51
|
Giraud J, Saleh M. Host-Microbiota Interactions in Liver Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13174342. [PMID: 34503151 PMCID: PMC8430654 DOI: 10.3390/cancers13174342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is a difficult to treat liver cancer that generally arises in individuals suffering from alcoholic or non-alcoholic fatty liver diseases. Inflammation, tissue injury and fibrosis are important precursors of HCC. In this review, we explore the links between the microbiota, inflammation and carcinogenesis in the context of HCC. We discuss how the gut and liver communicate and how microbial molecules, including structural components and metabolites, elicit inflammation and tumorigenesis in the liver. A better understanding of microbiota-dependent mechanisms of liver cancer development might lead to novel microbial-based therapeutic approaches. Abstract Hepatocellular carcinoma (HCC) is a classical inflammation-promoted cancer that occurs in a setting of liver diseases, including nonalcoholic fatty liver disease (NAFLD) or alcoholic liver disease (ALD). These pathologies share key characteristics, notably intestinal dysbiosis, increased intestinal permeability and an imbalance in bile acids, choline, fatty acids and ethanol metabolites. Translocation of microbial- and danger-associated molecular patterns (MAMPs and DAMPs) from the gut to the liver elicits profound chronic inflammation, leading to severe hepatic injury and eventually HCC progression. In this review, we first describe how the gut and the liver communicate and discuss mechanisms by which the intestinal microbiota elicit hepatic inflammation and HCC. We focus on the role of microbial products, e.g., MAMPs, host inflammatory effectors and host–microbiome-derived metabolites in tumor-promoting mechanisms, including cell death and senescence. Last, we explore the potential of harnessing the microbiota to treat liver diseases and HCC.
Collapse
Affiliation(s)
- Julie Giraud
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, F-33000 Bordeaux, France;
| | - Maya Saleh
- ImmunoConcEpT, CNRS, UMR 5164, University of Bordeaux, F-33000 Bordeaux, France;
- Department of Medicine, McGill University, Montreal, QC H3G 0B1, Canada
- Correspondence:
| |
Collapse
|
52
|
The Gut Microbiota-Derived Immune Response in Chronic Liver Disease. Int J Mol Sci 2021; 22:ijms22158309. [PMID: 34361075 PMCID: PMC8347749 DOI: 10.3390/ijms22158309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023] Open
Abstract
In chronic liver disease, the causative factor is important; however, recently, the intestinal microbiome has been associated with the progression of chronic liver disease and the occurrence of side effects. The immune system is affected by the metabolites of the microbiome, and diet is the primary regulator of the microbiota composition and function in the gut–liver axis. These metabolites can be used as therapeutic material, and postbiotics, in the future, can increase or decrease human immunity by modulating inflammation and immune reactions. Therefore, the excessive intake of nutrients and the lack of nutrition have important effects on immunity and inflammation. Evidence has been published indicating that microbiome-induced chronic inflammation and the consequent immune dysregulation affect the development of chronic liver disease. In this research paper, we discuss the overall trend of microbiome-derived substances related to immunity and the future research directions.
Collapse
|
53
|
The interplay of DAMPs, TLR4, and proinflammatory cytokines in pulmonary fibrosis. J Mol Med (Berl) 2021; 99:1373-1384. [PMID: 34258628 PMCID: PMC8277227 DOI: 10.1007/s00109-021-02113-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is a chronic debilitating condition characterized by progressive deposition of connective tissue, leading to a steady restriction of lung elasticity, a decline in lung function, and a median survival of 4.5 years. The leading causes of pulmonary fibrosis are inhalation of foreign particles (such as silicosis and pneumoconiosis), infections (such as post COVID-19), autoimmune diseases (such as systemic autoimmune diseases of the connective tissue), and idiopathic pulmonary fibrosis. The therapeutics currently available for pulmonary fibrosis only modestly slow the progression of the disease. This review is centered on the interplay of damage-associated molecular pattern (DAMP) molecules, Toll-like receptor 4 (TLR4), and inflammatory cytokines (such as TNF-α, IL-1β, and IL-17) as they contribute to the pathogenesis of pulmonary fibrosis, and the possible avenues to develop effective therapeutics that disrupt this interplay.
