51
|
Abstract
PURPOSE OF REVIEW To summarize the current understanding and recent advances on the genetic aetiology in the pathogenesis of very early onset inflammatory bowel disease (VEO-IBD). RECENT FINDINGS IBD is a chronic disorder of the gastrointestinal tract whose manifestation is a result of complex interactions between genetics, environment, immune system and microbial flora. Over 230 IBD risk loci have been reported in genome wide association studies but the genetic contribution of the majority of these loci in the manifestation of IBD is very low. Patients with VEO-IBD present with a more severe disease than older patients, characterized by poor prognosis and failure of conventional therapy. Recent studies have reported several monogenic diseases with high penetrance that present with IBD and IBD-like intestinal manifestations and overlap with primary immunodeficiencies. Increasing body of evidence supports a prominent role of genetics in the onset of VEO-IBD. New genetic variants and diagnoses in VEO-IBD are reviewed and current challenges in therapy with potential strategy to manage the disease are discussed. SUMMARY Functional analysis of the genes implicated in monogenic IBD has increased the understanding of the underlying pathobiological mechanism of the disease. This knowledge can be used to personalize medicine for specific patients, improving the standard of care and quality of life.
Collapse
Affiliation(s)
- Vritika Batura
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Institute for Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children,Toronto, Ontario, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Institute for Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children,Toronto, Ontario, Canada
| |
Collapse
|
52
|
Abstract
The growing understanding of the immunopathogenesis of inflammatory bowel diseases (IBDs) has contributed to the identification of new targets whose expression/activity can be modulated for therapeutic purposes. Several approaches have been employed to develop selective pharmaceutical compounds; among these, antisense oligonucleotides (ASOs) or synthetic oligonucleotides represent a valid option for inhibiting or enhancing, respectively, the expression/function of molecules that have been implicated in the control of IBD-related inflammation. In this context, data have been accumulated for the following compounds: alicaforsen, an ASO targeting intercellular adhesion molecule-1, a transmembrane glycoprotein that regulates rolling and adhesion of leukocytes to inflamed intestine; DIMS0150 and BL-7040, two oligonucleotides that enhance Toll-like receptor-9 activity; Mongersen, an ASO that inhibits Smad7, thereby restoring transforming growth factor-β1/Smad-associated signaling; STNM01, a double-stranded RNA oligonucleotide silencing carbohydrate sulfotransferase, an enzyme involved in fibrogenic processes, and hgd40, a specific DNAzyme inhibiting expression of the transcription factor GATA3. In this article, we review the rationale and the available data relative to the use of these agents in IBD. Although pre-clinical and phase II trials in IBD support the use of oligonucleotide-based therapies for treating the pathogenic process occurring in the gut of patients with these disorders, further work is needed to establish whether and which patients can benefit from specific ASOs and identify biomarkers that could help optimize treatment.
Collapse
|
53
|
Cytomegalovirus promotes intestinal macrophage-mediated mucosal inflammation through induction of Smad7. Mucosal Immunol 2018; 11:1694-1704. [PMID: 30076393 PMCID: PMC7405939 DOI: 10.1038/s41385-018-0041-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023]
Abstract
Intestinal macrophages in healthy human mucosa are profoundly down-regulated for inflammatory responses (inflammation anergy) due to stromal TGF-β inactivation of NF-κB. Paradoxically, in cytomegalovirus (CMV) intestinal inflammatory disease, one of the most common manifestations of opportunistic CMV infection, intestinal macrophages mediate severe mucosal inflammation. Here we investigated the mechanism whereby CMV infection promotes macrophage-mediated mucosal inflammation. CMV infected primary intestinal macrophages but did not replicate in the cells or reverse established inflammation anergy. However, CMV infection of precursor blood monocytes, the source of human intestinal macrophages in adults, prevented stromal TGF-β-induced differentiation of monocytes into inflammation anergic macrophages. Mechanistically, CMV up-regulated monocyte expression of the TGF-β antagonist Smad7, blocking the ability of stromal TGF-β to inactivate NF-κB, thereby enabling MyD88 and NF-κB-dependent cytokine production. Smad7 expression also was markedly elevated in mucosal tissue from subjects with CMV colitis and declined after antiviral ganciclovir therapy. Confirming these findings, transfection of Smad7 antisense oligonucleotide into CMV-infected monocytes restored monocyte susceptibility to stromal TGF-β-induced inflammation anergy. Thus, CMV-infected monocytes that recruit to the mucosa, not resident macrophages, are the source of inflammatory macrophages in CMV mucosal disease and implicate Smad7 as a key regulator of, and potential therapeutic target for, CMV mucosal disease.
Collapse
|
54
|
Bevivino G, Monteleone G. Advances in understanding the role of cytokines in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2018; 12:907-915. [PMID: 30024302 DOI: 10.1080/17474124.2018.1503053] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines represent the key pathophysiologic elements that govern the initiation, progression, and, in some circumstances, the resolution of the inflammation occurring in inflammatory bowel disease (IBD). Areas covered: In this review, we will focus on the main effector and anti-inflammatory cytokines produced in IBD and discuss the results of recent trials in which cytokine-based therapy has been used for treating IBD patients. Expert commentary: The possibility to sample mucosal biopsies from IBD patients and analyze which molecular pathways are prominent during the active phases of the disease and the easy access to various models of experimental colitis has largely advanced our understanding about the role of cytokines in IBD. These progresses have facilitated the development of several therapeutic compounds, which either target inflammatory cytokines or enhance the regulatory function of immunosuppressive cytokines. While some of such drugs are effective in the induction and maintenance of remission of the disease, other compounds are not useful for attenuating the ongoing mucosal inflammation, thus establishing a hierarchical scale of the relevance of cytokines in IBD. Further work is needed to identify biomarkers, which could help personalize cytokine-targeted therapy and minimize potential side effects.
Collapse
Affiliation(s)
- Gerolamo Bevivino
- a Department of Systems Medicine , University of Rome Tor Vergata , Italy
| | | |
Collapse
|
55
|
Trivedi PJ, Adams DH. Chemokines and Chemokine Receptors as Therapeutic Targets in Inflammatory Bowel Disease; Pitfalls and Promise. J Crohns Colitis 2018; 12:S641-S652. [PMID: 30137309 PMCID: PMC6104621 DOI: 10.1093/ecco-jcc/jjx145] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The principal targets for anti-chemokine therapy in inflammatory bowel disease (IBD) have been the receptors CCR9 and CXCR3 and their respective ligands CCL25 and CXCL10. More recently CCR6 and its ligand CCL20 have also received attention, the expression of the latter in enterocytes being manipulated through Smad7 signalling. These pathways, selected based on their fundamental role in regulating mucosal immunity, have led to the development of several therapeutic candidates that have been tested in early phase clinical trials with variable clinical efficacy. In this article, we appraise the status of chemokine-directed therapy in IBD, review recent developments, and nominate future areas for therapeutic focus.
Collapse
Affiliation(s)
- Palak J Trivedi
- National Institute for Health Research (NIHR) Birmingham, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Centre for Rare Diseases, Institute of Translational Medicine, University of Birmingham, Birmingham, UK
| | - David H Adams
- National Institute for Health Research (NIHR) Birmingham, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| |
Collapse
|
56
|
Sedda S, Franzè E, Bevivino G, Di Giovangiulio M, Rizzo A, Colantoni A, Ortenzi A, Grasso E, Giannelli M, Sica GS, Fantini MC, Monteleone G. Reciprocal Regulation Between Smad7 and Sirt1 in the Gut. Front Immunol 2018; 9:1854. [PMID: 30147698 PMCID: PMC6097015 DOI: 10.3389/fimmu.2018.01854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022] Open
Abstract
In inflammatory bowel disease (IBD) mucosa, there is over-expression of Smad7, an intracellular inhibitor of the suppressive cytokine transforming growth factor-β1, due to post-transcriptional mechanisms that enhance Smad7 acetylation status thus preventing ubiquitination-mediated proteosomal degradation of the protein. IBD-related inflammation is also marked by defective expression of Sirt1, a class III NAD+-dependent deacetylase, which promotes ubiquitination-mediated proteosomal degradation of various intracellular proteins and triggers anti-inflammatory signals. The aim of our study was to determine whether, in IBD, there is a reciprocal regulation between Smad7 and Sirt1. Smad7 and Sirt1 were examined in mucosal samples of IBD patients and normal controls by Western blotting and immunohistochemistry, and Sirt1 activity was assessed by a fluorimetric assay. To determine whether Smad7 is regulated by Sirt1, normal or IBD lamina propria mononuclear cells (LPMC) were cultured with either Sirt1 inhibitor (Ex527) or activator (Cay10591), respectively. To determine whether Smad7 controls Sirt1 expression, ex vivo organ cultures of IBD mucosal explants were treated with Smad7 sense or antisense oligonucleotide. Moreover, Sirt1 expression was evaluated in LPMC isolated from Smad7-transgenic mice given dextran sulfate sodium (DSS). Upregulation of Smad7 was seen in both the epithelial and lamina propria compartments of IBD patients and this associated with reduced expression and activity of Sirt1. Activation of Sirt1 in IBD LPMC with Cay10591 reduced acetylation and enhanced ubiquitination-driven proteasomal-mediated degradation of Smad7, while inhibition of Sirt1 activation in normal LPMC with Ex527 increased Smad7 expression. Knockdown of Smad7 in IBD mucosal explants enhanced Sirt1 expression, thus suggesting a negative effect of Smad7 on Sirt1 induction. Consistently, mucosal T cells of Smad7-transgenic mice contained reduced levels of Sirt1, a defect that was amplified by induction of DSS colitis. The data suggest the existence of a reciprocal regulatory mechanism between Smad7 and Sirt1, which could contribute to amplify inflammatory signals in the gut.
