51
|
Bush KT, Singh P, Nigam SK. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight 2020; 5:133817. [PMID: 32271169 DOI: 10.1172/jci.insight.133817] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
The role of the renal organic anion transporters OAT1 (also known as SLC22A6, originally identified as NKT) and OAT3 (also known as SLC22A8) in chronic kidney disease (CKD) remains poorly understood. This is particularly so from the viewpoint of residual proximal tubular secretion, a key adaptive mechanism to deal with protein-bound uremic toxins in CKD. Using the subtotal nephrectomy (STN) model, plasma metabolites accumulating in STN rats treated with and without the OAT inhibitor, probenecid, were identified. Comparisons with metabolomics data from Oat1-KO and Oat3-KO mice support the centrality of the OATs in residual tubular secretion of uremic solutes, such as indoxyl sulfate, kynurenate, and anthranilate. Overlapping our data with those of published metabolomics data regarding gut microbiome-derived uremic solutes - which can have dual roles in signaling and toxicity - indicates that OATs play a critical role in determining their plasma levels in CKD. Thus, the OATs, along with other SLC and ABC drug transporters, are critical to the movement of uremic solutes across tissues and into various body fluids, consistent with the remote sensing and signaling theory. The data support a role for OATs in modulating remote interorganismal and interorgan communication (gut microbiota-blood-liver-kidney-urine). The results also have implications for understanding drug-metabolite interactions involving uremic toxins.
Collapse
Affiliation(s)
- Kevin T Bush
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Prabhleen Singh
- Division of Nephrology-Hypertension, University of California, San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
52
|
CharXgen-Activated Bamboo Charcoal Encapsulated in Sodium Alginate Microsphere as the Absorbent of Uremic Toxins to Retard Kidney Function Deterioration. Int J Mol Sci 2020; 21:ijms21041257. [PMID: 32070049 PMCID: PMC7072866 DOI: 10.3390/ijms21041257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
Indoxyl sulphate (IS) and p-cresyl sulphate (PCS) are two protein bound uraemic toxins accumulated in chronic kidney disease (CKD) and associated with adverse outcomes. The purpose of this study isto evaluate the effect of the new activated charcoal, CharXgen, on renal function protection and lowering serum uraemic toxins in CKD animal model. The physical character of CharXgen was analyzed before and after activation procedure by Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD). The effect of CharXgen on biochemistry and lowering uremic toxins was evaluated by in vitro binding assay and CKD animal model. CharXgen have high interior surface area analyzed by SEM and XRD and have been produced from local bamboo after an activation process. CharXgen was able to effectively absorb IS, p-cresol and phosphate in an in vitro gastrointestinal tract simulation study. The animal study showed that CharXgen did not cause intestine blackening. Serum albuminand liver function did not change after feeding with CharXgen. Moreover, renal function was improved in CKD rats fed with CharXgen as compared to the CKD group, and there were no significant differences in the CKD and the CKD + AST-120 groups. Serum IS and PCS were higher in the CKD group and lower in rats treated with CharXgen and AST-120. In rats treated with CharXgen, Fibroblast growth factor 23 was significantly decreased as compared to the CKD group. This change cannot be found in rats fed with AST-120.It indicates that CharXgen is a new safe and non-toxic activated charcoal having potential in attenuating renal function deterioration and lowering protein-bound uraemic toxins. Whether the introduction of this new charcoal could further have renal protection in CKD patients will need to be investigated further.
Collapse
|
53
|
Effects and Safety of an Oral Adsorbent on Chronic Kidney Disease Progression: A Systematic Review and Meta-Analysis. J Clin Med 2019; 8:jcm8101718. [PMID: 31627462 PMCID: PMC6832608 DOI: 10.3390/jcm8101718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 02/01/2023] Open
Abstract
Background: AST-120 (Kremezin), which is an oral spherical carbon adsorbent, has been reported to have the potential for retarding disease progression in patients with chronic kidney disease. We aimed to evaluate its efficacy and safety in this study. Methods: We systematically searched for randomized controlled trials published in PubMed, Embase, and Cochrane databases. The primary outcomes were the renal outcome and all-cause mortality, and the change in serum indoxyl sulfate (IS) levels. The safety outcome was also evaluated in terms of reported major adverse events. A random-effects model was used when heterogeneity was expected. Results: Eight studies providing data for 3349 patients were included in the meta-analysis. The risk ratio of renal outcome and all-cause mortality were 0.97 (95% CI: 0.88–1.07; 6 trials) and 0.94 (0.73–1.20; 5 trials), respectively. Furthermore, the weighted mean change in IS levels from baseline to the end of the study was −0.28 mg/dL (95% CI: −0.46 to −0.11; 4 trials). Conclusions: This study provides evidence that AST-120 can effectively lower IS levels but still controversial in terms of slowing disease progression and all-cause mortality. Except for dermatological events, the incidence of adverse events did not differ significantly between the AST-120 and placebo groups.
Collapse
|
54
|
Association between Serum Indoxyl Sulfate Levels and Endothelial Function in Non-Dialysis Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11100589. [PMID: 31614554 PMCID: PMC6832597 DOI: 10.3390/toxins11100589] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
Indoxyl sulfate (IS), a product metabolized from tryptophan, is negatively correlated with renal function and cardiovascular diseases in patients with chronic kidney disease (CKD). We investigated the association between serum IS levels and endothelial function in patients with CKD. Fasting blood samples were obtained from 110 patients with stages 3–5 CKD. The endothelial function, represented by vascular reactivity index (VRI), was measured non-invasively using digital thermal monitoring. Serum IS levels were determined using liquid chromatography–mass spectrometry. Twenty-one (19.1%), 36 (32.7%), and 53 (48.2%) patients had poor (VRI < 1.0), intermediate (1.0 ≤ VRI < 2.0), and good (VRI ≥ 2.0) vascular reactivity. By univariate linear regression analysis, a higher prevalence of smoking, advanced age, higher systolic, and diastolic blood pressure (DBP), elevated levels of serum phosphorus, blood urea nitrogen, creatinine, and IS were negatively correlated with VRI values, but estimated glomerular filtration rate negatively associated with VRI values. After being adjusted by using multivariate stepwise linear regression analysis, DBP and IS levels were significantly negatively associated with VRI values in CKD patients. We concluded that IS level associated inversely with VRI values and had a modulating role in endothelial function in patients with stages 3–5 CKD.
Collapse
|
55
|
Andrade-Oliveira V, Foresto-Neto O, Watanabe IKM, Zatz R, Câmara NOS. Inflammation in Renal Diseases: New and Old Players. Front Pharmacol 2019; 10:1192. [PMID: 31649546 PMCID: PMC6792167 DOI: 10.3389/fphar.2019.01192] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation, a process intimately linked to renal disease, can be defined as a complex network of interactions between renal parenchymal cells and resident immune cells, such as macrophages and dendritic cells, coupled with recruitment of circulating monocytes, lymphocytes, and neutrophils. Once stimulated, these cells activate specialized structures such as Toll-like receptor and Nod-like receptor (NLR). By detecting danger-associated molecules, these receptors can set in motion major innate immunity pathways such as nuclear factor ĸB (NF-ĸB) and NLRP3 inflammasome, causing metabolic reprogramming and phenotype changes of immune and parenchymal cells and triggering the secretion of a number of inflammatory mediators that can cause irreversible tissue damage and functional loss. Growing evidence suggests that this response can be deeply impacted by the crosstalk between the kidneys and other organs, such as the gut. Changes in the composition and/or metabolite production of the gut microbiota can influence inflammation, oxidative stress, and fibrosis, thus offering opportunities to positively manipulate the composition and/or functionality of gut microbiota and, consequentially, ameliorate deleterious consequences of renal diseases. In this review, we summarize the most recent evidence that renal inflammation can be ameliorated by interfering with the gut microbiota through the administration of probiotics, prebiotics, and postbiotics. In addition to these innovative approaches, we address the recent discovery of new targets for drugs long in use in clinical practice. Angiotensin II receptor antagonists, NF-ĸB inhibitors, thiazide diuretics, and antimetabolic drugs can reduce renal macrophage infiltration and slow down the progression of renal disease by mechanisms independent of those usually attributed to these compounds. Allopurinol, an inhibitor of uric acid production, has been shown to decrease renal inflammation by limiting activation of the NLRP3 inflammasome. So far, these protective effects have been shown in experimental studies only. Clinical studies will establish whether these novel strategies can be incorporated into the arsenal of treatments intended to prevent the progression of human disease.
Collapse
Affiliation(s)
- Vinicius Andrade-Oliveira
- Bernardo's Lab, Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil.,Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Orestes Foresto-Neto
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ingrid Kazue Mizuno Watanabe
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Renal Division, Department of Clinical Medicine, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.,Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
56
|
Plata C, Cruz C, Cervantes LG, Ramírez V. The gut microbiota and its relationship with chronic kidney disease. Int Urol Nephrol 2019; 51:2209-2226. [PMID: 31576489 DOI: 10.1007/s11255-019-02291-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) is a worldwide health problem, because it is one of the most common complications of metabolic diseases including obesity and type 2 diabetes. Patients with CKD also develop other comorbidities, such as hypertension, hyperlipidemias, liver and cardiovascular diseases, gastrointestinal problems, and cognitive deterioration, which worsens their health. Therapy includes reducing comorbidities or using replacement therapy, such as peritoneal dialysis, hemodialysis, and organ transplant. Health care systems are searching for alternative treatments for CKD patients to mitigate or retard their progression. One new topic is the study of uremic toxins (UT), which are excessively produced during CKD as products of food metabolism or as a result of the loss of renal function that have a negative impact on the kidneys and other organs. High urea concentrations significantly modify the microbiota in the gut also, cause a decrease in bacterial strains that produce anti-inflammatory and fuel molecules and an increase in bacterial strains that can metabolize urea, but also produce UT, including indoxyl sulfate and p-cresol sulfate. UT activates several cellular processes that induce oxidative environments, inflammation, proliferation, fibrosis development, and apoptosis; these processes mainly occur in the gut, heart, and kidney. The study of the microbiota during CKD allowed for the implementation of therapy schemes to try to reduce the circulating concentrations of UT and reduce the damage. The objective of this review is to show an overview to know the main UT produced in end-stage renal disease patients, and how prebiotics and probiotics intervention acts as a helpful tool in CKD treatment.
