51
|
Gobbetti T, Dalli J, Colas RA, Federici Canova D, Aursnes M, Bonnet D, Alric L, Vergnolle N, Deraison C, Hansen TV, Serhan CN, Perretti M. Protectin D1 n-3 DPA and resolvin D5 n-3 DPA are effectors of intestinal protection. Proc Natl Acad Sci U S A 2017; 114:3963-3968. [PMID: 28356517 PMCID: PMC5393238 DOI: 10.1073/pnas.1617290114] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The resolution of inflammation is an active process orchestrated by specialized proresolving lipid mediators (SPM) that limit the host response within the affected tissue; failure of effective resolution may lead to tissue injury. Because persistence of inflammatory signals is a main feature of chronic inflammatory conditions, including inflammatory bowel diseases (IBDs), herein we investigate expression and functions of SPM in intestinal inflammation. Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was used to identify SPMs from n-3 polyunsaturated fatty acids in human IBD colon biopsies, quantifying a significant up-regulation of the resolvin and protectin pathway compared with normal gut tissue. Systemic treatment with protectin (PD)1n-3 DPA or resolvin (Rv)D5n-3 DPA protected against colitis and intestinal ischemia/reperfusion-induced inflammation in mice. Inhibition of 15-lipoxygenase activity reduced PD1n-3 DPA and augmented intestinal inflammation in experimental colitis. Intravital microscopy of mouse mesenteric venules demonstrated that PD1n-3 DPA and RvD5n-3 DPA decreased the extent of leukocyte adhesion and emigration following ischemia-reperfusion. These data were translated by assessing human neutrophil-endothelial interactions under flow: PD1n-3 DPA and RvD5n-3 DPA reduced cell adhesion onto TNF-α-activated human endothelial monolayers. In conclusion, we propose that innovative therapies based on n-3 DPA-derived mediators could be developed to enable antiinflammatory and tissue protective effects in inflammatory pathologies of the gut.
Collapse
Affiliation(s)
- Thomas Gobbetti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Romain A Colas
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Donata Federici Canova
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Marius Aursnes
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Delphine Bonnet
- Department of Internal Medicine and Digestive Diseases, Pole Digestif, Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, Pole Digestif, Centre Hospitalier Universitaire (CHU), 31059 Toulouse, France
| | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, 31300 Toulouse, France
- Unit 1220, INSERM, 31300 Toulouse, France
- Unit 1416, Institut National de la Recherche Agronomique (INRA), 31300 Toulouse, France
- École Nationale Vétérinaire de Toulouse (ENVT), 31300 Toulouse, France
- Université Paul Sabatier (UPS), 31300 Toulouse, France
| | - Celine Deraison
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, 31300 Toulouse, France
- Unit 1220, INSERM, 31300 Toulouse, France
- Unit 1416, Institut National de la Recherche Agronomique (INRA), 31300 Toulouse, France
- École Nationale Vétérinaire de Toulouse (ENVT), 31300 Toulouse, France
- Université Paul Sabatier (UPS), 31300 Toulouse, France
| | - Trond V Hansen
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston MA 02115
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London EC1M 6BQ, United Kingdom;
| |
Collapse
|
52
|
Van Spaendonk H, Ceuleers H, Witters L, Patteet E, Joossens J, Augustyns K, Lambeir AM, De Meester I, De Man JG, De Winter BY. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol 2017; 23:2106-2123. [PMID: 28405139 PMCID: PMC5374123 DOI: 10.3748/wjg.v23.i12.2106] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/20/2017] [Accepted: 03/02/2017] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases.
Collapse
|
53
|
Edgington-Mitchell LE, Barlow N, Aurelio L, Samha A, Szabo M, Graham B, Bunnett N. Fluorescent diphenylphosphonate-based probes for detection of serine protease activity during inflammation. Bioorg Med Chem Lett 2017; 27:254-260. [PMID: 27923620 PMCID: PMC10069441 DOI: 10.1016/j.bmcl.2016.11.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 12/29/2022]
Abstract
Activity-based probes are small molecules that covalently bind to the active site of a protease in an activity-dependent manner. We synthesized and characterized two fluorescent activity-based probes that target serine proteases with trypsin-like or elastase-like activity. We assessed the selectivity and potency of these probes against recombinant enzymes and demonstrated that while they are efficacious at labeling active proteases in complex protein mixtures in vitro, they are less valuable for in vivo studies. We used these probes to evaluate serine protease activity in two mouse models of acute inflammation, including pancreatitis and colitis. As anticipated, the activity of trypsin-like proteases was increased during pancreatitis. Levels of elastase-like proteases were low in pancreatic lysates and colonic luminal fluids, whether healthy or inflamed. Exogenously added recombinant neutrophil elastase was inhibited upon incubation with these samples, an effect that was augmented in inflamed samples compared to controls. These data suggest that endogenous inhibitors and elastase-degrading proteases are upregulated during inflammation.
Collapse
Affiliation(s)
| | - Nicholas Barlow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Luigi Aurelio
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Aminath Samha
- Drug Discovery Biology, Monash University, Parkville, VIC, Australia
| | - Monika Szabo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Bim Graham
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| | - Nigel Bunnett
- Drug Discovery Biology, Monash University, Parkville, VIC, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
54
|
Carlucci C, Petrof EO, Allen-Vercoe E. Fecal Microbiota-based Therapeutics for Recurrent Clostridium difficile Infection, Ulcerative Colitis and Obesity. EBioMedicine 2016; 13:37-45. [PMID: 27720396 PMCID: PMC5264253 DOI: 10.1016/j.ebiom.2016.09.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiome is a complex ecosystem of fundamental importance to human health. Our increased understanding of gut microbial composition and functional interactions in health and disease states has spurred research efforts examining the gut microbiome as a valuable target for therapeutic intervention. This review provides updated insight into the state of the gut microbiome in recurrent Clostridium difficile infection (CDI), ulcerative colitis (UC), and obesity while addressing the rationale for the modulation of the gut microbiome using fecal microbiota transplant (FMT)-based therapies. Current microbiome-based therapeutics in pre-clinical or clinical development are discussed. We end by putting this within the context of the current regulatory framework surrounding FMT and related therapies. There is an increased understanding of gut microbial composition and functional interactions in health and disease states. FMT is effective for rCDI and has led to the development of fecal microbiota-based therapeutics for other indications. For stool-substitute therapies to enter mainstream medicine, further mechanistic studies, RCTs and regulations are needed.
Collapse
Affiliation(s)
- Christian Carlucci
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| | - Elaine O Petrof
- Division of Infectious Diseases/GI Diseases Research Unit Wing, Department of Medicine, Kingston General Hospital, Queen's University, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada.
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
55
|
Abstract
The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer.
