing McMurry reactions of 4,4'-dihydroxybenzophenone with appropriate carbonyl compounds, a series of 4-Hydroxytamoxifen analogues were synthesized. Their cytotoxic activity was evaluated in vitro on four human malignant cell lines (MCF-7, MDA-MB 231, A2058, HT-29). It was found that some of these novel Tamoxifen analogues show marked cytotoxicity in a dose-dependent manner. The relative ROS-generating capability of the synthetized analogues was evaluated by cyclic voltammetry (CV) and DFT modeling studies. The results of cell-viability assays, CV measurements and DFT calculations suggest that the cytotoxicity of the majority of the novel compounds is mainly elicited by their interactions with cellular targets including estrogen receptors rather than triggered by redox processes. However, three novel compounds could be involved in ROS-production and subsequent formation of quinone-methide preventing proliferation and disrupting the redox balance of the treated cells. Among the cell lines studied, HT-29 proved to be the most susceptible to the treatment with compounds having ROS-generating potency.
Collapse
Affiliation(s)
- Cintia Duró
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Tamás Jernei
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| | - Krisztina J. Szekeres
- Laboratory of Electrochemistry and Electroanalytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Győző G. Láng
- Laboratory of Electrochemistry and Electroanalytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Rita Oláh-Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ildikó Szabó
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Ferenc Hudecz
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
- ELKH-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| | - Antal Csámpai
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
65
|
Banicka V, Martens MC, Panzer R, Schrama D, Emmert S, Boeckmann L, Thiem A. Homozygous CRISPR/Cas9 Knockout Generated a Novel Functionally Active Exon 1 Skipping XPA Variant in Melanoma Cells. Int J Mol Sci 2022; 23:ijms231911649. [PMID: 36232946 PMCID: PMC9569948 DOI: 10.3390/ijms231911649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma.
Collapse
Affiliation(s)
- Veronika Banicka
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Marie Christine Martens
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Rüdiger Panzer
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - David Schrama
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Lars Boeckmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Alexander Thiem
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
66
|
Tompros A, Wilber MQ, Fenton A, Carter ED, Gray MJ. Efficacy of Plant-Derived Fungicides at Inhibiting Batrachochytrium salamandrivorans Growth. J Fungi (Basel) 2022; 8:1025. [PMID: 36294589 PMCID: PMC9605044 DOI: 10.3390/jof8101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
The emerging fungal amphibian pathogen, Batrachochytrium salamandrivorans (Bsal), is currently spreading across Europe and given its estimated invasion potential, has the capacity to decimate salamander populations worldwide. Fungicides are a promising in situ management strategy for Bsal due to their ability to treat the environment and infected individuals. However, antifungal drugs or pesticides could adversely affect the environment and non-target hosts, thus identifying safe, effective candidate fungicides for in situ treatment is needed. Here, we estimated the inhibitory fungicidal efficacy of five plant-derived fungicides (thymol, curcumin, allicin, 6-gingerol, and Pond Pimafix®) and one chemical fungicide (Virkon® Aquatic) against Bsal zoospores in vitro. We used a broth microdilution method in 48-well plates to test the efficacy of six concentrations per fungicide on Bsal zoospore viability. Following plate incubation, we performed cell viability assays and agar plate growth trials to estimate the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of each fungicide. All six fungicides exhibited inhibitory and fungicidal effects against Bsal growth, with estimated MIC concentrations ranging from 60 to 0.156 μg/mL for the different compounds. Allicin showed the greatest efficacy (i.e., lowest MIC and MFC) against Bsal zoospores followed by curcumin, Pond Pimafix®, thymol, 6-gingerol, and Virkon® Aquatic, respectively. Our results provide evidence that plant-derived fungicides are effective at inhibiting and killing Bsal zoospores in vitro and may be useful for in situ treatment. Additional studies are needed to estimate the efficacy of these fungicides at inactivating Bsal in the environment and treating Bsal-infected amphibians.
Collapse
Affiliation(s)
- Adrianna Tompros
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Mark Q. Wilber
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Andy Fenton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Edward Davis Carter
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Matthew J. Gray
- Center for Wildlife Health, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| |
Collapse
|
67
|
Goodman K, Hua T, Sang QXA. Effects of Polystyrene Microplastics on Human Kidney and Liver Cell Morphology, Cellular Proliferation, and Metabolism. ACS OMEGA 2022; 7:34136-34153. [PMID: 36188270 PMCID: PMC9520709 DOI: 10.1021/acsomega.2c03453] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/05/2022] [Indexed: 05/13/2023]
Abstract
Microplastics have gained much attention due to their prevalence and abundance in our everyday lives. They have been detected in household items such as sugar, salt, honey, seafood, tap water, water bottles, and food items wrapped in plastic. Once ingested, these tiny particles can travel to internal organs such as the kidney and liver and cause adverse effects on the cellular level. Here, human embryonic kidney (HEK 293) cells and human hepatocellular (Hep G2) liver cells were used to examine the potential toxicological effects of 1 μm polystyrene microplastics (PS-MPs). Exposing cells to PS-MPs caused a major reduction in cellular proliferation but no significant decrease in cell viability as determined by the trypan blue assay in both cell lines. Cell viability remained at least 94% for both cell lines even at the highest concentration of 100 μg/mL of PS-MPs. Phase-contrast imaging of both kidney and liver cells exposed to PS-MPs at 72 h showed significant morphological changes and uptake of PS-MP particles. Confocal fluorescent microscopy confirmed the uptake of 1 μm PS-MPs at 72 h for both cell lines. Additionally, flow cytometry experiments verified that more than 70% of cells internalized 1 μm PS-MPs after 48 h of exposure for both kidney and liver cells. Reactive oxygen species (ROS) studies revealed kidney and liver cells exposed to PS-MPs had increased levels of ROS at each concentration and for every time point tested. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis at 24 and 72 h revealed that both HEK 293 and Hep G2 cells exposed to PS-MPs lowered the gene expression levels of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and antioxidant enzymes superoxide dismutase 2 (SOD2) and catalase (CAT), thus reducing the potential of SOD2 and CAT to detoxify ROS. These adverse effects of PS-MPs on human kidney and liver cells suggest that ingesting microplastics may lead to toxicological problems on cell metabolism and cell-cell interactions. Because exposing human kidney and liver cells to microplastics results in morphological, metabolic, proliferative changes and cellular stress, these results indicate the potential undesirable effects of microplastics on human health.
Collapse
Affiliation(s)
- Kerestin
E. Goodman
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Timothy Hua
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
| | - Qing-Xiang Amy Sang
- Department
of Chemistry and Biochemistry, Florida State
University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
68
|
Zimmermann CM, Baldassi D, Chan K, Adams NBP, Neumann A, Porras-Gonzalez DL, Wei X, Kneidinger N, Stoleriu MG, Burgstaller G, Witzigmann D, Luciani P, Merkel OM. Spray drying siRNA-lipid nanoparticles for dry powder pulmonary delivery. J Control Release 2022; 351:137-150. [PMID: 36126785 PMCID: PMC7613708 DOI: 10.1016/j.jconrel.2022.09.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
While all the siRNA drugs on the market target the liver, the lungs offer a variety of currently undruggable targets which could potentially be treated with RNA therapeutics. Hence, local, pulmonary delivery of RNA nanoparticles could finally enable delivery beyond the liver. The administration of RNA drugs via dry powder inhalers offers many advantages related to physical, chemical and microbial stability of RNA and nanosuspensions. The present study was therefore designed to test the feasibility of engineering spray dried lipid nanoparticle (LNP) powders. Spray drying was performed using 5% lactose solution (m/V), and the targets were set to obtain nanoparticle sizes after redispersion of spray-dried powders around 150 nm, a residual moisture level below 5%, and RNA loss below 15% at maintained RNA bioactivity. The LNPs consisted of an ionizable cationic lipid which is a sulfur-containing analog of DLin-MC3-DMA, a helper lipid, cholesterol, and PEG-DMG encapsulating siRNA. Prior to the spray drying, the latter process was simulated with a novel dual emission fluorescence spectroscopy method to preselect the highest possible drying temperature and excipient solution maintaining LNP integrity and stability. Through characterization of physicochemical and aerodynamic properties of the spray dried powders, administration criteria for delivery to the lower respiratory tract were fulfilled. Spray dried LNPs penetrated the lung mucus layer and maintained bioactivity for >90% protein downregulation with a confirmed safety profile in a lung adenocarcinoma cell line. Additionally, the spray dried LNPs successfully achieved up to 50% gene silencing of the house keeping gene GAPDH in ex vivo human precision-cut lung slices at without increasing cytokine levels. This study verifies the successful spray drying procedure of LNP-siRNA systems maintaining their integrity and mediating strong gene silencing efficiency on mRNA and protein levels both in vitro and ex vivo. The successful spray drying procedure of LNP-siRNA formulations in 5% lactose solution creates a novel siRNA-based therapy option to target respiratory diseases such as lung cancer, asthma, COPD, cystic fibrosis and viral infections.
