51
|
Schulte RR, Ho RH. Organic Anion Transporting Polypeptides: Emerging Roles in Cancer Pharmacology. Mol Pharmacol 2019; 95:490-506. [PMID: 30782852 PMCID: PMC6442320 DOI: 10.1124/mol.118.114314] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/09/2019] [Indexed: 12/13/2022] Open
Abstract
The organic anion transporting polypeptides (OATPs) are a superfamily of drug transporters involved in the uptake and disposition of a wide array of structurally divergent endogenous and exogenous substrates, including steroid hormones, bile acids, and commonly used drugs, such as anti-infectives, antihypertensives, and cholesterol lowering agents. In the past decade, OATPs, primarily OATP1A2, OATP1B1, and OATP1B3, have emerged as potential mediators of chemotherapy disposition, including drugs such as methotrexate, doxorubicin, paclitaxel, docetaxel, irinotecan and its important metabolite 7-ethyl-10-hydroxycamptothecin, and certain tyrosine kinase inhibitors. Furthermore, OATP family members are polymorphic and numerous studies have shown OATP variants to have differential uptake, disposition, and/or pharmacokinetics of numerous drug substrates with important implications for interindividual differences in efficacy and toxicity. Additionally, certain OATPs have been found to be overexpressed in a variety of human solid tumors, including breast, liver, colon, pancreatic, and ovarian cancers, suggesting potential roles for OATPs in tumor development and progression and as novel targets for cancer therapy. This review focuses on the emerging roles for selected OATPs in cancer pharmacology, including preclinical and clinical studies suggesting roles in chemotherapy disposition, the pharmacogenetics of OATPs in cancer therapy, and OATP overexpression in various tumor tissues with implications for OATPs as therapeutic targets.
Collapse
Affiliation(s)
- Rachael R Schulte
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard H Ho
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
52
|
Windt T, Tóth S, Patik I, Sessler J, Kucsma N, Szepesi Á, Zdrazil B, Özvegy-Laczka C, Szakács G. Identification of anticancer OATP2B1 substrates by an in vitro triple-fluorescence-based cytotoxicity screen. Arch Toxicol 2019; 93:953-964. [PMID: 30863990 PMCID: PMC6510822 DOI: 10.1007/s00204-019-02417-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism and excretion of drugs. The cellular accumulation of many drugs is the result of the net function of efflux and influx transporters. Efflux transporters such as P-glycoprotein/ABCB1 have been shown to confer multidrug resistance in cancer. Although expression of uptake transporters has been confirmed in cancer cells, their role in chemotherapy response has not been systematically investigated. In the present study we have adapted a fluorescence-based cytotoxic assay to characterize the influence of key drug-transporters on the toxicity of approved anticancer drugs. Co-cultures of fluorescently labeled parental and transporter-expressing cells (expressing ABCB1, ABCG2 or OATP2B1) were screened against 101 FDA-approved anticancer drugs, using a novel, automated, triple fluorescence-based cytotoxicity assay. By measuring the survival of parental and transporter-expressing cells in co-cultures, we identify those FDA-approved anticancer drugs, whose toxicity is influenced by ABCB1, ABCG2 or OATP2B1. In addition to confirming known substrates of ABCB1 and ABCG2, the fluorescence-based cytotoxicity assays identified anticancer agents whose toxicity was increased in OATP2B1 expressing cells. Interaction of these compounds with OATP2B1 was verified in dedicated transport assays using cell-impermeant fluorescent substrates. Understanding drug-transporter interactions is needed to increase the efficacy of chemotherapeutic agents. Our results highlight the potential of the fluorescence-based HT screening system for identifying transporter substrates, opening the way for the design of therapeutic approaches based on the inhibition or even the exploitation of transporters in cancer cells.
Collapse
Affiliation(s)
- Tímea Windt
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
| | - Izabel Patik
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Judit Sessler
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Áron Szepesi
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
53
|
Alam K, Farasyn T, Ding K, Yue W. Characterization of Liver- and Cancer-type-Organic Anion Transporting Polypeptide (OATP) 1B3 Messenger RNA Expression in Normal and Cancerous Human Tissues. Drug Metab Lett 2019; 12:24-32. [PMID: 29577869 DOI: 10.2174/1872312812666180326110146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Membrane transport protein organic anion transporting polypeptide (OATP) 1B3 mediates the cellular uptake of many clinically important drugs including anti-cancer drugs (e.g., paclitaxel). In addition to the well-recognized hepatic expression and function of OATP1B3 [herein named liver-type (Lt) OATP1B3], OATP1B3 also expresses in cancers and has been postulated to play a role in cancer therapy, presumably by facilitating the influx of anti-cancer drugs. Recently, a cancer type (Ct)-OATP1B3 mRNA variant was identified in colon and lung cancer tissues, which encodes truncated Ct-OATP1B3 with negligible transport activity. Other than in colon and lung cancers, reports on mRNA expression of OATP1B3 in other cancers cannot distinguish between the Ltand Ct-OATP1B3. OBJECTIVE The current studies were designed to characterize the expression of Lt- and Ct-OATP1B3 mRNA in ovarian, prostate, bladder, breast, and lung tissues. METHODS Lt- and Ct-OATP1B3 isoform-specific PCR primers were utilized to determine the mRNA levels of Lt- and Ct-OATP1B3, respectively. An expression vector expressing green fluorescent protein (GFP)-tagged Lt-OATP1B3 was transiently transfected into the ovarian cancer cell line SKOV3. Confocal live-cell microscopy was utilized to determine the localization of GFP-Lt-OATP1B3 in SKOV3 cells. RESULTS For the first time, Lt-OATP1B3 mRNA was detected in ovarian, prostate, bladder and breast cancers. The localization of GFP-Lt-OATP1B3 on the plasma membrane of SKOV3 cells after transient transfection was readily detected by confocal microscopy. CONCLUSION Our findings are supportive of the potential role of Lt-OATP1B3 in cancer cells.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Taleah Farasyn
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Wei Yue
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
54
|
Malinen MM, Ito K, Kang HE, Honkakoski P, Brouwer KLR. Protein expression and function of organic anion transporters in short-term and long-term cultures of Huh7 human hepatoma cells. Eur J Pharm Sci 2019; 130:186-195. [PMID: 30685239 DOI: 10.1016/j.ejps.2019.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022]
Abstract
Human-derived hepatic cell lines are a valuable alternative to primary hepatocytes for drug metabolism, transport and toxicity studies. However, their relevance for investigations of drug-drug and drug-organic anion (e.g., bile acid, steroid hormone) interactions at the transporter level remains to be established. The aim of the present study was to determine the suitability of the Huh7 cell line for transporter-dependent experiments. Huh7 cells were cultured for 1 to 4 weeks and subsequently were analyzed for protein expression, localization and activity of solute carrier (SLC) and ATP-binding cassette (ABC) transporters involved in organic anion transport using liquid chromatography-tandem mass spectroscopy, immunocytochemistry, and model substrates [3H]taurocholate (TCA), [3H]dehydroepiandrosterone sulfate (DHEAS) and 5(6)-carboxy-2',7'-dichlorofluorescein (CDF) diacetate. The extended 4-week culture resulted in a phenotype resembling primary hepatocytes and differentiated HepaRG cells: cuboidal hepatocyte-like cells with elongated bile canaliculi-like structures were surrounded by epithelium-like cells. Protein expression of OSTα, OSTβ and OATP1B3 increased over time. Moreover, the uptake of the SLC probe substrate DHEAS was higher in 4-week than in 1-week Huh7 cultures. NTCP, OATP1B1, BSEP and MRP3 were barely or not detectable in Huh7 cells. OATP2B1, MRP2 and MRP4 protein expression remained at similar levels over the four weeks of culture. The activity of MRP2 and the formation of bile canaliculi-like structures were confirmed by accumulation of CDF in the intercellular compartments. Results indicate that along with morphological maturation, transporters responsible for alternative bile acid secretion pathways are expressed and active in long-term cultures of Huh7 cells, suggesting that differentiated Huh7 cells may be suitable for studying the function and regulation of these organic anion transporters.
Collapse
Affiliation(s)
- Melina M Malinen
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Katsuaki Ito
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; DMPK Research Department, Teijin Pharma Limited, Hino, Tokyo, Japan.
| | - Hee Eun Kang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, South Korea.
| | - Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
55
|
Malagnino V, Hussner J, Seibert I, Stolzenburg A, Sager CP, Meyer Zu Schwabedissen HE. LST-3TM12 is a member of the OATP1B family and a functional transporter. Biochem Pharmacol 2017; 148:75-87. [PMID: 29248594 DOI: 10.1016/j.bcp.2017.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 12/13/2017] [Indexed: 02/04/2023]
Abstract
Organic anion transporting polypeptides (OATPs) and particularly the two members of the OATP1B family are known for their role in pharmacokinetics. Both SLCO1B3 and SLCO1B1 are located on chromosome 12 encompassing the gene locus SLCO1B7. Hitherto, this particular gene has been assumed to be a pseudogene, even though there are published mRNA sequences linked to this chromosomal area. It was aim of this study to further investigate SLCO1B7 and the associated mRNA LST-3TM12. In a first step, we aligned all mRNAs linked to the chromosomal region of SLCO1B-transporters. This in silico analysis revealed that LST-3TM12 is a product of splicing of SLCO1B3 and SLCO1B7, and encodes for a protein with twelve transmembrane domains. The existence of LST-3TM12 mRNA was verified by polymerase chain reaction showing liver enriched expression. In addition, immunohistological staining showed that LST-3TM12 protein was expressed in the endoplasmic reticulum (ER) of hepatocytes. Localization in the ER was further verified by immunoblot analysis showing high amounts of LST-3TM12 in liver microsomes. Function of LST-3TM12 was assessed by transport studies after heterologous expression in HeLa cells, where the transporter was shown to be expressed not only in the ER but also in the plasma membrane. Overexpression of LST-3TM12 was associated with enhanced cellular accumulation of dehydroepiandrosterone sulfate (Vmax 300.2 pmol mg-1 min-1; Km 34.2 µm) and estradiol 17β-glucuronide (Vmax 29.9 mol mg-1 min-1 and Km 32.8 µM). In conclusion, LST-3TM12 is a functional splice variant of SLCO1B3 and SLCO1B7 expressed in the ER of human liver.