Collapse
Affiliation(s)
- Silvia Sedda
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Gerolamo Bevivino
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Angelamaria Rizzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Enrico Grasso
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Giannelli
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe S. Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | | |
Collapse
|
57
|
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract encompassing two main clinical entities: Crohn's disease (CD) and ulcerative colitis (UC). These disorders are characterized by various grades of tissue damage and development of local complications and extra-intestinal manifestations. The cause of IBD remains unknown but accumulating evidence indicates that both CD and UC arise in genetically predisposed individuals as a result of the action of multiple environmental factors, which ultimately trigger excessive and poorly controlled immune response against antigens of the luminal flora. Despite this realization, a full understanding of IBD pathogenesis is still out of reach and, consequently, treatment is far from optimal. However, in recent years, several pathways of intestinal damage have been delineated and the improved knowledge has contributed to the development of new therapies. Various approaches have been used to either inhibit the expression and/or function of inflammatory molecules or enhance counter-regulatory mechanisms. This review summarizes the available pre-clinical and clinical data for antisense oligonucleotides and oligonucleotide-based therapy to provide a comprehensive understanding of the rationale and mechanism of action of these compounds in IBD. Key messages Preclinical studies and clinical trials show that antisense oligonucleotide (ASO)-based therapy could be of benefit in inflammatory bowel diseases. ASOs have an excellent safety profile. Technical issues emerged from clinical trials suggest that changes in drug formulation and/or route of administration could improve ASO efficacy.
Collapse
Affiliation(s)
- Irene Marafini
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| | - Giovanni Monteleone
- a Department of Systems Medicine , University of Rome Tor Vergata , Rome, Italy
| |
Collapse
|
58
|
Troncone E, Marafini I, Stolfi C, Monteleone G. Transforming Growth Factor-β1/Smad7 in Intestinal Immunity, Inflammation, and Cancer. Front Immunol 2018; 9:1407. [PMID: 29973939 PMCID: PMC6019438 DOI: 10.3389/fimmu.2018.01407] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
In physiological conditions, the activity of the intestinal immune system is tightly regulated to prevent tissue-damaging reactions directed against components of the luminal flora. Various factors contribute to maintain immune homeostasis and diminished production and/or function of such molecules trigger and/or propagate detrimental signals, which can eventually lead to chronic colitis and colon cancer. One such a molecule is transforming growth factor-β1 (TGF-β1), a cytokine produced by many inflammatory and non-inflammatory cells and targeting virtually all the intestinal mucosal cell types, with the down-stream effect of activating intracellular Smad2/3 proteins and suppressing immune reactions. In patients with inflammatory bowel diseases (IBD), there is defective TGF-β1/Smad signaling due to high Smad7, an inhibitor of TGF-β1 activity. Indeed, knockdown of Smad7 with a specific antisense oligonucleotide restores endogenous TGF-β1 activity, thereby inhibiting inflammatory pathways in patients with IBD and colitic mice. Consistently, mice over-expressing Smad7 in T cells develop severe intestinal inflammation in various experimental models. Smad7 expression is also upregulated in colon cancer cells, in which such a protein controls positively intracellular pathways that sustain neoplastic cell growth and survival. We here review the role of TGF-β1 and Smad7 in intestinal immunity, inflammation, and cancer.
Collapse
Affiliation(s)
- Edoardo Troncone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
59
|
Lim R, Barker G, Lappas M. SMAD7 regulates proinflammatory and prolabor mediators in amnion and myometrium. Biol Reprod 2018; 97:288-301. [PMID: 29044425 DOI: 10.1093/biolre/iox080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022] Open
Abstract
Preterm birth continues to be a significant public health problem. Infection (bacterial and or viral) and inflammation, by stimulating proinflammatory cytokines, adhesion molecules, and matrix metalloproteinase 9 (MMP9), play a central role in the rupture of membranes and myometrial contractions. SMAD7 has been implicated in regulating the inflammatory response; however, no studies have been performed with regard to human labor. In this study, we determined the effect of spontaneous human labor and prolabor mediators on SMAD7 expression in myometrium and fetal membranes. Functional studies were employed to investigate the effect of siRNA knockdown of SMAD7 (siSMAD7) in regulating infection and inflammation-induced prolabor mediators. SMAD7 mRNA and protein expression were significantly higher with spontaneous term labor, compared to no labor, in myometrium and fetal membranes. SMAD7 expression was also significantly higher in amnion from women with preterm chorioamnionitis. The proinflammatory cytokines IL1B and TNF, the bacterial product fsl-1, and the viral dsRNA analog poly(I:C) significantly increased SMAD7 in myometrial cells and amnion cells. In myometrial cells, siSMAD7 cells significantly decreased cytokine (IL6) and chemokine (CXCL1, CXCL8, CCL2 are also known as GRO-alpha, interleukin (IL)-8 and monocyte chemotactic protein-1 (MCP-1)) production induced by IL1B, TNF, and fsl-1. There was also a decrease in the expression of adhesion molecules intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) in siSMAD7 cells, and MMP9 expression. In amnion, siSMAD7 cells treated with IL1B also decreased cytokine and chemokine production, ICAM1 and MMP9 expression. In conclusion, we report a proinflammatory role for SMAD7 in human gestational tissues, with SMAD7 silencing attenuating the inflammatory response.
Collapse
Affiliation(s)
- Ratana Lim
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Gillian Barker
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia.,Mercy Perinatal Research Centre, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| |
Collapse
|
60
|
Imam T, Park S, Kaplan MH, Olson MR. Effector T Helper Cell Subsets in Inflammatory Bowel Diseases. Front Immunol 2018; 9:1212. [PMID: 29910812 PMCID: PMC5992276 DOI: 10.3389/fimmu.2018.01212] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/15/2018] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract is a site of high immune challenge, as it must maintain a delicate balance between tolerating luminal contents and generating an immune response toward pathogens. CD4+ T cells are key in mediating the host protective and homeostatic responses. Yet, CD4+ T cells are also known to be the main drivers of inflammatory bowel disease (IBD) when this balance is perturbed. Many subsets of CD4+ T cells have been identified as players in perpetuating chronic intestinal inflammation. Over the last few decades, understanding of how each subset of Th cells plays a role has dramatically increased. Simultaneously, this has allowed development of therapeutic innovation targeting specific molecules rather than broad immunosuppressive agents. Here, we review the emerging evidence of how each subset functions in promoting and sustaining the chronic inflammation that characterizes IBD.
Collapse
Affiliation(s)
- Tanbeena Imam
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Mark H Kaplan
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew R Olson
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
61
|
Izzo R, Bevivino G, De Simone V, Sedda S, Monteleone I, Marafini I, Di Giovangiulio M, Rizzo A, Franzè E, Colantoni A, Ortenzi A, Monteleone G. Knockdown of Smad7 With a Specific Antisense Oligonucleotide Attenuates Colitis and Colitis-Driven Colonic Fibrosis in Mice. Inflamm Bowel Dis 2018; 24:1213-1224. [PMID: 29668937 DOI: 10.1093/ibd/izy062] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND In Crohn's disease (CD), the pathogenic immune response is associated with high Smad7, an inhibitor of TGF-β1 signaling. Smad7 knockdown with Mongersen, a specific antisense oligonucleotide-containing compound, restores TGF-β1 activity leading to inhibition of inflammatory signals and associates with clinical benefit in CD patients. As TGF-β1 is pro-fibrogenic, it remains unclear whether Mongersen-induced Smad7 inhibition increases the risk of intestinal fibrosis. We assessed the impact of Smad7 inhibition on the course of colitis-driven intestinal fibrosis in mice. METHODS BALB/c mice were rectally treated with increasing doses of trinitrobenzene sulfonic acid (TNBS) for 8 or 12 weeks. The effect of oral Smad7 antisense or control oligonucleotide, administered to mice starting from week 5 or week 8, respectively, on mucosal inflammation and colitis-associated colonic fibrosis was assessed. Mucosal samples were analyzed for Smad7 by immunoblotting and immunohistochemistry, TGF-β1 by enzyme-linked immunosorbent assay, and collagen by immunohistochemistry. RESULTS TNBS-induced chronic colitis was associated with colonic deposition of collagen I and fibrosis, which were evident at week 8 and became more pronounced at week 12. TNBS treatment enhanced Smad7 in both colonic epithelial and lamina propria mononuclear cells. Colitic mice treated with Smad7 antisense oligonucleotide exhibited reduced signs of colitis, less collagen deposition, and diminished fibrosis. These findings were associated with diminished synthesis of TGF-β1 and reduced p-Smad3 protein expression. CONCLUSION Attenuation of colitis with Smad7 antisense oligonucleotide limits development of colonic fibrosis.