Collapse
|
54
|
Cui ZY, Wang G, Zhang J, Song J, Jiang YC, Dou JY, Lian LH, Nan JX, Wu YL. Parthenolide, bioactive compound of Chrysanthemum parthenium L., ameliorates fibrogenesis and inflammation in hepatic fibrosis via regulating the crosstalk of TLR4 and STAT3 signaling pathway. Phytother Res 2021; 35:5680-5693. [PMID: 34250656 DOI: 10.1002/ptr.7214] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/21/2021] [Accepted: 06/19/2021] [Indexed: 01/05/2023]
Abstract
The current study focused on the regulatory effects of parthenolide (PNL), a bioactive component derived from Chrysanthemum parthenium L., against hepatic fibrosis via regulating the crosstalk of toll-like receptor 4 (TLR4) and signal transducer and activator of transcription 3 (STAT3) in activated hepatic stellate cells (HSCs). HSCs or Raw 264.7 macrophages were activated by TGF-β or LPS for 1 hr, respectively, and then treated with PNL, CLI-095 (TLR4 inhibitor), or Niclosamide (STAT3 inhibitor) for the indicated time to detect the crosstalk of TLR4 and STAT3. PNL significantly decreased the expressions of α-SMA, collagen I, and the ratio of TIMP1 and MMP13 in TGF-β-activated HSCs. PNL significantly reduced the releases of pro-inflammatory cytokines, including IL-6, IL-1β, IL-1α, IL-18, and regulated signaling P2X7r/NLRP3 axis activation. PNL obviously induced the apoptosis of activated HSCs by regulating bcl-2 and caspases family. PNL significantly inhibited the expressions of TLR4 and STAT3, including their downstream signaling. PNL could regulate the crosstalk of TLR4 and STAT3, which were verified by their inhibitors in activated HSCs or Raw 264.7 cell macrophages. Thus, PNL could decrease the expressions of fibrosis markers, reduce the releases of inflammatory cytokines, and also induce the apoptosis of activated HSCs. In conclusion, PNL could bi-directionally inhibit TLR4 and STAT3 signaling pathway, suggesting that blocking the crosstalk of TLR4 and STAT3 might be the potential mechanism of PNL against hepatic fibrosis.
Collapse
Affiliation(s)
- Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ge Wang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jing Zhang
- Research and Development Center, Liaoning Shengjing Stem cell technology Co., Ltd, Shenyang, China
| | - Jian Song
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Centre, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| |
Collapse
|
55
|
Liu X, Chen Y, Zhang S, Dong L. Gut microbiota-mediated immunomodulation in tumor. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:221. [PMID: 34217349 PMCID: PMC8254267 DOI: 10.1186/s13046-021-01983-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunity consists of various types of cells, which serve an important role in antitumor therapy. The gastrointestinal tract is colonized by trillions of microorganisms, which form the gut microbiota. In addition to pathogen defense and maintaining the intestinal ecosystem, gut microbiota also plays a pivotal role in various physiological processes. Recently, the association between these symbionts and cancer, ranging from oncogenesis and cancer progression to resistance or sensitivity to antitumor therapies, has attracted much attention. Metagenome analysis revealed a significant difference between the gut microbial composition of cancer patients and healthy individuals. Moreover, modulation of microbiome could improve therapeutic response to immune checkpoint inhibitors (ICIs). These findings suggest that microbiome is involved in cancer pathogenesis and progression through regulation of tumor immunosurveillance, although the exact mechanisms remain largely unknown. This review focuses on the interaction between the microbiome and tumor immunity, with in-depth discussion regarding the therapeutic potential of modulating gut microbiota in ICIs. Further investigations are warranted before gut microbiota can be introduced into clinical practice.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China.,Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai, 200030, People's Republic of China