Collapse
Affiliation(s)
- Vanessa Malagnino
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Isabell Seibert
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antje Stolzenburg
- Department of General Pharmacology, Center of Drug Absorption and Transport (C_DAT), University of Medicine Greifswald, Germany
| | - Christoph P Sager
- Molecular Modeling, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | |
Collapse
|
56
|
Narumi K, Sato Y, Kobayashi M, Furugen A, Kasashi K, Yamada T, Teshima T, Iseki K. Effects of proton pump inhibitors and famotidine on elimination of plasma methotrexate: Evaluation of drug-drug interactions mediated by organic anion transporter 3. Biopharm Drug Dispos 2017; 38:501-508. [PMID: 28801980 DOI: 10.1002/bdd.2091] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/18/2017] [Accepted: 07/28/2017] [Indexed: 12/16/2022]
Abstract
Methotrexate (MTX) is an antifolate agent used in the treatment of numerous types of cancer, and eliminated by active tubular secretion via organic anion transporter 3 (OAT3). Gastric antisecretory drugs, such as proton pump inhibitors (PPIs) and histamine H2 receptor antagonists, are widely used among patients with cancer in clinical practice. The aim of the present study was to analyse the potential drug-drug interactions between MTX and gastric antisecretory drugs in high-dose MTX (HD-MTX) therapy. The impact of PPIs on the plasma MTX concentration on 73 cycles of HD-MTX therapy was analysed retrospectively in 43 patients. Also investigated was the involvement of OAT3 in PPI-MTX drug interaction in an in vitro study using human OAT3 expressing HEK293 cells. In a retrospective study, patients who received a PPI had significantly higher MTX levels at 48 h (0.38 vs. 0.15 μmol l-1 , respectively, p = 0.000018) and 72 h (0.13 vs. 0.05 μmol l-1 , respectively, p = 0.0002) compared with patients who did not receive a PPI (but received famotidine). Moreover, in vitro experiments demonstrated that PPIs (esomeprazole, lansoprazole, omeprazole and rabeprazole) inhibited hOAT3-mediated uptake of MTX in a concentration-dependent manner (IC50 values of 0.40-5.5 μ m), with a rank order of lansoprazole > esomeprazole > rabeprazole > omeprazole. In contrast to PPIs, famotidine showed little inhibitory effect on hOAT3-mediated MTX uptake. These results demonstrated that co-administration of PPI, but not famotidine, could result in a pharmacokinetic interaction that increases the plasma MTX levels, at least in part, via hOAT3 inhibition.
Collapse
Affiliation(s)
- Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Yu Sato
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Kumiko Kasashi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Takehiro Yamada
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Takanori Teshima
- Faculty of Medicine, Hokkaido University, Kita-15-jo, Nishi-7-chome, Kita-ku, Sapporo, 060-8638, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.,Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| |
Collapse
|
57
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|
58
|
Abstract
OATP1B3 is a 12 transmembrane domain protein expressed at the basolateral membrane of human hepatocytes where it mediates the uptake of numerous drugs and endogenous compounds. Previous western blot results suggest the formation of OATP1B3 multimers. In order to better understand the function of OATP1B3 under normal physiological conditions, we investigated its oligomerization status. We transiently transfected OATP1B3 with a C-terminal His-, FLAG- or HA-tag in HEK293 cells and used co-immunoprecipitation and a Proximity Ligation Assay to detect interactions between the different constructs. All three constructs retained similar transport rates as wild-type OATP1B3. Immunofluorescence experiments indicated that in contrast to wild-type, His- and FLAG-tagged OATP1B3, where the C-terminal end is on the cytoplasmic side of the membrane, the C-terminal end of HA-tagged OATP1B3 is extracellular. After cross-linking, anti-FLAG antibodies were able to pull down FLAG-tagged OATP1B3 (positive control) and co-transfected His- or HA-tagged OATP1B3, demonstrating the formation of homo-oligomers and suggesting that the C-terminal part is not involved in oligomer formation. We confirmed co-localization of His- and FLAG-tagged OATP1B3 in transfected HEK293 cells with the Proximity Ligation Assay. Transport studies with a non-functional OATP1B3 mutant suggest that the individual subunits and not the whole oligomer are the functional units in the homo-oligomers. In addition, we also detected OATP1B3-FLAG co-localization with OATP1B1-His or NTCP-His, suggesting that OATP1B3 also hetero-oligomerizes with other transport proteins. Using the Proximity Ligation Assay with transporter specific antibodies, we demonstrate close association of OATP1B3 with NTCP in frozen human liver tissue. These findings demonstrate that OATP1B3 can form homo- and hetero-oligomers and suggest a potential co-regulation of the involved transporters.
Collapse
|
59
|
Ma J, Feng Y, Jiang S, Li X. Altered cellular metabolism of HepG2 cells caused by microcystin-LR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:610-619. [PMID: 28336091 DOI: 10.1016/j.envpol.2017.03.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the possible effects of microcystin-LR (MC-LR) exposure on the metabolism and drug resistance of human hepatocellular carcinoma (HepG2) cells. For this purpose, we first conducted an experiment to make sure that MC-LR could penetrate the HepG2 cell membrane effectively. The transcriptional levels of phase I (such as CYP2E1, CYP3A4, and CYP26B1) and phase II (such as EPHX1, SULTs, and GSTM) enzymes and export pump genes (such as MRP1 and MDR1) were altered by MC-LR-exposure for 24 h, indicating that MC-LR treatment may destabilize the metabolism of HepG2 cells. Further research showed that the CYP inducers omeprazole, ethanol, and rifampicin inhibited cell viability, in particular, ethanol, a CYP2E1 inducer, induced ROS generation, lipid peroxidation, and apoptosis in HepG2 cells treated with MC-LR. The CYP2E1 inhibitor chlormethiazole inhibited ROS generation, mitochondrial membrane potential loss, caspase-3 activity, and cytotoxicity caused by MC-LR. Meanwhile, the results also showed that co-incubation with the ROS scavenger l-ascorbic acid and MC-LR decreased ROS levels and effectively prevented apoptosis. These findings provide an interesting mechanistic explanation of cellular metabolism associated with MC-LR, i.e., MC-LR-exposure exerted toxicity on HepG2 cells and induced apoptosis of HepG2 cells via promoting CYP2E1 expression and inducing excessive ROS in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Siyu Jiang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
60
|
Thakkar N, Slizgi JR, Brouwer KLR. Effect of Liver Disease on Hepatic Transporter Expression and Function. J Pharm Sci 2017; 106:2282-2294. [PMID: 28465155 DOI: 10.1016/j.xphs.2017.04.053] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.
Collapse
Affiliation(s)
- Nilay Thakkar
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jason R Slizgi
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
61
|
Murray M, Zhou F. Trafficking and other regulatory mechanisms for organic anion transporting polypeptides and organic anion transporters that modulate cellular drug and xenobiotic influx and that are dysregulated in disease. Br J Pharmacol 2017; 174:1908-1924. [PMID: 28299773 DOI: 10.1111/bph.13785] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/25/2022] Open
Abstract
Organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs), encoded by a number of solute carrier (SLC)22A and SLC organic anion (SLCO) genes, mediate the absorption and distribution of drugs and other xenobiotics. The regulation of OATs and OATPs is complex, comprising both transcriptional and post-translational mechanisms. Plasma membrane expression is required for cellular substrate influx by OATs/OATPs. Thus, interest in post-translational regulatory processes, including membrane targeting, endocytosis, recycling and degradation of transporter proteins, is increasing because these are critical for plasma membrane expression. After being synthesized, transporters undergo N-glycosylation in the endoplasmic reticulum and Golgi apparatus and are delivered to the plasma membrane by vesicular transport. Their expression at the cell surface is maintained by de novo synthesis and recycling, which occurs after clathrin- and/or caveolin-dependent endocytosis of existing protein. Several studies have shown that phosphorylation by signalling kinases is important for the internalization and recycling processes, although the transporter protein does not appear to be directly phosphorylated. After internalization, transporters that are targeted for degradation undergo ubiquitination, most likely on intracellular loop residues. Epigenetic mechanisms, including methylation of gene regulatory regions and transcription from alternate promoters, are also significant in the regulation of certain SLC22A/SLCO genes. The membrane expression of OATs/OATPs is dysregulated in disease, which affects drug efficacy and detoxification. Several transporters are expressed in the cytoplasmic subcompartment in disease states, which suggests that membrane targeting/internalization/recycling may be impaired. This article focuses on recent developments in OAT and OATP regulation, their dysregulation in disease and the significance for drug therapy.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, NSW, 2006, Australia
| | - Fanfan Zhou
- Faculty of Pharmacy, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
62
|
Zhou C, Rong Y, Konishi T, Xiang Z, Zihui F, Hong M. Effect of Carbon-Ion Radiation on Drug Transporters Organic Anion Transporting Polypeptides in Breast Cancer Cells. Radiat Res 2017; 187:689-700. [PMID: 28388363 DOI: 10.1667/rr14603.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organic anion transporting polypeptides (OATPs) are a family of membrane uptake transporters that play important roles in absorption, distribution, metabolism and excretion of a wide range of endogenous and exogenous compounds. OATP members, such as OATP1A2, 1B1 and 1B3, were found to transport numerous anticancer agents. For this reason, these uptake transporters have been proposed to serve as novel and potential therapeutic targets for chemotherapy. Previously published studies from our laboratory demonstrated that OATP1A2 expression was upregulated in breast cancer MCF7 cells after X-ray irradiation and the transport of its substrate methotrexate was increased. In the current study, we investigated the effect of carbon-ion radiation on MCF7 and MDA-MB231 cells. We observed significant upregulation of OATP1A2 expression in the hormone-dependent MCF7 cells, especially when irradiated with a low dose (0.5 Gy). For the hormone-independent MDA-MB231 cells, while irradiation with a higher dose exerted a greater effect, only a moderate change was observed compared to that of the MCF7 cells. Combined treatments of OATP1A2 substrates 5-fluorouracil, paclitaxel and methotrexate with 0.5 Gy irradiation resulted in greater cytotoxicity toward MCF7 cells than with the treatment of antineoplastic agents and higher doses. Therefore, heavy ions, such as carbon, can affect expression of drug transporters and show promise in facilitating the delivery of antitumor drugs with greater efficiency.