Collapse
Affiliation(s)
- Roberta Izzo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Gerolamo Bevivino
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Veronica De Simone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Silvia Sedda
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Ivan Monteleone
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy.,Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Rome, Italy
| | - Irene Marafini
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | | - Angelamaria Rizzo
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Eleonora Franzè
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Alfredo Colantoni
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Angela Ortenzi
- Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | | |
Collapse
|
62
|
Hvas CL, Bendix M, Dige A, Dahlerup JF, Agnholt J. Current, experimental, and future treatments in inflammatory bowel disease: a clinical review. Immunopharmacol Immunotoxicol 2018; 40:446-460. [PMID: 29745777 DOI: 10.1080/08923973.2018.1469144] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBDs) may result from dysregulated mucosal immune responses directed toward the resident intestinal microbiota. This review describes the hallmark immunobiology of Crohn's disease and ulcerative colitis as well as therapeutic targets and mechanisms of action for current, experimental, and future treatments in IBD. Conventional therapies include 5-aminosalicylic acid, glucocorticosteroids, thiopurines, and methotrexate. Since 1997, monoclonal antibodies have gained widespread use. These consist of antibodies directed against pro-inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-12, and IL-23, or anti-homing antibodies directed against α4β7 integrin. Emerging oral therapies include modulators of intracellular signal transduction such as Janus kinase inhibitors. Vitamin D may help to regulate innate and adaptive immune responses. Modulation of the intestinal microbiota, using live microorganisms (probiotics), substrates for the colonic microbiota (prebiotics), or fecal microbiota transplantation (FMT), is in development. Dietary supplements are in widespread use, but providing evidence for their benefit is challenging. Stem cell treatment and nervous stimulation are promising future treatments.
Collapse
Affiliation(s)
- Christian L Hvas
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Mia Bendix
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark.,b Medical Department, Randers Regional Hospital , Randers , Denmark
| | - Anders Dige
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Jens F Dahlerup
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Jørgen Agnholt
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| |
Collapse
|
63
|
Mohammadi A, Kelly OB, Filice M, Kabakchiev B, Smith MI, Silverberg MS. Differential Expression of microRNAs in Peripheral Blood Mononuclear Cells Identifies Autophagy and TGF-Beta-Related Signatures Aberrantly Expressed in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:568-581. [PMID: 29420705 PMCID: PMC6018685 DOI: 10.1093/ecco-jcc/jjy010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS MicroRNAs [miRNAs] have emerged as important regulators in inflammatory bowel disease [IBD]. This study investigated differential expression of miRNAs across clinical phenotypes in a well-characterized cohort of IBD patients and healthy controls [HCs]. METHODS A cohort of Crohn's disease [CD] and ulcerative colitis [UC] patients and HCs was prospectively accrued. Total RNA was extracted from peripheral blood mononuclear cells for all subjects. miRNA expression was measured using NanoString technologies. The subjects were stratified according to disease activity and location. Statistical significance was assessed per miRNA across outcomes and corrected for multiple testing. miRNA regulation of transcription of important results was confirmed in vitro by a dual luciferase reporter assay and autophagy function was evaluated using immunofluorescence imaging of LC3 puncta in HeLa cells. RESULTS In total, 120 subjects were enrolled. Seventy-four miRNAs were differentially expressed across CD, UC and HCs. Comparing quiescent CD [CDq] with HCs we found ten miRNAs upregulated in CDq. When comparing colonic CD [CCD] to UC, seven miRNAs were upregulated in CCD. The most differentially expressed miRNA in CCD vs UC was miR-874-3p, and we showed its possible utility as a biomarker of differential diagnosis. We showed miR-874-3p targets ATG16L1 and reduces its expression in vitro. An miR-874-3p mimic dysregulates autophagy by a reduction of LC3 in vitro. CONCLUSIONS We identified unique miRNA signatures expressed in distinct IBD phenotypes. These associations highlight pathways dysregulated by aberrant miRNA expression, revealing possible mechanisms underlying the pathophysiology of IBD, but also suggest a cluster of miRNAs as readily accessible biomarkers to aid in differential diagnosis.
Collapse
Affiliation(s)
- Aylia Mohammadi
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Orlaith B Kelly
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa Filice
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada,Corresponding author: Mark Silverberg, 441-600 University Avenue, Toronto, Ontario M5G1X5, Canada. Tel: 1-416-586-4800 ext. 8236; Fax: 1-416-619-5524;
| |
Collapse
|
64
|
Parasrampuria DA, Benet LZ, Sharma A. Why Drugs Fail in Late Stages of Development: Case Study Analyses from the Last Decade and Recommendations. AAPS JOURNAL 2018. [PMID: 29536211 DOI: 10.1208/s12248-018-0204-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
New drug development is both resource and time intensive, where later clinical stages result in significant costs. We analyze recent late-stage failures to identify drugs where failures result from inadequate scientific advances as well as drugs where we believe pitfalls could have been avoided. These can be broadly classified into two categories: 1) where science is mature and the failures can be avoided through rigorous and prospectively determined decision-making criteria, scientific curiosity, and discipline to follow up on emerging findings; and 2) where problems encountered in Phase 3 failures cannot be explained at this time, as the science is not sufficiently advanced and companies/investigators need to recognize the possibility of deficiency of our knowledge. Through these case studies, key themes critical for successful drug development emerge-understanding the therapeutic pathway including receptor and signaling biology, pharmacological responses related to safety and efficacy, pharmacokinetics of the drug and exposure at target site, optimum dose, and dosing regimen; and identification of patient sub-populations likely to respond and will have a favorable benefit-risk profile, design of clinical trials, and a quantitative framework that can guide data-driven decision making. It is essential that the right studies are conducted early in the development process to answer the key questions, with the emphasis on learning in the early stages of development, whereas Phase 3 should be reserved for confirming the safety and efficacy. Utilization of innovative technology in identifying patients based on molecular signature of their disease, rapid assessment of pharmacological response, mechanistic modeling of emerging data, seamless operational processes to reduce start-up and wind-down time for clinical trials through use of electronic health records and data mining, and development of novel and objective clinical efficacy endpoints are some concepts for improving the success rate.
Collapse
Affiliation(s)
- Dolly A Parasrampuria
- Global Clinical Pharmacology, Janssen R&D, 1400 McKean Road, Spring House, PA, 19477, United States of America
| | - Leslie Z Benet
- Department of Bioengineering & Therapeutic Sciences, Schools of Pharmacy & Medicine University of California San Francisco (UCSF), 533 Parnassus Avenue, Room U-68, San Francisco, CA, 94143-0912, United States of America
| | - Amarnath Sharma
- Global Clinical Pharmacology, Janssen R&D, 1400 McKean Road, Spring House, PA, 19477, United States of America.
| |
Collapse
|
65
|
Kotlarz D, Marquardt B, Barøy T, Lee WS, Konnikova L, Hollizeck S, Magg T, Lehle AS, Walz C, Borggraefe I, Hauck F, Bufler P, Conca R, Wall SM, Schumacher EM, Misceo D, Frengen E, Bentsen BS, Uhlig HH, Hopfner KP, Muise AM, Snapper SB, Strømme P, Klein C. Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat Genet 2018; 50:344-348. [PMID: 29483653 PMCID: PMC6309869 DOI: 10.1038/s41588-018-0063-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
Abstract
Transforming growth factor (TGF)-β1 (encoded by TGFB1) is the prototypic member of the TGF-β family of 33 proteins that orchestrate embryogenesis, development and tissue homeostasis1,2. Following its discovery 3 , enormous interest and numerous controversies have emerged about the role of TGF-β in coordinating the balance of pro- and anti-oncogenic properties4,5, pro- and anti-inflammatory effects 6 , or pro- and anti-fibrinogenic characteristics 7 . Here we describe three individuals from two pedigrees with biallelic loss-of-function mutations in the TGFB1 gene who presented with severe infantile inflammatory bowel disease (IBD) and central nervous system (CNS) disease associated with epilepsy, brain atrophy and posterior leukoencephalopathy. The proteins encoded by the mutated TGFB1 alleles were characterized by impaired secretion, function or stability of the TGF-β1-LAP complex, which is suggestive of perturbed bioavailability of TGF-β1. Our study shows that TGF-β1 has a critical and nonredundant role in the development and homeostasis of intestinal immunity and the CNS in humans.