Collapse
Affiliation(s)
- Consuelo Plata
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15. Tlalpan, 14080, Mexico City, Mexico
| | - Cristino Cruz
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15. Tlalpan, 14080, Mexico City, Mexico
| | - Luz G Cervantes
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1. Tlalpan, 14080, Mexico City, Mexico
| | - Victoria Ramírez
- Departamento de Cirugía Experimental, Instituto Nacional de Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, 14080, Mexico City, Mexico.
| |
Collapse
|
57
|
Edoxaban Exerts Antioxidant Effects Through FXa Inhibition and Direct Radical-Scavenging Activity. Int J Mol Sci 2019; 20:ijms20174140. [PMID: 31450643 PMCID: PMC6747217 DOI: 10.3390/ijms20174140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/03/2023] Open
Abstract
The interplay between oxidative stress, inflammation, and tissue fibrosis leads to the progression of chronic kidney disease (CKD). Edoxaban, an activated blood coagulation factor Xa (FXa) inhibitor, ameliorates kidney disease by suppressing inflammation and tissue fibrosis in animal models. Interestingly, rivaroxaban, another FXa inhibitor, suppresses oxidative stress induced by FXa. Thus, FXa inhibitors could be multitargeted drugs for the three aforementioned risk factors for the progression of CKD. However, the exact mechanism responsible for eliciting the antioxidant effect of FXa inhibitors remains unclear. In this study, the antioxidant effect of edoxaban was evaluated. First, the intracellular antioxidant properties of edoxaban were evaluated using human proximal tubular cells (HK-2 cells). Next, direct radical scavenging activity was measured using the electron spin resonance and fluorescence analysis methods. Results show that edoxaban exhibited antioxidant effects on oxidative stress induced by FXa, indoxyl sulfate, and angiotensin II in HK-2 cells, as well as the FXa inhibitory activity, was involved in part of the antioxidant mechanism. Moreover, edoxaban exerted its antioxidative effect through its structure-specific direct radical scavenging activity. Edoxaban exerts antioxidant effects by inhibiting FXa and through direct radical-scavenging activity, and thus, may serve as multitargeted drugs for the three primary risk factors associated with progression of CKD.
Collapse
|
58
|
Wang SY, Wang WJ, Liu JQ, Song YH, Li P, Sun XF, Cai GY, Chen XM. Methionine restriction delays senescence and suppresses the senescence-associated secretory phenotype in the kidney through endogenous hydrogen sulfide. Cell Cycle 2019; 18:1573-1587. [PMID: 31164038 DOI: 10.1080/15384101.2019.1618124] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aging is a risk factor for various acute and chronic kidney injuries. Kidney aging is accompanied by the secretion of growth factors, proteases, and inflammatory cytokines, known as the senescence-associated secretory phenotype (SASP). These factors accelerate the aging process and senescence-associated changes. Delaying kidney senescence may prevent acute and chronic kidney injury. Methionine restriction (MR) was found to be an effective intervention for delaying senescence. However, the mechanism of MR remains unclear. In this study, we investigated the effect of MR on the survival rate and renal aging of C57BL/6 mice and examined the relevant mechanisms. MR increased the survival rate and decreased the levels of senescence markers in the aging kidney. Both in vivo and in vitro, MR upregulated the transsulfuration pathway to increase H2S production, downregulated senescence markers and the SASP, and activated AMPK. The ability of MR to delay aging was reduced when AMPK was inhibited. These results suggest that MR may slow animal aging and kidney senescence through H2S production and AMPK pathway activation. Abbreviations: DR: diet restriction; MR: methionine restriction; SASP: senescence-associated secretory phenotype; AL: ad libitum; CKD, chronic kidney disease; AKI: acute kidney disease; TSP: transsulfuration pathway; CGL: cystathionine g-lyase; H2S: hydrogen sulfide; AMPK: AMP-activated protein kinase; mTOR: mammalian target of rapamycin; IS: indoxyl sulfate; CC: compound C.
Collapse
Affiliation(s)
- Si-Yang Wang
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Wen-Juan Wang
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Jie-Qiong Liu
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Yu-Huan Song
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Ping Li
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Xue-Feng Sun
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Guang-Yan Cai
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| | - Xiang-Mei Chen
- a Department of Nephrology, Chinese PLA General Hospital , Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases , Beijing , China
| |
Collapse
|
59
|
Sueyoshi M, Fukunaga M, Mei M, Nakajima A, Tanaka G, Murase T, Narita Y, Hirata S, Kadowaki D. Effects of lactulose on renal function and gut microbiota in adenine-induced chronic kidney disease rats. Clin Exp Nephrol 2019; 23:908-919. [PMID: 30895529 PMCID: PMC6555783 DOI: 10.1007/s10157-019-01727-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/10/2019] [Indexed: 01/23/2023]
Abstract
Background Constipation is frequently observed in patients with chronic kidney disease (CKD). Lactulose is expected to improve the intestinal environment by stimulating bowel movements as a disaccharide laxative and prebiotic. We studied the effect of lactulose on renal function in adenine-induced CKD rats and monitored uremic toxins and gut microbiota. Methods Wistar/ST male rats (10-week-old) were fed 0.75% adenine-containing diet for 3 weeks to induce CKD. Then, they were divided into three groups and fed as follows: control, normal diet; and 3.0- and 7.5-Lac, 3.0% and 7.5% lactulose-containing diets, respectively, for 4 weeks. Normal diet group was fed normal diet for 7 weeks. The rats were observed for parameters including renal function, uremic toxins, and gut microbiota. Results The control group showed significantly higher serum creatinine (sCr) and blood urea nitrogen (BUN) 3 weeks after adenine feeding than at baseline, with a 8.5-fold increase in serum indoxyl sulfate (IS). After switching to 4 weeks of normal diet following adenine feeding, the sCr and BUN in control group remained high with a further increase in serum IS. In addition, tubulointerstitial fibrosis area was increased in control group. On the other hand, 3.0- and 7.5-Lac groups improved sCr and BUN levels, and suppressed tubulointerstitial fibrosis, suggesting preventing of CKD progression by lactulose. Lac groups also lowered level of serum IS and proportions of gut microbiota producing IS precursor. Conclusion Lactulose modifies gut microbiota and ameliorates CKD progression by suppressing uremic toxin production.
Collapse
Affiliation(s)
- Miyu Sueyoshi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaki Fukunaga
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mizue Mei
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Atsushi Nakajima
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan
| | - Gaku Tanaka
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan
| | - Takayo Murase
- Pharmaceuticals Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd, Mie, Japan
| | - Yuki Narita
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sumio Hirata
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.,Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Daisuke Kadowaki
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Center for Clinical Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-Honmachi, Chuo-ku, Kumamoto, 862-0973, Japan. .,Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
60
|
Savira F, Magaye R, Hua Y, Liew D, Kaye D, Marwick T, Wang BH. Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicol Lett 2019; 308:34-49. [PMID: 30872129 DOI: 10.1016/j.toxlet.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Cardiorenal syndrome (CRS) remains a global health burden with a lack of definitive and effective treatment. Protein-bound uremic toxin (PBUT) overload has been identified as a non-traditional risk factor for cardiac, renal and vascular dysfunction due to significant albumin-binding properties, rendering these solutes non-dialyzable upon the state of irreversible kidney dysfunction. Although limited, experimental studies have investigated possible mechanisms in PBUT-mediated cardiac, renal and vascular effects. The ultimate aim is to identify relevant and efficacious targets that may translate beneficial outcomes in disease models and eventually in the clinic. This review will expand on detailed knowledge on mechanisms involved in detrimental effects of PBUT, specifically affecting the heart, kidney and vasculature, and explore potential effective intracellular targets to abolish their effects in CRS initiation and/or progression.
Collapse
Affiliation(s)
- Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Kaye
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Tom Marwick
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Bing Hui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
61
|
Snelson M, Kellow NJ, Coughlan MT. Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. Adv Nutr 2019; 10:303-320. [PMID: 30668615 PMCID: PMC6416045 DOI: 10.1093/advances/nmy068] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) has been associated with changes in gut microbial ecology, or "dysbiosis," which may contribute to disease progression. Recent studies have focused on dietary approaches to favorably alter the composition of the gut microbial communities as a treatment method in CKD. Resistant starch (RS), a prebiotic that promotes proliferation of gut bacteria such as Bifidobacteria and Lactobacilli, increases the production of metabolites including short-chain fatty acids, which confer a number of health-promoting benefits. However, there is a lack of mechanistic insight into how these metabolites can positively influence renal health. Emerging evidence shows that microbiota-derived metabolites can regulate the incretin axis and mitigate inflammation via expansion of regulatory T cells. Studies from animal models and patients with CKD show that RS supplementation attenuates the concentrations of uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate. Here, we present the current state of knowledge linking the microbiome to CKD, we explore the efficacy of RS in animal models of CKD and in humans with the condition, and we discuss how RS supplementation could be a promising dietary approach for slowing CKD progression.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicole J Kellow
- Be Active Sleep & Eat (BASE) Facility, Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
62
|
Felizardo R, Watanabe IK, Dardi P, Rossoni L, Câmara N. The interplay among gut microbiota, hypertension and kidney diseases: The role of short-chain fatty acids. Pharmacol Res 2019; 141:366-377. [DOI: 10.1016/j.phrs.2019.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023]
|
63
|
Liao YL, Chou CC, Lee YJ. The association of indoxyl sulfate with fibroblast growth factor-23 in cats with chronic kidney disease. J Vet Intern Med 2019; 33:686-693. [PMID: 30779214 PMCID: PMC6430881 DOI: 10.1111/jvim.15457] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/04/2019] [Indexed: 12/01/2022] Open
Abstract
Background Indoxyl sulfate (IS) has been reported not only to increase with the severity of impaired renal function, but also possibly to be a factor associated with bone abnormalities linked to fibroblast growth factor‐23 (FGF‐23) in humans with chronic kidney disease (CKD). It is not yet known whether this correlation between IS and FGF‐23 holds true for cats with CKD. Hypothesis Accumulation of IS is related to FGF‐23 secretion in cats with CKD. Animals Twenty clinically healthy cats and 73 cats with CKD cases were evaluated retrospectively. Methods The concentrations of IS and FGF‐23 in plasma were determined by high‐performance liquid chromatography and ELISA, respectively. Progression was defined as an increment of 0.5 mg/dL of serum creatinine concentration within 3 months. Results Plasma IS and FGF‐23 concentrations were significantly increased concurrently with decreasing renal function. Higher concentration of FGF‐23 was significantly associated with higher concentration of IS after adjusting for various confounding factors including creatinine and phosphate. Furthermore, the correlation between IS and phosphate was higher than that between FGF‐23 and phosphate. When the renal progression group was compared with the non‐progression group, both IS and FGF‐23 were found to be significantly increased (P < .05). In addition, the area under receiver operator curve of the combination of IS and FGF‐23 predicted renal progression at a level >0.9. Conclusions and Clinical Importance Both FGF‐23 and IS are associated with phosphate metabolism and CKD progression.