| | - Yanjie Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China
| | - Si Zhang
- Shanghai Medical College of Fudan University, 130 Dongan Road, Shanghai, 200030, People's Republic of China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200030, People's Republic of China. .,Shanghai Institute of Liver Diseases, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
56
|
Eritoran Attenuates Hepatic Inflammation and Fibrosis in Mice with Chronic Liver Injury. Cells 2021; 10:cells10061562. [PMID: 34205789 PMCID: PMC8235164 DOI: 10.3390/cells10061562] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) signaling plays a key role in liver inflammation and fibrosis. The therapeutic effects of eritoran, a TLR4 antagonist, in mice with chronic liver injury remained unclear. C57BL/6 mice were fed a fast-food diet (FFD) or treated with carbon tetrachloride (CCl4) to induce chronic liver injury. Eritoran (10 mg/kg) or a vehicle was randomly intraperitoneally administered to the FFD-fed mice and the CCl4-injured mice. Primary mouse liver cells were cultured with lipopolysaccharide (LPS) or eritoran. In both FFD and CCl4 mouse models, eritoran significantly reduced serum ALT levels and decreased hepatic inflammatory cell infiltration without altering hepatic steatosis. Additionally, eritoran attenuated liver fibrosis by decreasing hepatic stellate cells (HSCs) activation and the abundance of α-smooth muscle actin and transforming growth factor-β1. Hepatic TLR4 downstream signaling including MyD88 expression, NF-κB p65 nuclear translocation, p38 and JNK phosphorylation were successfully inhibited by eritoran. In the in vitro study, LPS-induced nuclear translocation of NF-κB in primary HSCs and Kupffer cells was significantly suppressed by eritoran. In conclusion, eritoran attenuated hepatic inflammation and fibrosis by inhibition of the TLR4 signaling pathway in mice with chronic liver injury. Eritoran may serve as a potential drug for chronic liver disease.
Collapse
|
57
|
Taurine ameliorates thioacetamide induced liver fibrosis in rats via modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Sci Rep 2021; 11:12296. [PMID: 34112866 PMCID: PMC8192756 DOI: 10.1038/s41598-021-91666-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a significant health problem that can cause serious illness and death. Unfortunately, a standard treatment for liver fibrosis has not been approved yet due to its complicated pathogenesis. The current study aimed at assessing the anti-fibrotic effect of taurine against thioacetamide induced liver fibrosis in rats through the modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Both concomitant and late taurine treatment (100 mg/kg, IP, daily) significantly reduced the rise in serum ALT and AST activities and significantly reversed the decrease in serum albumin and total protein. These results were confirmed by histopathological examinations and immunehistochemical inspection of α-SMA, caspase-3 and NF-κB. The antioxidant potential of taurine was verified by a marked increase of GSH content and a reduction of MDA level in liver tissue. The anti-fibrotic effects of taurine were evaluated by investigating the expression of TLR4, NF-κB. The protein levels of IL-6, LPS, MyD88, MD2, CD14, TGF-β1 and TNF-α were determined. Docking studies were carried out to understand how taurine interacts inside TLR4-MD2 complex and it showed good binding with the hydrophobic binding site of MD2. We concluded that the anti-fibrotic effect of taurine was attributable to the modulation of the TLR4/NF-κB signaling.