Collapse
Affiliation(s)
- Nathalie Vergnolle
- Inserm, U1220, Toulouse, France,Université de Toulouse, Université Paul Sabatier, Institut de Recherche en Santé Digestive (IRSD), Toulouse, France,Inra, U1416, Toulouse, France,Ecole Nationale Vétérinaire de Toulouse (ENVT), France,Department of Pharmacology and Physiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
56
|
Yu Q, Zhang S, Chao K, Feng R, Wang H, Li M, Chen B, He Y, Zeng Z, Chen M. E3 Ubiquitin ligase RNF183 Is a Novel Regulator in Inflammatory Bowel Disease. J Crohns Colitis 2016; 10:713-25. [PMID: 26818663 DOI: 10.1093/ecco-jcc/jjw023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Specific members of the RING finger [RNF] protein family serve as E3 ubiquitin ligases and play important roles in the regulation of inflammation. However, their roles in the pathogenesis of inflammatory bowel disease [IBD] have not been explored. METHODS Genomic microarray of inflamed colon samples from Crohn's disease [CD] patients was performed to identify potential up-regulated genes. Expression of the identified highly up-regulated RNF183 gene was subsequently examined by quantitative reverse transcription polymerase chain reaction [qRT-PCR], western blotting and immunohistochemistry of the intestinal tissues of IBD patients and the colons of trinitrobenzene sulphonic acid [TNBS]-induced colitic mice. RNF183-mediated interaction with the NF-κB pathway and ubiquitination of IκBα were examined by siRNA, plasmid transfection, and immunoprecipitation. The miRNA predicted to target RNF183 was explored and its role in the RNF183/ NF-κB pathway was investigated. RESULTS RNF183 was up-regulated in intestinal epithelial cells in IBD patients and in colitic mice. RNF183 promoted intestinal inflammation via the activation of the NF-κB pathway by increasing the ubiquitination and degradation of IκBα. Computational analysis identified putative binding of miR-7 to RNF183. Transfection of intestinal cells with a miR-7 mimic or inhibitor confirmed its negative regulatory effect on RNF183 expression and ubiquitination of IκBα. miR-7 was down-regulated in inflamed colon tissues of IBD patients and colitic mice. CONCLUSIONS RNF183, which is negatively regulated by miR-7, is a novel regulator promoting intestinal inflammation by increasing the ubiquitination and degradation of IκBα, thereby inducing NF-κB activation. The interaction between RNF183-mediated ubiquitination and miRNA may be an important novel epigenetic mechanism in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Qiao Yu
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Shenghong Zhang
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Kang Chao
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Rui Feng
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Huiling Wang
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Manying Li
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Baili Chen
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Yao He
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Zhirong Zeng
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Minhu Chen
- IBD Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
57
|
Edgington-Mitchell LE. Pathophysiological roles of proteases in gastrointestinal disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G234-9. [PMID: 26702140 DOI: 10.1152/ajpgi.00393.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 01/31/2023]
Abstract
Gastrointestinal diseases, such as irritable bowel syndrome, inflammatory bowel disease, and colorectal cancer, affect a large proportion of the population and are associated with many unpleasant symptoms. Although the causes of these diseases remain largely unknown, there is increasing evidence to suggest that dysregulated protease activity may be a contributing factor. Proteases are enzymes that cleave other proteins, and their activity is normally very tightly regulated. During disease, however, the balance between proteases and their inhibitors is often shifted, leading to altered spatial and temporal control of substrate cleavage. Evaluating protease levels in normal physiology and disease has relied heavily on the use of chemical tools. Although these tools have greatly advanced the field, they are not without caveats. This review provides an introduction to these tools, their application in the gut, and a summary of the current knowledge on the contribution of protease activity to gastrointestinal disease.
Collapse
|
58
|
Moreau J, Mas E. Drug resistance in inflammatory bowel diseases. Curr Opin Pharmacol 2015; 25:56-61. [PMID: 26645664 DOI: 10.1016/j.coph.2015.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/21/2015] [Accepted: 11/11/2015] [Indexed: 12/16/2022]
Abstract
The management of patients with moderate to severe inflammatory bowel diseases, that is, Crohn's disease and ulcerative colitis, remains challenging. In recent years, therapeutic goal evolved from clinical remission to mucosal healing and deep remission. In order to achieve remission, it is important to appropriately choose and use available drugs. Therefore, anti-TNFα treatment should be rapidly used for severe and at-risk patients, sometimes in association with thiopurines or methotrexate. The monitoring of through levels and antibodies to anti-TNFα is relevant to optimize the treatment and to reduce drug inefficacy. However, the development of new drugs is required to offer alternative tools to severe and refractory patients.
Collapse
Affiliation(s)
- Jacques Moreau
- Département de Gastroentérologie, Hôpital Rangueil, CHU de Toulouse, Toulouse, France
| | - Emmanuel Mas
- Unité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, F-31300, France; INSERM U1043, Toulouse F-31300, France; CNRS, U5282, Toulouse F-31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse F-31300, France.
| |
Collapse
|
59
|
Caruso JA, Karakas C, Zhang J, Yi M, Albarracin C, Sahin A, Bondy M, Liu J, Hunt KK, Keyomarsi K. Elafin is downregulated during breast and ovarian tumorigenesis but its residual expression predicts recurrence. Breast Cancer Res 2015; 16:3417. [PMID: 25551582 PMCID: PMC4326485 DOI: 10.1186/s13058-014-0497-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Elafin is an endogenous serine protease inhibitor. The majority of breast cancer cell lines lack elafin expression compared to human mammary epithelial cells. In this study, we hypothesized that elafin is downregulated during breast and ovarian tumorigenesis. METHODS We examined elafin expression by immunohistochemistry (IHC) in specimens of normal breast tissue (n = 24), ductal carcinoma in situ (DCIS) (n = 54), and invasive breast cancer (n = 793). IHC analysis of elafin expression was also performed in normal fallopian tube tissue (n = 20), ovarian cystadenomas (n = 9), borderline ovarian tumors (n = 21), and invasive ovarian carcinomas (n = 216). To understand the significance of elafin in luminal breast cancer cell lines, wild-type or M25G elafin (lacking the protease inhibitory function) were exogenously expressed in MCF-7 and T47D cells. RESULTS Elafin expression was downregulated in 24% of DCIS and 83% of invasive breast tumors when compared to elafin expression in the normal mammary epithelium. However, the presence of elafin-positive cells in invasive breast tumors, even at low frequency, correlated with poor recurrence-free survival (RFS), reduced overall survival (OS), and clinicopathological markers of aggressive tumor behavior. Elafin-positive cells were an especially strong and independent prognostic marker of reduced RFS in IHC-defined luminal A-like tumors. Elafin was also downregulated in 33% of ovarian cystadenomas, 43% of borderline ovarian tumors, and 86% of invasive ovarian carcinomas when compared to elafin expression in the normal fallopian tube. In ovarian tumors, elafin-positive cells were correlated with reduced RFS, OS and disease-specific survival (DSS) only in stage I/II patients and not in stage III/IV patients. Notably, exogenous expression of elafin or elafin M25G in the luminal breast cancer cell lines MCF-7 and T47D significantly decreased cell proliferation in a protease inhibitory domain-independent manner. CONCLUSIONS Elafin predicts poor outcome in breast and ovarian cancer patients and delineates a subset of endocrine receptor-positive breast cancer patients susceptible to recurrence who could benefit from more aggressive intervention. Our in vitro results suggest that elafin arrests luminal breast cancer cells, perhaps suggesting a role in tumor dormancy.