Collapse
Affiliation(s)
- Daniel Kotlarz
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Benjamin Marquardt
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Tuva Barøy
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Way S Lee
- Department of Pediatrics, University Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Liza Konnikova
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pediatric and Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sebastian Hollizeck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Thomas Magg
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Anna S Lehle
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Borggraefe
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Fabian Hauck
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Philip Bufler
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Raffaele Conca
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany
| | - Sarah M Wall
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Eva M Schumacher
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Beint S Bentsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Department of Pediatric Research, Pediatric Liver Kidney Alimentary Nutrition and Transplantation Research Group, Oslo University Hospital, Oslo, Norway
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Department of Pediatrics, University of Oxford, Oxford, UK
| | - Karl-Peter Hopfner
- Department of Biochemistry and Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Petter Strømme
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Christoph Klein
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital LMU Munich, Munich, Germany.
| |
Collapse
|
66
|
Syed S, Dinallo V, Iqbal NT, Di Iorio L, Di Fusco D, Guleria S, Amadi BC, Sadiq K, Moskaluk C, Ali SA, Kelly P, Monteleone G. High SMAD7 and p-SMAD2,3 expression is associated with environmental enteropathy in children. PLoS Negl Trop Dis 2018; 12:e0006224. [PMID: 29415065 PMCID: PMC5819826 DOI: 10.1371/journal.pntd.0006224] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/20/2018] [Accepted: 01/09/2018] [Indexed: 01/10/2023] Open
Abstract
Enteropathies such as Crohn's disease are associated with enteric inflammation characterized by impaired TGF-β signaling, decreased expression of phosphorylated (p)-SMAD2,3 and increased expression of SMAD7 (an inhibitor of SMAD3 phosphorylation). Environmental enteropathy (EE) is an acquired inflammatory disease of the small intestine (SI), which is associated with linear growth disruption, cognitive deficits, and reduced oral vaccine responsiveness in children <5 y in resource-poor countries. We aimed to characterize EE inflammatory pathways by determining SMAD7 and p-SMAD2,3 levels (using Western blotting) in EE duodenal biopsies (N = 19 children, 7 from Pakistan, 12 from Zambia) and comparing these with healthy controls (Ctl) and celiac disease (CD) patients from Italy. Densitometric analysis of immunoblots showed that EE SI biopsies expressed higher levels of both SMAD7 (mean±SD in arbitrary units [a.u.], Ctl = 0.47±0.20 a.u., EE = 1.13±0.25 a.u., p-value = 0.03) and p-SMAD2,3 (mean±SD, Ctl = 0.38±0.14 a.u., EE = 0.60±0.10 a.u., p-value = 0.03). Immunohistochemistry showed that, in EE, SMAD7 is expressed in both the epithelium and in mononuclear cells of the lamina propria (LP). In contrast, p-SMAD3 in EE is expressed much more prominently in epithelial cells than in the LP. The high SMAD7 immunoreactivity and lack of p-SMAD3 expression in the LP suggests defective TGF-β signaling in the LP in EE similar to a previously reported SMAD7-mediated inflammatory pathway in refractory CD and Crohn's disease. However, Western blot densitometry showed elevated p-SMAD2,3 levels in EE, possibly suggesting a different inflammatory pathway than Crohn's disease but more likely reflecting cumulative protein expression from across all compartments of the mucosa as opposed to the LP alone. Further studies are needed to substantiate these preliminary results and to illustrate the relationship between SMAD proteins, TGF-β signaling, and inflammatory cytokine production, all of which may be potential therapeutic targets.
Collapse
Affiliation(s)
- Sana Syed
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
- Department of Pediatrics, Division of Gastroenterology, Hepatology, & Nutrition, University of Virginia, Charlottesville, United States of America
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Najeeha T. Iqbal
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Laura Di Iorio
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Shan Guleria
- Department of Pediatrics, Division of Gastroenterology, Hepatology, & Nutrition, University of Virginia, Charlottesville, United States of America
| | - Beatrice C. Amadi
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
| | - Kamran Sadiq
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Christopher Moskaluk
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - S. Asad Ali
- Department of Paediatrics and Child Health, Aga Khan University, Karachi, Pakistan
| | - Paul Kelly
- Tropical Gastroenterology and Nutrition group, University of Zambia School of Medicine, Lusaka, Zambia
- Blizard Institute, Barts and The London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
- * E-mail:
| |
Collapse
|
67
|
Vetter M, Neurath MF. Emerging oral targeted therapies in inflammatory bowel diseases: opportunities and challenges. Therap Adv Gastroenterol 2017; 10:773-790. [PMID: 29051788 PMCID: PMC5638182 DOI: 10.1177/1756283x17727388] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/31/2017] [Indexed: 02/04/2023] Open
Abstract
To improve quality of life and prevent long-term risks in patients with inflammatory bowel diseases (IBDs: Crohn's disease, ulcerative colitis), it is essential to suppress inflammatory activity adequately. However, corticosteroids are only suitable for therapy of acute flares and the evidence for positive effects of immunosuppressive substances like azathioprine or 6-mercapropurine is mainly limited to maintenance of remission. In addition, only subgroups of patients benefit from biologicals targeting tumour necrosis factor α or α4β7 integrins. In summary, until now the disease activity is not sufficiently controlled in a relevant fraction of the patients with IBD. Thus, there is an urge for the development of new substances in the therapy of ulcerative colitis and Crohn's disease. Fortunately, new oral and parenteral substances are in the pipeline. This review will focus on oral substances, which have already passed phase II studies successfully at this stage. In this article, we summarize data regarding AJM300, phosphatidylcholine (LT-02), mongersen, ozanimod, filgotinib and tofacitinib. AJM300 and ozanimod were tested in patients with ulcerative colitis and target lymphocyte trafficking through inhibition of the α subunit of integrin, respectively binding to the sphingosine-1-phosphate receptor (subtypes 1 and 5) on lymphocytes. Mongersen was utilized in patients with Crohn's disease and accelerates the degradation of SMAD7 mRNA, which consequently strengthens the mainly anti-inflammatory signalling pathway of transforming growth factor β1. Various Janus kinase (JAK) inhibitors were developed, which inhibit the intracellular signalling pathway of cytokines. For example, the JAK1 blocker filgotinib was tested in Crohn's disease, whereas the JAK1/3 inhibitor tofacitinib was tested in clinical trials for both Crohn's disease and ulcerative colitis. A different therapeutic approach is the substitution of phosphatidylcholine (LT-02), which might recover the colonic mucus. Taken together, clinical trials with these new agents have opened avenues for further clinical studies and it can be expected that at least some of these agents will be finally approved for clinical therapy.
Collapse
Affiliation(s)
- Marcel Vetter
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Ulmenweg 18, Erlangen, 91054, Germany
| |
Collapse
|
68
|
Chandrasinghe P, Cereser B, Moorghen M, Al Bakir I, Tabassum N, Hart A, Stebbing J, Warusavitarne J. Role of SMAD proteins in colitis-associated cancer: from known to the unknown. Oncogene 2017; 37:1-7. [DOI: 10.1038/onc.2017.300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023]
|
69
|
Boland BS, Vermeire S. Janus Kinase Antagonists and Other Novel Small Molecules for the Treatment of Crohn's Disease. Gastroenterol Clin North Am 2017; 46:627-644. [PMID: 28838419 PMCID: PMC5643010 DOI: 10.1016/j.gtc.2017.05.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is an ongoing, unmet need for effective therapies for Crohn's disease. Treatments for Crohn's disease continue to evolve from the traditional biologics to novel small molecules, with targeted mechanisms directed toward pathways that are dysregulated in Crohn's disease. There are multiple emerging mechanisms of action, including Janus kinase inhibition, Smad7 inhibition, and sphingosine-1-phosphate receptor modulators, that are administered as oral medications, and small molecules represent the next generation of therapies for Crohn's disease.
Collapse
Affiliation(s)
- Brigid S. Boland
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Disease Center, University of California San Diego, USA,Corresponding Author: Brigid S. Boland Address: ACTRI, 9452 Medical Center Drive, La Jolla, CA 92093, USA,
| | - Séverine Vermeire
- Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
70
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
71
|
Marafini I, Monteleone I, Dinallo V, Di Fusco D, De Simone V, Laudisi F, Fantini MC, Di Sabatino A, Pallone F, Monteleone G. CCL20 Is Negatively Regulated by TGF-β1 in Intestinal Epithelial Cells and Reduced in Crohn's Disease Patients With a Successful Response to Mongersen, a Smad7 Antisense Oligonucleotide. J Crohns Colitis 2017; 11:603-609. [PMID: 28453765 DOI: 10.1093/ecco-jcc/jjw191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The chemokine CCL20 is over-produced in epithelium of Crohn's disease [CD] patients and contributes to recruiting immune cells to inflamed gut. Tumour necrosis factor-α [TNF-α] is a powerful inducer of CCL20 in intestinal epithelial cells. In CD, high levels of Smad7 block the activity of transforming growth factor-β1 [TGF-β1], a negative regulator of TNF signalling. We investigated whether intestinal epithelial cell-derived CCL20 is negatively regulated by TGF-β1 and whether Smad7 knock-down reduces CCL20 in CD. METHODS CCL20 was evaluated in NCM460, a normal colonic epithelial cell line, stimulated with TGF-β1 and TNF-α, and in Smad7 over-expressing NCM460 cells. CCL20 and Smad7 expression were assessed in sections of CD intestinal specimens by immunochemistry, and in CD colonic explants treated with mongersen, a Smad7 antisense oligonucleotide. CCL20 was examined in serum samples taken from 95 of 166 active CD patients receiving mongersen or placebo for 2 weeks and participating in a phase II, multicentre, double-blind, placebo-controlled study. RESULTS CCL20 expression was increased by TNF-α, and this effect was inhibited by TGF-β1 in NCM460 cells, but not in Smad7 over-expressing NCM460 cells. In CD, epithelium CCL20 and Smad7 co-localised, and treatment of CD explants with mongersen reduced CCL20 production. During follow-up, in responders to mongersen, serum CCL20 levels significantly decreased, whereas patients without response/remission to mongersen and placebo patients did not have change in CCL20. CONCLUSIONS TGF-β1 reduces intestinal epithelial cell-derived CCL20 production, an effect abrogated by Smad7. CD patients responding to mongersen demonstrated a reduction in serum CCL20.