Collapse
Affiliation(s)
- Yu-Lun Liao
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Chi-Chung Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan.,Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Ya-Jane Lee
- Institute of Veterinary Clinical Science, School of Veterinary Medicine, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan.,National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
64
|
Wang W, Hao G, Pan Y, Ma S, Yang T, Shi P, Zhu Q, Xie Y, Ma S, Zhang Q, Ruan H, Ding F. Serum indoxyl sulfate is associated with mortality in hospital-acquired acute kidney injury: a prospective cohort study. BMC Nephrol 2019; 20:57. [PMID: 30764800 PMCID: PMC6376694 DOI: 10.1186/s12882-019-1238-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/29/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Protein-bound uremic toxins are associated with poor outcomes in patients with chronic kidney disease. The aim of this study is to investigate the relationship between indoxyl sulfate (IS), a protein-bound solute, and 90-day mortality in patients with acute kidney injury. METHODS Adults with hospital-acquired AKI (HA-AKI) were enrolled in this prospective cohort study between 2014 and 2015, according to the KDIGO creatinine criteria. The primary end point was all-cause death during follow-up. RESULTS The mean serum IS level in patients with HA-AKI was 2.74 ± 0.75 μg/ml, which was higher than that in healthy subjects (1.73 ± 0.11 μg/ml, P < 0.001) and critically ill patients (2.46 ± 0.35 μg/ml, P = 0.016) but was lower than that in patients with chronic kidney disease (3.07 ± 0.31 μg/ml, P < 0.001). Furthermore, serum IS levels (2.83 ± 0.55 μg/ml) remained elevated in patients with HA-AKI on the seventh day after AKI diagnosis. Patients with HA-AKI were divided into the following two groups according to the median serum IS level: the low-IS group and the high-IS group. A total of 94 (35.9%) patient deaths occurred within 90 days, including 76 (29.0%) in the low-IS group and 112 (42.7%) in the high-IS group (P = 0.019). Kaplan-Meier analysis revealed that the two groups differed significantly with respect to 90-day survival (log-rank P = 0.007), and Cox regression analysis showed that an IS level ≥ 2.74 μg/ml was significantly associated with a 2.0-fold increased risk of death (adjusted hazard ratio [HR], 2.92; 95% confidence interval [CI], 1.76 to 4.86; P < 0.001) compared with an IS level < 2.74 μg/ml. CONCLUSIONS Serum IS levels were significantly elevated in patients with HA-AKI compared to those in healthy subjects and critically ill patients and were associated with a worse prognosis of HA-AKI. TRIAL REGISTRATION www.clinicaltrials.gov NCT 00953992. Registered 6 August 2009.
Collapse
Affiliation(s)
- Wenji Wang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Guihua Hao
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yu Pan
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shuai Ma
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Tianye Yang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Peng Shi
- Department of Medical Statistics, Children's Hospital; Center for Evidence-based Medicine, Fudan University, Shanghai, 200433, China
| | - Qiuyu Zhu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yingxin Xie
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shaojun Ma
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qi Zhang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hong Ruan
- Department of Nursing, Clinical Medical School, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
65
|
Karbowska M, Kaminski TW, Znorko B, Domaniewski T, Misztal T, Rusak T, Pryczynicz A, Guzinska-Ustymowicz K, Pawlak K, Pawlak D. Indoxyl Sulfate Promotes Arterial Thrombosis in Rat Model via Increased Levels of Complex TF/VII, PAI-1, Platelet Activation as Well as Decreased Contents of SIRT1 and SIRT3. Front Physiol 2018; 9:1623. [PMID: 30546314 PMCID: PMC6279869 DOI: 10.3389/fphys.2018.01623] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 12/23/2022] Open
Abstract
Patients suffering from chronic kidney disease (CKD) are at a 20-fold higher risk of dying due to cardiovascular diseases (CVDs), primarily thrombosis following vascular injury. CKD is connected with retention of uremic toxins, especially indoxyl sulfate (IS), which are currently considered as a non-classical CKD-specific risk factor for CVDs. The present study aimed to examine the effect of chronic exposure to IS on the hemostatic system and arterial thrombosis in a model without greater interferences from the uremic milieu consisting of additional uremic toxins. Forty-eight male Wistar Crl:WI (cmdb) rats were divided into three groups: one control group and two experimental groups, which were exposed to 100 or 200 mg/kg of b.w./day of IS in drinking water for a period of 28 days. The control group received water without IS. At the end of the experiment, the induction of arterial thrombosis was performed. We investigated the impact of IS on thrombosis incidence, kinetics and strength of clot formation, platelet activity, aortic contents of sirtuin (SIRT) 1 and sirtuin 3 (SIRT3), hemostatic system, cardiorespiratory parameters, biochemistry of plasma and urine as well as histology of the thrombus, kidney, and liver. Obtained data revealed that chronic exposure to IS promotes arterial thrombosis via increased levels of complex tissue factor/factor VII, plasminogen activator inhibitor-1 (PAI-1), platelet activation, as well as decreased aortic levels of SIRT1 and SIRT3. Therefore, we hypothesize that IS enhances primary hemostasis leading to augmented formation of platelet plug with increased amounts of fibrin and affects secondary hemostasis through the influence on plasma coagulation and fibrinolysis factors, which results in the increased kinetics and strength of clot formation. The findings described may contribute to a better understanding of the mechanisms leading to increased thrombotic events in patients with CKD with elevated levels of IS.
Collapse
Affiliation(s)
- Malgorzata Karbowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz W Kaminski
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| | - Beata Znorko
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Domaniewski
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Misztal
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Rusak
- Department of Physical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | | | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
66
|
Abstract
Renal fibrosis was a chronic and progressive process affecting kidneys in chronic kidney disease (CKD), regardless of cause. Although no effective targeted therapy yet existed to retard renal fibrosis, a number of important recent advances have highlighted the cellular and molecular mechanisms underlying the renal fibrosis. The advances including TGF-β/Smad pathway, oxidative stress and inflammation, hypoxia and gut microbiota-derived from uremic solutes were highlighted that could provide therapeutic targets. New therapeutic targets and strategies that are particularly promising for development of new treatments for patients with CKD were also highlighted.
Collapse
Affiliation(s)
- Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| |
Collapse
|
67
|
Nuhu F, Bhandari S. Oxidative Stress and Cardiovascular Complications in Chronic Kidney Disease, the Impact of Anaemia. Pharmaceuticals (Basel) 2018; 11:E103. [PMID: 30314359 PMCID: PMC6316624 DOI: 10.3390/ph11040103] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Patients with chronic kidney disease (CKD) have significant cardiovascular morbidity and mortality as a result of risk factors such as left ventricular hypertrophy (LVH), oxidative stress, and inflammation. The presence of anaemia in CKD further increases the risk of LVH and oxidative stress, thereby magnifying the deleterious consequence in uraemic cardiomyopathy (UCM), and aggravating progression to failure and increasing the risk of sudden cardiac death. This short review highlights the specific cardio-renal oxidative stress in CKD and provides an understanding of the pathophysiology and impact of uraemic toxins, inflammation, and anaemia on oxidative stress.
Collapse
Affiliation(s)
- Faisal Nuhu
- School of Life Sciences (Biomedical), University of Hull, Cottingham Rd, Hull HU6 7RX, UK.
| | - Sunil Bhandari
- Hull York Medical School & Department of Renal Medicine, Hull and East Yorkshire NHS Hospital Trust, Hull HU3 2JZ, UK.
| |
Collapse
|
68
|
Liu WC, Tomino Y, Lu KC. Impacts of Indoxyl Sulfate and p-Cresol Sulfate on Chronic Kidney Disease and Mitigating Effects of AST-120. Toxins (Basel) 2018; 10:toxins10090367. [PMID: 30208594 PMCID: PMC6162782 DOI: 10.3390/toxins10090367] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins, such as indoxyl sulfate (IS) and p-cresol, or p-cresyl sulfate (PCS), are markedly accumulated in the organs of chronic kidney disease (CKD) patients. These toxins can induce inflammatory reactions and enhance oxidative stress, prompting glomerular sclerosis and interstitial fibrosis, to aggravate the decline of renal function. Consequently, uremic toxins play an important role in the worsening of renal and cardiovascular functions. Furthermore, they destroy the quantity and quality of bone. Oral sorbent AST-120 reduces serum levels of uremic toxins in CKD patients by adsorbing the precursors of IS and PCS generated by amino acid metabolism in the intestine. Accordingly, AST-120 decreases the serum IS levels and reduces the production of reactive oxygen species by endothelial cells, to impede the subsequent oxidative stress. This slows the progression of cardiovascular and renal diseases and improves bone metabolism in CKD patients. Although large-scale studies showed no obvious benefits from adding AST-120 to the standard therapy for CKD patients, subsequent sporadic studies may support its use. This article summarizes the mechanisms of the uremic toxins, IS, and PCS, and discusses the multiple effects of AST-120 in CKD patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City 435, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 106, Taiwan.
| | - Yasuhiko Tomino
- Asian Pacific Renal Research Promotion Office, Medical Corporation SHOWAKAI, Tokyo 160-0023, Japan.
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 243, Taiwan.
| |
Collapse
|
69
|
Asai H, Hirata J, Watanabe-Akanuma M. Indoxyl glucuronide, a protein-bound uremic toxin, inhibits hypoxia-inducible factor‒dependent erythropoietin expression through activation of aryl hydrocarbon receptor. Biochem Biophys Res Commun 2018; 504:538-544. [PMID: 30205954 DOI: 10.1016/j.bbrc.2018.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/26/2022]
Abstract
Renal anemia is common among chronic kidney disease (CKD) patients, and is mainly caused by inadequate erythropoietin (EPO) production from kidneys due to dysfunction of intracellular hypoxia-inducible factor (HIF) signaling in renal EPO-producing cells. We have previously shown that indoxyl sulfate (IS), a representative protein-bound uremic toxin accumulated in the blood of CKD patients, inhibits hypoxia-induced HIF activation and subsequent EPO production through activation of aryl hydrocarbon receptor (AHR). In this study, we further investigated the effects of other protein-bound uremic toxins on HIF-dependent EPO expression using EPO-producing HepG2 cells. We found that indoxyl glucuronide (IG) and IS, but not p-cresyl sulfate, phenyl sulfate, 3-indoleacetic acid or hippuric acid, inhibited hypoxia mimetic cobalt chloride-induced EPO mRNA expression. Furthermore, IG at concentrations similar to the blood levels in CKD patients inhibited the transcriptional activation of HIF induced by both cobalt chloride treatment and hypoxic culture. IG also induced CYP1A1 mRNA expression and nuclear translocation of AHR protein, indicating that IG activates AHR signaling. Blockade of AHR by a pharmacological antagonist CH-223191 abolished the IG-induced inhibition of HIF activation. Collectively, this study is the first to elucidate the biological effects of IG to inhibit HIF-dependent EPO production through activation of AHR. Our data suggests that not only IS but also IG contributes to the impairment of HIF signaling in renal anemia.