Collapse
|
60
|
Jiang X, Nguyen TT, Tian W, Sung YK, Yuan K, Qian J, Rajadas J, Sallenave JM, Nickel NP, de Jesus Perez V, Rabinovitch M, Nicolls MR. Cyclosporine Does Not Prevent Microvascular Loss in Transplantation but Can Synergize With a Neutrophil Elastase Inhibitor, Elafin, to Maintain Graft Perfusion During Acute Rejection. Am J Transplant 2015; 15:1768-81. [PMID: 25727073 PMCID: PMC4474772 DOI: 10.1111/ajt.13189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/10/2014] [Accepted: 12/26/2014] [Indexed: 01/25/2023]
Abstract
The loss of a functional microvascular bed in rejecting solid organ transplants is correlated with fibrotic remodeling and chronic rejection; in lung allografts, this pathology is predicted by bronchoalveolar fluid neutrophilia which suggests a role for polymorphonuclear cells in microcirculatory injury. In a mouse orthotopic tracheal transplant model, cyclosporine, which primarily inhibits T cells, failed as a monotherapy for preventing microvessel rejection and graft ischemia. To target neutrophil action that may be contributing to vascular injury, we examined the effect of a neutrophil elastase inhibitor, elafin, on the microvascular health of transplant tissue. We showed that elafin monotherapy prolonged microvascular perfusion and enhanced tissue oxygenation while diminishing the infiltration of neutrophils and macrophages and decreasing tissue deposition of complement C3 and the membrane attack complex, C5b-9. Elafin was also found to promote angiogenesis through activation of the extracellular signal-regulated kinase (ERK) signaling pathway but was insufficient as a single agent to completely prevent tissue ischemia during acute rejection episodes. However, when combined with cyclosporine, elafin effectively preserved airway microvascular perfusion and oxygenation. The therapeutic strategy of targeting neutrophil elastase activity alongside standard immunosuppression during acute rejection episodes may be an effective approach for preventing the development of irreversible fibrotic remodeling.
Collapse
Affiliation(s)
- Xinguo Jiang
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Tom T. Nguyen
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Wen Tian
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Yon K. Sung
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Ke Yuan
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | - Jin Qian
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Jean-Michel Sallenave
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France,INSERM U884, Paris, France
| | - Nils P. Nickel
- Cardiovascular Institute and Department of Pediatrics, Stanford, CA
| | - Vinicio de Jesus Perez
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Mark R. Nicolls
- Veterans’ Affairs Palo Alto Health Care System, Medical Service, Palo Alto, CA,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
61
|
Current Review of Genetically Modified Lactic Acid Bacteria for the Prevention and Treatment of Colitis Using Murine Models. Gastroenterol Res Pract 2015; 2015:146972. [PMID: 26064086 PMCID: PMC4434185 DOI: 10.1155/2015/146972] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 12/18/2022] Open
Abstract
Inflammatory Bowel Diseases (IBD) are disorders of the gastrointestinal tract characterized by recurrent inflammation that requires lifelong treatments. Probiotic microorganisms appear as an alternative for these patients; however, probiotic characteristics are strain dependent and each probiotic needs to be tested to understand the underlining mechanisms involved in their beneficial properties. Genetic modification of lactic acid bacteria (LAB) was also described as a tool for new IBD treatments. The first part of this review shows different genetically modified LAB (GM-LAB) described for IBD treatment since 2000. Then, the two principally studied strategies are discussed (i) GM-LAB producing antioxidant enzymes and (ii) GM-LAB producing the anti-inflammatory cytokine IL-10. Different delivery systems, including protein delivery and DNA delivery, will also be discussed. Studies show the efficacy of GM-LAB (using different expression systems) for the prevention and treatment of IBD, highlighting the importance of the bacterial strain selection (with anti-inflammatory innate properties) as a promising alternative. These microorganisms could be used in the near future for the development of therapeutic products with anti-inflammatory properties that can improve the quality of life of IBD patients.
Collapse
|
62
|
Utrilla MP, Peinado MJ, Ruiz R, Rodriguez-Nogales A, Algieri F, Rodriguez-Cabezas ME, Clemente A, Galvez J, Rubio LA. Pea (Pisum sativum L.) seed albumin extracts show anti-inflammatory effect in the DSS model of mouse colitis. Mol Nutr Food Res 2015; 59:807-19. [PMID: 25626675 DOI: 10.1002/mnfr.201400630] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
SCOPE This study investigates the preventive effects of two pea (Pisum sativum) seed albumin extracts, either in the presence (pea seed extract [PSE]) or absence (albumin fraction from PSE [AF-PSE]) of soluble polysaccharides, in the dextran sodium sulfate (DSS) induced colitis in mice. METHODS AND RESULTS Male C57BL/6J mice were assigned to five groups: one noncolitic and four colitic. Colitis was induced by incorporating DSS (3.5%) in the drinking water for 4 days, after which DSS was removed. Treated groups received orally PSE (15 g/kg⋅day), or AF-PSE (1.5 g/kg⋅day), or pure soy Bowman-Birk inhibitor (BBI; 50 mg/kg⋅day), starting 2 wk before colitis induction, and maintained for 9 days after. All treated groups showed intestinal anti-inflammatory effect, evidenced by reduced microscopic histological damage in comparison with untreated colitic mice. The treatments ameliorated the colonic mRNA expression of different proinflammatory markers: cytokines, inducible enzymes, metalloproteinases, adhesion molecules, and toll-like receptors, as well as proteins involved in maintaining the epithelial barrier function. Furthermore, the administration of PSE, AF-PSE, or soy BBI restored bacterial counts, partially or totally, to values in healthy mice. CONCLUSION PSE and AF-PSE ameliorated DSS-induced damage to mice, their effects being due, at least partially, to the presence of active BBI.