Collapse
Affiliation(s)
- Chao Zhou
- a College of Life Science, South China Agricultural University, Guangzhou, China
| | - Yang Rong
- a College of Life Science, South China Agricultural University, Guangzhou, China
| | - Teruaki Konishi
- b Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba, Japan
| | - Zhaojian Xiang
- a College of Life Science, South China Agricultural University, Guangzhou, China
| | - Fang Zihui
- a College of Life Science, South China Agricultural University, Guangzhou, China
| | - Mei Hong
- a College of Life Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
63
|
Evangeli L, Ioannis S, Valentinos K, Antigony M, Elli I, Eleftheria H, Vasiliki G, Evangelos B. SLCO1B3 screening in colorectal cancer patients using High-Resolution Melting Analysis method and immunohistochemistry. Tumour Biol 2017; 39:1010428317691176. [PMID: 28349822 DOI: 10.1177/1010428317691176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Personalized medicine has made some major advances in colorectal cancer, but new biomarkers still remain a hot issue as an emerging tool with potential prognostic and therapeutic potential. We investigated for SLCO1B3 gene alterations and protein expression in colorectal cancer, using the novel high-resolution melting analysis technique and immunohistochemistry. Formalin-fixed paraffin-embedded tumor samples from 30 colorectal cancer patients were used. The screening for gene alterations was done by high-resolution melting analysis for all exons of SLCO1B3 gene. Organic anion-transporting polypeptide 1B3 protein expression was assessed by immunohistochemistry using the monoclonal mouse MDQ antibody. High level of polymorphism was observed in the SLCO1B3 gene. We identified three previously reported polymorphisms in exons 7, 12, and 14, 699G>A, 1557A>G, and 1833G>A, respectively. In the exon 5, one variant seems to correspond to an as yet unknown SLCO family member. The immunohistochemical study revealed that organic anion-transporting polypeptide 1B3 was expressed in 27/30 samples. Of great interest, the three samples, which were immunohistochemically negative, all appeared to accommodate mutations which lead to either early stop codons or other conformations of the tertiary protein structures affecting the antibody-epitope binding. The results of this study are of much interest as high-resolution melting analysis proved to be a reliable and rapid genotyping/scanning method for mutation detection of SLCO1B3 gene.
Collapse
Affiliation(s)
- Lampri Evangeli
- 1 Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - Sainis Ioannis
- 1 Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - Kounnis Valentinos
- 1 Cancer Biobank Center, University of Ioannina, Ioannina, Greece.,2 Hypoxia and Angiogenesis Group, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John, Radcliffe Hospital
| | - Mitselou Antigony
- 4 Department of Forensic Pathology, University of Ioannina, Ioannina, Greece
| | - Ioachim Elli
- 3 Department of Pathology, "G. Hatzikosta" General Hospital, Ioannina, Greece
| | - Hatzimichael Eleftheria
- 1 Cancer Biobank Center, University of Ioannina, Ioannina, Greece.,5 Department of Hematology, Medical School, University of Ioannina, Ioannina, Greece
| | - Galani Vasiliki
- 6 Departments of Embryology, Histology and Anatomy, University of Ioannina, Ioannina, Greece
| | - Briasoulis Evangelos
- 1 Cancer Biobank Center, University of Ioannina, Ioannina, Greece.,5 Department of Hematology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
64
|
Preference of Conjugated Bile Acids over Unconjugated Bile Acids as Substrates for OATP1B1 and OATP1B3. PLoS One 2017; 12:e0169719. [PMID: 28060902 PMCID: PMC5218478 DOI: 10.1371/journal.pone.0169719] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022] Open
Abstract
Bile acids, the metabolites of cholesterol, are signaling molecules that play critical role in many physiological functions. They undergo enterohepatic circulation through various transporters expressed in intestine and liver. Human organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3 contribute to hepatic uptake of bile acids such as taurocholic acid. However, the transport properties of individual bile acids are not well understood. Therefore, we selected HEK293 cells overexpressing OATP1B1 and OATP1B3 to evaluate the transport of five major human bile acids (cholic acid, chenodeoxycholic acid, deoxycholic acid, ursodeoxycholic acid, lithocholic acid) together withtheir glycine and taurine conjugates via OATP1B1 and OATP1B3. The bile acids were quantified by liquid chromatography-tandem mass spectrometry. The present study revealed that cholic acid, chenodeoxyxcholic acid, and deoxycholic acid were transported by OATP1B1 and OATP1B3, while ursodeoxycholic acid and lithocholic acid were not significantly transported by OATPs. However, all the conjugated bile acids were taken up rapidly by OATP1B1 and OATP1B3. Kinetic analyses revealed the involvement of saturable OATP1B1- and OATP1B3-mediated transport of bile acids. The apparent Km values for OATP1B1 and OATP1B3 of the conjugated bile acids were similar (0.74-14.7 μM for OATP1B1 and 0.47-15.3 μM for OATP1B3). They exhibited higher affinity than cholic acid (47.1 μM for OATP1B1 and 42.2 μM for OATP1B3). Our results suggest that conjugated bile acids (glycine and taurine) are preferred to unconjugated bile acids as substrates for OATP1B1 and OATP1B3.
Collapse
|
65
|
Wang H, Sun P, Wang C, Meng Q, Liu Z, Huo X, Sun H, Ma X, Peng J, Liu K. Liver uptake of cefditoren is mediated by OATP1B1 and OATP2B1 in humans and Oatp1a1, Oatp1a4, and Oatp1b2 in rats. RSC Adv 2017; 7:30038-30048. [DOI: 10.1039/c7ra03537c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2025] Open
Abstract
OATPs and Oatps mediated liver uptake of cefditoren in humans and in rats.
Collapse
|
66
|
Wang H, Qian J, Ding F. Recent advances in engineered chitosan-based nanogels for biomedical applications. J Mater Chem B 2017; 5:6986-7007. [DOI: 10.1039/c7tb01624g] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in the preparation and biomedical applications of engineered chitosan-based nanogels has been comprehensively reviewed.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Jun Qian
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| | - Fuyuan Ding
- School of Printing and Packaging, Wuhan University
- Wuhan 430072
- P. R. China
| |
Collapse
|
67
|
Lee HH, Leake BF, Kim RB, Ho RH. Contribution of Organic Anion-Transporting Polypeptides 1A/1B to Doxorubicin Uptake and Clearance. Mol Pharmacol 2017; 91:14-24. [PMID: 27777271 PMCID: PMC5198512 DOI: 10.1124/mol.116.105544] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/18/2016] [Indexed: 11/22/2022] Open
Abstract
The organic anion-transporting polypeptides represent an important family of drug uptake transporters that mediate the cellular uptake of a broad range of substrates including numerous drugs. Doxorubicin is a highly efficacious and well-established anthracycline chemotherapeutic agent commonly used in the treatment of a wide range of cancers. Although doxorubicin is a known substrate for efflux transporters such as P-glycoprotein (P-gp; MDR1, ABCB1), significantly less is known regarding its interactions with drug uptake transporters. Here, we investigated the role of organic anion transporting polypeptide (OATP) transporters to the disposition of doxorubicin. A recombinant vaccinia-based method for expressing uptake transporters in HeLa cells revealed that OATP1A2, but not OATP1B1 or OATP1B3, and the rat ortholog Oatp1a4 were capable of significant doxorubicin uptake. Interestingly, transwell assays using Madin-Darby canine kidney II cell line cells stably expressing specific uptake and/or efflux transporters revealed that OATP1B1, OATP1B3, and OATP1A2, either alone or in combination with MDR1, significantly transported doxorubicin. An assessment of polymorphisms in SLCO1A2 revealed that four variants were associated with significantly impaired doxorubicin transport in vitro. In vivo doxorubicin disposition studies revealed that doxorubicin plasma area under the curve was significantly higher (1.7-fold) in Slco1a/1b-/- versus wild-type mice. The liver-to-plasma ratio of doxorubicin was significantly decreased (2.3-fold) in Slco1a/1b2-/- mice and clearance was reduced by 40% compared with wild-type mice, suggesting Oatp1b transporters are important for doxorubicin hepatic uptake. In conclusion, we demonstrate important roles for OATP1A/1B in transporter-mediated uptake and disposition of doxorubicin.
Collapse
Affiliation(s)
- Hannah H Lee
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Brenda F Leake
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Richard B Kim
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| | - Richard H Ho
- Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee (H.H.L., B.F.L., R.H.H.); and Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada (R.B.K.)
| |
Collapse
|
68
|
Gruetz M, Sticht H, Glaeser H, Fromm MF, König J. Analysis of amino acid residues in the predicted transmembrane pore influencing transport kinetics of the hepatic drug transporter organic anion transporting polypeptide 1B1 (OATP1B1). BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2894-2902. [DOI: 10.1016/j.bbamem.2016.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/24/2016] [Accepted: 08/30/2016] [Indexed: 11/25/2022]
|
69
|
Durmus S, van Hoppe S, Schinkel AH. The impact of Organic Anion-Transporting Polypeptides (OATPs) on disposition and toxicity of antitumor drugs: Insights from knockout and humanized mice. Drug Resist Updat 2016; 27:72-88. [PMID: 27449599 DOI: 10.1016/j.drup.2016.06.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/07/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
It is now widely accepted that organic anion-transporting polypeptides (OATPs), especially members of the OATP1A/1B family, can have a major impact on the disposition and elimination of a variety of endogenous molecules and drugs. Owing to their prominent expression in the sinusoidal plasma membrane of hepatocytes, OATP1B1 and OATP1B3 play key roles in the hepatic uptake and plasma clearance of a multitude of structurally diverse anti-cancer and other drugs. Here, we present a thorough assessment of the currently available OATP1A and OATP1B knockout and transgenic mouse models as key tools to study OATP functions in vivo. We discuss recent studies using these models demonstrating the importance of OATPs, primarily in the plasma and hepatic clearance of anticancer drugs such as taxanes, irinotecan/SN-38, methotrexate, doxorubicin, and platinum compounds. We further discuss recent work on OATP-mediated drug-drug interactions in these mouse models, as well as on the role of OATP1A/1B proteins in the phenomenon of hepatocyte hopping, an efficient and flexible way of liver detoxification for both endogenous and exogenous substrates. Interestingly, glucuronide conjugates of both the heme breakdown product bilirubin and the protein tyrosine kinase-targeted anticancer drug sorafenib are strongly affected by this process. The clinical relevance of variation in OATP1A/1B activity in patients has been previously revealed by the effects of polymorphic variants and drug-drug interactions on drug toxicity. The development of in vivo tools to study OATP1A/1B functions has greatly advanced our mechanistic understanding of their functional role in drug pharmacokinetics, and their implications for therapeutic efficacy and toxic side effects of anticancer and other drug treatments.