Collapse
Affiliation(s)
- Hirobumi Asai
- Safety Research Center, Kureha Corporation, 3-26-2 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-8503, Japan.
| | - Junya Hirata
- Safety Research Center, Kureha Corporation, 3-26-2 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-8503, Japan
| | - Mie Watanabe-Akanuma
- Safety Research Center, Kureha Corporation, 3-26-2 Hyakunin-cho, Shinjuku-ku, Tokyo, 169-8503, Japan
| |
Collapse
|
70
|
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018; 9:3294. [PMID: 30120222 PMCID: PMC6098093 DOI: 10.1038/s41467-018-05470-4] [Citation(s) in RCA: 1086] [Impact Index Per Article: 181.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence implicates metabolites produced by gut microbes as crucial mediators of diet-induced host-microbial cross-talk. Here, we review emerging data suggesting that microbial tryptophan catabolites resulting from proteolysis are influencing host health. These metabolites are suggested to activate the immune system through binding to the aryl hydrocarbon receptor (AHR), enhance the intestinal epithelial barrier, stimulate gastrointestinal motility, as well as secretion of gut hormones, exert anti-inflammatory, anti-oxidative or toxic effects in systemic circulation, and putatively modulate gut microbial composition. Tryptophan catabolites thus affect various physiological processes and may contribute to intestinal and systemic homeostasis in health and disease.
Collapse
Affiliation(s)
- Henrik M Roager
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, DK-1958, Frederiksberg, Denmark.
- National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| | - Tine R Licht
- National Food Institute, Technical University of Denmark, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
71
|
Anjos JS, Cardozo LF, Esgalhado M, Lindholm B, Stenvinkel P, Fouque D, Mafra D. Could Low-Protein Diet Modulate Nrf2 Pathway in Chronic Kidney Disease? J Ren Nutr 2018; 28:229-234. [DOI: 10.1053/j.jrn.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/25/2017] [Accepted: 11/19/2017] [Indexed: 12/21/2022] Open
|
72
|
Liu WC, Wu CC, Lim PS, Chien SW, Hou YC, Zheng CM, Shyu JF, Lin YF, Lu KC. Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin Chim Acta 2018; 484:197-206. [PMID: 29864403 DOI: 10.1016/j.cca.2018.05.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease-mineral bone disorders (CKD-MBD) exhibit abnormalities in the circulating mineral levels, vitamin D metabolism, and parathyroid function that contribute to the formation of a bone lesion. The uremic toxin, indoxyl sulfate (IS), accumulates in the blood in cases of renal failure and leads to bone loss. The bone and renal responses to the action of the parathyroid hormone (PTH) are progressively decreased in CKD in spite of increasing PTH levels, a condition commonly called PTH resistance. There is a high prevalence of low bone turnover or adynamic bone disease in the early stages of CKD. This could be due to the inhibition of bone turnover, such as in PTH resistance, reduced active vitamin D levels, diabetes, aluminum, and, increased IS. With an increase in IS, there is a decrease in the osteoblast Wnt/b-catenin signaling and increase in the expression of Wnt signaling inhibitors, such as sclerostin and Dickkopf-1 (DKK1). Thus, a majority of early CKD patients exhibit deterioration of bone quality owing to the action of IS, this scenario could be termed uremic osteoporosis. However, this mechanism is complicated and not fully understood. With progressive deterioration in the renal function, IS accumulates along with persistent PTH secretion, potentially leading to high-turnover bone disease because high serum PTH levels have the ability of overriding peripheral PTH resistance and other inhibitory factors of bone formation. Finally, it leads to deterioration in bone quantity with prominent bone resorption in end stage renal disease. Uremic toxins adsorbents may decelerate oxidative stress and improve bone health in CKD patients. This review article focuses on IS and bone loss in CKD patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Paik-Seong Lim
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City, Taiwan
| | - Shiaw-Wen Chien
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital & Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
73
|
Role of Uremic Toxins for Kidney, Cardiovascular, and Bone Dysfunction. Toxins (Basel) 2018; 10:toxins10050202. [PMID: 29772660 PMCID: PMC5983258 DOI: 10.3390/toxins10050202] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
With decreasing kidney function, cardiovascular disease (CVD) and mineral bone disorders frequently emerge in patients with chronic kidney disease (CKD). For these patients, in addition to the traditional risk factors, non-traditional CKD-specific risk factors are also associated with such diseases and conditions. One of these non-traditional risk factors is the accumulation of uremic toxins (UTs). In addition, the accumulation of UTs further deteriorates kidney function. Recently, a huge number of UTs have been identified. Although many experimental and clinical studies have reported associations between UTs and the progression of CKD, CVD, and bone disease, these relationships are very complex and have not been fully elucidated. Among the UTs, indoxyl sulfate, asymmetric dimethylarginine, and p-cresylsulfate have been of particular focus, up until now. In this review, we summarize the pathophysiological influences of these UTs on the kidney, cardiovascular system, and bone, and discuss the clinical data regarding the harmful effects of these UTs on diseases and conditions.
Collapse
|
74
|
Guo C, Rao XR. Understanding and Therapeutic Strategies of Chinese Medicine on Gut-Derived Uremic Toxins in Chronic Kidney Disease. Chin J Integr Med 2018; 24:403-405. [PMID: 29752692 DOI: 10.1007/s11655-017-2926-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) is a major disease that threatens human health. With the progression of CKD, the risk of cardiovascular death increases, which is associated with the elevated levels of uremic toxins (UTs). Representative toxins such as indoxyl sulfate and p-cresyl sulfate are involed in CKD progression and cardiovascular events inseparable from the key role of endothelial dysfunction. The therapeutic strategies of UTs are aimed at signaling pathways that target the levels and damage of toxins in modern medicine. There is a certain relevance between toxins and "turbid toxin" in the theory of Chinese medicine (CM). CM treatments have been demonstrated to reduce the damage of gut-derived toxins to the heart, kidney and blood vessels. Modern medicine still lacks evidence-based therapies, so it is necessary to explore the treatments of CM.
Collapse
Affiliation(s)
- Chuan Guo
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xiang-Rong Rao
- Department of Nephrology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
75
|
Ozkok A, Yildiz A. Endothelial Progenitor Cells and Kidney Diseases. Kidney Blood Press Res 2018; 43:701-718. [PMID: 29763891 DOI: 10.1159/000489745] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
Endothelial progenitor cells (EPC) are bone marrow derived or tissue-resident cells that play major roles in the maintenance of vascular integrity and repair of endothelial damage. Although EPCs may be capable of directly engrafting and regenerating the endothelium, the most important effects of EPCs seem to be depended on paracrine effects. In recent studies, specific microvesicles and mRNAs have been found to mediate the pro-angiogenic and regenerative effects of EPCs on endothelium. EPC counts have important prognostic implications in cardiovascular diseases (CVD). Uremia and inflammation are associated with lower EPC counts which probably contribute to increased CVD risks in patients with chronic kidney disease. Beneficial effects of the EPC therapies have been shown in studies performed on different models of CVD and kidney diseases such as acute and chronic kidney diseases and glomerulonephritis. However, lack of a clear definition and specific marker of EPCs is the most important problem causing difficulties in interpretation of the results of the studies investigating EPCs.
Collapse
Affiliation(s)
- Abdullah Ozkok
- University of Health Sciences, Umraniye Training and Research Hospital, Department of Nephrology, Istanbul, Turkey,
| | - Alaattin Yildiz
- Istanbul University, Istanbul Faculty of Medicine, Department of Nephrology, Istanbul, Turkey
| |
Collapse
|
76
|
Ellis RJ, Small DM, Ng KL, Vesey DA, Vitetta L, Francis RS, Gobe GC, Morais C. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells. Toxicol Pathol 2018; 46:449-459. [PMID: 29683083 DOI: 10.1177/0192623318768171] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Robert J Ellis
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,2 Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - David M Small
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,3 Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Keng Lim Ng
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,2 Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - David A Vesey
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,4 Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Luis Vitetta
- 5 Sydney Medical School, University of Sydney, Sydney, Australia.,6 Medlab Clinical, Sydney, Australia
| | - Ross S Francis
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,4 Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Christudas Morais
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
77
|
Trimarchi H, Duboscq C, Genoud V, Lombi F, Muryan A, Young P, Schwab M, Castañón M, Rodríguez-Reimundes E, Forrester M, Pereyra H, Campolo-Girard V, Seminario O, Alonso M, Kordich L. Plasminogen Activator Inhibitor-1 Activity and 4G/5G Polymorphism in Hemodialysis. J Vasc Access 2018. [DOI: 10.1177/112972980800900212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction Chronic insufficiency alters homeostasis, in part due to endothelial inflammation. Plasminogen activator inhibitor-1 (PAI-1) is increased in renal disease, contributing to vascular damage. We assessed PAI-1 activity and PAI-1 4G/5G polymorphism in hemodialysis (HD) subjects and any association between thrombotic vascular access (VA) events and PAI-1 polymorphism. Methods Prospective, observational study in 36 HD patients: mean age: 66.6 ± 12.5 yr, males n=26 (72%), time on HD: 28.71 ± 22.45 months. Vascular accesses: 10 polytetrafluoroethylene grafts (PTFEG), 22 arteriovenous fistulae (AVF), four dual lumen catheters (CAT). Control group (CG): 40 subjects; mean age: 60.0 ± 15 yrs, males n=30 (75%). Group A (GA): thrombotic events (n=12), and group B (GB): No events (n=24). Groups were no different according to age (69.2 ± 9.12 vs. 65.3 ± 14.5 yrs), gender (males: 7; 58.3% vs. 18; 81.8%), time on HD (26.1 ± 14.7 vs. 30.1 ± 38.7 months), causes of renal failure. Time to follow-up for access thrombosis: 12 months. Results PAI-1 levels in HD: 7.21 ± 2.13 vs. CG: 0.42 ± 0.27 U/ml (p<0.0001). PAI-1 4G/5G polymorphic variant distribution in HD: 5G/5G: 6 (17%), 4G/5G: 23 (64%); 4G/4G: 7 (19%) and in CG: 5G/5G: 14 (35%); 4G/5G: 18 (45%); 4G/4G: 8 (20%). C-reactive protein (CRP) in HD: 24.5 ± 15.2 mg/L vs. in CG 2.3 ± 0.2 mg/L (p<0.0001). PAI-1 4G/5G variants: GA: 5G/5G: 3; 4G/5G: 8; 4G/4G: 1; GB: 5G/5G: 3; 4G/5G: 15; 4G/4G: 6. Thrombosis occurred in 8/10 patients (80%) with PTFEG, 3/22 (9%) in AVF, and 1/4 (25%) in CAT. Among the eight PTFEG patients with thrombosis, seven were PAI 4G/5G. Conclusions PAI-1 levels were elevated in HD patients, independent of their polymorphic variants, 4G/5G being the most prevalent variant. Our data suggest that in patients with PTFEG the 4G/5G variant might be associated with an increased thrombosis risk.