Collapse
Affiliation(s)
- Irene Marafini
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Ivan Monteleone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Davide Di Fusco
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Veronica De Simone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesco Pallone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
72
|
Lee HJ, Park JM, Hahm KB. [Role of Inhibitory Transforming Growth Factor-β Signal Smad7 in Helicobacter pylori-associated Gastric Damage]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2017; 68:186-194. [PMID: 27780942 DOI: 10.4166/kjg.2016.68.4.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background/Aims Transforming growth factor-beta (TGF-β) is a cytokine implicated in the susceptibility, development, and progression of gastrointestinal cancer and certain other neoplasms. In the later stages of cancer, TGF-β not only acts as a bystander of host-immune response, but also contributes to cell growth, invasion, and metastasis. In the current study, we generated gastric mucosal cells that stably express Smad7, and explored the Helicobacter pylori-associated biological changes between mock-transfected and Smad7-transfected RGM1 cells. Methods RGM1 cells stably transfected with Smad7 were infected with H. pylori, and molecular changes in apoptotic markers and inflammatory mediators were examined. Several candidate genes were explored in Smad7-overexpressing cells after H. pylori infection. Results Overexpression of Smad7 in RGM1 cells significantly increased the H. pylori-induced cytotoxicity compared to mock-transfected cells. Exaggerated increases in inflammatory mediators, cyclooxygenase 2, inducible NO synthase, and augmented apoptosis were noted in Smad7-overexpressing cells, whereas mitigated heme oxygenase 1 was noted in Smad7- overexpressing cells. These phenomena were reversed in cells transfected with Smad7 siRNA. Conclusions These data suggest that inhibition of Smad7 is a possible target for mitigating H. pylori-associated inflammation.
Collapse
Affiliation(s)
- Ho Jae Lee
- Department of Biochemistry, Gachon University School of Medicine, Incheon, Korea
| | - Jong Min Park
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam, Korea
| | - Ki Baik Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, CHA University, Seongnam, Korea.,Digestive Disease Center, CHA Bundang Medical Center, Seongnam, Korea
| |
Collapse
|
73
|
Gabbani T, Deiana S, Marocchi M, Annese V. Genetic risk variants as therapeutic targets for Crohn's disease. Expert Opin Ther Targets 2017; 21:381-390. [PMID: 28281904 DOI: 10.1080/14728222.2017.1296431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023]
Abstract
The pathogenesis of Inflammatory bowel diseases (IBD) is multifactorial, with interactions between genetic and environmental factors. Despite the existence of genetic factors being largely demonstrated by epidemiological data and several genetic studies, only a few findings have been useful in term of disease prediction, disease progression and targeting therapy. Areas covered: This review summarizes the results of genome-wide association studies in Crohn's disease, the role of epigenetics and the recent discovery by genetic studies of new pathogenetic pathways. Furthermore, it focuses on the importance of applying genetic data to clinical practice, and more specifically how to better target therapy and predict potential drug-related toxicity. Expert opinion: Some genetic markers identified in Crohn`s disease have allowed investigators to hypothesize about, and in some cases, prove the usefulness of new specific therapeutic agents. However, the heterogeneity and complexity of this disease has so far limited the daily clinical use of genetic information. Finally, the study of the implications of genetics on therapy, either to predict efficacy or avoid toxicity, is considered still to be in its infancy.
Collapse
Affiliation(s)
- Tommaso Gabbani
- a Gastroenterology UO , Azienda Unita Sanitaria Locale della Romagna , Forlì , Italy
| | - Simona Deiana
- b Division of Gastroenterology , AOU Careggi University Hospital , Florence , Italy
| | - Margherita Marocchi
- c Division of Gastroenterology , AOU Modena University Hospital , Modena , Italy
| | - Vito Annese
- d Department of Gastroenterology , Valiant Clinic , Dubai , UAE
| |
Collapse
|
74
|
Hypoxia and inflammatory bowel disease. Microbes Infect 2017; 19:210-221. [DOI: 10.1016/j.micinf.2016.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/17/2022]
|
75
|
Abraham C, Dulai PS, Vermeire S, Sandborn WJ. Lessons Learned From Trials Targeting Cytokine Pathways in Patients With Inflammatory Bowel Diseases. Gastroenterology 2017; 152:374-388.e4. [PMID: 27780712 PMCID: PMC5287922 DOI: 10.1053/j.gastro.2016.10.018] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 02/08/2023]
Abstract
Insights into the pathogenesis of inflammatory bowel diseases (IBDs) have provided important information for the development of therapeutics. Levels of interleukin 23 (IL23) and T-helper (Th) 17 cell pathway molecules are increased in inflamed intestinal tissues of patients with IBD. Loss-of-function variants of the IL23-receptor gene (IL23R) protect against IBD, and, in animals, blocking IL23 reduces the severity of colitis. These findings indicated that the IL23 and Th17 cell pathways might be promising targets for the treatment of IBD. Clinical trials have investigated the effects of agents designed to target distinct levels of the IL23 and Th17 cell pathways, and the results are providing insights into IBD pathogenesis and additional strategies for modulating these pathways. Strategies to reduce levels of proinflammatory cytokines more broadly and increase anti-inflammatory mechanisms also are emerging for the treatment of IBD. The results from trials targeting these immune system pathways have provided important lessons for future trials. Findings indicate the importance of improving approaches to integrate patient features and biomarkers of response with selection of therapeutics.
Collapse
Affiliation(s)
- Clara Abraham
- Section of Digestive Diseases, Yale University, New Haven, Connecticut.
| | - Parambir S Dulai
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| | - Séverine Vermeire
- Department of Gastroenterology, University Hospital Leuven, Leuven, Belgium
| | - William J Sandborn
- Division of Gastroenterology, University of California, San Diego, La Jolla, California
| |
Collapse
|
76
|
Monteleone I, Marafini I, Dinallo V, Di Fusco D, Troncone E, Zorzi F, Laudisi F, Monteleone G. Sodium chloride-enriched Diet Enhanced Inflammatory Cytokine Production and Exacerbated Experimental Colitis in Mice. J Crohns Colitis 2017; 11:237-245. [PMID: 27473029 DOI: 10.1093/ecco-jcc/jjw139] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/01/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Environmental factors are supposed to play a decisive role in the pathogenesis of inflammatory bowel diseases [IBDs]. Increased dietary salt intake has been linked with the development of autoimmune diseases, but the impact of a salt-enriched diet on the course of IBD remains unknown. In this study, we examined whether high salt intake alters mucosal cytokine production and exacerbates colitis. METHODS Normal intestinal lamina propria mononuclear cells [LPMCs] were activated with anti-CD3/CD28 in the presence or absence of increasing concentrations of sodium chloride [NaCl] and/or SB202190, a specific inhibitor of p38/MAP Kinase. For in vivo experiments, a high dose of NaCl was administered to mice 15 days before induction of trinitrobenzene-sulfonic acid [TNBS]-colitis or dextran sulfate sodium [DSS]-colitis. In parallel, mice were given SB202190 before induction of TNBS-colitis. Transcription factors and effector cytokines were evaluated by flow-cytometry and real-time PCR. RESULTS IL-17A, IL-23R, TNF-α, and Ror-γT were significantly increased in human LPMCs following NaCl exposure, while there was no significant change in IFN-γ, T-bet or Foxp3. Pharmacologic inhibition of p38/MAPK abrogated the NaCl-inducing effect on LPMC-derived cytokines. Mice receiving the high-salt diet developed a more severe colitis than control mice, and this effect was preventable by SB202190. CONCLUSIONS Our data indicated that exposure of intestinal mononuclear cells to a high-NaCl diet enhanced effector cytokine production and contributed to the exacerbation of experimental colitis in mice.
Collapse
Affiliation(s)
- Ivan Monteleone
- Dipartimento di Biomedicina e Prevenzione, Università Tor Vergata, Rome, Italy;
| | - Irene Marafini
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Vincenzo Dinallo
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Davide Di Fusco
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Edoardo Troncone
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Francesca Zorzi
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Federica Laudisi
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| | - Giovanni Monteleone
- Cattedra di Gastroenterologia, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Rome, Italy
| |
Collapse
|
77
|
Chan HCH, Ng SC. Emerging biologics in inflammatory bowel disease. J Gastroenterol 2017; 52:141-150. [PMID: 27832357 DOI: 10.1007/s00535-016-1283-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 02/04/2023]
Abstract
Early biologic therapy is recommended in patients with inflammatory bowel disease and poor prognostic factors and in those refractory to conventional medications. Anti-tumor necrosis factor (anti-TNF) agents are the most commonly used biologic agents. However, some patients may not have an initial response to anti-TNF therapy, and one-third will develop loss of response over time. Anti-TNF drugs can also be associated with side effects. In addition, the use of biologics is currently limited by their cost, especially in developing countries. A number of new therapeutic targets, including novel small molecules, and cellular therapy are available or under investigation. These novel molecules include oral Janus kinase (JAK) inhibitor (tofacitinib), interleukin inhibitor (ustekinumab), oral SMAD7 antisense oligonucleotide (mongersen), and anti-integrin inhibitors (vedolizumab). Here, we review the mechanisms of action, the efficacy, and the safety data of these novel agents. Biological products that are highly similar to reference biologic products whose patents have expired-also known as "biosimilars"-can be produced at lower cost with similar efficacy, and are also available for the treatment of IBD. We review the efficacy data for such agents as well.