Collapse
Affiliation(s)
- Ma Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Bermúdez-Humarán LG, Motta JP, Aubry C, Kharrat P, Rous-Martin L, Sallenave JM, Deraison C, Vergnolle N, Langella P. Serine protease inhibitors protect better than IL-10 and TGF-β anti-inflammatory cytokines against mouse colitis when delivered by recombinant lactococci. Microb Cell Fact 2015; 14:26. [PMID: 25889561 PMCID: PMC4371826 DOI: 10.1186/s12934-015-0198-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022] Open
Abstract
Background Different studies have described the successful use of recombinant lactic acid bacteria (recLAB) to deliver anti-inflammatory molecules at the mucosal level to treat Inflammatory Bowel Disease (IBD). Methods In order to identify the best strategy to treat IBD using recLAB, we compared the efficacy of different recombinant strains of Lactococcus lactis (the model LAB) secreting two types of anti-inflammatory molecules: cytokines (IL-10 and TGF-β1) and serine protease inhibitors (Elafin and Secretory Leukocyte Protease Inhibitor: SLPI), using a dextran sulfate sodium (DSS)-induced mouse model of colitis. Results Our results show that oral administration of recombinant L. lactis strains expressing either IL-10 or TGF-β1 display moderate anti-inflammatory effects in inflamed mice and only for some clinical parameters. In contrast, delivery of either serine protease inhibitors Elafin or SLPI by recLAB led to a significant reduction of intestinal inflammation for all clinical parameters tested. Since the best results were obtained with Elafin-producing L. lactis strain, we then tried to enhance Elafin expression and hence its delivery rate by producing it in a L. lactis mutant strain inactivated in its major housekeeping protease, HtrA. Strikingly, a higher reduction of intestinal inflammation in DSS-treated mice was observed with the Elafin-overproducing htrA strain suggesting a dose-dependent Elafin effect. Conclusions Altogether, these results strongly suggest that serine protease inhibitors are the most efficient anti-inflammatory molecules to be delivered by recLAB at the mucosal level for IBD treatment.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Jean-Paul Motta
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France. .,Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada.
| | - Camille Aubry
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Pascale Kharrat
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| | - Laurence Rous-Martin
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France.
| | - Jean-Michel Sallenave
- INSERM U874, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France. .,INSERM U1152, Faculté de Médecine site Bichat, Université Paris Diderot, 16, rue Henri Huchard, 75018, Paris, France. .,Université Sorbonne Paris Cité, Université Paris Diderot, rue du Dr Roux, 75015, Paris, France.
| | - Céline Deraison
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France.
| | - Nathalie Vergnolle
- Inserm, U1043, Toulouse, F-31300, France. .,CNRS, U5282, Toulouse, F-31300, France. .,Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France. .,Université Sorbonne Paris Cité, Université Paris Diderot, rue du Dr Roux, 75015, Paris, France.
| | - Philippe Langella
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR1319 Micalis, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
64
|
Provost M, Brégeon J, Aubert P, Duchalais-Dassonneville E, D'Aldebert E, Vergnolle N, Neunlist M, Meurette G. Effects of 1-week sacral nerve stimulation on the rectal intestinal epithelial barrier and neuromuscular transmission in a porcine model. Neurogastroenterol Motil 2015; 27:40-50. [PMID: 25388954 DOI: 10.1111/nmo.12465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/01/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sacral nerve stimulation (SNS) is a validated treatment for fecal incontinence, although the mechanism of action remains unknown. Short-term effects of SNS on the intestinal epithelial barrier (IEB) have been reported previously. The aim of our study was to assess the impact of a 1-week SNS on the IEB in a preclinical model. METHODS Fourteen pigs were implanted for bilateral SNS. Seven pigs received 7-day stimulation, whereas the remaining animals received no stimulation. Rectal biopsies were performed before and after SNS. We assessed IEB permeability, mucosal tight junction and cytokine mRNA expression, IL-6 production in an organotypic culture model, and neuromuscular transmission in muscle strips. KEY RESULTS IEB permeability was not modified after stimulation, as compared with baseline. The PAR-induced increase in IEB permeability and the mucosal ZO-1 mRNA decrease observed in the controls were not observed into the stimulated group. Cytokine overexpression was not observed in the mucosa in either group. SNS decreased IL-6 production in the organotypic culture model. In the stimulated group, the area-under-the-curve of the EFS-induced contractile response was significantly increased. CONCLUSIONS & INFERENCES The main conclusions of our work are (i) the successful development of a preclinical model of bilateral SNS and (ii) in physiological conditions, 1-week SNS did not lead to functional changes in the mucosa. While under stress-induced conditions, SNS modified the properties of the IEB, leading to a decrease in its permeability. Neuromuscular transmission was modified by SNS, leading to neuronal hyperexcitability. These results add evidence to the reinforcement of the IEB by SNS.
Collapse
Affiliation(s)
- M Provost
- INSERM UMR 913, Institut des maladies de l'appareil digestif, CHU Hôtel-Dieu, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Simpson HL, Campbell BJ, Rhodes JM. IBD: microbiota manipulation through diet and modified bacteria. Dig Dis 2014; 32 Suppl 1:18-25. [PMID: 25531349 DOI: 10.1159/000367821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND/AIMS Crohn's disease (CD) and ulcerative colitis (UC) are both typified by an altered intestinal microbiota, and gene associations imply various defects in the mucosal barrier and in the innate immune response to bacteria. This review aims to assess how alterations in diet or use of modified bacteria could have therapeutic effects in CD or UC. METHODS A MEDLINE search using the terms 'prebiotic', 'genetically modified bacteria', 'mucosal barrier in association with ulcerative colitis', 'Crohn's disease' or 'microbiota'. RESULTS A large body of data from in vitro and animal studies shows promise for therapeutic approaches that target the microbiota. Approaches include dietary supplementation with fermentable fibres (prebiotics) and soluble fibres that block bacterial-epithelial adherence (contrabiotics), enhancement of the mucosal barrier with phosphatidylcholine, and use of genetically modified bacteria that express IL-10 or protease inhibitors. Vitamin D supplementation also shows promise, acting via enhancement of innate immunity. Clinical trials have shown benefit with enterically delivered phosphatidylcholine supplementation in UC and near-significant benefit with vitamin D supplementation in CD. CONCLUSION Strategies that target the microbiota or the host defence against it appear to be good prospects for therapy and deserve greater investment.