Collapse
|
58
|
Shih HJ, Chang CY, Chiang M, Le VL, Hsu HJ, Huang CJ. Simultaneous Inhibition of Three Major Cytokines and Its Therapeutic Effects: A Peptide-Based Novel Therapy against Endotoxemia in Mice. J Pers Med 2021; 11:jpm11050436. [PMID: 34065201 PMCID: PMC8161041 DOI: 10.3390/jpm11050436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Three major cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, mediate endotoxemia-induced liver injury. With the similar structures to the binding domains of the three cytokines to their cognate receptors, the novel peptide KCF18 can simultaneously inhibit TNF-α, IL-1β, and IL-6. We elucidated whether KCF18 can alleviate injury of liver in endotoxemic mice. Adult male mice (BALB/cJ) were intraperitoneally (i.p.) administered lipopolysaccharide (LPS, 15 mg/kg; LPS group) or LPS with KCF18 (LKCF group). Mice in the LKCF group received KCF18 (i.p.) at 2 h (0.6 mg/kg), 4 h (0.3 mg/kg), 6 h (0.3 mg/kg), and 8 h (0.3mg/kg) after LPS administration. Mice were sacrificed after receiving LPS for 24 h. Our results indicated that the binding levels of the three cytokines to their cognate receptors in liver tissues in the LKCF group were significantly lower than those in the LPS group (all p < 0.05). The liver injury level, as measured by performing functional and histological analyses and by determining the tissue water content and vascular permeability (all p < 0.05), was significantly lower in the LKCF group than in the LPS group. Similarly, the levels of inflammation (macrophage activation, cytokine upregulation, and leukocyte infiltration), oxidation, necroptosis, pyroptosis, and apoptosis (all p < 0.05) in liver tissues in the LKCF group were significantly lower than those in the LPS group. In conclusion, the KCF18 peptide–based simultaneous inhibition of TNF-α, IL-1β, and IL-6 can alleviate liver injury in mice with endotoxemia.
Collapse
Affiliation(s)
- Hung-Jen Shih
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Urology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Chao-Yuan Chang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Milton Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.C.); (V.L.L.)
| | - Van Long Le
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.C.); (V.L.L.)
- Department of Anesthesiology and Critical Care, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - Hao-Jen Hsu
- Department of Life Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: (H.-J.H.); (C.-J.H.)
| | - Chun-Jen Huang
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (M.C.); (V.L.L.)
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: (H.-J.H.); (C.-J.H.)
| |
Collapse
|
59
|
Kang YS, Chung YC, Lee JN, Kim BS, Hyun CG. Anti-Inflammatory Effects of 6,7-Dihydroxy-4-Methylcoumarin on LPS-Stimulated Macrophage Phosphorylation in MAPK Signaling Pathways. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211020970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coumarin derivatives, such as esculetin, have various physiological functions, including antioxidant, anti-inflammatory, antibacterial, antiviral, and anti-cancer. 6,7-Dihydroxy-4-methylcoumarin (6,7-DH-4MC) is a derivative of esculetin, and its anti-inflammatory effect and mechanism in macrophages have not been studied. In this study, the anti-inflammatory activity of 6,7-DH-4MC was evaluated by measuring the expression of inflammatory factors (NO and PGE2) and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-stimulated RAW 264.7 macrophages. The results revealed that 6,7-DH-4MC significantly reduced NO levels and PGE2 expression without inducing cytotoxicity; it was confirmed that the inhibition of NO and PGE2 expression was related to iNOS and COX-2 downregulation in response to 6,7-DH-4MC treatment. Moreover, 6,7-DH-4MC decreased the levels of pro-inflammatory cytokines, such as IL-1β and IL-6, in a dose-dependent manner. Mechanistic studies revealed reduced phosphorylation of ERK and p38-MAPK upon 6,7-DH-4MC treatment. Furthermore, the degradation of IκB-α and phosphorylation of NF-κB in cells treated with LPS were interrupted by 6,7-DH-4MC treatment. These results suggest that 6,7-DH-4MC is a potential therapeutic agent for inflammatory diseases. To the best of our knowledge, this is the first report demonstrating the anti-inflammatory effects of 6,7-DH-4MC in RAW 264.7 cells via MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Yun Sil Kang