Collapse
Affiliation(s)
- H. Trimarchi
- Nephrology Unit, British Hospital of Buenos Aires
| | - C. Duboscq
- Hematology Unit, British Hospital of Buenos Aires
| | - V. Genoud
- Hemostasis and Thrombosis Laboratory, Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires
| | - F. Lombi
- Nephrology Unit, British Hospital of Buenos Aires
| | - A. Muryan
- Biochemistry Unit, British Hospital of Buenos Aires
| | - P. Young
- Clinical Medicine Unit, British Hospital of Buenos Aires, Buenos Aires - Argentina
| | - M. Schwab
- Department of Internal Medicine, Lausanne University Hospital, Lausanne - Switzerland
| | - M. Castañón
- Hemostasis and Thrombosis Laboratory, Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires
| | | | - M. Forrester
- Nephrology Unit, British Hospital of Buenos Aires
| | - H. Pereyra
- Nephrology Unit, British Hospital of Buenos Aires
| | | | - O. Seminario
- Nephrology Unit, British Hospital of Buenos Aires
| | - M. Alonso
- Clinical Medicine Unit, British Hospital of Buenos Aires, Buenos Aires - Argentina
| | - L. Kordich
- Hemostasis and Thrombosis Laboratory, Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires
| |
Collapse
|
78
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
79
|
Chou C, Lin C, Chiu DT, Chen I, Chen S. Tryptophan as a surrogate prognostic marker for diabetic nephropathy. J Diabetes Investig 2018; 9:366-374. [PMID: 28646618 PMCID: PMC5835459 DOI: 10.1111/jdi.12707] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023] Open
Abstract
AIMS/INTRODUCTION Diabetic nephropathy is one of the leading causes of end-stage renal disease. Unfortunately, reliable surrogate markers for predicting the prognostic outcome of diabetic nephropathy are as yet absent. In order to find new markers in predicting the progression of diabetic nephropathy, we carried out a prospective study by investigating the correlation between serum metabolites and the annual change of estimated glomerular filtration rate (eGFR). MATERIALS AND METHODS From September 2013 to September 2015, 52 diabetes patients at various stages of chronic kidney disease were enrolled. While serum levels of 175 metabolites were measured by AbsoluteIDQ™ p180 kit, only those with a significant difference in advancing chronic kidney disease stages were selected. After then, serial renal function change of these patients was followed up for 12 months, the outcome of renal function with each selected metabolite was compared according to the occurrence of a rapid decline (sustained annual decrement rate ≥5%) of eGFR. RESULTS A total of 26 metabolites were found to be significantly associated with the severity of chronic kidney disease. Tryptophan (Trp) showed a significant association with the event of rapid decline in eGFR (P = 0.036). Serum concentration of Trp <44.20 μmol/L showed the most valuable predictive value with 55.6% sensitivity and 87% specificity. CONCLUSIONS A lower level of Trp, especially <44.20 μmol/L, was related to a rapid decline in eGFR. Accordingly, Trp might be regarded as a potential prognostic marker for diabetic nephropathy.
Collapse
Affiliation(s)
- Chien‐An Chou
- Division of Endocrinology and MetabolismDepartment of Internal MedicineChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
- Present address:
Division of Endocrinology and Metabolism Chang‐Gung Memorial HospitalNo. 5, Fuxing St.Guishan Dist, Taoyuan City 333Taiwan
| | - Chia‐Ni Lin
- Department of Laboratory MedicineChang Gung Memorial Hospital Linkou BranchChang Gung UniversityTaoyuanTaiwan
- Department of Medical Biotechnology and Laboratory ScienceCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Present address:
Division of Endocrinology and Metabolism Chang‐Gung Memorial HospitalNo. 5, Fuxing St.Guishan Dist, Taoyuan City 333Taiwan
| | - Daniel Tsun‐Yee Chiu
- Department of Medical Biotechnology and Laboratory ScienceCollege of MedicineChang Gung UniversityTaoyuanTaiwan
- Healthy Aging Research CenterChang Gung UniversityTaoyuanTaiwan
- Department of Pediatric HematologyChang Gung Memorial HospitalLin‐KouTaiwan
| | - I‐Wen Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
| | - Szu‐Tah Chen
- Division of Endocrinology and MetabolismDepartment of Internal MedicineChang Gung Memorial HospitalChang Gung UniversityTaoyuanTaiwan
- Present address:
Division of Endocrinology and Metabolism Chang‐Gung Memorial HospitalNo. 5, Fuxing St.Guishan Dist, Taoyuan City 333Taiwan
| |
Collapse
|
80
|
Edamatsu T, Fujieda A, Itoh Y. Phenyl sulfate, indoxyl sulfate and p-cresyl sulfate decrease glutathione level to render cells vulnerable to oxidative stress in renal tubular cells. PLoS One 2018; 13:e0193342. [PMID: 29474405 PMCID: PMC5825083 DOI: 10.1371/journal.pone.0193342] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/08/2018] [Indexed: 12/30/2022] Open
Abstract
In chronic kidney disease patients, oxidative stress is generally associated with disease progression and pathogenesis of its comorbidities. Phenyl sulfate is a protein-bound uremic solute, which accumulates in chronic kidney disease patients, but little is known about its nature. Although many reports revealed that protein-bound uremic solutes induce reactive oxygen species production, the effects of these solutes on anti-oxidant level have not been well studied. Therefore, we examined the effects of protein-bound uremic solutes on glutathione levels. As a result, indoxyl sulfate, phenyl sulfate, and p-cresyl sulfate decreased glutathione levels in porcine renal tubular cells. Next we examined whether phenyl sulfate-treated cells becomes vulnerable to oxidative stress. In phenyl sulfate-treated cells, hydrogen peroxide induced higher rates of cell death than in control cells. Buthionine sulfoximine, which is known to decrease glutathione level, well mimicked the effect of phenyl sulfate. Finally, we evaluated a mixture of indoxyl sulfate, phenyl sulfate, and p-cresyl sulfate at concentrations comparable to the serum concentrations of hemodialysis patients, and we confirmed its decreasing effect on glutathione level. In conclusion, indoxyl sulfate, phenyl sulfate, and p-cresyl sulfate decrease glutathione levels, rendering the cells vulnerable to oxidative stress.
Collapse
Affiliation(s)
- Takeo Edamatsu
- Pharmaceuticals & Agrochemicals Division, Kureha Corporation, Tokyo, Japan
- * E-mail:
| | - Ayako Fujieda
- Pharmaceuticals & Agrochemicals Division, Kureha Corporation, Tokyo, Japan
| | - Yoshiharu Itoh
- Pharmaceuticals & Agrochemicals Division, Kureha Corporation, Tokyo, Japan
| |
Collapse
|
81
|
Sato E, Saigusa D, Mishima E, Uchida T, Miura D, Morikawa-Ichinose T, Kisu K, Sekimoto A, Saito R, Oe Y, Matsumoto Y, Tomioka Y, Mori T, Takahashi N, Sato H, Abe T, Niwa T, Ito S. Impact of the Oral Adsorbent AST-120 on Organ-Specific Accumulation of Uremic Toxins: LC-MS/MS and MS Imaging Techniques. Toxins (Basel) 2017; 10:toxins10010019. [PMID: 29283413 PMCID: PMC5793106 DOI: 10.3390/toxins10010019] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022] Open
Abstract
Elevated circulating uremic toxins are associated with a variety of symptoms and organ dysfunction observed in patients with chronic kidney disease (CKD). Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are representative uremic toxins that exert various harmful effects. We recently showed that IS induces metabolic alteration in skeletal muscle and causes sarcopenia in mice. However, whether organ-specific accumulation of IS and PCS is associated with tissue dysfunction is still unclear. We investigated the accumulation of IS and PCS using liquid chromatography/tandem mass spectrometry in various tissues from mice with adenine-induced CKD. IS and PCS accumulated in all 15 organs analyzed, including kidney, skeletal muscle, and brain. We also visualized the tissue accumulation of IS and PCS with immunohistochemistry and mass spectrometry imaging techniques. The oral adsorbent AST-120 prevented some tissue accumulation of IS and PCS. In skeletal muscle, reduced accumulation following AST-120 treatment resulted in the amelioration of renal failure-associated muscle atrophy. We conclude that uremic toxins can accumulate in various organs and that AST-120 may be useful in treating or preventing organ dysfunction in CKD, possibly by reducing tissue accumulation of uremic toxins.
Collapse
Affiliation(s)
- Emiko Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| | - Eikan Mishima
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Taeko Uchida
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
| | - Daisuke Miura
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka 812-8582, Japan.
| | | | - Kiyomi Kisu
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Akiyo Sekimoto
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Japan.
| | - Yuji Oe
- Division of Feto-Maternal Medical Science, Department of Community Medical Support, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8574, Japan.
| | - Yotaro Matsumoto
- Division of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
| | - Yoshihisa Tomioka
- Division of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
| | - Takefumi Mori
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
- Division of Integrative Renal Replacement Therapy, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Nobuyuki Takahashi
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Hiroshi Sato
- Division of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan.