Collapse
Affiliation(s)
- Heyson Chi-Hey Chan
- Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Siew Chien Ng
- Department of Medicine and Therapeutics, Institute of Digestive Disease, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
78
|
Abstract
Inflammatory bowel diseases (IBDs) are thought to develop as a result of complex interactions between host genetics, the immune system and the environment including the gut microbiome. Although an improved knowledge of the immunopathogenesis of IBDs has led to great advances in therapy such as the highly effective anti-tumor necrosis factor class of medications, a significant proportion of patients with Crohn's disease and ulcerative colitis do not respond to anti-tumor necrosis factor antibodies. Further understanding of the different immune pathways involved in the genesis of chronic intestinal inflammation is required to help find effective treatments for IBDs. In this review, the role of the mucosal innate and adaptive immune system in IBD is summarized, highlighting new areas of discovery which may hold the key to identifying novel predictive or prognostic biomarkers and new avenues of therapeutic discovery.
Collapse
|
79
|
Sedda S, De Simone V, Marafini I, Bevivino G, Izzo R, Paoluzi OA, Colantoni A, Ortenzi A, Giuffrida P, Corazza GR, Vanoli A, Di Sabatino A, Pallone F, Monteleone G. High Smad7 sustains inflammatory cytokine response in refractory coeliac disease. Immunology 2016; 150:356-363. [PMID: 27861825 DOI: 10.1111/imm.12690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Refractory coeliac disease (RCD) is a form of coeliac disease (CD) resistant to gluten-free diet and associated with elevated risk of complications. Many effector cytokines over-produced in the gut of patients with RCD are supposed to amplify the tissue-destructive immune response, but it remains unclear if the RCD-associated mucosal inflammation is sustained by defects in counter-regulatory mechanisms. The aim of the present study was to determine whether RCD-related inflammation is marked by high Smad7, an intracellular inhibitor of transforming growth factor-β1 (TGF-β1 ) activity. Smad7 was evaluated in duodenal biopsy samples of patients with RCD, patients with active CD, patients with inactive CD and healthy controls by Western blotting, immunohistochemistry and real-time PCR. In the same samples, TGF-β1 and phosphorylated (p)-Smad2/3 were evaluated by ELISA and immunohistochemistry, respectively. Pro-inflammatory cytokine expression was evaluated in RCD samples cultured with Smad7 sense or antisense oligonucleotide. Smad7 protein, but not RNA, expression was increased in RCD compared with active and inactive CD patients and healthy controls and this was associated with defective TGF-β1 signalling, as marked by diminished p-Smad2/3 expression. TGF-β1 protein content did not differ among groups. Knockdown of Smad7 in RCD biopsy samples reduced interleukin-6 and tumour necrosis factor-α expression. In conclusion, in RCD, high Smad7 associates with defective TGF-β1 signalling and sustains inflammatory cytokine production. These results indicate a novel mechanism by which the mucosal cytokine response is amplified in RCD and suggest that targeting Smad7 can be therapeutically useful in RCD.
Collapse
Affiliation(s)
- Silvia Sedda
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Veronica De Simone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irene Marafini
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Gerolamo Bevivino
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Roberta Izzo
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Alfredo Colantoni
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Angela Ortenzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Giuffrida
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Gino R Corazza
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, San Matteo Hospital, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesco Pallone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
80
|
Bilsborough J, Targan SR, Snapper SB. Therapeutic Targets in Inflammatory Bowel Disease: Current and Future. ACTA ACUST UNITED AC 2016. [DOI: 10.1038/ajgsup.2016.18] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
81
|
|
82
|
Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets. Transl Res 2016; 176:38-68. [PMID: 27220087 DOI: 10.1016/j.trsl.2016.04.009] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/17/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis and Crohn's disease are the 2 major phenotypes of inflammatory bowel disease (IBD), which are influenced by a complex interplay of immunological and genetic elements, though the precise etiology still remains unknown. With IBD developing into a globally prevailing disease, there is a need to explore new targets and a thorough understanding of the pathophysiological differences between the healthy and diseased gut could unearth new therapeutic opportunities. In this review, we provide an overview of the major aspects of IBD pathogenesis and thereafter present a comprehensive analysis of the gut pathophysiology leading to a discussion on some of the most promising targets and biologic therapies currently being explored. These include various gut proteins (CXCL-10, GATA-3, NKG2D, CD98, microRNAs), immune cells recruited to the gut (mast cells, eosinophils, toll-like receptors 2, 4), dysregulated proinflammatory cytokines (interleukin-6, -13, -18, -21), and commensal microbiota (probiotics and fecal microbiota transplantation). We also evaluate some of the emerging nonconventional therapies being explored in IBD treatment focusing on the latest developments in stem cell research, oral targeting of the gut-associated lymphoid tissue, novel anti-inflammatory signaling pathway targeting, adenosine deaminase inhibition, and the beneficial effects of antioxidant and nutraceutical therapies. In addition, we highlight the growth of biologics and their targets in IBD by providing information on the preclinical and clinical development of over 60 biopharmaceuticals representing the state of the art in ulcerative colitis and Crohn's disease drug development.
Collapse
|
83
|
Auci DL, Egilmez NK. Synergy of Transforming Growth Factor Beta 1 and All Trans Retinoic Acid in the Treatment of Inflammatory Bowel Disease: Role of Regulatory T cells. ACTA ACUST UNITED AC 2016; 3. [PMID: 28603774 DOI: 10.15226/2374-815x/3/4/00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nejat K Egilmez
- University of Louisville, Department of Microbiology and Immunology, Louisville, KY
| |
Collapse
|
84
|
Raad MA, Chams NH, Sharara AI. New and Evolving Immunotherapy in Inflammatory Bowel Disease. Inflamm Intest Dis 2016; 1:85-95. [PMID: 29922662 PMCID: PMC5988105 DOI: 10.1159/000445986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Crohn's disease and ulcerative colitis are chronic inflammatory disorders associated with a dysregulated adaptive and innate immune response to gut commensals in genetically susceptible individuals. The pathogenesis of inflammatory bowel disease is complex, and the disease is characterized by significant phenotypic and genotypic heterogeneity. SUMMARY The introduction of anti-TNF biologics has resulted in improved clinical outcomes in patients with severe and moderately severe disease, but the current treatment paradigm continues to depend on systemic immunosuppression (steroids and immunomodulators) and surgical intervention in a significant number of patients, underscoring a significant unmet need. More recently, a number of genetic and immunologic abnormalities have been unraveled including aberrant intestinal mucosal defense function, abnormal intestinal permeability, dysregulated bacterial antigen processing by macrophages and presentation to T cells, cellular immune regulation and signaling, cytokine production, and leukocyte trafficking. KEY MESSAGES Understanding these molecular mechanisms and effector pathways presents an opportunity for the development of new and improved targeted therapies.
Collapse
Affiliation(s)
- Mohamad A. Raad
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nour H. Chams
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ala I. Sharara
- Division of Gastroenterology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
85
|
Ardizzone S, Bevivino G, Monteleone G. Mongersen, an oral Smad7 antisense oligonucleotide, in patients with active Crohn's disease. Therap Adv Gastroenterol 2016; 9:527-32. [PMID: 27366221 PMCID: PMC4913329 DOI: 10.1177/1756283x16636781] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Crohn's disease (CD), the tissue-damaging inflammation is sustained by defects of counter-regulatory mechanisms, which normally inhibit immune-inflammatory signals and promote repair of mucosal injury. In particular, in inflamed gut of CD patients there are elevated levels of Smad7, an intracellular protein that inhibits the function of transforming growth factor (TGF)-β1. Knockdown of Smad7 with a specific antisense oligonucleotide, named mongersen, restores TGF-β1 activity thus leading to suppression of inflammatory pathways and resolution of colitis in mice. Consistently, oral administration of mongersen to patients with active CD induces clinical remission. In this article, we review the available data supporting the pathogenic role of Smad7 in CD and discuss the results of recent phase I and II trials assessing the efficacy and safety of mongersen in CD patients.
Collapse
Affiliation(s)
- Sandro Ardizzone
- Gastroenterology Unit, Department of Biomedical and Clinical Sciences, ‘Luigi Sacco’ University Hospital, 20157 Milano, Italy
| | - Gerolamo Bevivino
- Department of Systems Medicine, University of Rome ‘Tor Vergata’, Via Montpellier, 1, 00133 Rome, Italy
| | | |
Collapse
|
86
|
Ratanasirintrawoot S, Israsena N. Stem Cells in the Intestine: Possible Roles in Pathogenesis of Irritable Bowel Syndrome. J Neurogastroenterol Motil 2016; 22:367-82. [PMID: 27184041 PMCID: PMC4930294 DOI: 10.5056/jnm16023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
Irritable bowel syndrome is one of the most common functional gastrointestinal (GI) disorders that significantly impair quality of life in patients. Current available treatments are still not effective and the pathophysiology of this condition remains unclearly defined. Recently, research on intestinal stem cells has greatly advanced our understanding of various GI disorders. Alterations in conserved stem cell regulatory pathways such as Notch, Wnt, and bone morphogenic protein/TGF-β have been well documented in diseases such as inflammatory bowel diseases and cancer. Interaction between intestinal stem cells and various signals from their environment is important for the control of stem cell self-renewal, regulation of number and function of specific intestinal cell types, and maintenance of the mucosal barrier. Besides their roles in stem cell regulation, these signals are also known to have potent effects on immune cells, enteric nervous system and secretory cells in the gut, and may be responsible for various aspects of pathogenesis of functional GI disorders, including visceral hypersensitivity, altered gut motility and low grade gut inflammation. In this article, we briefly summarize the components of these signaling pathways, how they can be modified by extrinsic factors and novel treatments, and provide evidenced support of their roles in the inflammation processes. Furthermore, we propose how changes in these signals may contribute to the symptom development and pathogenesis of irritable bowel syndrome.