Collapse
Affiliation(s)
- Christoph M Zimmermann
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Department of Chemistry, Biochemistry and Pharmacy, University Bern, Freiestrasse 3, Bern, Switzerland
| | - Domizia Baldassi
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany
| | - Karen Chan
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Nathan B P Adams
- Nanotemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany
| | - Alina Neumann
- Nanotemper Technologies GmbH, Flößergasse 4, 81369 Munich, Germany
| | - Diana Leidy Porras-Gonzalez
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xin Wei
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Mircea Gabriel Stoleriu
- Center for Thoracic Surgery Munich, Ludwig-Maximilians-University of Munich (LMU) and Asklepios Pulmonary Hospital, Marchioninistraße 15, 81377 Munich and Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Gerald Burgstaller
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoMedicines Innovation Network (NMIN), 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; NanoVation Therapeutics Inc., 2405 Wesbrook Mall 4th Floor, Vancouver V6T 1Z3, Canada.
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmacy, University Bern, Freiestrasse 3, Bern, Switzerland.
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians Universität München, 81377 Munich, Germany; Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
69
|
Addressing artifacts of colorimetric anticancer assays for plant-based drug development. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:198. [PMID: 36071299 DOI: 10.1007/s12032-022-01791-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/06/2022] [Indexed: 10/14/2022]
Abstract
Cancer has become the silent killer in less-developed countries and the most significant cause of morbidity worldwide. The accessible and frequently used treatments include surgery, radiotherapy, chemotherapy, and immunotherapy. Chemotherapeutic drugs traditionally involve using plant-based medications either in the form of isolated compounds or as scaffolds for synthetic drugs. To launch a drug in the market, it has to pass through several intricate steps. The multidrug resistance in cancers calls for novel drug discovery and development. Every year anticancer potential of several plant-based compounds and extracts is reported but only a few advances to clinical trials. The false-positive or negative results impact the progress of the cell-based anticancer assays. There are several cell-based assays but the widely used include MTT, MTS, and XTT. In this article, we have discussed various pitfalls and workable solutions.
Collapse
|
70
|
Xie B, Wang Y, Wang D, Xue X, Nie Y. Synthesis, Characterization and Anticancer Efficacy Studies of Iridium (III) Polypyridyl Complexes against Colon Cancer HCT116 Cells. Molecules 2022; 27:5434. [PMID: 36080200 PMCID: PMC9458069 DOI: 10.3390/molecules27175434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022] Open
Abstract
In this paper, two new iridium (III) complexes, [Ir(ppy)2(ipbp)](PF6) (Ir1) (ppy = 2-phenylpyridine, ipbp = 3-(1H-imidazo[4,5-f][1,10]phenanthrolin-2yl)-4H-chromen-4-one) and [Ir(bzq)2(ipbp)](PF6) (Ir2) (bzq = benzo[h]quinolone), were synthesized and characterized. The cytotoxicity of the complexes against human colon cancer HCT116 and normal LO2 cells was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The complexes Ir1 and Ir2 show high cytotoxic efficacy toward HCT116 cells with a low IC50 value of 1.75 ± 0.10 and 6.12 ± 0.2 µM. Interestingly, Ir1 only kills cancer cells, not normal LO2 cells (IC50 > 200 µM). The inhibition of cell proliferation and migration were investigated by multiple tumor spheroid (3D) and wound healing experiments. The cellular uptake was explored under a fluorescence microscope. The intracellular reactive oxygen species (ROS), change of mitochondrial membrane potential, glutathione (GSH) and adenine nucleoside triphosphate (ATP) were studied. Apoptosis and cell cycle arrest were performed by flow cytometry. The results show that the complexes induce early apoptosis and inhibit the cell proliferation at the G0/G1 phase. Additionally, the apoptotic mechanism was researched by Western blot analysis. The results obtained demonstrate that the complexes cause apoptosis in HCT116 cells through ROS-mediated mitochondrial dysfunction and the inhibition of PI3K/AKT signaling pathways.
Collapse
Affiliation(s)
- Biao Xie
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Department of Gastroenterology, People’s Hospital of Longhua, Shenzhen 518109, China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Di Wang
- Department of Gastroenterology, People’s Hospital of Longhua, Shenzhen 518109, China
| | - Xingkui Xue
- Department of Medical Research Center, People’s Hospital of Longhua, Shenzhen 518109, China
| | - Yuqiang Nie
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Department of Gastroenterology, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou 511458, China
| |
Collapse
|
71
|
Giannaki M, Ruf DE, Pfeifer E, Everaerts K, Heiland DH, Schnell O, Rose CR, Roussa E. Cell-Type Dependent Regulation of the Electrogenic Na+/HCO3- Cotransporter 1 (NBCe1) by Hypoxia and Acidosis in Glioblastoma. Int J Mol Sci 2022; 23:ijms23168975. [PMID: 36012235 PMCID: PMC9408864 DOI: 10.3390/ijms23168975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and malignant brain tumour. It is characterised by transcriptionally distinct cell populations. In tumour cells, physiological pH gradients between the intracellular and extracellular compartments are reversed, compared to non-cancer cells. Intracellular pH in tumour cells is alkaline, whereas extracellular pH is acidic. Consequently, the function and/or expression of pH regulating transporters might be altered. Here, we investigated protein expression and regulation of the electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) in mesenchymal (MES)-like hypoxia-dependent and -independent cells, as well as in astrocyte-like glioblastoma cells following chemical hypoxia, acidosis and elucidated putative underlying molecular pathways. Immunoblotting, immunocytochemistry, and intracellular pH recording with the H+-sensitive dye 2′,7′-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein were applied. The results show NBCe1 protein abundance and active NBCe1 transport. Hypoxia upregulated NBCe1 protein and activity in MES-like hypoxia-dependent GBM cells. This effect was positively correlated with HIF-1α protein levels, was mediated by TGF-β signalling, and was prevented by extracellular acidosis. In MES-like hypoxia-independent GBM cells, acidosis (but not hypoxia) regulated NBCe1 activity in an HIF-1α-independent manner. These results demonstrate a cell-specific adaptation of NBCe1 expression and activity to the microenvironment challenge of hypoxia and acidosis that depends on their transcriptional signature in GBM.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Debora E. Ruf
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Emilie Pfeifer
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Dieter H. Heiland
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
- Microenvironment and Immunology Research Laboratory, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Oliver Schnell
- Department of Neurosurgery, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Faculty of Medicine, Institute of Anatomy and Cell Biology, Albert-Ludwigs-Universität Freiburg, Albertstrasse 17, D-79104 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-5114
| |
Collapse
|
72
|
KhaliliJafarabad N, Behnamghader A, Khorasani MT, Mozafari M. Synthesis and characterization of an engineered dual crosslinked hydrogel system based on hyaluronic acid, chondroitin sulfate, and carboxymethyl chitosan with platelet‐rich plasma. POLYM ADVAN TECHNOL 2022; 33:2325-2335. [DOI: 10.1002/pat.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/12/2022] [Indexed: 03/07/2025]
Abstract
AbstractHydrogels play a key role in cartilage tissue engineering (CTE) and cell transplantation. Idealy, the hydrogels designed for CTE should facilitate the formation of cartilage ECM, cilinically. However, challenges remain to engineer hydrogels with controllable responses, fast‐self recovery, and high stability. In the present study, a dual crosslinked hydrogel system based on the electrostatic and ionic bonds by mixing polymers composed of hyaluronic acid (HA), chondroitin sulfate (CS), and carboxymethyl chitosan (CMC) combined with platelet‐rich plasma (PRP) was successfully prepared. To increase the stability of hydrogel, 1‐Ethyl‐3‐(3‐dimethylamino propyl‐carbodiimide hydrochloride (EDC)/N‐hydroxy‐succinimide (NHS) was used as the crosslinking agent. The results revealed more stability of dual crosslinking hydrogel (HC54) due to proper stoichiometric ratio between polymers components and the crosslinking agent. According to the rheology results, a non‐Newtonian and viscoelastic behavior was recognized for all hydrogels and the highest mechanical property (modulus) of HC54 hydrogel was confirmed. Based on the SEM micrographs and weight loss analysis, the lowest degradation rate was observed for the HC54 hydrogel after immersion in phosphate buffered saline solution. PRP release from the hydrogel was analyzed with the Bradford assay method and a cumulative release of 50 percent during 15 days was found. Finally, the MTT assay conducted on dual crosslinked HA/CS/CMC hydrogel with and without PRP both demonstrated cytocompatibility of hydrogel while the presence of PRP enhanced the cell viability.