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| | - Takaaki Abe
- Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai 980-8574, Japan.
| | | | - Sadayoshi Ito
- Division of Nephrology, Endocrinology and Vascular Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
82
|
Chen CN, Chou CC, Tsai PSJ, Lee YJ. Plasma indoxyl sulfate concentration predicts progression of chronic kidney disease in dogs and cats. Vet J 2017; 232:33-39. [PMID: 29428089 DOI: 10.1016/j.tvjl.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 11/30/2022]
Abstract
Indoxyl sulfate is a protein-bound uremic toxin that increases as the severity of impaired renal function increases in humans, laboratory animals, dogs and cats. An elevation of indoxyl sulfate is related to prognosis among people with chronic kidney disease. However, whether indoxyl sulfate is able to predict the progression of chronic kidney disease in dogs and cats has not been previously studied. In the present study, 58 cats and 36 dogs with chronic kidney disease were enrolled. Plasma indoxyl sulfate was measured by high performance liquid chromatography. Renal progression was defined as an increase by one International Renal Interest Society (IRIS) stage and/or a rise in serum creatinine concentration of 0.5mg/dL during the same stage within a 3-month period. Compared with the non-progression groups, across different stages of renal failure, the baseline plasma indoxyl sulfate concentration was increased in the renal progression group (P<0.05), especially for IRIS stages 2 and 3 animals. The area under the receiver operator characteristic curves of indoxyl sulfate, when predicting renal progression, was above 0.75 for both dogs and cats. Indoxyl sulfate concentrations were also correlated with the increase of blood urea nitrogen, serum creatinine, and phosphate and the decrease of hematocrit among cats; while in dogs, concentrations were only correlated with the increase of phosphate concentrations. Indoxyl sulfate served as a biomarker of progression risk in dogs and cats with chronic kidney disease.
Collapse
Affiliation(s)
- C N Chen
- Institute of Veterinary Clinical Science, School of Veteriarny Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - C C Chou
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, No. 250, Kuo Kuang Rd., Taichung 402, Taiwan
| | - P S J Tsai
- Department of Veterinary Medicine, School of Veteriarny Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; Research Centre for Developmental Biology and Regenerative Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Y J Lee
- Institute of Veterinary Clinical Science, School of Veteriarny Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan; National Taiwan University Veterinary Hospital, College of Bio-Resources and Agriculture, National Taiwan University, No. 153, Sec. 3, Keelung Rd., Taipei 106, Taiwan.
| |
Collapse
|
83
|
Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome. PLoS One 2017; 12:e0187459. [PMID: 29107962 PMCID: PMC5673193 DOI: 10.1371/journal.pone.0187459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
Intracellular accumulation of protein-bound uremic toxins in the setting of cardiorenal syndrome leads to adverse effects on cardiorenal cellular functions, where cardiac hypertrophy and cardiorenal fibrosis are the hallmarks. In this study, we sought to determine if Apoptosis Signal-Regulated Kinase 1 (ASK1), an upstream regulator of cellular stress response, mediates cardiac hypertrophy and cardiorenal fibrosis induced by indoxyl sulfate (IS) and p-cresol sulfate (PCS) in vitro, and whether ASK1 inhibition is beneficial to ameliorate these cellular effects. PCS augmented cardiac myocyte hypertrophy and fibroblast collagen synthesis (as determined by 3H-leucine and 3H-proline incorporation, respectively), similar to our previous finding with IS. IS and PCS also increased collagen synthesis of proximal tubular cells and renal mesangial cells. Pro-hypertrophic (α-skeletal muscle actin and β-MHC) and pro-fibrotic genes (TGF-β1 and ctgf) were induced by both IS and PCS. Western blot analyses revealed the activation of ASK1 and downstream mitogen activated protein kinases (MAPKs) (p38MAPK and ERK1/2) as well as nuclear factor-kappa B (NF-κB) by IS and PCS. ASK1, OAT1/3, ERK1/2 and p38MAPK inhibitors suppressed all these effects. In summary, IS and PCS exhibit pro-hypertrophic and pro-fibrotic properties, at least in part, via the activation of ASK1 and its downstream pathways. ASK1 inhibitor is an effective therapeutic agent to alleviate protein-bound uremic toxin-induced cardiac hypertrophy and cardiorenal fibrosis in vitro, and may be translated further for cardiorenal syndrome therapy.
Collapse
|
84
|
Protein-bound toxins: has the Cinderella of uraemic toxins turned into a princess? Clin Sci (Lond) 2017; 130:2209-2216. [PMID: 27799624 DOI: 10.1042/cs20160393] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/14/2016] [Indexed: 01/29/2023]
Abstract
Chronic kidney disease (CKD) has emerged as a global public health problem. Although the incidence and prevalence of CKD vary from one country to another, the estimated worldwide prevalence is 8-16%. The complications associated with CKD include progression to end-stage renal disease (ESRD), mineral and bone disorders, anaemia, cognitive decline and elevated all-cause and cardiovascular (CV) mortality. As a result of progressive nephron loss, patients with late-stage CKD are permanently exposed to uraemic toxins. These toxins have been classified into three groups as a function of the molecular mass: small water-soluble molecules, middle molecules and protein-bound uraemic toxins. The compounds can also be classified according to their origin (i.e. microbial or not) or their protein-binding ability. The present review will focus on the best-characterized protein-bound uraemic toxins, namely indoxylsulfate (IS), indole acetic acid (IAA) and p-cresylsulfate (PCS, a cresol metabolite). Recent research suggests that these toxins accelerate the progression of CV disease, kidney disease, bone disorders and neurological complications. Lastly, we review therapeutic approaches that can be used to decrease toxin levels.
Collapse
|
85
|
Urea, a true uremic toxin: the empire strikes back. Clin Sci (Lond) 2017; 131:3-12. [PMID: 27872172 DOI: 10.1042/cs20160203] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/12/2016] [Accepted: 09/28/2016] [Indexed: 01/18/2023]
Abstract
Blood levels of urea rise with progressive decline in kidney function. Older studies examining acute urea infusion suggested that urea was well-tolerated at levels 8-10× above normal values. More recent in vitro and in vivo work argue the opposite and demonstrate both direct and indirect toxicities of urea, which probably promote the premature aging phenotype that is pervasive in chronic kidney disease (CKD). Elevated urea at concentrations typically encountered in uremic patients induces disintegration of the gut epithelial barrier, leading to translocation of bacterial toxins into the bloodstream and systemic inflammation. Urea induces apoptosis of vascular smooth muscle cells as well as endothelial dysfunction, thus directly promoting cardiovascular disease. Further, urea stimulates oxidative stress and dysfunction in adipocytes, leading to insulin resistance. Finally, there are widespread indirect effects of elevated urea as a result of the carbamylation reaction, where isocyanic acid (a product of urea catabolism) alters the structure and function of proteins in the body. Carbamylation has been linked with renal fibrosis, atherosclerosis and anaemia. In summary, urea is a re-emerging Dark Force in CKD pathophysiology. Trials examining low protein diet to minimize accumulation of urea and other toxins suggest a clinical benefit in terms of slowing progression of CKD.
Collapse
|
86
|
Dietary Metabolites and Chronic Kidney Disease. Nutrients 2017; 9:nu9040358. [PMID: 28375181 PMCID: PMC5409697 DOI: 10.3390/nu9040358] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 01/04/2023] Open
Abstract
Dietary contents and their metabolites are closely related to chronic kidney disease (CKD) progression. Advanced glycated end products (AGEs) are a type of uremic toxin produced by glycation. AGE accumulation is not only the result of elevated glucose levels or reduced renal clearance capacity, but it also promotes CKD progression. Indoxyl sulfate, another uremic toxin derived from amino acid metabolism, accumulates as CKD progresses and induces tubulointerstitial fibrosis and glomerular sclerosis. Specific types of amino acids (d-serine) or fatty acids (palmitate) are reported to be closely associated with CKD progression. Promising therapeutic targets associated with nutrition include uremic toxin absorbents and inhibitors of AGEs or the receptor for AGEs (RAGE). Probiotics and prebiotics maintain gut flora balance and also prevent CKD progression by enhancing gut barriers and reducing uremic toxin formation. Nrf2 signaling not only ameliorates oxidative stress but also reduces elevated AGE levels. Bardoxolone methyl, an Nrf2 activator and NF-κB suppressor, has been tested as a therapeutic agent, but the phase 3 clinical trial was terminated owing to the high rate of cardiovascular events. However, a phase 2 trial has been initiated in Japan, and the preliminary analysis reveals promising results without an increase in cardiovascular events.
Collapse
|
87
|
Cha RH, Kang SW, Park CW, Cha DR, Na KY, Kim SG, Yoon SA, Kim S, Han SY, Park JH, Chang JH, Lim CS, Kim YS. Sustained uremic toxin control improves renal and cardiovascular outcomes in patients with advanced renal dysfunction: post-hoc analysis of the Kremezin Study against renal disease progression in Korea. Kidney Res Clin Pract 2017; 36:68-78. [PMID: 28392999 PMCID: PMC5331977 DOI: 10.23876/j.krcp.2017.36.1.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/18/2022] Open
Abstract
Background We investigated the long-term effect of AST-120, which has been proposed as a therapeutic option against renal disease progression, in patients with advanced chronic kidney disease (CKD). Methods We performed post-hoc analysis with a per-protocol group of the K-STAR study (Kremezin study against renal disease progression in Korea) that randomized participants into an AST-120 and a control arm. Patients in the AST-120 arm were given 6 g of AST-120 in three divided doses, and those in both arms received standard conventional treatment. Results The two arms did not differ significantly in the occurrence of composite primary outcomes (log-rank P = 0.41). For AST-120 patients with higher compliance, there were fewer composite primary outcomes: intermediate tertile hazard ratio (HR) 0.62, 95% confidence interval (CI) 0.38 to 1.01, P = 0.05; highest tertile HR 0.436, 95% CI 0.25 to 0.76, P = 0.003. The estimated glomerular filtration rate level was more stable in the AST-120 arm, especially in diabetic patients. At one year, the AST-120-induced decrease in the serum indoxyl sulfate concentration inversely correlated with the occurrence of composite primary outcomes: second tertile HR 1.59, 95% CI 0.82 to 3.07, P = 0.17; third tertile HR 2.11, 95% CI 1.07 to 4.17, P = 0.031. Furthermore, AST-120 showed a protective effect against the major cardiovascular adverse events (HR 0.51, 95% CI 0.26 to 0.99, P = 0.046). Conclusion Long-term use of AST-120 has potential for renal protection, especially in diabetic patients, as well as cardiovascular benefits. Reduction of the serum indoxyl sulfate level may be used to identify patients who would benefit from AST-120 administration.