Collapse
Affiliation(s)
- Selvi Durmus
- Bilkent University, Department of Molecular Biology and Genetics, 06800 Bilkent, Ankara, Turkey
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
70
|
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr Rev 2015; 36:526-63. [PMID: 26213785 PMCID: PMC4591525 DOI: 10.1210/er.2015-1036] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022]
Abstract
Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
Collapse
Affiliation(s)
- Jonathan W Mueller
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lorna C Gilligan
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jan Idkowiak
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Wiebke Arlt
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul A Foster
- Centre for Endocrinology, Diabetes, and Metabolism, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
71
|
Khurana V, Minocha M, Pal D, Mitra AK. Inhibition of OATP-1B1 and OATP-1B3 by tyrosine kinase inhibitors. ACTA ACUST UNITED AC 2015; 29:249-59. [PMID: 24807167 DOI: 10.1515/dmdi-2014-0014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 04/01/2014] [Indexed: 11/15/2022]
Abstract
BACKGROUND The potential of tyrosine kinase inhibitors (TKIs) interacting with other therapeutics through hepatic uptake transporter inhibition has not been fully delineated in drug-drug interactions (DDIs). This study was designed to estimate the half-maximal inhibitory concentration (IC50) values of five small-molecule TKIs (pazopanib, nilotinib, vandetanib, canertinib and erlotinib) interacting with organic anion-transporting polypeptides (OATPs): OATP-1B1 and -1B3. METHODS The IC50 values of TKIs and rifampicin (positive control) were determined by concentration-dependent inhibition of TKIs on cellular accumulation of radiolabeled probe substrates [3H]estrone sulfate and [3H]cholecystokinin octapeptide. Chinese hamster ovary cells transfected with humanized OATP-1B1 and OATP-1B3 transporter proteins, respectively, were utilized to carry out these studies. RESULTS Pazopanib and nilotinib show inhibitory activity on OATP-1B1 transporter protein. IC50 values for rifampicin, pazopanib and nilotinib were 10.46±1.15, 3.89±1.21 and 2.78±1.13 μM, respectively, for OATP-1B1 transporter. Vandetanib, canertinib and erlotinib did not exhibit any inhibitory potency toward OATP-1B1 transporter protein. Only vandetanib expressed inhibitory potential toward OATP-1B3 transporter protein out of the five selected TKIs. IC50 values for rifampicin and vandetanib for OATP-1B3 transporter inhibition were 3.67±1.20 and 18.13±1.21 μM, respectively. No significant inhibition in the presence of increasing concentrations of pazopanib, nilotinib, canertinib and erlotinib were observed for OATP-1B3 transporter. CONCLUSIONS Because selected TKIs are inhibitors of OATP-1B1 and -1B3 expressed in hepatic tissue, these compounds can be regarded as molecular targets for transporter-mediated DDIs. These findings provide the basis for further preclinical and clinical studies investigating the transporter-based DDI potential of TKIs.
Collapse
|
72
|
Lima A, Sousa H, Monteiro J, Azevedo R, Medeiros R, Seabra V. Genetic polymorphisms in low-dose methotrexate transporters: current relevance as methotrexate therapeutic outcome biomarkers. Pharmacogenomics 2015; 15:1611-35. [PMID: 25340735 DOI: 10.2217/pgs.14.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Methotrexate (MTX) is used in low doses to treat a variety of diseases. Although the mechanism responsible for its therapeutic action is unknown, MTX membrane transport proteins (influx and/or efflux) can be major determinants of pharmacokinetics, adverse drug reactions and clinical response profiles. With progess in pharmacogenomics, the improvement of the prediction of patients' therapeutic outcome treated with low doses of MTX will offer a powerful tool for the translation of transporter SNPs into clinical practice and will be essential to sustain a breakthrough in the field of personalized medicine. Therefore, this paper provides an update on the current data on SNPs in genes encoding low-dose MTX membrane transport proteins and their relevance as possible biomarkers of MTX therapeutic outcome.
Collapse
Affiliation(s)
- Aurea Lima
- CESPU, Institute of Research & Advanced Training in Health Sciences & Technologies, Department of Pharmaceutical Sciences, Higher Institute of Health Sciences - North (ISCS-N), Rua Central de Gandra 1317, 4585-116, Gandra PRD, Portugal
| | | | | | | | | | | |
Collapse
|
73
|
Da Silva CG, Honeywell RJ, Dekker H, Peters GJ. Physicochemical properties of novel protein kinase inhibitors in relation to their substrate specificity for drug transporters. Expert Opin Drug Metab Toxicol 2015; 11:703-717. [PMID: 25633410 DOI: 10.1517/17425255.2015.1006626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Small molecule tyrosine and serine-threonine kinase inhibitors (TKIs and STKIs) are emerging drugs that interfere with downstream signaling pathways involved in cancer proliferation, invasion, metastasis and angiogenesis. The understanding of their pharmacokinetics, the identification of their transporters and the modulating activity exerted on transporters is pivotal to predict therapy efficacy and to avoid unwarranted drug treatment combinations. AREAS COVERED Experimental or in silico data were collected and summarized on TKIs and STKIs physico-chemical properties, which influence their transport, metabolism and efficacy, and TKIs and STKIs as influx transporter substrates and inhibitors. In addition, the uptake by tumor cell influx transporters and some factors in the tumor microenvironment affecting the uptake of TKIs and STKIs by cancer cells are briefly covered. EXPERT OPINION Membrane transporters play an important role in the pharmacokinetics and hence the efficacy of anticancer drugs, including TKIs and STKIs. These drugs are substrates and inhibitors of various transporters. Drug resistance may be bypassed not only by identifying the proper transporter but also by selective combinations, which may either downregulate or increase transporter activity. However, care has to be taken because this profile might be disease, drug and patient specific.
Collapse
Affiliation(s)
- Candido G Da Silva
- VU University Medical Center, Department of Medical Oncology , PO Box 7057, 1007 MB Amsterdam , The Netherlands
| | | | | | | |
Collapse
|
74
|
Nagy A, Szalai R, Magyari L, Bene J, Toth K, Melegh B. Extreme differences in SLCO1B3 functional polymorphisms in Roma and Hungarian populations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 39:1246-1251. [PMID: 26005078 DOI: 10.1016/j.etap.2015.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Variants in SLCO1B3 transporter are linked to disposition and uptake of drugs and show high degree of heterogeneity between populations. A total of 467 Roma and 448 Hungarian subjects were genotyped for SLCO1B3 c.334T>G and c.1683-5676A>G variant alleles by PCR-RFLP assay and direct sequencing. We found significant differences in the frequencies of homozygous variant genotypes of SLCO1B3 334GG (41.54% vs. 8.04%, p<0.001) and 1683-5676GG (0.43% vs. 2.01%, p=0.028) between Romas and Hungarians. A significantly increased prevalence was found in SLCO1B3 1683-5676G allele frequency in Hungarians compared to the Roma population (15.07% vs. 3.43%, p≤0.001). The frequency of SLCO1B3 334G allele was significantly increased in Roma population compared to Hungarians (70.56% vs. 52.23%, p=0.001). The LD values between the examined SNPs were 80 and 90 in Roma and in Hungarian samples, respectively. Our results highlight notable pharmacogenetic differences between Roma and Hungarian populations, which may have therapeutic implications.
Collapse
Affiliation(s)
- Agnes Nagy
- 1st Department of Internal Medicine, University of Pecs, Ifjusag 13, H-7624 Pecs, Hungary.
| | - Renata Szalai
- Clinical Centre, Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, Ifjusag 20, H-7624 Pecs, Hungary.
| | - Lili Magyari
- Clinical Centre, Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, Ifjusag 20, H-7624 Pecs, Hungary.
| | - Judit Bene
- Clinical Centre, Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary.
| | - Kalman Toth
- 1st Department of Internal Medicine, University of Pecs, Ifjusag 13, H-7624 Pecs, Hungary.
| | - Bela Melegh
- Clinical Centre, Department of Medical Genetics, University of Pecs, Szigeti 12, H-7624 Pecs, Hungary; Janos Szentagothai Research Centre, Human Genetic and Pharmacogenomic Research Group, Ifjusag 20, H-7624 Pecs, Hungary.