- Jeju Inside Agency & Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju, Republic of Korea
| | - You Chul Chung
- Jeju Inside Agency & Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju, Republic of Korea
| | - Jung No Lee
- CoseedBioPharm Co., Ltd., Jeju, Republic of Korea
| | - Bong Seok Kim
- Bio-Convergence Center, Jeju Technopark, Jeju, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency & Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
60
|
Filali-Mouncef Y, Hunter C, Roccio F, Zagkou S, Dupont N, Primard C, Proikas-Cezanne T, Reggiori F. The ménage à trois of autophagy, lipid droplets and liver disease. Autophagy 2021; 18:50-72. [PMID: 33794741 PMCID: PMC8865253 DOI: 10.1080/15548627.2021.1895658] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Autophagic pathways cross with lipid homeostasis and thus provide energy and essential building blocks that are indispensable for liver functions. Energy deficiencies are compensated by breaking down lipid droplets (LDs), intracellular organelles that store neutral lipids, in part by a selective type of autophagy, referred to as lipophagy. The process of lipophagy does not appear to be properly regulated in fatty liver diseases (FLDs), an important risk factor for the development of hepatocellular carcinomas (HCC). Here we provide an overview on our current knowledge of the biogenesis and functions of LDs, and the mechanisms underlying their lysosomal turnover by autophagic processes. This review also focuses on nonalcoholic steatohepatitis (NASH), a specific type of FLD characterized by steatosis, chronic inflammation and cell death. Particular attention is paid to the role of macroautophagy and macrolipophagy in relation to the parenchymal and non-parenchymal cells of the liver in NASH, as this disease has been associated with inappropriate lipophagy in various cell types of the liver.Abbreviations: ACAT: acetyl-CoA acetyltransferase; ACAC/ACC: acetyl-CoA carboxylase; AKT: AKT serine/threonine kinase; ATG: autophagy related; AUP1: AUP1 lipid droplet regulating VLDL assembly factor; BECN1/Vps30/Atg6: beclin 1; BSCL2/seipin: BSCL2 lipid droplet biogenesis associated, seipin; CMA: chaperone-mediated autophagy; CREB1/CREB: cAMP responsive element binding protein 1; CXCR3: C-X-C motif chemokine receptor 3; DAGs: diacylglycerols; DAMPs: danger/damage-associated molecular patterns; DEN: diethylnitrosamine; DGAT: diacylglycerol O-acyltransferase; DNL: de novo lipogenesis; EHBP1/NACSIN (EH domain binding protein 1); EHD2/PAST2: EH domain containing 2; CoA: coenzyme A; CCL/chemokines: chemokine ligands; CCl4: carbon tetrachloride; ER: endoplasmic reticulum; ESCRT: endosomal sorting complexes required for transport; FA: fatty acid; FFAs: free fatty acids; FFC: high saturated fats, fructose and cholesterol; FGF21: fibroblast growth factor 21; FITM/FIT: fat storage inducing transmembrane protein; FLD: fatty liver diseases; FOXO: forkhead box O; GABARAP: GABA type A receptor-associated protein; GPAT: glycerol-3-phosphate acyltransferase; HCC: hepatocellular carcinoma; HDAC6: histone deacetylase 6; HECT: homologous to E6-AP C-terminus; HFCD: high fat, choline deficient; HFD: high-fat diet; HSCs: hepatic stellate cells; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; ITCH/AIP4: itchy E3 ubiquitin protein ligase; KCs: Kupffer cells; LAMP2A: lysosomal associated membrane protein 2A; LDs: lipid droplets; LDL: low density lipoprotein; LEP/OB: leptin; LEPR/OBR: leptin receptor; LIPA/LAL: lipase A, lysosomal acid type; LIPE/HSL: lipase E, hormone sensitive type; LIR: LC3-interacting region; LPS: lipopolysaccharide; LSECs: liver sinusoidal endothelial