Collapse
Affiliation(s)
- Ran-Hui Cha
- Department of Internal Medicine, National Medical Center, Seoul, Korea
| | - Shin Wook Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Whee Park
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Dae Ryong Cha
- Department of Internal Medicine, Korea University Ansan-Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ki Young Na
- Department of Internal Medicine, Seoul National University Bundang Hopsital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Sun Ae Yoon
- Department of Internal Medicine, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Uijeongbu, Korea
| | - Sejoong Kim
- Department of Internal Medicine, Seoul National University Bundang Hopsital, Seongnam, Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Youb Han
- Department of Internal Medicine, Inje University Ilsan-Paik Hospital, Goyang, Korea
| | - Jung Hwan Park
- Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Jae Hyun Chang
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University of Medicine and Science, Incheon, Korea
| | - Chun Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Kidney Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
88
|
Wang L, Gao Z, Wang L, Gao Y. Upregulation of nuclear factor-κB activity mediates CYP24 expression and reactive oxygen species production in indoxyl sulfate-induced chronic kidney disease. Nephrology (Carlton) 2017; 21:774-81. [PMID: 26567049 DOI: 10.1111/nep.12673] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
AIM Chronic kidney disease (CKD) is associated with an inflammation-mediated process, and the vitamin D (3) catabolizing enzyme, CYP24, is frequently overexpressed in CKD, where it may play a crucial role in kidney disease. METHODS Herein, in this study, we investigated CYP24, reactive oxygen species (ROS), and inflammatory responses in an indoxyl sulfate (IS)-induced CKD model to elucidate the role of CYP24 in CKD. RESULTS Our results showed that IS upregulates proinflammatory cytokine, CYP24 and nuclear factor-κB (NF-κB) expression in human renal proximal tubule epithelial cells. In addition, IS treatment increased ROS production and simultaneously upregulated CYP24 expression and NF-κB translocation. Moreover, the IS-induced upregulation of CYP24 expression was alleviated by an inhibitor of NF-κB, as well as a siRNA specific to NF-κB p65. Furthermore, the renal cortex of DN (Dahl salt-resistant normotensive) + IS, DH (Dahl salt-sensitive hypertensive), and DH + IS rats showed increased expression of NF-κB p65, CYP24, 8-hydroxydeoxyguanosine (8-OHdG), a marker of ROS and macrophage infiltration compared with DN rats. CONCLUSIONS These results provide evidence that administration of IS in human renal tubular epithelial cells upregulates NF-κB, which leads to increase CYP24 expression and ROS production. They also suggest that suppressing NF-κB signalling is promising for the development into a strategy for CKD treatment.
Collapse
Affiliation(s)
- Lihua Wang
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| | - Zhiying Gao
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| | - Lili Wang
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| | - Yongning Gao
- Division of Blood Purification, The Second Hospital of Hebei Medical University, No. 215 Peace Road, Shijiazhuang, 053000, Hebei, China
| |
Collapse
|
89
|
Bang JY, Kim SO, Kim SG, Song JG, Hwang GS. Cystatin-C is associated with partial recovery of kidney function and progression to chronic kidney disease in living kidney donors: Observational study. Medicine (Baltimore) 2017; 96:e6037. [PMID: 28151912 PMCID: PMC5293475 DOI: 10.1097/md.0000000000006037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/28/2023] Open
Abstract
Donor nephrectomy in living-donor kidney transplantation may result in hyperfiltration injury in remnant kidney; however, its clinical implication in partial recovery of kidney function (PRKF) in remnant kidney and chronic kidney disease (CKD) progression remains unclear. Thus, we investigated the effect of PRKF on CKD development in the residual kidney and the utility of cystatin-C (Cys-C) in evaluating renal function in living-donor kidney transplantation donors.The electronic medical records and laboratory results of 1648 kidney transplant (KT) donors and 13,834 healthy nondonors between January 2006 and November 2014 were reviewed. The predictors of PRKF and CKD diagnosed by Kidney Disease: Improving Global Outcomes (KDIGO) criteria were evaluated by multivariate analysis. CKD risk was compared between KT donors and healthy nondonors using Cox proportional hazard regression analysis following propensity score matching (PSM).The incidence of PRKF for KT donors was 49.3% (813). CKD incidence was 24.8% (408) in KT donors and 2.0% (277) in healthy nondonors. The predictors of PRKF were, male sex (odds ratio [OR], 17.32; 95% confidence interval [CI] 9.16-32.77), age (OR, 1.02; 95% CI, 1.00-1.04; P < 0.001), Cys-C concentration (OR, 1.02; 95% CI, 1.00-1.04; P = 0.02), and preoperative albumin level (OR, 0.49; 95% CI, 0.27-0.89; P = 0.02). The predictors of CKD were age (hazards ratio [HR], 1.04; 95% CI, 1.02-1.05; P < 0.001), Cys-C concentration (HR, 1.024; 95% CI, 1.012-1.037; P < 0.001), and PRKF (HR, 1.41; 95% CI, 1.04-1.92; P = 0.03). After PSM, the risk of progression to CKD was higher in KT donors than in healthy nondonors (HR, 58.4; 95% CI, 34.2-99.8; P < 0.001).Donor nephrectomy is associated with PRKF and progression to CKD. Cys-C is a useful early marker for detecting PRKF and CKD.
Collapse
Affiliation(s)
- Ji-Yeon Bang
- Department of Anesthesiology and Pain Medicine, Laboratory for Cardiovascular Dynamics
| | - Seon-Ok Kim
- Department of Clinical Epidemiology and Biostatistics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sae-Gyul Kim
- Department of Anesthesiology and Pain Medicine, Laboratory for Cardiovascular Dynamics
| | - Jun-Gol Song
- Department of Anesthesiology and Pain Medicine, Laboratory for Cardiovascular Dynamics
| | - Gyu Sam Hwang
- Department of Anesthesiology and Pain Medicine, Laboratory for Cardiovascular Dynamics
| |
Collapse
|
90
|
Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res 2017; 179:24-37. [PMID: 27187743 PMCID: PMC5086447 DOI: 10.1016/j.trsl.2016.04.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
More than 100 trillion microbial cells that reside in the human gut heavily influence nutrition, metabolism, and immune function of the host. Gut dysbiosis, seen commonly in patients with chronic kidney disease (CKD), results from qualitative and quantitative changes in host microbiome profile and disruption of gut barrier function. Alterations in gut microbiota and a myriad of host responses have been implicated in progression of CKD, increased cardiovascular risk, uremic toxicity, and inflammation. We present a discussion of dysbiosis, various uremic toxins produced from dysbiotic gut microbiome, and their roles in CKD progression and complications. We also review the gut microbiome in renal transplant, highlighting the role of commensal microbes in alteration of immune responses to transplantation, and conclude with therapeutic interventions that aim to restore intestinal dysbiosis.
Collapse
Affiliation(s)
- Anitha Nallu
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Shailendra Sharma
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Jagadeesan Muralidharan
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Dominic Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC.
| |
Collapse
|
91
|
Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury. Int J Mol Sci 2016; 18:ijms18010011. [PMID: 28025487 PMCID: PMC5297646 DOI: 10.3390/ijms18010011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/11/2023] Open
Abstract
High mortality of acute kidney injury (AKI) is associated with acute lung injury (ALI), which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS), in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5), in bilateral nephrectomy (BNx)-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr), blood urea nitrogen (BUN) and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.
Collapse
|
92
|
Abstract
Recent years have brought interesting insights into the human gut microbiota and have highlighted its increasingly recognized impact on cardiovascular (CV) diseases, including heart failure (HF). Changes in composition of gut microbiota, called dysbiosis, can trigger systemic inflammation, which is known to be involved in the pathophysiology of HF. Trimethylamine N-oxide (TMAO), which is derived from gut microbiota metabolites of specific dietary nutrients, has emerged as a key contributor to cardiovascular disease pathogenesis. Elevated TMAO levels have been reported to be associated with poor outcomes in patients with both HF and chronic kidney disease (CKD). Dysbiosis of gut microbiota can contribute to higher levels of TMAO and the generation of uremic toxins, progressing to both HF and CKD. Therefore, this bidirectional relationship between HF and CKD through gut microbiota may be a novel therapeutic target for the cardiorenal syndrome. However, the mechanisms by which gut microbiota could influence the development of heart failure are still unknown, and there are still some questions regarding the causative effects of TMAO and the underlying mechanistic link that explains how TMAO might directly or indirectly promote CV diseases including HF. Further studies are warranted to clarify the function of TMAO on the pathophysiology of cardiorenal syndrome and the handling of TMAO levels by the kidneys.
Collapse
|
93
|
Tan X, Cao X, Zou J, Shen B, Zhang X, Liu Z, Lv W, Teng J, Ding X. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial Int 2016; 21:161-167. [PMID: 27616754 DOI: 10.1111/hdi.12483] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/10/2016] [Indexed: 02/04/2023]
Abstract
Chronic kidney disease (CKD) is an increasingly recognized disease with high global incidence and mortality. Yet, the existing diagnostic tools are not sufficient enough to predict prognosis of CKD and CKD comorbidities. Indoxyl sulfate, a typical uremic toxin, is of great importance in the development of CKD with its nephrotoxicity, cardiovascular toxicity, and bone toxicity. Some reports suggest that indoxyl sulfate directly associate with renal function loss and mortality in CKD patients. This review discusses the diagnostic value of indoxyl sulfate from its biological characteristics, pathophysiological effects, related therapies, and its diagnostic value in clinical studies.
Collapse
Affiliation(s)
- Xiao Tan
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhonghua Liu
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Wenlv Lv
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Xiaoqiang Ding
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| |
Collapse
|
94
|
Cigarran Guldris S, González Parra E, Cases Amenós A. Gut microbiota in chronic kidney disease. Nefrologia 2016; 37:9-19. [PMID: 27553986 DOI: 10.1016/j.nefro.2016.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microflora maintains a symbiotic relationship with the host under normal conditions, but its imbalance has recently been associated with several diseases. In chronic kidney disease (CKD), dysbiotic intestinal microflora has been reported with an increase in pathogenic flora compared to symbiotic flora. An enhanced permeability of the intestinal barrier, allowing the passage of endotoxins and other bacterial products to the blood, has also been shown in CKD. By fermenting undigested products that reach the colon, the intestinal microflora produce indoles, phenols and amines, among others, that are absorbed by the host, accumulate in CKD and have harmful effects on the body. These gut-derived uraemic toxins and the increased permeability of the intestinal barrier in CKD have been associated with increased inflammation and oxidative stress and have been involved in various CKD-related complications, including cardiovascular disease, anaemia, mineral metabolism disorders or the progression of CKD. The use of prebiotics, probiotics or synbiotics, among other approaches, could improve the dysbiosis and/or the increased permeability of the intestinal barrier in CKD. This article describes the situation of the intestinal microflora in CKD, the alteration of the intestinal barrier and its clinical consequences, the harmful effects of intestinal flora-derived uraemic toxins, and possible therapeutic options to improve this dysbiosis and reduce CKD-related complications.