Collapse
Affiliation(s)
- Hannah L Simpson
- Department of Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
66
|
Understanding host-adherent-invasive Escherichia coli interaction in Crohn's disease: opening up new therapeutic strategies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:567929. [PMID: 25580435 PMCID: PMC4279263 DOI: 10.1155/2014/567929] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/16/2014] [Accepted: 09/16/2014] [Indexed: 02/07/2023]
Abstract
A trillion of microorganisms colonize the mammalian intestine. Most of them have coevolved with the host in a symbiotic relationship and some of them have developed strategies to promote their replication in the presence of competing microbiota. Recent evidence suggests that perturbation of the microbial community favors the emergence of opportunistic pathogens, in particular adherent-invasive Escherichia coli (AIEC) that can increase incidence and severity of gut inflammation in the context of Crohn's disease (CD). This review will report the importance of AIEC as triggers of intestinal inflammation, focusing on their impact on epithelial barrier function and stimulation of mucosal inflammation. Beyond manipulation of immune response, restoration of gut microbiota as a new treatment option for CD patients will be discussed.
Collapse
|
67
|
Sulic AM, Kurppa K, Rauhavirta T, Kaukinen K, Lindfors K. Transglutaminase as a therapeutic target for celiac disease. Expert Opin Ther Targets 2014; 19:335-48. [PMID: 25410283 DOI: 10.1517/14728222.2014.985207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION The only current treatment for celiac disease is a strict gluten-free diet. The ubiquitous presence of gluten in groceries, however, makes the diet burdensome and difficult to maintain, and alternative treatment options are thus needed. Here, the important role of transglutaminase 2 (TG2) in the pathogenesis of celiac disease makes it an attractive target for drug development. AREAS COVERED The present paper gives an overview of TG2 and addresses its significance in the pathogenesis of celiac disease. Moreover, the article summarizes preclinical studies performed with TG2 inhibitors and scrutinizes issues related to this therapeutic approach. EXPERT OPINION Activation of TG2 in the intestinal mucosa is central in celiac disease pathogenesis and researchers have therefore suggested TG2 inhibitors as a potential therapeutic approach. However, a prerequisite for such a drug is that it should be specific for TG2 and not affect the activity of other members of the transglutaminase family. Such compounds have already been introduced and tested in vitro, but a major obstacle to further development is the lack of a well-defined animal model for celiac disease. Nonetheless, with encouraging results in preclinical studies clinical trials with TG2 inhibitors are eagerly awaited.
Collapse
Affiliation(s)
- Ana-Marija Sulic
- Tampere Center for Child Health Research, University of Tampere and Tampere University Hospital , Tampere , Finland +358 50 3186306; +358 3 3641369 ;
| | | | | | | | | |
Collapse
|
68
|
Abbott DS, Chin-Smith EC, Seed PT, Chandiramani M, Shennan AH, Tribe RM. Raised trappin2/elafin protein in cervico-vaginal fluid is a potential predictor of cervical shortening and spontaneous preterm birth. PLoS One 2014; 9:e100771. [PMID: 25075964 PMCID: PMC4116119 DOI: 10.1371/journal.pone.0100771] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022] Open
Abstract
Early spontaneous preterm birth is associated with inflammation/infection and shortening of the cervix. We hypothesised that cervico-vaginal production of trappin2/elafin (peptidase inhibitor 3) and cathelicidin antimicrobial peptide (cathelicidin), key components of the innate immune system, are altered in women who have a spontaneous preterm birth. The aim was to determine the relationship between cervico-vaginal fluid (CVF) trappin2/elafin and cathelicidin protein concentrations with cervical length in woman at risk of spontaneous preterm birth. Trappin2/elafin and cathelicidin were measured using ELISA in longitudinal CVF samples (taken between 13 to 30 weeks' gestation) from 74 asymptomatic high risk women (based on obstetric history) recruited prospectively. Thirty six women developed a short cervix (<25 mm) by 24 weeks' and 38 women did not. Women who developed a short cervix had 2.71 times higher concentrations of CVF trappin2/elafin from 14 weeks' versus those who did not (CI 1.94–3.79, p<0.0005). CVF trappin2/elafin before 24 weeks' was 1.79 times higher in women who had a spontaneous preterm birth <37 weeks' (CI: 1.05–3.05, p = 0.034). Trappin2/elafin (>200 ng/ml) measured between 14+0–14+6 weeks' of pregnancy predicted women who subsequently developed a short cervix (n = 11, ROC area = 1.00, p = 0.008) within 8 weeks. Cathelicidin was not predictive of spontaneous delivery. Vitamin D status did not correlate with CVF antimicrobial peptide concentrations. Raised CVF trappin2/elafin has potential as an early pregnancy test for prediction of cervical shortening and spontaneous preterm birth. This justifies validation in a larger cohort.
Collapse
Affiliation(s)
- Danielle S. Abbott
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Evonne C. Chin-Smith
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Paul T. Seed
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Manju Chandiramani
- Parturition Research Group, Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Andrew H. Shennan
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
| | - Rachel M. Tribe
- Division of Women's Health, King's College London, Women's Health Academic Centre King's Health Partners, London, United Kingdom
- Division of Women's Health, King's College London Women's Health Academic Centre KHP, St. Thomas' Hospital Campus, London, United Kingdom
- * E-mail:
| |
Collapse
|
69
|
Novel role of the serine protease inhibitor elafin in gluten-related disorders. Am J Gastroenterol 2014; 109:748-56. [PMID: 24710505 PMCID: PMC4219532 DOI: 10.1038/ajg.2014.48] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/02/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Elafin, an endogenous serine protease inhibitor, modulates colonic inflammation. We investigated the role of elafin in celiac disease (CD) using human small intestinal tissues and in vitro assays of gliadin deamidation. We also investigated the potential beneficial effects of elafin in a mouse model of gluten sensitivity. METHODS Epithelial elafin expression in the small intestine of patients with active CD, treated CD, and controls without CD was determined by immunofluorescence. Interaction of elafin with human tissue transglutaminase-2 (TG-2) was investigated in vitro. The 33-mer peptide, a highly immunogenic gliadin peptide, was incubated with TG-2 and elafin at different concentrations. The degree of deamidation of the 33-mer peptide was analyzed by liquid chromatography-mass spectrometry. Elafin was delivered to the intestine of gluten-sensitive mice using a recombinant Lactococcus lactis vector. Small intestinal barrier function, inflammation, proteolytic activity, and zonula occludens-1 (ZO-1) expression were assessed. RESULTS Elafin expression in the small intestinal epithelium was lower in patients with active CD compared with control patients. In vitro, elafin significantly slowed the kinetics of the deamidation of the 33-mer peptide to its more immunogenic form. Treatment of gluten-sensitive mice with elafin delivered by the L. lactis vector normalized inflammation, improved permeability, and maintained ZO-1 expression. CONCLUSIONS The decreased elafin expression in the small intestine of patients with active CD, the reduction of 33-mer peptide deamidation by elafin, coupled to the barrier enhancing and anti-inflammatory effects observed in gluten-sensitive mice, suggest that this molecule may have pathophysiological and therapeutic importance in gluten-related disorders.