| |
Collapse
|
75
|
Thakkar N, Lockhart AC, Lee W. Role of Organic Anion-Transporting Polypeptides (OATPs) in Cancer Therapy. AAPS JOURNAL 2015; 17:535-45. [PMID: 25735612 DOI: 10.1208/s12248-015-9740-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 02/11/2015] [Indexed: 12/31/2022]
Abstract
The superfamily of organic anion-transporting polypeptides (OATPs, gene symbol SLCO) includes important transporters handling a variety of endogenous and xenobiotic substrates. Currently, 11 human OATPs are known and their substrates include endogenous hormones and their conjugates, anticancer drugs, and imaging agents. The contribution of OATPs to the in vivo disposition of these substrates has been extensively investigated. An accumulating body of evidence also indicates that the expression of some OATPs may be up- or downregulated in several types of cancers, suggesting potential pathogenic roles during the development and progression of cancer. Given that the role of OATPs in handling cancer therapeutics has been already covered by several excellent reviews, this review will focus on the recent progresses on the topic, in particular the role of OATPs in the disposition of anticancer drugs, the impact of OATP genetic variations on the function of OATPs, and the OATPs differentially expressed in cancer and their potential roles in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Nilay Thakkar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
76
|
Zhang X, Pu Z, Ge J, Shen J, Yuan X, Xie H. Association of CYP2D6*10, OATP1B1 A388G, and OATP1B1 T521C polymorphisms and overall survival of breast cancer patients after tamoxifen therapy. Med Sci Monit 2015; 21:563-9. [PMID: 25701109 PMCID: PMC4345853 DOI: 10.12659/msm.893473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background The global incidence of breast cancer is increasing, mainly due to the sharp rise in breast cancer incidence in Asia. The aim of this study was to evaluate the association of CYP2D6*10 (c.100C>T and c.1039C>T), OATP1B1 A388G, and OATP1B1 T521C polymorphisms with overall survival (OS) for hormone receptor (estrogen receptor or progesterone receptor)-positive tumors (ER+/PR+) breast cancer patients after adjuvant tamoxifen (TAM) therapy. Material/Method We included 296 invasive breast cancer patients with hormone receptor-positive tumors during the period 2002–2009. We collected patient data, including clinical features, TAM therapy, and survival status. Archived paraffin blocks from surgery were the source of tissue for genotyping. CYP2D6*10, OATP1B1 A388G, and T521C polymorphisms were detected by direct sequencing of genomic DNA. OS was assessed with Kaplan-Meier analysis, while the Cox proportional hazards model was used to implement multivariate tests for the prognostic significance. Results There was a significant difference in OS between OATP1B1 T521C wild-type and the mutant genotype C carrier (P=0.034). However, there was no difference in overall survival between wild-type and carrier groups for CYP2D6*10 (P=0.096) and OATP1B1 A388G (P=0.388), respectively. Conclusions These results suggest that the OATP1B1 T521C mutation may be an independent prognostic marker for breast cancer patients using TAM therapy.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Zhichen Pu
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Jun Ge
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Jie Shen
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Xiaolong Yuan
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| | - Haitang Xie
- Department of Clinical Pharmacy, Yijishan Hospital of Wannan Medical College, Anhui Provincial Center for Clinical Drug Evaluation, Wuhu, Anhui, China (mainland)
| |
Collapse
|
77
|
Marada VVVR, Flörl S, Kühne A, Burckhardt G, Hagos Y. Interaction of human organic anion transporter polypeptides 1B1 and 1B3 with antineoplastic compounds. Eur J Med Chem 2015; 92:723-31. [PMID: 25618019 DOI: 10.1016/j.ejmech.2015.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/22/2022]
Abstract
Antineoplastic compounds are used in the treatment of a variety of cancers. The effectiveness of an antineoplastic compound to exert its activity is largely dependent on transport proteins involved in the entry of the compound into the cells, and those which drive it out of the cell. Organic anion transporting polypeptide 1B1 (OATP1B1) and organic anion transporting polypeptide 1B3 (OATP1B3), belonging to the SLCO family of proteins, are specifically expressed in the sinusoidal membranes of the liver, and are known to interact with a variety of drugs. The present study deals with the interaction of these proteins with antineoplastic compounds routinely used in cancer chemotherapy. The proteins OATP1B1 and OATP1B3 were functionally characterized in stably transfected human embryonic kidney cells using [(3)H] labeled estrone 3-sulfate and [(3)H] labeled cholecystokinin octapeptide (CCK-8) as substrates, respectively. Substrate uptake experiments performed in the presence of antineoplastic compounds showed that vinblastine and paclitaxel strongly interacted with the OATP1B1 with Ki values of 10.2 μM and 0.84 μM, respectively. OATP1B3 showed highly significant interactions with a variety of antineoplastic compounds including chlorambucil, mitoxantrone, vinblastine, vincristine, paclitaxel and etoposide, with Ki values of 40.6 μM, 3.2 μM, 15.9 μM, 30.6 μM, 1.8 μM and 13.5 μM, respectively. We report several novel interactions of the transporter proteins OATP1B1 and OATP1B3 highlighting the need to investigate their role in drug-drug interactions and cancer chemotherapy.
Collapse
Affiliation(s)
- Venkata V V R Marada
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Saskia Flörl
- PortaCellTec Biosciences GmbH, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Annett Kühne
- PortaCellTec Biosciences GmbH, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Gerhard Burckhardt
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| | - Yohannes Hagos
- Institut für Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Humboldtallee 23, 37073 Göttingen, Germany; PortaCellTec Biosciences GmbH, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
78
|
Riha J, Brenner S, Srovnalova A, Klameth L, Dvorak Z, Jäger W, Thalhammer T. Effects of anthocyans on the expression of organic anion transporting polypeptides (SLCOs/OATPs) in primary human hepatocytes. Food Funct 2015; 6:772-9. [DOI: 10.1039/c4fo00977k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anthocyans (anthocyanins and their aglycones anthocyanidins) are colorful pigments, naturally occurring in fruits. Their influence on the expression of “liver-specific”SLCOs/OATPs was studied.
Collapse
Affiliation(s)
- Juliane Riha
- Department of Clinical Pharmacy and Diagnostics
- University of Vienna
- Vienna
- Austria
| | - Stefan Brenner
- Department of Clinical Pharmacy and Diagnostics
- University of Vienna
- Vienna
- Austria
| | - Alzbeta Srovnalova
- Department of Cell Biology and Genetics
- Faculty of Science
- Palacky University
- Olomouc
- Czech Republic
| | - Lukas Klameth
- Ludwig Boltzmann Society
- Cluster for Translational Oncology
- Vienna
- Austria
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics
- Faculty of Science
- Palacky University
- Olomouc
- Czech Republic
| | - Walter Jäger
- Department of Clinical Pharmacy and Diagnostics
- University of Vienna
- Vienna
- Austria
| | - Theresia Thalhammer
- Center of Pathophysiology
- Infectiology and Immunology
- Medical University of Vienna
- Vienna
- Austria
| |
Collapse
|
79
|
Abstract
Organic anion-transporting polypeptides or OATPs are central transporters in the disposition of drugs and other xenobiotics. In addition, they mediate transport of a wide variety of endogenous substrates. The critical role of OATPs in drug disposition has spurred research both in academia and in the pharmaceutical industry. Translational aspects with clinical questions are the focus in academia, while the pharmaceutical industry tries to define and understand the role these transporters play in pharmacotherapy. The present overview summarizes our knowledge on the interaction of food constituents with OATPs and on the OATP transport mechanisms. Further, it gives an update on the available information on the structure-function relationship of the OATPs and, finally, covers the transcriptional and posttranscriptional regulation of OATPs.
Collapse
Affiliation(s)
- Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, Zürich, Switzerland.
| | - Bruno Hagenbuch
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
80
|
Sun Y, Furihata T, Ishii S, Nagai M, Harada M, Shimozato O, Kamijo T, Motohashi S, Yoshino I, Kamiichi A, Kobayashi K, Chiba K. Unique expression features of cancer-type organic anion transporting polypeptide 1B3 mRNA expression in human colon and lung cancers. Clin Transl Med 2014; 3:37. [PMID: 25625007 PMCID: PMC4298695 DOI: 10.1186/s40169-014-0037-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 10/14/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We have previously identified the cancer-type organic anion transporting polypeptide 1B3 (Ct-OATP1B3) mRNA in several human colon and lung cancer tissues. Ct-OATP1B3 is a variant of the liver-type OATP1B3 (Lt-OATP1B3) mRNA, which is a hepatocyte plasma membrane transporter with broad substrate specificity. However, in cancer tissues, both the detailed characteristics of Ct-OATP1B3 mRNA expression and its biological functions remain unclear. With this point in mind, we sought to characterize Ct-OATP1B3 mRNA expression in colon and lung cancer tissues. In addition, we attempted to obtain functional implication of Ct-OATP1B3 in cancer cells. METHODS Matched pairs of cancer and normal tissues were collected from 39 colon cancer and 28 lung cancer patients. The OATP1B3 mRNA expression levels in each of these tissues were separately determined by quantitative real-time polymerase chain reaction. Mann-Whitney U test and Fisher's exact test were used in statistical analysis. The Ct-OATP1B3 functional expression in colon cancer cells was then examined by Western blotting and transport analyses. RESULTS Ct-OATP1B3 mRNA, but not Lt-OATP1B3 mRNA, was abundantly expressed in colon cancer tissues at a higher detection frequency (87.2%) than that of the adjacent normal tissues (2.6%). Furthermore, it was found that Ct-OATP1B3 mRNA expression was often detected in early colon cancer stages (88.9%, n = 18), and that its expression was associated with well-differentiated colon cancer statuses. On the other hand, Ct-OATP1B3 mRNA also showed a predominant and cancer-associated expression profile in lung tissues, although at frequencies and expression levels that were lower than those obtained from colon cancer. As for attempts to clarify the Ct-OATP1B3 functions, neither protein expression nor transport activity could be observed in any of the cell lines examined. CONCLUSIONS Based on the unique characteristics of the Ct-OATP1B3 mRNA expression profile identified in this study, Ct-OATP1B3 mRNA can be expected to become a biomarker candidate for use in colon (and lung) cancer diagnosis. Simultaneously, our results advance the possibility that Ct-OATP1B3 might play yet unidentified roles, in addition to transporter function, in cancer cell biology.