Collapse
Affiliation(s)
- Nadieh KhaliliJafarabad
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials Materials and Energy Research Center Tehran Iran
| | | | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| |
Collapse
|
73
|
Synthesis, Self-Assembly, and Cell Responses of Aromatic IKVAV Peptide Amphiphiles. Molecules 2022; 27:molecules27134115. [PMID: 35807362 PMCID: PMC9267992 DOI: 10.3390/molecules27134115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Synthetic bioactive aromatic peptide amphiphiles have been recognized as key elements of emerging biomedical strategies due to their biocompatibility, design flexibility, and functionality. Inspired by natural proteins, we synthesized two supramolecular materials of phenyl-capped Ile-Lys-Val-Ala-Val (Ben-IKVAV) and perfluorophenyl-capped Ile-Lys-Val-Ala-Val (PFB-IKVAV). We employed UV-vis absorption, fluorescence, circular dichroism, and Fourier-transform infrared spectroscopy to examine the driving force in the self-assembly of the newly discovered materials. It was found that both compounds exhibited ordered π-π interactions and secondary structures, especially PFB-IKVAV. The cytotoxicity of human mesenchymal stem cells (hMSCs) and cell differentiation studies was also performed. In addition, the immunofluorescent staining for neuronal-specific markers of MAP2 was 4.6 times (neural induction medium in the presence of PFB-IKVAV) that of the neural induction medium (control) on day 7. From analyzing the expression of neuronal-specific markers in hMSCs, it can be concluded that PFB-IKVAV may be a potential supramolecular biomaterial for biomedical applications.
Collapse
|
74
|
Ashton MD, Cooper PA, Municoy S, Desimone MF, Cheneler D, Shnyder SD, Hardy JG. Controlled Bioactive Delivery Using Degradable Electroactive Polymers. Biomacromolecules 2022; 23:3031-3040. [PMID: 35748772 PMCID: PMC9277582 DOI: 10.1021/acs.biomac.2c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Biomaterials capable
of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances
have significant markets in the agriscience/healthcare industries.
Here, we report the development of degradable electroactive polymers
and their application for the controlled delivery of a clinically
relevant drug (the anti-inflammatory dexamethasone phosphate, DMP).
Electroactive copolymers composed of blocks of polycaprolactone (PCL)
and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin,
biliverdin, and hemin) were prepared and solution-processed to produce
films (optionally doped with DMP). A combination of in silico/in vitro/in
vivo studies demonstrated the cytocompatibility of the polymers. The
release of DMP in response to the application of an electrical stimulus
was observed to be enhanced by ca. 10–30% relative to the passive
release from nonstimulated samples in vitro. Such stimuli-responsive
biomaterials have the potential for integration devices capable of
delivering a variety of molecules for technical/medical applications.
Collapse
Affiliation(s)
- Mark D Ashton
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Patricia A Cooper
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Sofia Municoy
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - Martin F Desimone
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - David Cheneler
- Department of Engineering, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - John G Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| |
Collapse
|
75
|
Post-thaw dilution of Rhamdia quelen sperm improves the reproductive success. Anim Reprod Sci 2022; 243:107018. [PMID: 35716630 DOI: 10.1016/j.anireprosci.2022.107018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022]
Abstract
The aim was to evaluate the effect of a post-thaw dilution of Rhamdia quelen sperm in 1.1% NaCl (325 mOsm kg-1; pH 7.6; 24 °C) solution on the quality and reproductive capacity. Sperm from eight males were cryopreservation in nitrogen vapor at - 170 °C for 18 h in 0.25 mL straws in a freezing medium containing 5% fructose, 5% Powdered milk, and 10% methanol. The samples were thawed and post-thaw diluted (1:20) in NaCl solution or not (control). The higher spermatozoa velocities were observed in the post-thaw diluted samples (curvilinear (VCL) - 69 ± 11 µm s-1; average path (VAP) - 45 ± 8 µm s-1; straight-line (VSL) - 43 ± 8 µm s-1) compared to the control (VCL - 47 ± 10 µm s-1; VAP - 31 ± 6 µm s-1; VSL - 30 ± 6 µm s-1). Greater straightness (STR), progression (PROG), and beat cross frequency (BCF) were observed in the post-thaw diluted samples (STR - 96 ± 7%; PROG - 666 ± 128 µm; BCF - 42 ± 2 Hz) than in control (STR - 95 ± 5%; PROG - 463 ± 92 µm; BCF - 40 ± 2 Hz). The strongly curled tail was the only morphology change that differ between the post-thaw diluted (5 ± 2%) and control (2 ± 1%). Membrane integrity, mitochondrial activity, and normal larvae rate were not different between treatments. Fertilization and hatching were higher in the post-thaw diluted sperm (93 ± 3%; 82 ± 9%) when compared to control samples (65 ± 13%; 55 ± 17%). Were used oocytes from one female, limiting these results. The post-thaw dilution improved the sperm kinetics and reproductive parameters. Thus, this methodology can be included in the sperm cryopreservation protocol for R. quelen.
Collapse
|
76
|
Synthetic and DFT Modeling Studies on Suzuki–Miyaura Reactions of 4,5-Dibromo-2-methylpyridazin-3(2H)-one with Ferrocene Boronates, Accompanied by Hydrodebromination and a Novel Bridge-Forming Annulation In Vitro Cytotoxic Activity of the Ferrocenyl–Pyridazinone Products. Catalysts 2022. [DOI: 10.3390/catal12060578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper presented the efficiency of different Pd-based catalytic systems in a series of SM reactions of 4,5-dibromo-2-methylpyridazin-3(2H)-one with ferroceneboronic acid, ferrocene-1,1′-diboronoc acid, and its bis-pinacol ester. In addition to the disubstituted product, these transformations afford substantial amounts of isomeric 4- and 5-ferrocenyl-2-methylpyridazin-3(2H)-ones, and a unique asymmetric bi-pyridazinone-bridged ferrocenophane with a screwed molecular architecture. The reactions of phenylboronic acid, conducted under the conditions, are proven to be the most reductive in the conversions of ferroceneboronic acid, and produce 2-methyl-4,5-diphenylpyridazin-3(2H)-one as single product, supporting our view about solvent-mediated hydrodehalogenations that are supposed to proceed via the assistance of the ferrocenyl group present in the reaction mixture, or attached to the bromo-pyridazinone scaffold, which is constructed in the first SM coupling of the heterocyclic precursor. A comparative DFT modelling study on the structures and possible transformations of relevant bromo-, ferrocene- and phenyl-containing carbopalladated intermediate pairs was carried out, providing reasonable mechanisms suitable to account for the apparently surprising regioselectivity of the alternative hydrodebromination processes, and for the formation of the ferrocenophane product. Supporting the results of DFT modelling studies, the implication of DMF as a hydrogen transfer agent in the hydrodebromination reactions is evidenced by deuterium labelling experiments using the solvent mixtures DMF-d7–H2O (4:1) and DMF–D2O (4:1). The organometallic products display antiproliferative effects on human malignant cell lines.
Collapse
|
77
|
Racovita AD. Titanium Dioxide: Structure, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095681. [PMID: 35565075 PMCID: PMC9104107 DOI: 10.3390/ijerph19095681] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 12/27/2022]
Abstract
Titanium dioxide, first manufactured a century ago, is significant in industry due to its chemical inertness, low cost, and availability. The white mineral has a wide range of applications in photocatalysis, in the pharmaceutical industry, and in food processing sectors. Its practical uses stem from its dual feature to act as both a semiconductor and light scatterer. Optical performance is therefore of relevance in understanding how titanium dioxide impacts these industries. Recent breakthroughs are summarised herein, focusing on whether restructuring the surface properties of titanium dioxide either enhances or inhibits its reactivity, depending on the required application. Its recent exposure as a potential carcinogen to humans has been linked to controversies around titanium dioxide's toxicity; this is discussed by illustrating discrepancies between experimental protocols of toxicity assays and their results. In all, it is important to review the latest achievements in fast-growing industries where titanium dioxide prevails, while keeping in mind insights into its disputed toxicity.
Collapse
Affiliation(s)
- Anca Diana Racovita
- Department of Chemistry, Faculty of Science, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
78
|
Lesslich HM, Klapal L, Wilke J, Haak A, Dietzel ID. Adjusting the neuron to astrocyte ratio with cytostatics in hippocampal cell cultures from postnatal rats: A comparison of cytarabino furanoside (AraC) and 5-fluoro-2'-deoxyuridine (FUdR). PLoS One 2022; 17:e0265084. [PMID: 35263366 PMCID: PMC8906639 DOI: 10.1371/journal.pone.0265084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/22/2022] [Indexed: 01/29/2023] Open
Abstract
Cell culture studies offer the unique possibility to investigate the influence of pharmacological treatments with quantified dosages applied for defined time durations on survival, morphological maturation, protein expression and function as well as the mutual interaction of various cell types. Cultures obtained from postnatal rat brain contain a substantial number of glial cells that further proliferate with time in culture leading to an overgrowth of neurons with glia, especially astrocytes and microglia. A well-established method to decrease glial proliferation in vitro is to apply low concentrations of cytosine arabinoside (AraC). While AraC primarily effects dividing cells, it has been reported repeatedly that it is also neurotoxic, which is the reason why most protocols limit its application to concentrations of up to 5 μM for a duration of 24 h. Here, we investigated 5-fluoro-2'-deoxyuridine (FUdR) as a possible substitute for AraC. We applied concentrations of both cytostatics ranging from 4 μM to 75 μM and compared cell composition and cell viability in cultures prepared from 0-2- and 3-4-day old rat pups. Using FUdR as proliferation inhibitor, higher ratios of neurons to glia cells were obtained with a maximal neuron to astrocyte ratio of up to 10:1, which could not be obtained using AraC in postnatal cultures. Patch-clamp recordings revealed no difference in the amplitudes of voltage-gated Na+ currents in neurons treated with FUdR compared with untreated control cells suggesting replacement of AraC by FUdR as glia proliferation inhibitor if highly neuron-enriched postnatal cultures are desired.