Collapse
Affiliation(s)
| | - Emilio González Parra
- Servicio de Nefrología, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, España
| | - Aleix Cases Amenós
- Servicio de Nefrología, Hospital Clinic, Universitat de Barcelona, Barcelona, España
| |
Collapse
|
95
|
Kalantar-Zadeh K, Moore LW, Tortorici AR, Chou JA, St-Jules DE, Aoun A, Rojas-Bautista V, Tschida AK, Rhee CM, Shah AA, Crowley S, Vassalotti JA, Kovesdy CP. North American experience with Low protein diet for Non-dialysis-dependent chronic kidney disease. BMC Nephrol 2016; 17:90. [PMID: 27435088 PMCID: PMC4952055 DOI: 10.1186/s12882-016-0304-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/14/2016] [Indexed: 12/20/2022] Open
Abstract
Whereas in many parts of the world a low protein diet (LPD, 0.6-0.8 g/kg/day) is routinely prescribed for the management of patients with non-dialysis-dependent chronic kidney disease (CKD), this practice is infrequent in North America. The historical underpinnings related to LPD in the USA including the non-conclusive results of the Modification of Diet in Renal Disease Study may have played a role. Overall trends to initiate dialysis earlier in the course of CKD in the US allowed less time for LPD prescription. The usual dietary intake in the US includes high dietary protein content, which is in sharp contradistinction to that of a LPD. The fear of engendering or worsening protein-energy wasting may be an important handicap as suggested by a pilot survey of US nephrologists; nevertheless, there is also potential interest and enthusiasm in gaining further insight regarding LPD’s utility in both research and in practice. Racial/ethnic disparities in the US and patients’ adherence are additional challenges. Adherence should be monitored by well-trained dietitians by means of both dietary assessment techniques and 24-h urine collections to estimate dietary protein intake using urinary urea nitrogen (UUN). While keto-analogues are not currently available in the USA, there are other oral nutritional supplements for the provision of high-biologic-value proteins along with dietary energy intake of 30–35 Cal/kg/day available. Different treatment strategies related to dietary intake may help circumvent the protein- energy wasting apprehension and offer novel conservative approaches for CKD management in North America.
Collapse
Affiliation(s)
- Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology & Hypertension, University of California Irvine Medical Center, 101 The City Drive South, Orange, CA, 92868-3217, USA. .,Long Beach Veterans Affairs Healthcare System, Long Beach, CA, USA. .,Department Epidemiology, UCLA Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA. .,Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.
| | | | - Amanda R Tortorici
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology & Hypertension, University of California Irvine Medical Center, 101 The City Drive South, Orange, CA, 92868-3217, USA
| | - Jason A Chou
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology & Hypertension, University of California Irvine Medical Center, 101 The City Drive South, Orange, CA, 92868-3217, USA.,Long Beach Veterans Affairs Healthcare System, Long Beach, CA, USA
| | - David E St-Jules
- Center for Healthful Behavior Change, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Arianna Aoun
- Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Vanessa Rojas-Bautista
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology & Hypertension, University of California Irvine Medical Center, 101 The City Drive South, Orange, CA, 92868-3217, USA
| | | | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology & Hypertension, University of California Irvine Medical Center, 101 The City Drive South, Orange, CA, 92868-3217, USA.,Long Beach Veterans Affairs Healthcare System, Long Beach, CA, USA
| | - Anuja A Shah
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Susan Crowley
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Joseph A Vassalotti
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.,National Kidney Foundation, Inc., New York, NY, USA
| | - Csaba P Kovesdy
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
96
|
Lekawanvijit S, Kompa AR, Krum H. Protein-bound uremic toxins: a long overlooked culprit in cardiorenal syndrome. Am J Physiol Renal Physiol 2016; 311:F52-62. [DOI: 10.1152/ajprenal.00348.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 05/01/2016] [Indexed: 11/22/2022] Open
Abstract
Protein-bound uremic toxins (PBUTs) accumulate once renal excretory function declines and are not cleared by dialysis. There is increasing evidence that PBUTs exert toxic effects on many vital organs, including the kidney, blood vessels, and heart. It has been suggested that PBUTs are likely to be a potential missing link in cardiorenal syndrome, based on the high incidence of cardiovascular events and mortality in the dialysis population, which are dramatically reduced in successful kidney transplant recipients. These data have led the call for more effective dialysis or additional adjunctive therapy to eradicate these toxins and their adverse biological effects. Indoxyl sulfate and p-cresyl sulfate are the two most problematic PBUTs, conferring renal and cardiovascular toxicity, and are derived from dietary amino acid metabolites by colonic microbial organisms. Therefore, targeting the colon where these toxins are initially produced appears to be a potential therapeutic alternative for patients with chronic kidney disease. This strategy, if approved, is likely to be applicable to predialysis patients, thereby potentially preventing progression of chronic kidney disease to end-stage renal disease as well as preventing the development of cardiorenal syndrome.
Collapse
Affiliation(s)
- Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; and
| | - Andrew R. Kompa
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
97
|
Abstract
Fibrosis occurs in systemic tissues other than the brain and finally induces dysfunction of the fibrotic organ. Kidney fibrosis is related to scarring after acute kidney injury and the progression of chronic kidney disease. Kidney function decreases with the progression of kidney fibrosis. As fibrotic tissue cannot return to its original status, advanced kidney fibrosis requires the administration of dialysis or kidney transplantation. Thus, elucidation the mechanism of kidney fibrosis is an important research theme. The proliferation and activation of (myo) fibroblasts and the excessive production of an extracellular matrix are common mechanisms in fibrosis in many organs, but it seems that kidney fibrosis has specific pathways. Tubular epithelial, mesangial cells, and erythropoietin producing cells, which exist only in the kidney, participate in forming kidney fibrosis. This review highlights an understanding of the cells and their underlying mechanisms, which are specific to kidney fibrosis process: transforming growth factor-β (TGF-β), epithelial-mesenchymal transition, wingless/int-1 (WNT) signaling, renal anemia, and uremia. Finally, we describe potential therapies that focus on the mechanisms of kidney fibrosis: anti-TGF-β antibody and mammalian target of rapamycin (mTOR).
Collapse
|
98
|
Vasylyeva TL, Singh R. Gut Microbiome and Kidney Disease in Pediatrics: Does Connection Exist? Front Microbiol 2016; 7:235. [PMID: 26973613 PMCID: PMC4776082 DOI: 10.3389/fmicb.2016.00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/15/2016] [Indexed: 01/01/2023] Open
Abstract
Child development is a unique and continuous process that is impacted by genetics and environmental factors. Gut microbiome changes with development and depends on the stage of gut maturation, nutrition, and overall health. In spite of emerging data and active study in adults, the gut-renal axis in pediatrics has not been well considered and investigated. This review will focus on the current knowledge of gut microbiota impacts on kidney disease with extrapolation to the pediatric population.
Collapse
Affiliation(s)
- Tetyana L. Vasylyeva
- Department of Pediatrics, Texas Tech University Health Sciences Center, AmarilloTX, USA
| | | |
Collapse
|
99
|
Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 2016; 67:483-98. [PMID: 26590448 PMCID: PMC5408507 DOI: 10.1053/j.ajkd.2015.09.027] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 02/08/2023]
Abstract
Also known as the "second human genome," the gut microbiome plays important roles in both the maintenance of health and the pathogenesis of disease. The symbiotic relationship between host and microbiome is disturbed due to the proliferation of dysbiotic bacteria in patients with chronic kidney disease (CKD). Fermentation of protein and amino acids by gut bacteria generates excess amounts of potentially toxic compounds such as ammonia, amines, thiols, phenols, and indoles, but the generation of short-chain fatty acids is reduced. Impaired intestinal barrier function in patients with CKD permits translocation of gut-derived uremic toxins into the systemic circulation, contributing to the progression of CKD, cardiovascular disease, insulin resistance, and protein-energy wasting. The field of microbiome research is still nascent, but is evolving rapidly. Establishing symbiosis to treat uremic syndrome is a novel concept, but if proved effective, it will have a significant impact on the management of patients with CKD.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Ouest-ersailles-Saint-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt/Paris, France; INSERM U1018, Research Centre in Epidemiology and Population Health (CESP) Team 5, University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), Villejuif, France
| | - Björn Meijers
- Division of Nephrology, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Division of Nephrology, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, University Hospital, Ghent, Belgium
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC.
| |
Collapse
|
100
|
Cha RH, Kang SW, Park CW, Cha DR, Na KY, Kim SG, Yoon SA, Han SY, Chang JH, Park SK, Lim CS, Kim YS. A Randomized, Controlled Trial of Oral Intestinal Sorbent AST-120 on Renal Function Deterioration in Patients with Advanced Renal Dysfunction. Clin J Am Soc Nephrol 2016; 11:559-67. [PMID: 26912554 DOI: 10.2215/cjn.12011214] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/06/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVES The notion that oral intestinal sorbent AST-120 slows renal disease progression has not been evaluated thoroughly. In this study, we investigated the long-term effect of AST-120 on renal disease progression (doubling of serum creatinine, eGFR decrease >50%, or initiation of RRT) in patients with advanced CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We prospectively recruited 579 patients (CKD stage 3 or 4) from 11 medical centers in Korea from March 4, 2009 to August 31, 2010 and randomized them into an AST-120 arm and a control arm. Patients in the AST-120 arm were given 6 g AST-120 in three divided doses per day, and those in the control arm received only standard conventional treatment (open-label design) for 36 months or until the occurrence of primary outcomes. RESULTS Levels of serum and urine indoxyl sulfate and β2-microglobulin decreased throughout the study period in both treatment arms; however, there was not a significant difference in change in uremic toxins in the AST-120 and control arms. The two arms were not different in the occurrence of composite primary outcomes (100 events in 272 individuals in the AST-120 arm and 100 events in 266 individuals in the control arm; hazard ratio, 1.12; 95% confidence interval, 0.85 to 1.48; log-rank P=0.45). The decline in eGFR and change in proteinuria were similar in the two treatment arms over time (Prandomization-time=0.64 and Prandomization-time=0.16, respectively). There was no difference in mortality (nine deaths in the AST-120 arm and 11 deaths in the control arm; log-rank P=0.73) or unplanned hospitalizations (102 in the AST-120 arm and 109 in the control arm; log-rank P=0.76) in the two treatment arms. There was no significant difference of the health-related quality of life score between the two arms. CONCLUSIONS Long-term use of AST-120 added to standard treatment did not change renal disease progression, proteinuria, mortality, and health-related quality of life in patients with advanced renal dysfunction.
Collapse
Affiliation(s)
- Ran-Hui Cha
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Shin Wook Kang
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Cheol Whee Park
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Dae Ryong Cha
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Ki Young Na
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Sung Gyun Kim
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Sun Ae Yoon
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Sang Youb Han
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Jae Hyun Chang
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Sue K Park
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Chun Soo Lim
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material
| | - Yon Su Kim
- Due to the number of contributing authors, the affiliations are provided in the Supplemental Material.
| |
Collapse
|