Collapse
Affiliation(s)
- Sutheera Ratanasirintrawoot
- Stem Cell and Cell Therapy Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Chulalongkorn University, Bangkok, Thailand.,Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
87
|
Monteleone I, Marafini I, Zorzi F, Di Fusco D, Dinallo V, Rizzo A, Sileri P, Sica G, Monteleone G. Smad7 Knockdown Restores Aryl Hydrocarbon Receptor-mediated Protective Signals in the Gut. J Crohns Colitis 2016; 10:670-677. [PMID: 26818761 DOI: 10.1093/ecco-jcc/jjw030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/15/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIM In Crohn's disease [CD], the pathological process is driven by an excessive immune response that is poorly counterbalanced by regulatory mechanisms. One such a mechanism involves aryl hydrocarbon receptor [AhR], a transcription factor that delivers protective signals in the gut. Expression of AhR is reduced in CD lamina propria mononuclear cells [LPMC] even though factors accounting for such a defect remain unknown. Since CD LPMC express elevated levels of Smad7, an inhibitor of transforming growth factor beta 1 [TGF-β1] activity, and TGF-β1 regulates AhR in other systems, we examined the link between AhR and Smad7 in the gut. METHODS AhR and interleukin [IL]-22 were evaluated in normal LPMC stimulated with TGF-β1 and 6-formylindolo[3,2-b]carbazole [Ficz], an activator of AhR, and in CD LPMC incubated with a Smad7 antisense oligonucleotide and then stimulated with Ficz and TGF-β1. AhR and IL-22 expression was evaluated in LPMC of Smad7-transgenic mice. Finally, we evaluated the protective effect of Ficz on colitis in RAG1 mice injected with naïve or Smad7-overexpressing T cells. RESULTS In normal LPMC, TGF-β1 induced AhR and this event was associated with increased production of IL-22 following stimulation with Ficz. Treatment of CD LPMC with Smad7 antisense oligonucleotide enabled TGF-β1 to enhance AhR expression. Consistently, AhR expression and Ficz-induced IL-22 production were markedly reduced in T cells of Smad7-transgenic mice. In RAG1 mice, Ficz ameliorated colitis induced by wild type T cells but did not affect colitis induced by transfer of Smad7-overexpressing T cells. CONCLUSIONS The inverse correlation between Smad7 and AhR expression helps to propagate inflammatory signals in the gut.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pierpaolo Sileri
- Dipartimento di Chirurgia, Cattedra di Gastroenterologia, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Sica
- Dipartimento di Chirurgia, Cattedra di Gastroenterologia, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
88
|
Padua D, Vu JP, Germano PM, Pisegna JR. The Role of Neuropeptides in Mouse Models of Colitis. J Mol Neurosci 2016; 59:203-210. [PMID: 26646243 PMCID: PMC4884658 DOI: 10.1007/s12031-015-0688-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
Abstract
Inflammatory bowel disease (IBD) constitutes an important clinically significant condition that results in morbidity and mortality. IBD can be generally classified into either ulcerative colitis (UC) or Crohn's disease (CD) that differs in the clinical and histopathology. The role of neuropeptides in the pathogenesis of these conditions is becoming increasingly recognized for their importance in modulating the inflammatory state. Animal models provide the greatest insight to better understand the pathophysiology of both disorders which will hopefully allow for improved treatment strategies. This review will provide a better understanding of the role of murine models for studying colitis.
Collapse
Affiliation(s)
- David Padua
- Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - John P Vu
- Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Divisions of Pulmonary and Critical Care, Department of Veterans Affairs, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Patrizia M Germano
- Divisions of Pulmonary and Critical Care, Department of Veterans Affairs, VA Greater Los Angeles Healthcare System, Los Angeles, CA, 90073, USA
| | - Joseph R Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
89
|
Seo GS. [Efficacy and Safety of an Oral SMAD7 Antisense Drug for Active Crohn's Disease]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 65:384-5. [PMID: 26288865 DOI: 10.4166/kjg.2015.65.6.384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
90
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
Affiliation(s)
- Mei Lan Chen
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| | - Mark S. Sundrud
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, FL 33458 USA
| |
Collapse
|
91
|
Abstract
Pathogenesis of the inflammatory bowel diseases (IBDs), such as ulcerative colitis (UC) and Crohn's disease (CD), involve proinflammatory changes within the microbiota, chronic immune-mediated inflammatory responses, and epithelial dysfunction. Converging data from genome-wide association studies, mouse models of IBD, and clinical trials indicate that cytokines are key effectors of both normal homeostasis and chronic inflammation in the gut. Yet many questions remain concerning the role of specific cytokines in different IBDs within distinct regions of the gut, and regarding cellular mechanisms of action. In this article, we review current and emerging concepts concerning the role of cytokines in IBD with a focus on immune regulation, T cell subsets, and potential clinical applications.
Collapse
|
92
|
Abdalla M, Sheikh SZ. Harnessing the Power of Posttranscriptional Gene Silencing in Crohn's Disease. Clin Transl Gastroenterol 2016; 7:e160. [PMID: 27030950 PMCID: PMC4822099 DOI: 10.1038/ctg.2016.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Maisa Abdalla
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shehzad Z Sheikh
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
93
|
Nielsen OH, Seidelin JB, Ainsworth M, Coskun M. Will novel oral formulations change the management of inflammatory bowel disease? Expert Opin Investig Drugs 2016; 25:709-18. [PMID: 26967267 DOI: 10.1517/13543784.2016.1165204] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The traditional management of inflammatory bowel disease (IBD) with sulphasalazine/5-aminosalicylic acid, glucocorticoids and immunomodulators (i.e., thiopurines and methotrexate) was nearly two decades ago extended with intravenously or subcutaneously administered biologics (i.e., tumor necrosis factor inhibitors and later gut-selective integrin antagonists). However, recently, orally administered treatments with simple, well-characterized, and stable structures consisting of either small molecules or anti-sense therapy have been devised. AREAS COVERED This review discusses the current approaches with promising new oral drugs with distinct modes of action, including: the Janus kinase inhibitors (i.e., tofacitinib, filgotinib and peficitinib); the immunomodulatory drug (laquinimod); a small α4 antagonist (AJM300); agonists for sphingosine-phosphate receptors (i.e., ozanimod, APD334, and amiselimod), as well as anti-sense therapy (mongersen) targeting SMAD7, drugs which directly target intracellular pathways of relevance for intestinal inflammation. EXPERT OPINION A new avenue using easily administered oral therapies for the management of IBD is being introduced. While their place in the clinical armamentarium remains to be proven, it is likely that many of these drugs will find their place in the treatment algorithm of IBD in the next few years. Thus, we will face times in which IBD therapy will be based on significantly more tablets than prescribed today.
Collapse
Affiliation(s)
- Ole Haagen Nielsen
- a Department of Gastroenterology, Medical Section, Herlev Hospital , University of Copenhagen , Herlev , Denmark
| | - Jakob Benedict Seidelin
- a Department of Gastroenterology, Medical Section, Herlev Hospital , University of Copenhagen , Herlev , Denmark
| | - Mark Ainsworth
- a Department of Gastroenterology, Medical Section, Herlev Hospital , University of Copenhagen , Herlev , Denmark
| | - Mehmet Coskun
- a Department of Gastroenterology, Medical Section, Herlev Hospital , University of Copenhagen , Herlev , Denmark.,b The Bioinformatics Centre, Biotech Research and Innovation Centre (BRIC) , University of Copenhagen , Herlev , Denmark
| |
Collapse
|
94
|
Allen PB, Peyrin-Biroulet L. Immunomodulators for the treatment of Crohn's disease in adults: optimal use and prospects for future drug treatments. Expert Rev Clin Immunol 2016; 12:741-9. [PMID: 26900725 DOI: 10.1586/1744666x.2016.1154789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Crohn's disease (CD) requires treatment beyond symptoms by enabling and maintaining mucosal healing and therefore clinical remission. However, with the increasing use of biologics there have been safety concerns and there is a significant cost implication with the early use of biologics. Therefore, it is imperative that patients with severe/complicated disease or poor prognostic factors are treated with an aggressive strategy while all remaining patients should be treated in a step-up strategy. The potential for disease modification with thiopurines and methotrexate is debated in CD when they are used as a monotherapy. In this review we discuss existing and newer therapies that have recently been developed for CD. We will also provide an algorithm for current management of adult CD patients in routine clinical practice.