Collapse
Affiliation(s)
- Heiko M. Lesslich
- Department of Biochemistry II, Ruhr-Universität Bochum, Bochum, Germany
- * E-mail:
| | - Lars Klapal
- Department of Biochemistry II, Ruhr-Universität Bochum, Bochum, Germany
| | - Justus Wilke
- Department of Biochemistry II, Ruhr-Universität Bochum, Bochum, Germany
| | - Annika Haak
- Nanoscopy Group, RUBION, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
79
|
Chen X, Kim DI, Moon HG, Chu M, Lee K. Coconut Oil Alleviates the Oxidative Stress-Mediated Inflammatory Response via Regulating the MAPK Pathway in Particulate Matter-Stimulated Alveolar Macrophages. Molecules 2022; 27:molecules27092898. [PMID: 35566249 PMCID: PMC9105152 DOI: 10.3390/molecules27092898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to particulate matter (PM) is related to various respiratory diseases, and this affects the respiratory immune system. Alveolar macrophages (AMs), which are defenders against pathogens, play a key role in respiratory inflammation through cytokine production and cellular interactions. Coconut oil demonstrates antioxidant and anti-inflammatory properties, and it is consumed worldwide for improved health. However, reports on the protective effects of coconut oil on the PM-induced respiratory immune system, especially in AMs, are limited. In this study, we generated artificial PM (APM) with a diameter approximately of 30 nm by controlling the temperature, and compared its cytotoxicity with diesel exhaust particles (DEP). We also investigated the antioxidant and anti-inflammatory effects of coconut oil in APM− and DEP−stimulated AMs, and the underlying molecular mechanisms. Our results showed that APM and DEP had high cytotoxicity in a dose-dependent manner in AMs. In particular, APM or DEP at 100 μg/mL significantly decreased cell viability (p < 0.05) and significantly increased oxidative stress markers such as reactive oxygen species (p < 0.01); the GSSH/GSH ratio (p < 0.01); and cytokine production, such as tumor necrosis factor-α (p < 0.001), interleukin (IL)-1β (p < 0.001), and IL-6 (p < 0.001). The expression of the genes for chemokine (C-X-C motif) ligand-1 (p < 0.05) and monocyte chemoattractant protein-1 (p < 0.001); and the proteins toll-like receptor (TLR) 4 (p < 0.01), mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (p < 0.001), p38 (p < 0.001); and extracellular receptor-activated kinase (p < 0.001), were also upregulated by PM. These parameters were reversed upon treatment with coconut oil in APM− or DEP−stimulated AMs. In conclusion, coconut oil can reduce APM− or DEP−induced inflammation by regulating the TLR4/MAPK pathway in AMs, and it may protect against adverse respiratory effects caused by PM exposure.
Collapse
Affiliation(s)
- Xinyu Chen
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup-si 56212, Korea; (X.C.); (D.I.K.); (H.-G.M.)
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea
| | - Dong Im Kim
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup-si 56212, Korea; (X.C.); (D.I.K.); (H.-G.M.)
| | - Hi-Gyu Moon
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup-si 56212, Korea; (X.C.); (D.I.K.); (H.-G.M.)
| | - Minchul Chu
- Greensol Co., Ltd., 89-26, Jimok-ro, Paju-si 10880, Korea;
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup-si 56212, Korea; (X.C.); (D.I.K.); (H.-G.M.)
- Department of Human and Environmental Toxicology, University of Science & Technology, Daejeon 34113, Korea
- Correspondence: or ; Tel.: +82-63-570-8740
| |
Collapse
|
80
|
Wiatrak B, Jawień P, Matuszewska A, Szeląg A, Kubis-Kubiak A. Effect of amyloid-β on the redox system activity in SH-SY5Y cells preincubated with lipopolysaccharide or co-cultured with microglia cells. Biomed Pharmacother 2022; 149:112880. [PMID: 35367762 DOI: 10.1016/j.biopha.2022.112880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Amyloid deposits and hyperphosphorylation of the tau protein are still believed to be the two main causes of Alzheimer's disease. However, newer studies show the beneficial (including antiradical and antimicrobial) effects of amyloid at physiological concentrations. Therefore, this study aimed to investigate the impact of three amyloid fragments - 25-35, 1-40, and 1-42 at concentrations close to physiological levels on the oxidative stress induced by the administration of lipopolysaccharide (LPS) or co-culturing with microglia cells. Differentiated SH-SY5Y cells were used, constituting a model of neuronal cells that were preincubated with LPS or supernatant collected from THP-1 cell culture. The cells were treated with amyloid-β fragments at concentrations of 0.001, 0.1, and 1.0 µM, and then biological assays were carried out. The results of the study support the antioxidant properties of Aβ, which may protect neurons from the damaging effects of neuroinflammation. All tested amyloid-β fragments reduced oxidative stress and increased the levels of enzymatic stress parameters - the activity of SOD, GPx and catalase. In addition, the administration of amyloid-β at low physiological concentrations also increased reduced glutathione (GSH) levels and the ratio between reduced and oxidized glutathione (GSH/GSSG), which is considered a good indicator of maintaining cellular redox balance. Furthermore, a stronger antioxidant effect of 1-40 fragment was observed, occurring in a wider range of concentrations, compared to the other tested fragments 25-35 and 1-42.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland.
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
| | - Agnieszka Matuszewska
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
81
|
Newly Synthesized Thymol Derivative and Its Effect on Colorectal Cancer Cells. Molecules 2022; 27:molecules27092622. [PMID: 35565973 PMCID: PMC9103784 DOI: 10.3390/molecules27092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Thymol affects various types of tumor cell lines, including colorectal cancer cells. However, the hydrophobic properties of thymol prevent its wider use. Therefore, new derivatives (acetic acid thymol ester, thymol β-D-glucoside) have been synthesized with respect to hydrophilic properties. The cytotoxic effect of the new derivatives on the colorectal cancer cell lines HT-29 and HCT-116 was assessed via MTT assay. The genotoxic effect was determined by comet assay and micronucleus analysis. ROS production was evaluated using ROS-Glo™ H2O2 Assay. We confirmed that one of the thymol derivatives (acetic acid thymol ester) has the potential to have a cyto/genotoxic effect on colorectal cancer cells, even at much lower (IC50~0.08 μg/mL) concentrations than standard thymol (IC50~60 μg/mL) after 24 h of treatment. On the other side, the genotoxic effect of the second studied derivative-thymol β-D-glucoside was observed at a concentration of about 1000 μg/mL. The antiproliferative effect of studied derivatives of thymol on the colorectal cancer cell lines was found to be both dose- and time-dependent at 100 h. Moreover, thymol derivative-treated cells did not show any significantly increased rate of micronuclei formation. New derivatives of thymol significantly increased ROS production too. The results confirmed that the effect of the derivative on tumor cells depends on its chemical structure, but further detailed research is needed. However, thymol and its derivatives have great potential in the prevention and treatment of colorectal cancer, which remains one of the most common cancers in the world.
Collapse
|
82
|
Ferreira FS, Dos Santos TM, Ramires Junior OV, Silveira JS, Schmitz F, Wyse ATS. Quinolinic Acid Impairs Redox Homeostasis, Bioenergetic, and Cell Signaling in Rat Striatum Slices: Prevention by Coenzyme Q 10. Neurotox Res 2022; 40:473-484. [PMID: 35239160 DOI: 10.1007/s12640-022-00484-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Quinolinic acid (QUIN) is an important agonist of NMDA receptors that are found at high levels in cases of brain injury and neuroinflammation. Therefore, it is necessary to investigate neuroprotection strategies capable of neutralizing the effects of the QUIN on the brain. Coenzyme Q10 (CoQ10) is a provitamin that has an important antioxidant and anti-inflammatory action. This work aims to evaluate the possible neuroprotective effect of CoQ10 against the toxicity caused by QUIN. Striatal slices from 30-day-old Wistar rats were preincubated with CoQ10 25-100 μM for 15 min; then, QUIN 100 μM was added to the incubation medium for 30 min. A dose-response curve was used to select the CoQ10 concentration to be used in the study. Results showed that QUIN caused changes in the production of ROS, nitrite levels, activities of antioxidant enzymes, glutathione content, and damage to proteins and lipids. CoQ10 was able to prevent the effects caused by QUIN, totally or partially, except for damage to proteins. QUIN also altered the activities of electron transport chain complexes and ATP levels, and CoQ10 prevented totally and partially these effects, respectively. CoQ10 prevented the increase in acetylcholinesterase activity, but not the decrease in the activity of Na+,K+-ATPase caused by QUIN. We also observed that QUIN caused changes in the total ERK and phospho-Akt content, and these effects were partially prevented by CoQ10. These findings suggest that CoQ10 may be a promising therapeutic alternative for neuroprotection against QUIN neurotoxicity.