Collapse
Affiliation(s)
- Yuchen Sun
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Tomomi Furihata
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Seiya Ishii
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Miki Nagai
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Manami Harada
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Osamu Shimozato
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takehiko Kamijo
- Division of Biochemistry and Molecular Carcinogenesis, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shinichiro Motohashi
- Department of Medical Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ichiro Yoshino
- Department of General Thoracic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsuko Kamiichi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| | - Kan Chiba
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuou-ku, Chiba-shi 260-8675, Chiba, Japan
| |
Collapse
|
81
|
BRENNER STEFAN, RIHA JULIANE, GIESSRIGL BENEDIKT, THALHAMMER THERESIA, GRUSCH MICHAEL, KRUPITZA GEORG, STIEGER BRUNO, JÄGER WALTER. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells. Int J Oncol 2014; 46:324-32. [DOI: 10.3892/ijo.2014.2731] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/29/2014] [Indexed: 11/05/2022] Open
|
82
|
Nakanishi T, Tamai I. Putative roles of organic anion transporting polypeptides (OATPs) in cell survival and progression of human cancers. Biopharm Drug Dispos 2014; 35:463-84. [DOI: 10.1002/bdd.1915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Takeo Nakanishi
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Ikumi Tamai
- Department of Membrane Transport and Biopharmaceutics, Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| |
Collapse
|
83
|
The Signature Sequence Region of the Human Drug Transporter Organic Anion Transporting Polypeptide 1B1 Is Important for Protein Surface Expression. JOURNAL OF DRUG DELIVERY 2014; 2014:129849. [PMID: 25371825 PMCID: PMC4209838 DOI: 10.1155/2014/129849] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/26/2022]
Abstract
The organic anion transporting polypeptides (OATPs) encompass a family of membrane transport proteins responsible for the uptake of xenobiotic compounds. Human organic anion transporting polypeptide 1B1 (OATP1B1) mediates the uptake of clinically relevant compounds such as statins and chemotherapeutic agents into hepatocytes, playing an important role in drug delivery and detoxification.
The OATPs have a putative 12-transmembrane domain topology and a highly conserved signature sequence (human OATP1B1: DSRWVGAWWLNFL), spanning the extracellular loop 3/TM6 boundary. The presence of three conserved tryptophan residues at the TM interface suggests a structural role for the sequence. This was investigated by site-directed mutagenesis of selected amino acids within the sequence D251E, W254F, W258/259F, and N261A. Transport was measured using the substrate estrone-3-sulfate and surface expression detected by luminometry and confocal microscopy, facilitated by an extracellular FLAG epitope. Uptake of estrone-3-sulfate and the surface expression of D251E, W254F, and W258/259F were both significantly reduced from the wild type OATP1B1-FLAG in transfected HEK293T cells. Confocal microscopy revealed that protein was produced but was retained intracellularly. The uptake and expression of N261A were not significantly different. The reduction in surface expression and intracellular protein retention indicates a structural and/or membrane localization role for these signature sequence residues in the human drug transporter OATP1B1.
Collapse
|
84
|
Jaiswal S, Sharma A, Shukla M, Vaghasiya K, Rangaraj N, Lal J. Novel pre-clinical methodologies for pharmacokinetic drug-drug interaction studies: spotlight on "humanized" animal models. Drug Metab Rev 2014; 46:475-93. [PMID: 25270219 DOI: 10.3109/03602532.2014.967866] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Poly-therapy is common due to co-occurrence of several ailments in patients, leading to the elevated possibility of drug-drug interactions (DDI). Pharmacokinetic DDI often accounts for severe adverse drug reactions in patients resulting in withdrawal of drug from the market. Hence, the prediction of DDI is necessary at pre-clinical stage of drug development. Several human tissue and cell line-based in vitro systems are routinely used for screening metabolic and transporter pathways of investigational drugs and for predicting their clinical DDI potentials. However, ample constraints are associated with the in vitro systems and sometimes in vitro-in vivo extrapolation (IVIVE) fail to assess the risk of DDI in clinic. In vitro-in vivo correlation model in animals combined with human in vitro studies may be helpful in better prediction of clinical outcome. Native animal models vary remarkably from humans in drug metabolizing enzymes and transporters, hence, the interpretation of results from animal DDI studies is difficult. With the advent of modern molecular biology and engineering tools, novel pre-clinical animal models, namely, knockout rat/mouse, transgenic rat/mouse with humanized drug metabolizing enzymes and/or transporters and chimeric rat/mouse with humanized liver are developed. These models nearly simulate human-like drug metabolism and help to validate the in vivo relevance of the in vitro human DDI data. This review briefly discusses the application of such novel pre-clinical models for screening various type of DDI along with their advantages and limitations.
Collapse
Affiliation(s)
- Swati Jaiswal
- Pharmacokinetics & Metabolism Division, CSIR-Central Drug Research Institute , Lucknow , India
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described.
Collapse
Affiliation(s)
- Michele Visentin
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, Bronx, New York 10461; , , ,
| | | | | | | |
Collapse
|
86
|
Steiner K, Hagenbuch B, Dietrich DR. Molecular cloning and functional characterization of a rainbow trout liver Oatp. Toxicol Appl Pharmacol 2014; 280:534-42. [PMID: 25218291 DOI: 10.1016/j.taap.2014.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/25/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
Cyanobacterial blooms have an impact on the aquatic ecosystem due to the production of toxins (e.g. microcystins, MCs), which constrain fish health or even cause fish death. However the toxicokinetics of the most abundant toxin, microcystin-LR (MC-LR), are not yet fully understood. To investigate the uptake mechanism, the novel Oatp1d1 in rainbow trout (rtOatp1d1) was cloned, identified and characterized. The cDNA isolated from a clone library consisted of 2772bp containing a 2115bp open reading frame coding for a 705 aa protein with an approximate molecular mass of 80kDa. This fish specific transporter belongs to the OATP1 family and has most likely evolved from a common ancestor of OATP1C1. Real time PCR analysis showed that rtOatp1d1 is predominantly expressed in the liver, followed by the brain while expression in other organs was not detectable. Transient transfection in HEK293 cells was used for further characterization. Like its human homologues OATP1A1, OATP1B1 and OATP1B3, rtOatp1d1 displayed multi-specific transport including endogenous and xenobiotic substrates. Kinetic analyses revealed a Km value of 13.9μM and 13.4μM for estrone-3-sulfate and methotrexate, respectively and a rather low affinity for taurocholate with a Km value of 103μM. Furthermore, it was confirmed that rtOatp1d1 is a MC-LR transporter and therefore most likely plays a key role in the susceptibility of rainbow trout to MC intoxications.
Collapse
Affiliation(s)
- Konstanze Steiner
- University of Konstanz, Human- and Environmental Toxicology, 78464 Konstanz, Germany.
| | - Bruno Hagenbuch
- Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City 66160, KS, USA.
| | - Daniel R Dietrich
- University of Konstanz, Human- and Environmental Toxicology, 78464 Konstanz, Germany.
| |
Collapse
|
87
|
Lopez-Lopez E, Gutierrez-Camino A, Bilbao-Aldaiturriaga N, Pombar-Gomez M, Martin-Guerrero I, Garcia-Orad A. Pharmacogenetics of childhood acute lymphoblastic leukemia. Pharmacogenomics 2014; 15:1383-98. [DOI: 10.2217/pgs.14.106] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. Although treatment outcome has improved owing to advances in chemotherapy, there is still a group of patients for which therapy fails while some patients experience severe toxicity. In the last few years, several pharmacogenetic studies have been performed to search for markers of outcome and toxicity in pediatric ALL. However, to date, TPMT is the only pharmacogenetic marker in ALL with clinical guidelines for drug dosing. In this article, we will provide an overview of the most important findings carried out in pharmacogenetics for pediatric ALL, such as the interest drawn by methotrexate transporters in the context of methotrexate treatment. Even if most of the studies are centered on coding genes, we will also point to new approaches focusing on noncoding regions and epigenetic variation that could be interesting for consideration in the near future.
Collapse
Affiliation(s)
- Elixabet Lopez-Lopez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Angela Gutierrez-Camino
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Nerea Bilbao-Aldaiturriaga
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Maria Pombar-Gomez
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Idoia Martin-Guerrero
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Africa Garcia-Orad
- Department of Genetics, Physical Anthropology & Animal Physiology, Faculty of Medicine & Odontology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- BioCruces Health Research Institute, Leioa, Spain
| |
Collapse
|
88
|
Organic anion transporting polypeptides and organic cation transporter 1 contribute to the cellular uptake of the flavonoid quercetin. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:883-91. [PMID: 24947867 DOI: 10.1007/s00210-014-1000-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/01/2014] [Indexed: 01/15/2023]
Abstract
Flavonoids such as quercetin and kaempferol mediate several health protective effects, e.g., anticancer effects. They are inhibitors of organic anion transporting polypeptides (OATP) and organic cation transporters (e.g., OCT2). However, little is known whether such transporters contribute to the cellular uptake of flavonoids. Therefore, we investigated the cellular uptake of kaempferol and quercetin using HEK293 cell lines stably expressing different human OATPs or OCT1. Kaempferol was not a substrate of any of the investigated transporters (OATP1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, OATP3A1, OATP4A1, OATP5A1, and OCT1). Quercetin showed a significantly higher uptake into the HEK293-OATP1A2, HEK293-OATP2A1, HEK293-OATP2B1, and HEK293-OCT1 cells compared to control cells. The OATP1A2-, OATP2B1-, and OCT1-mediated quercetin uptake was inhibited by known inhibitors such as naringin, cyclosporin A, and quinidine, respectively. The cellular accumulation of quercetin into HEK293-OATP2A1 cells was not inhibited by prostaglandin E2 and diclofenac. The ionophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) reduced the net uptake of quercetin by increasing the uptake in the HEK293-control cells and causing no significant change in the HEK293-OATP2B1 cells indicating that quercetin follows the FCCP-driven proton flux through the plasma membrane. In addition to passive diffusion, the SLC transporters OATP1A2, OATP2B1, and OCT1 contribute to cellular accumulation of quercetin.