Collapse
|
70
|
Abstract
PURPOSE OF REVIEW To summarize the recent knowledge regarding intestinal proteases and the gut barrier. RECENT FINDINGS It is now well established that intestinal proteases, such as matrix metalloproteinase (MMP)-1, MMP-3, MMP-10 and MMP-12, are key players in the development of ulcers in inflammatory bowel disease, have direct effects on epithelial barrier function and are involved in epithelial restitution. However, more recent work has suggested that the membrane-anchored epithelial cell serine protease matriptase is critical in maintaining the gut barrier, and roles have also been described for elastase, MMP-13, gelatinases, mast cell proteases and proteases derived from parasites and gut bacteria. Interestingly, epithelial proteases often co-localize with epithelial adherens junctions, and nonepithelial-derived proteases have junctional proteins as targets. SUMMARY The role of proteases in controlling normal barrier function in the gut is now becoming very clear, to go alongside their role in intestinal inflammation.
Collapse
|
71
|
Kandasamy J, Huda S, Ambalavanan N, Jilling T. Inflammatory signals that regulate intestinal epithelial renewal, differentiation, migration and cell death: Implications for necrotizing enterocolitis. ACTA ACUST UNITED AC 2014; 21:67-80. [PMID: 24533974 DOI: 10.1016/j.pathophys.2014.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Necrotizing enterocolitis is a disease entity with multiple proposed pathways of pathogenesis. Various combinations of these risk factors, perhaps based on genetic predisposition, possibly lead to the mucosal and epithelial injury that is the hallmark of NEC. Intestinal epithelial integrity is controlled by a tightly regulated balance between proliferation and differentiation of epithelium from intestinal epithelial stem cells and cellular loss by apoptosis. various signaling pathways play a key role in creating and maintaining this balance. The aim of this review article is to outline intestinal epithelial barrier development and structure and the impact of these inflammatory signaling and regulatory pathways as they pertain to the pathogenesis of NEC.
Collapse
Affiliation(s)
- Jegen Kandasamy
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Alabama at Birmingham, USA
| | - Shehzad Huda
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Alabama at Birmingham, USA
| | - Namasivayam Ambalavanan
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Alabama at Birmingham, USA
| | - Tamas Jilling
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Alabama at Birmingham, USA.
| |
Collapse
|
72
|
Kim JM. Antimicrobial proteins in intestine and inflammatory bowel diseases. Intest Res 2014; 12:20-33. [PMID: 25349560 PMCID: PMC4204685 DOI: 10.5217/ir.2014.12.1.20] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 12/21/2022] Open
Abstract
Mucosal surface of the intestinal tract is continuously exposed to a large number of microorganisms. To manage the substantial microbial exposure, epithelial surfaces produce a diverse arsenal of antimicrobial proteins (AMPs) that directly kill or inhibit the growth of microorganisms. Thus, AMPs are important components of innate immunity in the gut mucosa. They are frequently expressed in response to colonic inflammation and infection. Expression of many AMPs, including human β-defensin 2-4 and cathelicidin, is induced in response to invasion of pathogens or enteric microbiota into the mucosal barrier. In contrast, some AMPs, including human α-defensin 5-6 and human β-defensin 1, are constitutively expressed without microbial contact or invasion. In addition, specific AMPs are reported to be associated with inflammatory bowel disease (IBD) due to altered expression of AMPs or development of autoantibodies against AMPs. The advanced knowledge for AMPs expression in IBD can lead to its potential use as biomarkers for disease activity. Although the administration of exogenous AMPs as therapeutic strategies against IBD is still at an early stage of development, augmented induction of endogenous AMPs may be another interesting future research direction for the protective and therapeutic purposes. This review discusses new advances in our understanding of how intestinal AMPs protect against pathogens and contribute to pathophysiology of IBD.
Collapse
Affiliation(s)
- Jung Mogg Kim
- Department of Microbiology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
73
|
Abstract
The protease-activated receptors (PARs) play a pivotal role in inflammatory and nociceptive processes. PARs have raised considerable interest because of their capacity to regulate numerous aspects of viscera physiology and pathophysiology. The present article summarizes research on PARs and proteases as signalling molecules in visceral pain. In particular, experiments in animal models suggest that PAR2 is important for visceral hypersensitivity. Moreover, endogenous PAR2 agonists seem to be released by colonic tissue of patients suffering from irritable bowel syndrome, suggesting a role for this receptor in visceral pain perception. Thus, PARs, together with proteases that activate them, represent exciting targets for therapeutic intervention on visceral pain.
Collapse
Affiliation(s)
- Nicolas Cenac
- Inserm, U1043, Toulouse, F-31300, France ; ; CNRS, U5282, Toulouse, F-31300, France; ; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, F-31300, France
| |
Collapse
|
74
|
|
75
|
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease of the gastrointestinal tract that affects the mucosal lining of the colon. Recent epidemiological data show that its incidence and prevalence are increasing in many parts of the world, in parallel with altered lifestyles, improved access to health, improved sanitation and industrialisation rates. Current therapeutic strategies for treating UC have only been moderately successful. Despite major recent advances in inflammatory bowel disease therapeutic resources, a considerable proportion of patients are still refractory to conventional treatment. Less than half of all patients achieve long-term remission, many require colectomy, and the disease still has a major impact on patients' lives. Moreover, recent data point to slightly raised mortality. While these outcomes could be partly improved by optimising current therapeutic strategies, they clearly highlight the need to develop new therapies. Currently, a number of promising and innovative therapeutic approaches are being explored, some of which will hopefully survive to reach the clinic. Until such a time arrives, it is important that a better understanding of the clinical particularities of the disease, an improved knowledge of the host-microbiome negative interactions and of the environmental factors beyond disease development is achieved to obtain the final and desired outcome: to provide better treatment and quality of life for patients with this disabling disease.