Collapse
Affiliation(s)
- Fernanda Silva Ferreira
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Josiane Silva Silveira
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
83
|
Host cell targeting of novel antimycobacterial 4-aminosalicylic acid derivatives with tuftsin carrier peptides. Eur J Pharm Biopharm 2022; 174:111-130. [DOI: 10.1016/j.ejpb.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022]
|
84
|
Yuan Y, Shi C, Wu X, Li W, Huang C, Liang L, Chen J, Wang Y, Liu Y. Synthesis and anticancer activity in vitro and in vivo evaluation of iridium(III) complexes on mouse melanoma B16 cells. J Inorg Biochem 2022; 232:111820. [DOI: 10.1016/j.jinorgbio.2022.111820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
|
85
|
Khan AA, Atiya A, Akhtar S, Yadav Y, Qureshi KA, Jaremko M, Mahmood S. Optimization of a Cefuroxime Axetil-Loaded Liquid Self-Nanoemulsifying Drug Delivery System: Enhanced Solubility, Dissolution and Caco-2 Cell Uptake. Pharmaceutics 2022; 14:pharmaceutics14040772. [PMID: 35456606 PMCID: PMC9028143 DOI: 10.3390/pharmaceutics14040772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cefuroxime axetil (CA) is an oral cephalosporin which hydrolyzes rapidly to the active parent compound cefuroxime. CA is known to have incomplete oral bioavailability (30−50%) due to its poor solubility and enzymatic conversion to cefuroxime in the gut lumen. In order to overcome these drawbacks, a lipid-based self-nanoemulsifying drug delivery system (SNEDDS) has been developed and optimized. The SNEDDS formulations were prepared using the aqueous phase titration method. The greatest self-emulsifying area was found in the 2:1 Smix ratio. As a result, different SNEDDS formulations were carefully selected from this phase diagram based on their smaller droplet size < 100 nm, polydispersity index ≤ 0.5, dispersibility (Grade A), and transmittance (%) > 85%. Thermodynamic stability tests were carried out in order to rule out any metastable/unstable SNEDDS formulations. The droplet size, polydispersity index, zeta potential, and entrapment efficiency (% EE) of optimized CA-loaded SNEDDS (C-3) were 18.50 ± 1.83 nm, 0.064 ± 0.008, −22.12 ± 1.20 mV, and 97.62 ± 1.06%, respectively. In vitro release studies revealed that the SNEDDS formulation had increased CA solubility. CA-SNEDDS-C3 increased CA cellular uptake, possibly due to increased CA solubility and the inhibition of enzymatic conversion to cefuroxime. Finally, in terms of the improvement of oral bioavailability, CA-loaded-SNEDDS could be a viable alternative to commercially available CA formulations.
Collapse
Affiliation(s)
- Arshad Ali Khan
- The Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (A.A.K.); (S.M.)
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia;
| | - Safia Akhtar
- Division of Endocrinology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (S.A.); (Y.Y.)
| | - Yogesh Yadav
- Division of Endocrinology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA; (S.A.); (Y.Y.)
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (A.A.K.); (S.M.)
| |
Collapse
|
86
|
Varga PR, Belovics A, Bagi P, Tóth S, Szakács G, Bősze S, Szabó R, Drahos L, Keglevich G. Efficient Synthesis of Acylated, Dialkyl α-Hydroxy-Benzylphosphonates and Their Anticancer Activity. Molecules 2022; 27:molecules27072067. [PMID: 35408466 PMCID: PMC9000670 DOI: 10.3390/molecules27072067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
An efficient method applying acyl chlorides as reagents was developed for the acylation of the hindered hydroxy group of dialkyl α-hydroxy-benzylphosphonates. The procedure did not require any catalyst. A few acylations were also performed with the SC-enantiomer of dimethyl α-hydroxy-benzylphosphonate, and the optical purity was retained. A part of the acyloxyphosphonates was tested against eight tumor cell lines of different tissue origin at c = 50 μM concentration. The compounds elicited moderate cytostatic effect against breast, skin, prostate, colon, and lung carcinomas; a melanoma cell line; and against Kaposi’s sarcoma cell lines. Then, dose-dependent cytotoxicity was assayed, and benzoylation of the α-hydroxy group was identified as a moiety that increases anticancer cytotoxicity across all cell lines. Surprisingly, a few analogues were more toxic to multidrug resistant cancer cell lines, thus evading P-glycoprotein mediated drug extrusion.
Collapse
Affiliation(s)
- Petra R. Varga
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (P.R.V.); (A.B.); (P.B.)
| | - Alexandra Belovics
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (P.R.V.); (A.B.); (P.B.)
| | - Péter Bagi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (P.R.V.); (A.B.); (P.B.)
| | - Szilárd Tóth
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (S.T.); (G.S.)
| | - Gergely Szakács
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (S.T.); (G.S.)
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Szilvia Bősze
- Eötvös Loránd Research Network (ELKH), Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (S.B.); (R.S.)
| | - Rita Szabó
- Eötvös Loránd Research Network (ELKH), Research Group of Peptide Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (S.B.); (R.S.)
| | - László Drahos
- Research Centre for Natural Sciences, MS Proteomics Research Group, 1117 Budapest, Hungary;
| | - György Keglevich
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; (P.R.V.); (A.B.); (P.B.)
- Correspondence: ; Tel.: +36-1-463-1111 (ext. 5883)
| |
Collapse
|
87
|
KLF2 up-regulates IRF4/HDAC7 to protect neonatal rats from hypoxic-ischemic brain damage. Cell Death Dis 2022; 8:41. [PMID: 35091544 PMCID: PMC8799701 DOI: 10.1038/s41420-022-00813-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022]
Abstract
Neonatal brain hypoxic ischemic injury is a devastating event causing permanent brain damage. The current study set out to explore the role of Kruppel-like factor 2 (KLF2) and its downstream molecular mechanism on hypoxic-ischemic brain damage (HIBD) in neonatal rats. First, we adopted a modified Rice method to develop a HIBD model in postnatal day seven Sprague Dawley (SD) rat pups. Next, neuronal damage, morphological changes, and neuronal apoptosis were documented in the vulnerable hippocampal CA1 region and evaluated using Nissl staining, H&E staining, and TUNEL assay, respectively. Meanwhile, a hypoxic-ischemic model using the oxygen-glucose deprivation (OGD) method was established in cortical neurons isolated from day one SD rat pups, followed by MTT and flow cytometry detections of the cell survival rate and apoptotic ability. Experimental findings revealed that KLF2 was poorly-expressed in the brain tissues of HIBD rats and in the OGD-induced neurons. We found that KLF2 overexpression inhibited neuron apoptosis in vitro and in vivo, which was also observed to inhibit brain injury in the HIBD rats and alleviate neuronal damage of OGD-treated neurons. Besides, as dual luciferase reporter gene assay and chromatin immunoprecipitation established that KLF2 bound to the interferon regulatory factor 4 (IRF4) promoter, which promoted the binding of IRF4 in the promoter of histone deacetylase 7 (HDAC7) to augment its expression, thereby inhibiting neuronal apoptosis and brain damage. In conclusion, our findings indicated that KLF2 could increase the expression of IRF4 to up-regulate the expression of HDAC7, which protects against HIBD in neonatal rats.
Collapse
|
88
|
Kumar N, Yadav M, Kumar A, Kadian M, Kumar S. Neuroprotective effect of hesperidin and its combination with coenzyme Q10 on an animal model of ketamine-induced psychosis: behavioral changes, mitochondrial dysfunctions, and oxidative stress. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Psychosis is a complex mental illness divided by positive symptoms, negative symptoms, and cognitive decline. Clinically available medicines are associated with some serious side effects which limit their use. Treatment with flavonoids has been associated with delayed onset and development, decreased risk, or increased improvement of various neuropsychiatric disorders including psychosis with negligible side effects.
Therefore, the present study was aimed to investigate the protective effects of hesperidin (flavonoid) alone or its combination with coenzyme Q10 against ketamine-induced psychotic symptoms in mice.
Results
Ketamine (50 mg/kg, i.p.) was given for 21 days to induce psychosis in Laca mice of either sex. Locomotor activity and stereotypic behaviors, immobility duration (forced swim test), and increased transfer latency (elevated plus maze) were performed to test the effect of hesperidin (50 mg/kg, 100 mg/kg, 200 mg/kg, p.o.) and coenzyme Q10 (20 mg/kg, 40 mg/kg, p.o.) and combination of hesperidin + coenzyme Q10 followed by biochemical and mitochondrial complexes assays. For 21 days, ketamine (50 mg/kg, i.p.) administration significantly produced increased locomotor activity and stereotypic behaviors (positive symptoms), increased immobility duration (negative symptoms) and cognitive deficits (increases transfer latency) weakens oxidative defense and mitochondrial function. Further, 21 days’ administration of hesperidin and coenzyme Q10 significantly reversed the ketamine-induced psychotic behavioral changes and biochemical alterations and mitochondrial dysfunction in the discrete areas (prefrontal cortex and hippocampus) of mice brains. The potential effect of these drugs was comparable to olanzapine treatment. Moreover, the combination of hesperidin with coenzyme Q10 and or a combination of hesperidin + coenzyme Q10 + olanzapine treatment did not produce a significant effect compared to their per se effect in ketamine-treated animals.