Collapse
Affiliation(s)
- Patrick B Allen
- a Gastroenterology , Ulster Hospital , Belfast , N. Ireland, UK
| | - Laurent Peyrin-Biroulet
- b Department of Gastroenterology , University Hospital of Nancy-Brabois , Vandoeuvre-lès-Nancy , France
| |
Collapse
|
95
|
TGF-β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment. Inflamm Res 2016; 65:355-65. [PMID: 26856334 DOI: 10.1007/s00011-016-0921-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 11/07/2015] [Accepted: 01/27/2016] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Although animal studies demonstrated that Smad7 induction ameliorates TGF-β/SMAD-mediated fibrogenesis, its role in human hepatic diseases is rather obscure. Our study explored the activation status of TGF-β/activin pathway in patients with chronic liver diseases, and how it is affected by successful antiviral treatment in chronic HBV hepatitis (CHB). METHODS Thirty-seven CHB patients (19 with active disease, 14 completely remitted on long-term antiviral treatment and 4 with relapse after treatment withdrawal), 18 patients with chronic HCV hepatitis, 12 with non-alcoholic fatty liver disease (NAFLD), and 3 controls were enrolled in the study. Liver mRNA levels of CTGF, all TGF-β/activin isoforms, their receptors and intracellular mediators (SMADs) were evaluated using qRT-PCR and were correlated with the grade of liver inflammation and fibrosis staging. The expression and localization of pSMAD2 and pSMAD3 were assessed by immunohistochemistry. RESULTS TGF-β signalling is activated in CHB patients with active disease, while SMAD7 is up-regulated during the resolution of inflammation after successful treatment. SMAD7 overexpression was also observed in NAFLD patients exhibiting no or minimal fibrosis, despite the activation of TGF-β/activin signaling. CONCLUSIONS SMAD7 overexpression might represent a mechanism limiting TGF-β-mediated fibrogenesis in human hepatic diseases; therefore, SMAD7 induction likely represents a candidate for novel therapeutic approaches.
Collapse
|
96
|
Marafini I, Di Fusco D, Calabrese E, Sedda S, Pallone F, Monteleone G. Antisense approach to inflammatory bowel disease: prospects and challenges. Drugs 2016; 75:723-30. [PMID: 25911184 DOI: 10.1007/s40265-015-0391-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the great success of anti-tumour necrosis factor-based therapies, the treatment of Crohn's disease (CD) and ulcerative colitis (UC) still remains a challenge for clinicians, as these drugs are not effective in all patients, their efficacy may wane with time, and their use can increase the risk of adverse events and be associated with the development of new immune-mediated diseases. Therefore, new therapeutic targets are currently being investigated both in pre-clinical studies and in clinical trials. Among the technologies used to build new therapeutic compounds, the antisense oligonucleotide (ASO) approach is slowly gaining space in the field of inflammatory bowel diseases (IBDs), and three ASOs have been investigated in clinical trials. Systemic administration of alicaforsen targeting intercellular adhesion molecule-1, a protein involved in the recruitment of leukocytes to inflamed intestine, was not effective in CD, even though the same compound was of benefit when given as an enema to UC patients. DIMS0150, targeting nuclear factor (NF) κB-p65, a transcription factor that promotes pro-inflammatory responses, was very promising in pre-clinical studies and is currently being tested in clinical trials. Oral mongersen, targeting Smad7, an intracellular protein that inhibits transforming growth factor (TGF)-β1 activity, was safe and well tolerated by CD patients, and the results of a phase II clinical trial showed the efficacy of the drug in inducing clinical remission in patients with active disease. In this leading article, we review the rationale and the clinical data available regarding these three agents, and we discuss the challenge of using ASOs in IBD.
Collapse
Affiliation(s)
- Irene Marafini
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
In Crohn's disease and ulcerative colitis, the tissue-damaging destructive immune response is sustained by defects of counterregulatory mechanisms, which normally attenuate inflammatory pathways and promote repair of mucosal injury. One such mechanism involves transforming growth factor-β1 (TGF-β1), a cytokine that is produced by multiple cell types and targets both immune and nonimmune cells. Both in vitro and in vivo studies strongly support the role of TGF-β1 as a negative regulator of mucosal inflammation and indicate that defective production/activity of this cytokine can lead to the development of or exacerbate colitis. Interestingly, in the inflamed intestine of patients with inflammatory bowel disease, TGF-β1 expression is upregulated but TGF-β1-mediated immunosuppression is markedly impaired because of high Smad7, an intracellular inhibitor of TGF-β1-associated signaling. Consistently, knockdown of Smad7 with a specific antisense oligonucleotide restores TGF-β1 activity, thus leading to decreased production of inflammatory cytokines in both colitic mice and inflammatory bowel disease patients and attenuates clinical activity in Crohn's disease patients. In this article, we review data supporting the role of Smad7 in the pathogenesis of inflammatory bowel disease and discuss whether inhibition of Smad7 is therapeutically useful in Crohn's disease and how the benefit/risk of such an intervention should be monitored in the patients.
Collapse
|
98
|
Vanhove W, Nys K, Vermeire S. Therapeutic innovations in inflammatory bowel diseases. Clin Pharmacol Ther 2015; 99:49-58. [PMID: 26509246 DOI: 10.1002/cpt.286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022]
Abstract
Inflammatory bowel disease (IBD) is a spectrum of complex multifactorial immune disorders characterized by chronic inflammation of the gut. Significant advances have been made in unraveling the pathogenesis of this disease spectrum, which have spurred the discovery of new therapeutic targets and strategies. In this review, we highlight the emerging new classes of IBD therapeutics under clinical evaluation and their method of action, including JAK inhibitors, anti-SMAD7 oligonucleotides, and cell-based therapies. Moreover, we discuss how an approach based on unique molecular insights in a given patient will, in the future, lead to a truly individualized/tailored disease management, starting at diagnosis, aiding in prognosis, and resulting in a personalized therapeutic approach.
Collapse
Affiliation(s)
- W Vanhove
- Department of Clinical and Experimental Medicine, University Hospitals Leuven, Leuven, Belgium
| | - K Nys
- Department of Clinical and Experimental Medicine, University Hospitals Leuven, Leuven, Belgium
| | - S Vermeire
- Department of Clinical and Experimental Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
99
|
miR-195 plays a role in steroid resistance of ulcerative colitis by targeting Smad7. Biochem J 2015; 471:357-67. [PMID: 26303523 DOI: 10.1042/bj20150095] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022]
Abstract
An imbalance in pro- and anti-inflammation is an important mechanism of steroid resistance in UC (ulcerative colitis), and miRNAs may participate in this process. The present study aimed to explore whether miRNAs play a role in the steroid resistance of UC by regulating gene expression of the inflammation signal pathway. SS (steroid-sensitive) patients, SR (steroid-resistant) patients and healthy individuals were recruited. In vivo miRNA profiles of serum samples showed that miR-195 was decreased significantly in the SR group compared with the SS group (P<0.05). This result was confirmed by qPCR (quantitative real-time PCR) and miRNA ISH (in situ hybridization) in serum and colon tissue samples. Online software was used to identify Smad7 mRNA as a potential target of miR-195. The direct interaction of miR-195 and Smad7 mRNA was investigated using a biotinylated miR-195 pull-down assay. Overexpression of a miR-195 precursor lowered cellular levels of Smad7 protein; conversely, antagonism of miR-195 enhanced Smad7 translation without disturbing Smad7 mRNA levels. A luciferase reporter assay revealed a repressive effect of miR-195 via a single Smad7 3'-UTR target site, and point mutation of this site prevented miR-195-induced repression of Smad7 translation. Furthermore, increased levels of miR-195 led to a decrease in c-Jun and p65 expression. In contrast, transfection with anti-miR-195 led to increased levels of c-Jun and p65 protein. The decrease in miR-195 led to an increase in Smad7 expression and corresponding up-regulation of p65 and the AP-1 (activator protein 1) pathway, which might explain the mechanism of steroid resistance in UC patients.
Collapse
|
100
|
Dual TNF-α/IL-12p40 Interference as a Strategy to Protect Against Colitis Based on miR-16 Precursors With Macrophage Targeting Vectors. Mol Ther 2015; 23:1611-21. [PMID: 26073885 DOI: 10.1038/mt.2015.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
Cytokines are central components of the mucosal inflammatory responses that take place during the development of Crohn's disease. Cell-specific combination therapies against cytokines may lead to increased efficacy and even reduced side effects. Therefore, a colonic macrophage-specific therapy using miR-16 precursors that can target both TNF-α and IL-12p40 was tested for its efficacy in experimental colitic mice. Galactosylated low molecular weight chitosan (G-LMWC) associated with miR-16 precursors were intracolonically injected into mice. The cellular localization of miR-16 precursors was determined. The therapeutic effects and possible mechanism were further studied in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitic mice. The results show that specific upregulation of miR-16 level in colonic macrophages significantly reduces TNF-α and IL-12p40 expression, which could suppress the associated mucosal inflammation and ultimately result in the relief of colitic symptoms. This strategy, based on the dual silencing of colonic macrophage-specific cytokines, represents a potential therapeutic approach that may be valuable for colitis therapy.
Collapse
|