Collapse
Affiliation(s)
- Joana Torres
- Gastroenterology Service, Surgery Department, Hospital Beatriz Ângelo, , Loures, Portugal
| | | | | |
Collapse
|
76
|
Bermúdez-Humarán LG, Aubry C, Motta JP, Deraison C, Steidler L, Vergnolle N, Chatel JM, Langella P. Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 2013; 16:278-83. [PMID: 23850097 DOI: 10.1016/j.mib.2013.06.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
Food-grade lactic acid bacteria (LAB) are good candidates for the development of oral vectors, and are attractive alternatives to attenuated pathogens, for mucosal delivery strategies. In this review, we summarize recent results on the use of LAB as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Most of this work has been based on the model LAB, Lactococcus lactis, which is suitable for the heterologous expression of therapeutic proteins. Recombinant lactococci and lactobacilli strains expressing antiproteases and antioxidant enzymes have been tested successfully for their prophylactic and therapeutic effects in murine models of colitis. Recombinant lactococci secreting autoantigens have been found to be effective for the treatment of type 1 diabetes. Also, recombinant lactococci delivering DNA were able to prevent a bovine β-lactoglobulin (BLG)-allergic reaction in mice. We believe that these various coherent findings demonstrate the potential value of using LAB, particularly lactococci and lactobacilli strains, to develop novel vectors for the therapeutic delivery of proteins to mucosal surfaces. Further tests and in particular human clinical trials are now important next steps to conclude on the benefit of these approaches for human health.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- INRA, Commensal and Probiotics-Host Interactions Laboratory, UMR 1319 Micalis, F-78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Ho S, Pothoulakis C, Koon HW. Antimicrobial peptides and colitis. Curr Pharm Des 2013; 19:40-7. [PMID: 22950497 DOI: 10.2174/13816128130108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/30/2012] [Indexed: 11/22/2022]
Abstract
Antimicrobial peptides (AMPs) are important components of innate immunity. They are often expressed in response to colonic inflammation and infection. Over the last several years, the roles of several antimicrobial peptides have been explored. Gene expression of many AMPs (beta defensin HBD2-4 and cathelicidin) is induced in response to invasion of gut microbes into the mucosal barrier. Some AMPs are expressed in a constitutive manner (alpha defensin HD 5-6 and beta defensin HBD1), while others (defensin and bactericidal/ permeability increasing protein BPI) are particularly associated with Inflammatory Bowel Disease (IBD) due to altered defensin expression or development of autoantibodies against Bactericidal/permeability increasing protein (BPI). Various AMPs have different spectrum and strength of antimicrobial effects. Some may play important roles in modulating the colitis (cathelicidin) while others (lactoferrin, hepcidin) may represent biomarkers of disease activity. The use of AMPs for therapeutic purposes is still at an early stage of development. A few natural AMPs were shown to be able to modulate colitis when delivered intravenously or intracolonically (cathelicidin, elafin and SLPI) in mouse colitis models. New AMPs (synthetic or artificial non-human peptides) are being developed and may represent new therapeutic approaches against colitis. This review discusses the latest research developments in the AMP field with emphasis in innate immunity and pathophysiology of colitis.
Collapse
Affiliation(s)
- Samantha Ho
- Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, The University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
78
|
Relevance of the cyclophosphamide-induced cystitis model for pharmacological studies targeting inflammation and pain of the bladder. Eur J Pharmacol 2013; 707:32-40. [DOI: 10.1016/j.ejphar.2013.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 03/01/2013] [Accepted: 03/08/2013] [Indexed: 11/22/2022]
|
79
|
Hunt KK, Wingate H, Yokota T, Liu Y, Mills GB, Zhang F, Fang B, Su CH, Zhang M, Yi M, Keyomarsi K. Elafin, an inhibitor of elastase, is a prognostic indicator in breast cancer. Breast Cancer Res 2013; 15:R3. [PMID: 23320734 PMCID: PMC3672770 DOI: 10.1186/bcr3374] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 01/03/2013] [Indexed: 12/23/2022] Open
Abstract
Introduction Elafin is an elastase-specific inhibitor with increased transcription in normal mammary epithelial cells compared to mammary carcinoma cells. In this report, we test the hypothesis that inhibition of elastase, through induction of elafin, leads to inhibition of human breast cancer cell viability and, therefore, predicts survival in breast cancer patients. Methods Panels of normal and immortalized breast epithelial cells, along with breast carcinoma cells, were used to examine the impact of adenoviral-mediated elafin expression or shRNA-mediated inhibition of elastase on the growth of cells and xenografts in nude mice. To determine the prognostic significance of decreased elafin in patients with invasive breast cancer, previously published gene array datasets were interrogated. Results Elafin expression had no effect on non-tumorigenic cells but resulted in marked inhibition of cell growth in breast cancer cell lines. Control-treated xenografts generated a tumor burden that necessitated sacrifice within one month of initial treatment, whereas xenograft-bearing mice treated with Ad-Elafin were alive at eight months with marked reduction in tumor growth. Elastase inhibition mimicked these results, showing decreased tumor cell growth in vitro and in vivo. Low expression of elafin gene correlated with significantly reduced time to relapse, and when combined with high expression of elastase gene was associated with decreased survival in breast cancer patients. Conclusion Our data suggest that elafin plays a direct role in the suppression of tumors through inhibition of elastase and thus serves as a prognostic indicator for breast cancer patients.
Collapse
|
80
|
Hao Z, Yang X, Lv Y, Li S, Purbey BK, Su H. Intracolonically administered adeno-associated virus-bone morphogenetic protein-7 ameliorates dextran sulphate sodium-induced acute colitis in rats. J Gene Med 2012; 14:482-90. [PMID: 22700475 DOI: 10.1002/jgm.2642] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The current treatment of ulcerative colitis (UC) is less than ideal and has room for improvement. Bone morphogenetic protein-7 (BMP-7) exerts a protective effect on experimental UC. Hence, we considered that intracolonically (i.c.) administered adeno-associated virus (AAV) delivering BMP-7 might have therapeutic potential for UC. METHODS Recombinant AAV type 2 vectors carrying enhanced green fluorescence protein (AAV-EGFP), LacZ (AAV-LacZ) and BMP-7 (AAV-BMP-7) were generated. Bioluminescence imaging, β-galactosidase assay and western blotting were applied to determine the colonic expression of EGFP, LacZ and BMP-7, respectively, after i.c. administration of the AAVs. Disease activity index (DAI) was observed daily during the 7 days of dextran sulphate sodium (DSS) treatment initiated 4 days after i.c. AAV-BMP-7, AAV-LacZ or phosphate-buffered saline. The colonic pathological morphology, mucosal myeloperoxidase (MPO) activity, malondialdehyde content, superoxide dismutase activity and proliferating cell nuclear antigen were determined at the end of DSS treatment. RESULTS When i.c administered to rats, AAV could efficiently transduce the colonic mucosa. Enema with AAV-BMP-7 significantly ameliorated DSS-induced colitis as indicated by reduced DAI, decreased macroscopic and histological scores and declined MPO activity compared to the controls. Furthermore i.c. AAV-BMP-7 significantly prevented oxidant damage and attenuated complementary mucosal cell proliferation in the DSS-treated rat colons. CONCLUSIONS Our data demonstrate that i.c. administration of AAV-BMP-7 efficiently mediates the ectopic BMP-7 expression in rat colon and further ameliorates DSS-induced UC in rats, suggesting that i.c. AAV-BMP-7 has the potential to be developed into an alternative therapeutic measure for the treatment of UC.