Conclusions
The study revealed that hesperidin alone or in combination with coenzyme Q10 could reduce psychotic symptoms and improve mitochondrial functions and antioxidant systems in mice, suggesting neuroprotective effects against psychosis.
Collapse
|
89
|
Crotti A, Pagotti MC, Magalhães LG, Oliveira TM. Antischistosomal Activity of Essential Oils: An Updated Review. Chem Biodivers 2022; 19:e202100909. [PMID: 35020262 DOI: 10.1002/cbdv.202100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/11/2022] [Indexed: 11/08/2022]
Abstract
This review article covers literature on the antischistosomal activity of essential oils (EOs)( between 2011 and 2021. Criteria for classifying results from in vitro schistosomicidal assays are proposed for the first time. Parameters to evaluate the in vitro antischistosomal potential of EOs other than their ability to cause the death of Schistosoma mansoni adult worms ( e.g ., couple separation, egg laying, and egg development inhibition) are also addressed and discussed.
Collapse
Affiliation(s)
- Antonio Crotti
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Departamento de Química, Av. Bandeirantes, 3900, Not Available, 14040-901, Ribeirão Preto, BRAZIL
| | - Mariana C Pagotti
- Unifran: Universidade de Franca, Laboratório de Pesquisa em Parasitologia, Av. Armando Salles Oliveira 201, 14040-600, Franca, BRAZIL
| | - Lizandra G Magalhães
- University of Franca: Universidade de Franca, Research Group on Parasitology, Av. Armando Salles Oliveira 201, 14404-600, Franca, BRAZIL
| | - Thais Miller Oliveira
- Universidade de Sao Paulo Faculdade de Filosofia Ciencias e Letras de Ribeirao Preto, Departamento de Química, Av. Bandeirantes, 3900 Bairro Monte Alegre, Brasil, 14040-901, Ribeirão Preto, BRAZIL
| |
Collapse
|
90
|
Zaki A, Aziz MN, Ahmad R, Ahamad I, Ali MS, Yasin D, Afzal B, Ali SM, Chopra A, Hadda V, Srivastava P, Kumar R, Fatma T. Synthesis, purification and characterization of Plectonema derived AgNPs with elucidation of the role of protein in nanoparticle stabilization. RSC Adv 2022; 12:2497-2510. [PMID: 35425239 PMCID: PMC8979216 DOI: 10.1039/d1ra08396a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022] Open
Abstract
Driven by the need to biosynthesize alternate biomedical agents to prevent and treat infection, silver nanoparticles have surfaced as a promising avenue. Cyanobacteria-derived nanomaterial synthesis is of substantive interest as it offers an eco-friendly, cost-effective, sustainable, and biocompatible route for further development. In the present study optimal conditions for synthesis of silver nanoparticles (AgNPs) were 1 : 9 v/v [cell extract: AgNO3 (1 mM)], pH 7.4, and 30 °C reaction temperatures. Synthesis of nanoparticles was monitored by UV-vis spectrophotometry and the maximum absorbance was observed at a wavelength of 420 nm. SEM with EDX analysis confirmed 96.85% silver by weight which revealed the purity of AgNPs. TEM & XRD analysis exhibited a particle size of ∼12 nm with crystalline nature. FTIR analysis confirmed the presence of possible biomolecules involved in the synthesis and stabilization of AgNPs. Decapping of AgNPs followed by SDS-PAGE, LCMS and MALDI TOF analysis elucidates the proteinaceous nature of the capping and stabilizing agent. Cyanobacterial-derived capped AgNPs showed more cytotoxicicity towards a non-small cell lung cancer (A549) cell line, free radical scavenger and an antimicrobial than de-capped AgNPs. In addition they showed significant synergistic characteristics with antibiotics and fungicides. The test revealed that the capped AgNPs were biocompatible with good anti-inflammatory properties. The blend of antimicrobial and biocompatible properties, coupled with their intrinsic "green" and facile synthesis, made these biogenic nanoparticles particularly attractive for future applications in nanomedicine.
Collapse
Affiliation(s)
- Almaz Zaki
- Department of Biosciences, Jamia Millia Islamia New Delhi India
- Department of Biotechnology, Jamia Millia Islamia New Delhi India
| | - Md Nafe Aziz
- Department of Biosciences, Jamia Millia Islamia New Delhi India
| | - Rakhshan Ahmad
- Department of Biosciences, Jamia Millia Islamia New Delhi India
| | - Irshad Ahamad
- Department of Biosciences, Jamia Millia Islamia New Delhi India
| | - M Shadab Ali
- Lab Oncology, All India Institute of Medical Sciences New Delhi India
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences New Delhi India
| | - Durdana Yasin
- Department of Biosciences, Jamia Millia Islamia New Delhi India
| | - Bushra Afzal
- Department of Biosciences, Jamia Millia Islamia New Delhi India
| | - Syed Mansoor Ali
- Department of Biotechnology, Jamia Millia Islamia New Delhi India
| | - Anita Chopra
- Lab Oncology, All India Institute of Medical Sciences New Delhi India
| | - Vijay Hadda
- Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences New Delhi India
| | - Pooja Srivastava
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Defense Research & Development Organization (DRDO), Government of India New Delhi India
| | - Raj Kumar
- Institute of Nuclear Medicine & Allied Sciences (INMAS), Defense Research & Development Organization (DRDO), Government of India New Delhi India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia New Delhi India
| |
Collapse
|
91
|
García-Cuellar CM, Hernández-Delgadillo R, Solis-Soto JM, Meester I, Sánchez-Pérez Y, Nakagoshi-Cepeda SE, Nakagoshi-Cepeda MAA, Chellam S, Cabral-Romero C. Cetylpyridinium chloride inhibits human breast tumor cells growth in a no-selective way. J Appl Biomater Funct Mater 2022; 20:22808000221092157. [PMID: 35485910 DOI: 10.1177/22808000221092157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Analyze the antitumor capacity of cetylpyridinium chloride (CPC) on human breast tumor cells, and the possible action mechanism. MATERIAL AND METHODS The human breast tumor cells MCF-7 and no-tumor breast cells MCF-10A were exposed to CPC under various condition (concentration and duration). Cell viability was measured with MTT assay, the LIVE/DEAD assay, and fluorescence microscopy. Membrane permeability after CPC exposure was evaluated by Calcein AM assay, mitochondrial morphology with a MitoView staining, and genotoxicity with the comet assay and fluorescence microscopy. RESULTS CPC was cytotoxic to both MCF-7 and MCF-10A as of a 24-h exposure to 0.1 µM. Cytotoxicity was dose-dependent and reached 91% for MCF-7 and 78% for MCF-10A after a 24-h exposure to 100 µM CPC, which outperformed the positive control doxorubicin in effectiveness and selectivity. The LD50 of CPC on was 6 µM for MCF-7 and 8 µM for MCF-10A, yielding a selectivity index of 1.41. A time response analysis revealed 64% dead cells after only 5 min of exposure to 100 µM CPC. With respect to the action mechanisms, the comet assay did not reveal genome fragmentation. On the other hand, membrane damage was dose-dependent and may also affect mitochondrial morphology. CONCLUSION Cetylpyridinium chloride inhibits MCF-7 cell growing in a non-selective way as of 5 min of exposure. The action mechanism of CPC on tumor cells involves cell membrane damage without change neither mitochondrial morphology nor genotoxicity.