Collapse
|
89
|
Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. MOLECULAR AND CELLULAR THERAPIES 2014; 2:15. [PMID: 26056583 PMCID: PMC4452062 DOI: 10.1186/2052-8426-2-15] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/14/2014] [Indexed: 12/20/2022]
Abstract
Membrane transporters play critical roles in moving a variety of anticancer drugs across cancer cell membrane, thereby determining chemotherapy efficacy and/or toxicity. The retention of anticancer drugs in cancer cells is the result of net function of efflux and influx transporters. The ATP-binding cassette (ABC) transporters are mainly the efflux transporters expressing at cancer cells, conferring the chemo-resistance in various malignant tumors, which has been well documented over the past decades. However, the function of influx transporters, in particular the solute carriers (SLC) in cancer cells, has only been recently well recognized to have significant impact on cancer therapy. The SLC transporters not only directly bring anticancer agents into cancer cells but also serve as the uptake mediators of essential nutrients for tumor growth and survival. In this review, we concentrate on the interaction of SLC transporters with anticancer drugs and nutrients, and their impact on chemo-sensitivity or -resistance of cancer cells. The differential expression patterns of SLC transporters between normal and tumor tissues may be well utilized to achieve specific delivery of chemotherapeutic agents.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA ; Institute of Clinical Pharmacology, Central South University, Changsha, Hunan 410078 China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, Baltimore, Maryland USA
| |
Collapse
|
90
|
Local recurrence after chemoembolization of hepatocellular carcinoma: uptake of gadoxetic acid as a new prognostic factor. AJR Am J Roentgenol 2014; 202:744-51. [PMID: 24660701 DOI: 10.2214/ajr.13.10848] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The purpose of this article is to investigate whether there is a difference in susceptibility to transcatheter arterial chemoembolization between hepatocellular carcinomas (HCCs) showing high uptake and those showing low uptake of gadoxetic acid in the hepatobiliary phase of MRI. MATERIALS AND METHODS One hundred HCCs that achieved optimal chemoembolization, as assessed by immediate CT in 60 patients, were classified as having high (n = 19) or low (n = 81) uptake of gadoxetic acid on MRI performed before chemoembolization. The local recurrence rates were estimated using the Kaplan-Meier method, and differences between the groups were compared using the log-rank test. The following factors were also correlated with the local recurrence rate using the Cox proportional hazards model for a univariate analysis: high uptake of gadoxetic acid, number of feeding arteries, extrahepatic arterial supply, Child-Pugh class, clinical tumor stage, size, location, and iodized oil accumulation in the noncancerous tissue surrounding the lesion. Parameters that were significant at p < 0.05 were entered into a multivariate model. RESULTS The 1- and 3-year local recurrence-free rates were 95% in high-uptake HCCs and 66% and 54%, respectively, in low-uptake HCCs (log-rank test, p < 0.01). The low uptake of gadoxetic acid was the only significant predictor of early local recurrence (hazard ratio = 9.24; p = 0.03) by multivariate analysis. CONCLUSION HCCs showing high uptake of gadoxetic acid appear to be susceptible to chemoembolization.
Collapse
|
91
|
Herfindal L, Krakstad C, Myhren L, Hagland H, Kopperud R, Teigen K, Schwede F, Kleppe R, Døskeland SO. Introduction of aromatic ring-containing substituents in cyclic nucleotides is associated with inhibition of toxin uptake by the hepatocyte transporters OATP 1B1 and 1B3. PLoS One 2014; 9:e94926. [PMID: 24740327 PMCID: PMC3989234 DOI: 10.1371/journal.pone.0094926] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 03/21/2014] [Indexed: 11/19/2022] Open
Abstract
Analogs of the cyclic nucleotides cAMP and cGMP have been extensively used to mimic or modulate cellular events mediated by protein kinase A (PKA), Exchange protein directly activated by cAMP (Epac), or protein kinase G (PKG). We report here that some of the most commonly used cyclic nucleotide analogs inhibit transmembrane transport mediated by the liver specific organic anion transporter peptides OATP1B1 and OATP1B3, unrelated to actions on Epac, PKA or PKG. Several cAMP analogs, particularly with 8-pCPT-substitution, inhibited nodularin (Nod) induced primary rat hepatocyte apoptosis. Inhibition was not mediated by PKA or Epac, since increased endogenous cAMP, and some strong PKA- or Epac-activating analogs failed to protect cells against Nod induced apoptosis. The cAMP analogs inhibiting Nod induced hepatocyte apoptosis also reduced accumulation of radiolabeled Nod or cholic acid in primary rat hepatocytes. They also inhibited Nod induced apoptosis in HEK293 cells with enforced expression of OATP1B1 or 1B3, responsible for Nod transport into cells. Similar results were found with adenosine analogs, disconnecting the inhibitory effect of certain cAMP analogs from PKA or Epac. The most potent inhibitors were 8-pCPT-6-Phe-cAMP and 8-pCPT-2′-O-Me-cAMP, whereas analogs like 6-MB-cAMP or 8-Br-cAMP did not inhibit Nod uptake. This suggests that the addition of aromatic ring-containing substituents like the chloro-phenyl-thio group to the purines of cyclic nucleotides increases their ability to inhibit the OATP-mediated transport. Taken together, our data show that aromatic ring substituents can add unwanted effects to cyclic nucleotides, and that such nucleotide analogs must be used with care, particularly when working with cells expressing OATP1B1/1B3, like hepatocytes, or intact animals where hepatic metabolism can be an issue, as well as certain cancer cells. On the other hand, cAMP analogs with substituents like bromo, monobutyryl were non-inhibitory, and could be considered an alternative when working with cells expressing OATP1 family members.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bacterial Toxins/metabolism
- Bacterial Toxins/pharmacokinetics
- Bacterial Toxins/pharmacology
- Biological Transport/drug effects
- Cells, Cultured
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/metabolism
- Cyclic GMP/pharmacology
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Dose-Response Relationship, Drug
- Glycocholic Acid/metabolism
- Glycocholic Acid/pharmacokinetics
- Glycocholic Acid/pharmacology
- Guanine Nucleotide Exchange Factors/metabolism
- HEK293 Cells
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Liver-Specific Organic Anion Transporter 1
- Male
- Microscopy, Confocal
- Models, Molecular
- Nucleotides, Cyclic/chemistry
- Nucleotides, Cyclic/pharmacology
- Organic Anion Transporters/chemistry
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- Organic Anion Transporters, Sodium-Independent/chemistry
- Organic Anion Transporters, Sodium-Independent/genetics
- Organic Anion Transporters, Sodium-Independent/metabolism
- Peptides, Cyclic/metabolism
- Peptides, Cyclic/pharmacokinetics
- Peptides, Cyclic/pharmacology
- Protein Structure, Tertiary
- Rats, Wistar
- Solute Carrier Organic Anion Transporter Family Member 1B3
Collapse
Affiliation(s)
- Lars Herfindal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Translational Signaling Group, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| | | | - Lene Myhren
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Hanne Hagland
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Reidun Kopperud
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Rune Kleppe
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | |
Collapse
|
92
|
Sun P, Wang C, Liu Q, Meng Q, Zhang A, Huo X, Sun H, Liu K. OATP and MRP2-mediated hepatic uptake and biliary excretion of eprosartan in rat and human. Pharmacol Rep 2014; 66:311-9. [PMID: 24911086 DOI: 10.1016/j.pharep.2014.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 10/03/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Eprosartan is an angiotensin II receptor antagonist, used in the treatment of hypertension and heart failure in clinical patients. The objective of this study was to clarify the mechanism underlying hepatic uptake and biliary excretion of eprosartan in rats and humans. METHODS Perfused rat liver in situ, rat liver slices, isolated rat hepatocytes and human organic anion-transporting polypeptide (OATP)-transfected cells in vitro were used in this study. RESULTS Extraction ratio of eprosartan was decreased by rifampicin in perfused rat livers. Uptake of eprosartan in rat liver slices and isolated rat hepatocytes was significantly inhibited by Oatp modulators such as ibuprofen, digoxin, rifampicin and cyclosporine A, but not by tetraethyl ammonium or p-aminohippurate. Uptake of eprosartan in rat hepatocytes indicated a saturable process. Although uptake of eprosartan in OATP1B3-human embryonic kidney cells (HEK) 293 cells was not observed, significant differences in cellular accumulations of eprosartan between vector- and OATP1B1-Madin-Darby canine kidney strain (MDCK) II cells were found in transcellular transport study. Moreover, cumulative biliary excretion rate of eprosartan in the presence of probenecid (Multidrug resistance-associated protein 2 (Mrp2) inhibitor) was significantly decreased in perfused rat livers. Vectorial basal-to-apical transport of eprosartan was also observed in OATP1B1/MRP2 double transfectants. CONCLUSIONS Eprosartan was transported by multiple Oatps (at least Oatp1a1 and Oatp1a4)/Mrp2 in rat and OATP1B1/MRP2, at least, in human.
Collapse
Affiliation(s)
- Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Aijie Zhang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, China; Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, China; Research Institute of Integrated Traditional and Western Medicine of Dalian Medical University, Liaoning, China.
| |
Collapse
|
93
|
Durmus S, Naik J, Buil L, Wagenaar E, van Tellingen O, Schinkel AH. In vivo disposition of doxorubicin is affected by mouse Oatp1a/1b and human OATP1A/1B transporters. Int J Cancer 2014; 135:1700-10. [PMID: 24554572 DOI: 10.1002/ijc.28797] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/04/2014] [Indexed: 01/30/2023]
Abstract
Organic anion-transporting polypeptides (OATPs) are important drug uptake transporters, mediating distribution of substrates to several pharmacokinetically relevant organs. Doxorubicin is a widely used anti-cancer drug extensively studied for its interactions with various drug transporters, but not OATPs. Here, we investigated the role of OATP1A/1B proteins in the distribution of doxorubicin. In vitro, we observed ∼ 2-fold increased doxorubicin uptake in HEK293 cells overexpressing human OATP1A2, but not OATP1B1 or OATP1B3. In mice, absence of Oatp1a/1b transporters led to up to 2-fold higher doxorubicin plasma concentrations and 1.3-fold higher plasma AUC. Conversely, liver AUC and liver-to-plasma ratios of Oatp1a/1b(-/-) mice were 1.4-fold and up to 4.1-fold lower than in wild-type mice, respectively. Decreased doxorubicin levels in the small intestinal content reflected those in the liver, indicating a reduced biliary excretion of doxorubicin in Oatp1a/1b(-/-) mice. These results demonstrate important control of doxorubicin plasma clearance and hepatic uptake by mouse Oatp1a/1b transporters. This is unexpected, as the fairly hydrophobic weak base doxorubicin is an atypical OATP1A/1B substrate. Interestingly, transgenic liver-specific expression of human OATP1A2, OATP1B1 or OATP1B3 could partially rescue the increased doxorubicin plasma levels of Oatp1a/1b(-/-) mice. Hepatic uptake and bile-derived intestinal excretion of doxorubicin were completely reverted to wild-type levels by OATP1A2, and partially by OATP1B1 and OATP1B3. Thus, doxorubicin is transported by hepatocyte-expressed OATP1A2, -1B1 and -1B3 in vivo, illustrating an unexpectedly wide substrate specificity. These findings have possible implications for the uptake, disposition, therapy response and toxicity of doxorubicin, also in human tumors and tissues expressing these transporters.