cells; MAGs: monoacylglycerols; MAPK: mitogen-activated protein kinase; MAP3K5/ASK1: mitogen-activated protein kinase kinase kinase 5; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCD: methionine-choline deficient; MGLL/MGL: monoglyceride lipase; MLXIPL/ChREBP: MLX interacting protein like; MTORC1: mechanistic target of rapamycin kinase complex 1; NAFLD: nonalcoholic fatty liver disease; NAS: NAFLD activity score; NASH: nonalcoholic steatohepatitis; NPC: NPC intracellular cholesterol transporter; NR1H3/LXRα: nuclear receptor subfamily 1 group H member 3; NR1H4/FXR: nuclear receptor subfamily 1 group H member 4; PDGF: platelet derived growth factor; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PLIN: perilipin; PNPLA: patatin like phospholipase domain containing; PNPLA2/ATGL: patatin like phospholipase domain containing 2; PNPLA3/adiponutrin: patatin like phospholipase domain containing 3; PPAR: peroxisome proliferator activated receptor; PPARA/PPARα: peroxisome proliferator activated receptor alpha; PPARD/PPARδ: peroxisome proliferator activated receptor delta; PPARG/PPARγ: peroxisome proliferator activated receptor gamma; PPARGC1A/PGC1α: PPARG coactivator 1 alpha; PRKAA/AMPK: protein kinase AMP-activated catalytic subunit; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; PTEN: phosphatase and tensin homolog; ROS: reactive oxygen species; SE: sterol esters; SIRT1: sirtuin 1; SPART/SPG20: spartin; SQSTM1/p62: sequestosome 1; SREBF1/SREBP1c: sterol regulatory element binding transcription factor 1; TAGs: triacylglycerols; TFE3: transcription factor binding to IGHM enhancer 3; TFEB: transcription factor EB; TGFB1/TGFβ: transforming growth factor beta 1; Ub: ubiquitin; UBE2G2/UBC7: ubiquitin conjugating enzyme E2 G2; ULK1/Atg1: unc-51 like autophagy activating kinase 1; USF1: upstream transcription factor 1; VLDL: very-low density lipoprotein; VPS: vacuolar protein sorting; WIPI: WD-repeat domain, phosphoinositide interacting; WDR: WD repeat domain.
Collapse
Affiliation(s)
- Yasmina Filali-Mouncef
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Catherine Hunter
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Federica Roccio
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Stavroula Zagkou
- Adjuvatis, Lyon, France.,Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, Université Claude Bernard Lyon 1, France
| | - Nicolas Dupont
- Institut Necker Enfants-Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | | | - Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
61
|
Namachivayam A, Valsala Gopalakrishnan A. A review on molecular mechanism of alcoholic liver disease. Life Sci 2021; 274:119328. [PMID: 33711388 DOI: 10.1016/j.lfs.2021.119328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Excessive alcohol consumption leads to damage to the organs of the body. More importantly, the liver is majorly affected organ upon alcohol consumption for most of the people; it causes inflammation and affects various pathways involved in metabolism. If the person is with high response of inflammatory in conduct with alcohol leads to the liver damage, which involves the creating effects with major cycle leads to homeostasis. In this review, we summarize the molecular mechanisms of alcoholic liver disease, such as the important role of genes, risk factors, pathogenicity, and role of micro RNA, the role of inflammation in the liver, and alcoholic fibrosis in the liver. There is increased oxidative stress, change in the biochemical alterations, and reduction in the antioxidant enzymes. These changes in the mechanism lead to liver injury. Hepatocyte nuclear factor-4 is the major transcriptional factor for the regulation of some genes involved in the lipid metabolism and oxidation process; with the help of the agonist, we can attenuate the level of the gene in the site of hepatic tissues, which will prevent the homeostatic condition. This review shows a clear view of the various pathways involved in alcohol consumption, which helps in the prevention of ALD using an agonist.