Collapse
Affiliation(s)
| | - Rene Hernández-Delgadillo
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Juan Manuel Solis-Soto
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Irene Meester
- Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Sergio Eduardo Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | | | - Claudio Cabral-Romero
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| |
Collapse
|
92
|
Chiang YW, Su CH, Sun HY, Chen SP, Chen CJ, Chen WY, Chang CC, Chen CM, Kuan YH. Bisphenol A induced apoptosis via oxidative stress generation involved Nrf2/HO-1 pathway and mitochondrial dependent pathways in human retinal pigment epithelium (ARPE-19) cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:131-141. [PMID: 34664771 DOI: 10.1002/tox.23384] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 05/21/2023]
Abstract
Bisphenol A (BPA) is an estrogen-like compound, and an environmental hormone, that is commonly used in daily life. Therefore, it may enter the human body through food or direct contact, causing BPA residues in blood and urine. Because most studies focused on the analysis of BPA in reproductive cells or tissues, regarding evidence the effect of BPA on human retinal pigment epithelium (ARPE-19) cells unavailable. Accordingly, the present study explored the cytotoxicity of BPA on ARPE-19 cells. After BPA treatment, the expression of Bcl-XL an antiapoptotic protein, in the mitochondria decreased, and the expression of Bax, a proapoptotic protein increased. Then the mitochondrial membrane potential was affected. BPA changed in mitochondrial membrane potential led to the release of cytochrome C, which activated caspase-9 to promote downstream caspase-3 leading to cytotoxicity. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1) pathway play a major role in age-related macular degeneration. Our results showed that expression of HO-1 and Nrf2 suppressed by BPA. Superoxide dismutase and catalase, which Nrf2 downstream antioxidants, were degraded by BPA. AMP-activated kinase (AMPK), which can regulate the phosphorylation of Nrf2, and the phosphorylation of AMPK expression was reduced by BPA. Finally, BPA-induced ROS generation and cytotoxicity were reduced by N-acetyl-l-cysteine. Taken together, these results suggest that BPA induced ARPE-19 cells via oxidative stress, which was associated with down regulated Nrf2/HO-1 pathway, and the mitochondria dependent apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yun-Wei Chiang
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Optometry, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Chun-Hung Su
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Han-Yin Sun
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
93
|
Improved Formazan Dissolution for Bacterial MTT Assay. Microbiol Spectr 2021; 9:e0163721. [PMID: 34937171 PMCID: PMC8694201 DOI: 10.1128/spectrum.01637-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The MTT assay, based on the enzymatic reduction of the water-soluble, yellowish tetrazolium salt 3-(4,5-dimethylthiazol)-2,5-diphenyl-tetrazolium bromide (MTT) to purple formazan, is commonly used for assessment of cell viability and proliferation. Accurate performance by the MTT assay depends on complete solubilization of cells and formazan and stability of the colored solution. Comparison of different solubilization solutions revealed that dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), buffered with ammonia buffer, pH 10, and containing 5% SDS, produced the best results. These two solvents provided rapid and complete solubilization of formazan and cells, with minimal background absorbance at 700 nm, good reproducibility (low interassay coefficient of variation), high sensitivity, and color stability for at least 24 h. A linear relationship between viable-cell number and formazan absorbance was preserved for cell densities up to ∼1 × 109 cells/mL for Gram-negative and Gram-positive microorganisms. Since MTT can be reduced by medium components in the absence of cells, blanks containing all medium components but no cells should be run simultaneously. Measurements at two wavelengths, one corresponding to absorption peak of formazan (570 nm) and a background absorbance far from the peak (700 nm), are necessary to avoid artifacts due to incomplete solubilization and turbidity. IMPORTANCE Reduction of the water-soluble tetrazolium salt 3-(4,5-dimethylthiazol)-2,5 diphenyl-tetrazolium bromide (MTT) to purple, water-insoluble formazan is commonly used for assessment of cell viability and proliferation. Spectrophotometric detection of formazan requires its solubilization. The solubilization solvent has a strong influence on data acquisition and often introduces artifacts, leading to misreading of results. This study offers a choice of solvents that minimize solubilization artifacts when the MTT test is applied to microbiological cultures.
Collapse
|
94
|
Sebák F, Horváth LB, Kovács D, Szolomájer J, Tóth GK, Babiczky Á, Bősze S, Bodor A. Novel Lysine-Rich Delivery Peptides of Plant Origin ERD and Human S100: The Effect of Carboxyfluorescein Conjugation, Influence of Aromatic and Proline Residues, Cellular Internalization, and Penetration Ability. ACS OMEGA 2021; 6:34470-34484. [PMID: 34963932 PMCID: PMC8697381 DOI: 10.1021/acsomega.1c04637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
The need for novel drug delivery peptides is an important issue of the modern pharmaceutical research. Here, we test K-rich peptides from plant dehydrin ERD14 (ERD-A, ERD-B, and ERD-C) and the C-terminal CPP-resembling region of S100A4 (S100) using the 5(6)-carboxyfluorescein (Cf) tag at the N-terminus. Via a combined pH-dependent NMR and fluorescence study, we analyze the effect of the Cf conjugation/modification on the structural behavior, separately investigating the (5)-Cf and (6)-Cf forms. Flow cytometry results show that all peptides internalize; however, there is a slight difference between the cellular internalization of (5)- and (6)-Cf-peptides. We indicate the possible importance of residues with an aromatic sidechain and proline. We prove that ERD-A localizes mostly in the cytosol, ERD-B and S100 have partial colocalization with lysosomal staining, and ERD-C mainly localizes within vesicle-like compartments, while the uptake mechanism mainly occurs through energy-dependent paths.
Collapse
Affiliation(s)
- Fanni Sebák
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Doctoral
School of Pharmaceutical Sciences, Semmelweis
University, Üllői
út 26, H-1085 Budapest, Hungary
| | - Lilla Borbála Horváth
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - Dániel Kovács
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/a, H-1117 Budapest, Hungary
| | - János Szolomájer
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor K. Tóth
- Department
of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Ákos Babiczky
- Institute
of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
- Doctoral
School of Psychology/Cognitive Science, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111 Budapest, Hungary
| | - Szilvia Bősze
- ELKH-ELTE
Research Group of Peptide Chemistry, Eötvös Loránd
Research Network, Eötvös Loránd
University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
- National
Public Health Center, Albert Flórián út 2-6, Budapest H-1097, Hungary
| | - Andrea Bodor
- Institute
of Chemistry, ELTE−Eötvös
Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
| |
Collapse
|
95
|
Ghasemi M, Turnbull T, Sebastian S, Kempson I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int J Mol Sci 2021; 22:12827. [PMID: 34884632 PMCID: PMC8657538 DOI: 10.3390/ijms222312827] [Citation(s) in RCA: 436] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/21/2022] Open
Abstract
The MTT assay for cellular metabolic activity is almost ubiquitous to studies of cell toxicity; however, it is commonly applied and interpreted erroneously. We investigated the applicability and limitations of the MTT assay in representing treatment toxicity, cell viability, and metabolic activity. We evaluated the effect of potential confounding variables on the MTT assay measurements on a prostate cancer cell line (PC-3) including cell seeding number, MTT concentration, MTT incubation time, serum starvation, cell culture media composition, released intracellular contents (cell lysate and secretome), and extrusion of formazan to the extracellular space. We also assessed the confounding effect of polyethylene glycol (PEG)-coated gold nanoparticles (Au-NPs) as a tested treatment in PC-3 cells on the assay measurements. We additionally evaluated the applicability of microscopic image cytometry as a tool for measuring intracellular MTT reduction at the single-cell level. Our findings show that the assay measurements are a result of a complicated process dependant on many of the above-mentioned factors, and therefore, optimization of the assay and rational interpretation of the data is necessary to prevent misleading conclusions on variables such as cell viability, treatment toxicity, and/or cell metabolism. We conclude, with recommendations on how to apply the assay and a perspective on where the utility of the assay is a powerful tool, but likewise where it has limitations.
Collapse
Affiliation(s)
| | | | | | - Ivan Kempson
- Future Industries Institute, University of South Australia, Adelaide, SA 5095, Australia; (M.G.); (T.T.); (S.S.)
| |
Collapse
|
96
|
Mehta R, Bhandari R, Kuhad A. Effects of catechin on a rodent model of autism spectrum disorder: implications for the role of nitric oxide in neuroinflammatory pathway. Psychopharmacology (Berl) 2021; 238:3249-3271. [PMID: 34448020 DOI: 10.1007/s00213-021-05941-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
AIM The present research work aims at deciphering the involvement of nitric oxide pathway and its modulation by ( ±)catechin hydrate in experimental paradigm of autism spectrum disorders (ASD). METHOD An intracerebroventricular infusion of 4 μl of 1 M propanoic acid was given in the anterior region of the lateral ventricle to induce autism-like phenotype in male rats. Oral administration of ( ±)catechin hydrate (25, 50, and 100 mg/kg) was initiated from the 3rd day lasting till the 28th day. L-NAME (50 mg/kg) and L-arginine (800 mg/kg) were also given individually as well as in combination to explore the ability of ( ±)catechin hydrate to act via nitric oxide pathway. Behavior test for sociability, stereotypy, anxiety, depression, and novelty, repetitive, and perseverative behavior was carried out between the 14th and 28th day. On the 29th day, animals were sacrificed, and levels of mitochondrial complexes and oxidative stress parameters were evaluated. We also estimated the levels of neuroinflammatory and apoptotic markers such as TNF-α, IL-6, NF-κB, IFN-γ, HSP-70, and caspase-3. To evaluate the involvement of nitric oxide pathway, the levels of iNOS and homocysteine were estimated. RESULTS Treatment with ( ±)catechin hydrate significantly ameliorated behavioral, biochemical, neurological, and molecular deficits. Hence, ( ±)catechin hydrate has potential to be used as neurotherapeutic agent in ASD targeting nitric oxide pathway-mediated oxidative and nitrosative stress responsible for behavioral, biochemical, and molecular alterations via modulating nitric oxide pathway. CONCLUSION The evaluation of the levels of iNOS and homocysteine conclusively establishes the role of nitric oxide pathway in causing behavioral, biochemical, and molecular deficits and the beneficial effect of ( ±)catechin hydrate in restoring these alterations.