Collapse
Affiliation(s)
- Zhiming Hao
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.
| | | | | | | | | | | |
Collapse
|
81
|
Motta JP, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, Vinel JP, Alric L, Mas E, Sallenave JM, Langella P, Vergnolle N. Food-Grade Bacteria Expressing Elafin Protect Against Inflammation and Restore Colon Homeostasis. Sci Transl Med 2012; 4:158ra144. [DOI: 10.1126/scitranslmed.3004212] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
82
|
Drannik AG, Nag K, Yao XD, Henrick BM, Sallenave JM, Rosenthal KL. Trappin-2/elafin modulate innate immune responses of human endometrial epithelial cells to PolyI:C. PLoS One 2012; 7:e35866. [PMID: 22545145 PMCID: PMC3335805 DOI: 10.1371/journal.pone.0035866] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 03/27/2012] [Indexed: 12/24/2022] Open
Abstract
Background Upon viral recognition, innate and adaptive antiviral immune responses are initiated by genital epithelial cells (ECs) to eradicate or contain viral infection. Such responses, however, are often accompanied by inflammation that contributes to acquisition and progression of sexually transmitted infections (STIs). Hence, interventions/factors enhancing antiviral protection while reducing inflammation may prove beneficial in controlling the spread of STIs. Serine antiprotease trappin-2 (Tr) and its cleaved form, elafin (E), are alarm antimicrobials secreted by multiple cells, including genital epithelia. Methodology and Principal Findings We investigated whether and how each Tr and E (Tr/E) contribute to antiviral defenses against a synthetic mimic of viral dsRNA, polyinosine-polycytidylic acid (polyI∶C) and vesicular stomatitis virus. We show that delivery of a replication-deficient adenovector expressing Tr gene (Ad/Tr) to human endometrial epithelial cells, HEC-1A, resulted in secretion of functional Tr, whereas both Tr/E were detected in response to polyI∶C. Moreover, Tr/E were found to significantly reduce viral replication by either acting directly on virus or through enhancing polyI∶C-driven antiviral protection. The latter was associated with reduced levels of pro-inflammatory factors IL-8, IL-6, TNFα, lowered expression of RIG-I, MDA5 and attenuated NF-κB activation. Interestingly, enhanced polyI∶C-driven antiviral protection of HEC-Ad/Tr cells was partially mediated through IRF3 activation, but not associated with higher induction of IFNβ, suggesting multiple antiviral mechanisms of Tr/E and the involvement of alternative factors or pathways. Conclusions and Significance This is the first evidence of both Tr/E altering viral binding/entry, innate recognition and mounting of antiviral and inflammatory responses in genital ECs that could have significant implications for homeostasis of the female genital tract.
Collapse
Affiliation(s)
- Anna G. Drannik
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Kakon Nag
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Xiao-Dan Yao
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Bethany M. Henrick
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Jean-Michel Sallenave
- Unité de Défense Innée et Inflammation, Institut Pasteur, Paris, France
- Unité U874 INSERM, Paris, France
- Université Paris 7-Denis Diderot, Paris, France
| | - Kenneth L. Rosenthal
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
83
|
Abstract
WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity.
Collapse
|
84
|
Gobbetti T, Cenac N, Motta JP, Rolland C, Martin L, Andrade-Gordon P, Steinhoff M, Barocelli E, Vergnolle N. Serine protease inhibition reduces post-ischemic granulocyte recruitment in mouse intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:141-52. [PMID: 22067907 DOI: 10.1016/j.ajpath.2011.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/26/2011] [Accepted: 09/20/2011] [Indexed: 01/17/2023]
Abstract
Proteases and proteinase-activated receptor (PAR) activation are involved in several intestinal inflammatory conditions. We hypothesized that serine proteases and PAR activation could also modulate the intestinal injury induced by ischemia-reperfusion (I-R). C57Bl/6 mice were subjected to 90 minutes of intestinal ischemia followed or not by reperfusion. Sham-operated animals served as controls. After ischemia, plasma and tissue serine protease activity levels were increased compared to the activity measured in plasma and tissues from sham-operated mice. This increase was maintained or further enhanced after 2 and 5 hours of reperfusion, respectively. Trypsin (25 kDa) was detected in tissues both after ischemia and 2 hours of reperfusion. Treatment with FUT-175 (10 mg/kg), a potent serine protease inhibitor, increased survival after I-R, inhibited tissue protease activity, and significantly decreased intestinal myeloperoxidase (MPO) activity and chemokine and adhesion molecule expression. We investigated whether serine proteases modulate granulocyte recruitment by a PAR-dependent mechanism. MPO levels and adhesion molecule expression were significantly reduced in I-R groups pre-treated with the PAR(1) antagonist SCH-79797 (5 mg/kg) and in Par(2)(-/-)mice, compared, respectively, to vehicle-treated group and wild-type littermates. Thus, increased proteolytic activity and PAR activation play a pathogenic role in intestinal I-R injury. Inhibition of PAR-activating serine proteases could be beneficial to reduce post-ischemic intestinal inflammation.
Collapse
Affiliation(s)
- Thomas Gobbetti
- INSERM, U1043, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD. Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem 2011; 286:24638-48. [PMID: 21576245 DOI: 10.1074/jbc.m110.201988] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human neutrophil proteinases (elastase, proteinase-3, and cathepsin-G) are released at sites of acute inflammation. We hypothesized that these inflammation-associated proteinases can affect cell signaling by targeting proteinase-activated receptor-2 (PAR(2)). The PAR family of G protein-coupled receptors is triggered by a unique mechanism involving the proteolytic unmasking of an N-terminal self-activating tethered ligand (TL). Proteinases can either activate PAR signaling by unmasking the TL sequence or disarm the receptor for subsequent enzyme activation by cleaving downstream from the TL sequence. We found that none of neutrophil elastase, cathepsin-G, and proteinase-3 can activate G(q)-coupled PAR(2) calcium signaling; but all of these proteinases can disarm PAR(2), releasing the N-terminal TL sequence, thereby preventing G(q)-coupled PAR(2) signaling by trypsin. Interestingly, elastase (but neither cathepsin-G nor proteinase-3) causes a TL-independent PAR(2)-mediated activation of MAPK that, unlike the canonical trypsin activation, does not involve either receptor internalization or recruitment of β-arrestin. Cleavage of synthetic peptides derived from the extracellular N terminus of PAR(2), downstream of the TL sequence, demonstrated distinct proteolytic sites for all three neutrophil-derived enzymes. We conclude that in inflammation, neutrophil proteinases can modulate PAR(2) signaling by preventing/disarming the G(q)/calcium signal pathway and, via elastase, can selectively activate the p44/42 MAPK pathway. Our data illustrate a new mode of PAR regulation that involves biased PAR(2) signaling by neutrophil elastase and a disarming/silencing effect of cathepsin-G and proteinase-3.
Collapse
Affiliation(s)
- Rithwik Ramachandran
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|