Collapse
Affiliation(s)
- Selvi Durmus
- Division of Molecular Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
94
|
Meyer Zu Schwabedissen HE, Boettcher K, Steiner T, Schwarz UI, Keiser M, Kroemer HK, Siegmund W. OATP1B3 is expressed in pancreatic β-islet cells and enhances the insulinotropic effect of the sulfonylurea derivative glibenclamide. Diabetes 2014; 63:775-84. [PMID: 24150606 DOI: 10.2337/db13-1005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Organic anion transporting polypeptide OATP1B3 is a membrane-bound drug transporter that facilitates cellular entry of a variety of substrates. Most of the previous studies focused on its hepatic expression and function in hepatic drug elimination. In this study, we report expression of OATP1B3 in human pancreatic tissue, with the abundance of the transporter localized in the islets of Langerhans. Transport studies using OATP1B3-overexpressing MDCKII cells revealed significant inhibition of the cellular uptake of the known substrate cholecystokinin-8 in the presence of the insulinotropic antidiabetes compounds tolbutamide, glibenclamide, glimepiride, and nateglinide and identified glibenclamide as a novel substrate of OATP1B3. Sulfonylurea derivatives exert their insulinotropic effect by binding to the SUR1 subunit of the KATP channels inducing insulin secretion in β-cells. Here, we show that transient overexpression of human OATP1B3 in a murine β-cell line (MIN6)-which exhibits glucose and glibenclamide-sensitive insulin secretion-significantly enhances the insulinotropic effect of glibenclamide without affecting glucose-stimulated insulin secretion. Taken together, our data provide evidence that the drug transporter OATP1B3 functions as a determinant of the insulinotropic effect of glibenclamide on the tissue level. Changes in transport activity based on drug-drug interactions or genetic variability may therefore influence glibenclamide efficacy.
Collapse
|
95
|
Levêque D, Santucci R, Gourieux B, Herbrecht R. Pharmacokinetic drug–drug interactions with methotrexate in oncology. Expert Rev Clin Pharmacol 2014; 4:743-50. [DOI: 10.1586/ecp.11.57] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
96
|
Kobori T, Harada S, Nakamoto K, Tokuyama S. Mechanisms of P-Glycoprotein Alteration During Anticancer Treatment: Role in the Pharmacokinetic and Pharmacological Effects of Various Substrate Drugs. J Pharmacol Sci 2014; 125:242-54. [DOI: 10.1254/jphs.14r01cr] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
97
|
Choi MK, Kwon M, Ahn JH, Kim NJ, Bae MA, Song IS. Transport characteristics and transporter-based drug-drug interactions of TM-25659, a novel TAZ modulator. Biopharm Drug Dispos 2013; 35:183-94. [PMID: 24285344 DOI: 10.1002/bdd.1883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
The in vitro metabolic stability and transport mechanism of TM-25659, a novel TAZ modulator, was investigated in human hepatocytes and human liver microsomes (HLMs) based on the preferred hepatobiliary elimination in rats. In addition, the in vitro transport mechanism and transporter-mediated drug-drug interactions were evaluated using oocytes and MDCKII cells overexpressing clinically important drug transporters. After a 1 h incubation in HLMs, 92.9 ± 9.5% and 95.5 ± 11.6% of the initial TM-25659 remained in the presence of NADPH and UDPGA, respectively. Uptake of TM-25659 readily accumulated in human hepatocytes at 37 ºC (i.e. 6.7-fold greater than that at 4 ºC), in which drug transporters such as OATP1B1 and OATP1B3 were involved. TM-25659 had a significantly greater basal to apical transport rate (5.9-fold) than apical to basal transport rate in the Caco-2 cell monolayer, suggesting the involvement of an efflux transport system. Further studies using inhibitors of efflux transporters and overexpressing cells revealed that MRP2 was involved in the transport of TM-25659. These results, taken together, suggested that TM-25659 can be actively influxed into hepatocytes and undergo biliary excretion without substantial metabolism. Additionally, TM-25659 inhibited the transport activities of OATP1B1 and OATP1B3 with IC50 values of 36.3 and 25.9 μm, respectively. TM-25659 (100 μm) increased the accumulation of the probe substrate by 160% and 213%, respectively, through the inhibition of efflux function of P-gp and MRP2. In conclusion, OATP1B1, OATP1B3, P-gp and MRP2 might be major transporters responsible for the pharmacokinetics and drug-drug interaction of TM-25659, although their contribution to in vivo pharmacokinetics needs to be further investigated.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan, Korea
| | | | | | | | | | | |
Collapse
|
98
|
Polymorphisms of MTHFR Associated with Higher Relapse/Death Ratio and Delayed Weekly MTX Administration in Pediatric Lymphoid Malignancies. LEUKEMIA RESEARCH AND TREATMENT 2013; 2013:238528. [PMID: 24386571 PMCID: PMC3872414 DOI: 10.1155/2013/238528] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 10/10/2013] [Indexed: 11/18/2022]
Abstract
Backgrounds. Outcome of childhood malignancy has been improved mostly due to the advances in diagnostic techniques and treatment strategies. While methotrexate (MTX) related polymorphisms have been under investigation in childhood malignancies, many controversial results have been offered. Objectives. To evaluate associations of polymorphisms related MTX metabolisms and clinical course in childhood lymphoid malignancies. Method. Eighty-two acute lymphoblastic leukemia and 21 non-Hodgkin's lymphoma children were enrolled in this study. Four single nucleotide polymorphisms in 2 genes (MTHFR (rs1801133/c.677C>T/p.Ala222Val and rs1801131/c.1298A>C/p.Glu429Ala) and SLCO1B1 (rs4149056/c.521T>C/p.V174A and rs11045879/c.1865+4846T>C)) were genotyped by Taqman PCR method or direct sequencing. Clinical courses were reviewed retrospectively. Results. No patient who had the AC/CC genotype of rs1801131 (MTHFR) had relapsed or died, in which distribution was statistically different among the AA genotype of rs1801131 (P = 0.004). Polymorphisms of SLCO1B1 (rs11045879 and rs4149056) were not correlated with MTX concentrations, adverse events, or disease outcome. Conclusions. Polymorphisms of MTHFR (rs1801131) could be the plausive candidate for prognostic predictor in childhood lymphoid malignancies.
Collapse
|
99
|
Expression of Ins1 and Ins2 genes in mouse fetal liver. Cell Tissue Res 2013; 355:303-14. [PMID: 24258027 DOI: 10.1007/s00441-013-1741-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
A possible cure for diabetes is explored by using non-pancreatic cells such as fetal hepatocytes. The expression of insulin and transcription factors for insulin is investigated in mouse fetal liver. We detected mRNAs for insulin I (Ins1) and insulin II (Ins2) and proinsulin- and mature insulin-positive cells in mouse fetal liver by reverse transcription plus the polymerase chain reaction and immunohistochemistry. Glucagon, somatostatin and pancreatic polypeptide were not expressed throughout development. Mouse Ins2 and Ins1 promoters were transiently activated in mouse fetal hepatocytes of embryonic days 13.5 and 16.5, respectively. Pancreatic and duodenal homeobox 1 (Pdx1) mRNA was not expressed during development of the liver. In contrast, mRNAs and proteins of neurogenic differentiation (NeuroD)/β cell E-box transactivator 2 (Beta2) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog (MafA) were almost simultaneously expressed with insulin genes in the liver. Ins2 and Ins1 promoters were activated in hepatoma cells by the transfection of the expression vector for NeuroD/Beta2 alone and by the combination of NeuroD/Beta2 and MafA, respectively. These results indicate that the expression of NeuroD/Beta2 and MafA is linked temporally with the transcription of Ins2 and Ins1 genes in mouse fetal liver and suggest the potential usage of fetal hepatocytes to make insulin-producing β cells by introducing transcription factors.
Collapse
|
100
|
Imai S, Kikuchi R, Tsuruya Y, Naoi S, Nishida S, Kusuhara H, Sugiyama Y. Epigenetic regulation of organic anion transporting polypeptide 1B3 in cancer cell lines. Pharm Res 2013; 30:2880-2890. [PMID: 23812637 DOI: 10.1007/s11095-013-1117-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 06/11/2013] [Indexed: 11/30/2022]
Abstract
PURPOSE The expression of a multispecific organic anion transporter, OATP1B3/SLCO1B3, is associated with clinical prognosis and survival of cancer cells. The aims of present study were to investigate the involvement of epigenetic regulation in mRNA expression of a cancer-type variant of OATP1B3 (Ct-OATP1B3) in cancer cell lines. METHODS The membrane localization and transport functions of Ct-OATP1B3 were investigated in HEK293 cells transiently expressing Ct-OATP1B3. DNA methylation profiles around the transcriptional start site of Ct-OATP1B3 in cancer cell lines were determined. The effects of a DNA methyltransferase inhibitor and siRNA knockdown of methyl-DNA binding proteins (MBDs) on the expression of Ct-OATP1B3 mRNA were investigated. RESULTS 5'-RACE identified the TSS of Ct-OATP1B3 in PK-8 cells. Ct-OATP1B3 was localized on the plasma membrane, and showed the transport activities of E217βG, fluvastatin, rifampicin, and Gd-EOB-DTPA. The CpG dinucleotides were hypomethylated in Ct-OATP1B3-positive cell lines (DLD-1, TFK-1, PK-8, and PK-45P) but were hypermethylated in Ct-OATP1B3-negative cell lines (HepG2 and Caco-2). Treatment with a DNA methyltransferase inhibitor and siRNA knockdown of MBD2 significantly increased the expression of Ct-OATP1B3 mRNA in HepG2 and Caco-2. CONCLUSIONS Ct-OATP1B3 is capable of transporting its substrates into cancer cells. Its mRNA expression is regulated by DNA methylation-dependent gene silencing involving MBD2.
Collapse
Affiliation(s)
- Satoki Imai
- Laboratory of Molecular Pharmacokinetics Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|