Collapse
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
97
|
Oulmidi A, Radi S, Idir A, Zyad A, Kabach I, Nhiri M, Robeyns K, Rotaru A, Garcia Y. Synthesis and cytotoxicity against tumor cells of pincer N-heterocyclic ligands and their transition metal complexes. RSC Adv 2021; 11:34742-34753. [PMID: 35494785 PMCID: PMC9042687 DOI: 10.1039/d1ra05918a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
The complexes: [CoL2](ClO4)2 (1), [FeL2](ClO4)2 (2), [NiL2](ClO4)2 (3) and [MnLCl2] (4), with L = diethyl-1,1′-(pyridine-2,6-diyl)bis(5-methyl-1H-pyrazole-3-carboxylate), were synthesized and fully characterized. Structural analysis revealed two distinct patterns influenced by the counter ions where L acts as a tridentate chelating ligand. The in vitro antitumor activity of L and L′ (diethyl 2,2′-(pyridine-2,6-diylbis(5-methyl-1H-pyrazole-3,1-diyl)) diacetate) as well as their metal complexes, was tested by the measurement of their cytostatic and cytotoxic properties towards the blood cancer mastocytoma cell line P815. We have also investigated their interactions with the antioxidant enzyme system. As a result, [MnL′Cl2] (1′) exhibited the strongest activity compared to reference cis-platin with no cytotoxicity towards normal cells PBMCs (Peripheral Blood Mononuclear Cells). On the other hand, the antioxidant enzyme activity showed that the efficiency of metal complex 1′ against P815 tumor cells was via the rise in the SOD activity and inhibition of CAT enzyme activity. This proof of concept study allows disclosure of a new class of molecules in cancer therapeutics. The complexes: [CoL2](ClO4)2 (1), [FeL2](ClO4)2 (2), [NiL2](ClO4)2 (3) and [MnLCl2] (4), with L = diethyl-1,1′-(pyridine-2,6-diyl)bis(5-methyl-1H-pyrazole-3-carboxylate), were synthesized and fully characterized.![]()
Collapse
Affiliation(s)
- Afaf Oulmidi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I BP 524 60 000 Oujda Morocco +212-10472330.,Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I BP 524 60 000 Oujda Morocco +212-10472330
| | - Abderrazak Idir
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Mailbox 523 23000 Beni Mellal Morocco
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immunopharmacology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University Mailbox 523 23000 Beni Mellal Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology Tangier Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technology Tangier Morocco
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| | - Aurelian Rotaru
- Department of Electrical Engineering and Computer Science, MANSiD Research Center, "Stefan cel Mare" University University Street, 13 Suceava 720229 Romania
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain Belgium
| |
Collapse
|
98
|
Giannaki M, Ludwig C, Heermann S, Roussa E. Regulation of electrogenic Na + /HCO 3 - cotransporter 1 (NBCe1) function and its dependence on m-TOR mediated phosphorylation of Ser 245. J Cell Physiol 2021; 237:1372-1388. [PMID: 34642952 DOI: 10.1002/jcp.30601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Astrocytes are pivotal responders to alterations of extracellular pH, primarily by regulation of their principal acid-base transporter, the membrane-bound electrogenic Na+ /bicarbonate cotransporter 1 (NBCe1). Here, we describe amammalian target of rapamycin (mTOR)-dependent and NBCe1-mediated astroglial response to extracellular acidosis. Using primary mouse cortical astrocytes, we investigated the effect of long-term extracellular metabolic acidosis on regulation of NBCe1 and elucidated the underlying molecular mechanisms by immunoblotting, biotinylation of surface proteins, intracellular H+ recording using the H+ -sensitive dye 2',7'-bis-(carboxyethyl)-5-(and-6)-carboxyfluorescein, and phosphoproteomic analysis. The results showed significant increase of NBCe1-mediated recovery of intracellular pH from acidification in WT astrocytes, but not in cortical astrocytes from NBCe1-deficient mice. Acidosis-induced upregulation of NBCe1 activity was prevented following inhibition of mTOR signaling by rapamycin. Yet, during acidosis or following exposure of astrocytes to rapamycin, surface protein abundance of NBCe1 remained -unchanged. Mutational analysis in HeLa cells suggested that NBCe1 activity was dependent on phosphorylation state of Ser245 , a residue conserved in all NBCe1 variants. Moreover, phosphorylation state of Ser245 is regulated by mTOR and is inversely correlated with NBCe1 transport activity. Our results identify pSer245 as a novel regulator of NBCe1 functional expression. We propose that context-dependent and mTOR-mediated multisite phosphorylation of serine residues of NBCe1 is likely to be a potent mechanism contributing to the response of astrocytes to acid/base challenges during pathophysiological conditions.
Collapse
Affiliation(s)
- Marina Giannaki
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Stephan Heermann
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Eleni Roussa
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
99
|
Mehta R, Bhandari R, Kuhad A. Exploring nordihydroguaretic acid (NDGA) as a plausible neurotherapeutic in the experimental paradigm of autism spectrum disorders targeting nitric oxide pathway. Metab Brain Dis 2021; 36:1833-1857. [PMID: 34363573 DOI: 10.1007/s11011-021-00811-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/26/2021] [Indexed: 12/14/2022]
Abstract
The present study investigates the neuro-protective ability of nordihydroguaretic acid (NDGA) in the experimental paradigm of autism spectrum disorders (ASD) and further decipher the nitric oxide pathway's role in its proposed action. An intracerebroventricular infusion of 4 μl of 1 M PPA was given in the lateral ventricle's anterior region to induce autism-like phenotype in male rats. Oral administration of NDGA (5, 10 & 15 mg/kg) was initiated from the 3rd day lasting till the 28th day. L-NAME (50 mg/kg) and L-Arginine (800 mg/kg) were also given individually and combined to explore NDGA's ability to act via the nitric oxide pathway. Behavior tests for sociability, stereotypy, anxiety, depression, novelty, repetitive and perseverative behavior were carried out between the 14th and 28th day. On the 29th day, animals were sacrificed, and mitochondrial complexes and oxidative stress parameters were evaluated. We also estimated the levels of neuroinflammatory and apoptotic markers such as TNF-α, IL-6, NF-κB, IFN-γ, HSP-70, and caspase-3. To assess the involvement of the nitric oxide pathway, levels of iNOS and homocysteine were estimated. Treatment with NDGA significantly restored behavioral, biochemical, neurological, and molecular deficits. Hence, NDGA can be used as a neurotherapeutic agent in ASD. Targeting nitric oxide pathway mediated oxidative & nitrosative stress responsible for behavioral, biochemical, and molecular alterations via modulating nitric oxide pathway. The evaluation of iNOS and homocysteine levels conclusively establishes the nitric oxide pathway's role in causing behavioral, biochemical & molecular deficits and NDGA's beneficial effect in restoring these alterations.
Collapse
Affiliation(s)
- Rishab Mehta
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
100
|
Yonbawi AR, Abdallah HM, Alkhilaiwi FA, Koshak AE, Heard CM. Anti-Proliferative, Cytotoxic and Antioxidant Properties of the Methanolic Extracts of Five Saudi Arabian Flora with Folkloric Medicinal Use: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta and Tribulus macropterus. PLANTS 2021; 10:plants10102073. [PMID: 34685882 PMCID: PMC8540380 DOI: 10.3390/plants10102073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Saudi Arabian flora have a history of use as folklore remedies, although such properties have yet to be explored rigorously, and the safety of such remedies should be assessed. This study determined the anti-proliferative, cytotoxic, and antioxidant properties of extracts of the following five plants indigenous to Saudi Arabia: Aizoon canariense, Citrullus colocynthis, Maerua crassifolia, Rhazya stricta, and Tribulus macropterus. The aerial parts of the five plants were collected from various locations of the western and northern regions of Saudi Arabia and used to prepare methanolic extracts. Three approaches were used to determine the proliferation and cytotoxicity effects using HaCaT cells: MTT, FACS, and confocal microscopy. Meanwhile, two approaches were used to study the antioxidant potential: DPPH (acellular) and RosGlo (cellular, using HaCaT cells). C. colocynthis possessed anti-proliferative activity against HaCaT cells, showing a significant decrease in cell proliferation from 24 h onwards, while R. stricta showed significant inhibition of cell growth at 120 and 168 h. The IC50 values were determined for both plant extracts for C. colocynthis, with 17.32 and 16.91 µg/mL after five and seven days of treatment, respectively, and for R. stricta, with 175 and 105.3 µg/mL after five and seven days of treatment. R. stricta and M. crassifolia exhibited the highest capacities for scavenging the DPPH radical with IC50 values of 335 and 448 µg/mL, respectively. The subsequent ROS-Glo H2O2 assay confirmed these findings. The R. stricta and M. crassifolia extracts showed potent antioxidant activity in both acellular and cellular models. The C. colocynthis extract also demonstrated significant anti-proliferation and cytotoxic activity, as did the R. stricta extract. These properties support their usage in folk medicine and also indicate a further potential for development for holistic medicinal use or as sources of new active compounds.
Collapse
Affiliation(s)
- Ahmed R. Yonbawi
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK;
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Faris A. Alkhilaiwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (F.A.A.); (A.E.K.)
| | - Charles M. Heard
- School of Pharmacy & Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK;
- Correspondence:
| |
Collapse
|