Collapse
Affiliation(s)
- Arunraj Namachivayam
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
62
|
Fan Y, Li Y, Chu Y, Liu J, Cui L, Zhang D. Toll-Like Receptors Recognize Intestinal Microbes in Liver Cirrhosis. Front Immunol 2021; 12:608498. [PMID: 33708204 PMCID: PMC7940369 DOI: 10.3389/fimmu.2021.608498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Liver cirrhosis is one major cause of mortality in the clinic, and treatment of this disease is an arduous task. The scenario will be even getting worse with increasing alcohol consumption and obesity in the current lifestyle. To date, we have no medicines to cure cirrhosis. Although many etiologies are associated with cirrhosis, abnormal intestinal microbe flora (termed dysbiosis) is a common feature in cirrhosis regardless of the causes. Toll-like receptors (TLRs), one evolutional conserved family of pattern recognition receptors in the innate immune systems, play a central role in maintaining the homeostasis of intestinal microbiota and inducing immune responses by recognizing both commensal and pathogenic microbes. Remarkably, recent studies found that correction of intestinal flora imbalance could change the progress of liver cirrhosis. Therefore, correction of intestinal dysbiosis and targeting TLRs can provide novel and promising strategies in the treatment of liver cirrhosis. Here we summarize the recent advances in the related topics. Investigating the relationship among innate immunity TLRs, intestinal flora disorders, and liver cirrhosis and exploring the underlying regulatory mechanisms will assuredly have a bright future for both basic and clinical research.
Collapse
Affiliation(s)
- Yujing Fan
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunpeng Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Liu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Cui
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dekai Zhang
- Center for Infectious and Inflammatory Diseases, Texas A&M University, Houston, TX, United States
| |
Collapse
|
63
|
Abstract
Since it was first described by the German anatomist and histologist, Joseph Hugo Vincenz Disse, the structure and functions of the space of Disse, a thin perisinusoidal area between the endothelial cells and hepatocytes filled with blood plasma, have acquired great importance in liver disease. The space of Disse is home for the hepatic stellate cells (HSCs), the major fibrogenic players in the liver. Quiescent HSCs (qHSCs) store vitamin A, and upon activation they lose their retinol reservoir and become activated. Activated HSCs (aHSCs) are responsible for secretion of extracellular matrix (ECM) into the space of Disse. This early event in hepatic injury is accompanied by loss of the pores—known as fenestrations—of the endothelial cells, triggering loss of balance between the blood flow and the hepatocyte, and underlies the link between fibrosis and organ dysfunction. If the imbalance persists, the expansion of the fibrotic scar followed by the vascularized septae leads to cirrhosis and/or end-stage hepatocellular carcinoma (HCC). Thus, researchers have been focused on finding therapeutic targets that reduce fibrosis. The space of Disse provides the perfect microenvironment for the stem cells niche in the liver and the interchange of nutrients between cells. In the present review article, we focused on the space of Disse, its components and its leading role in liver disease development.
Collapse
|
64
|
Non-alcoholic fatty liver disease: a metabolic burden promoting atherosclerosis. Clin Sci (Lond) 2021; 134:1775-1799. [PMID: 32677680 DOI: 10.1042/cs20200446] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the fastest growing chronic liver disease, with a prevalence of up to 25% worldwide. Individuals with NAFLD have a high risk of disease progression to cirrhosis, hepatocellular carcinoma (HCC), and liver failure. With the exception of intrahepatic burden, cardiovascular disease (CVD) and especially atherosclerosis (AS) are common complications of NAFLD. Furthermore, CVD is a major cause of death in NAFLD patients. Additionally, AS is a metabolic disorder highly associated with NAFLD, and individual NAFLD pathologies can greatly increase the risk of AS. It is increasingly clear that AS-associated endothelial cell damage, inflammatory cell activation, and smooth muscle cell proliferation are extensively impacted by NAFLD-induced systematic dyslipidemia, inflammation, oxidative stress, the production of hepatokines, and coagulations. In clinical trials, drug candidates for NAFLD management have displayed promising effects for the treatment of AS. In this review, we summarize the key molecular events and cellular factors contributing to the metabolic burden induced by NAFLD on AS, and discuss therapeutic strategies for the improvement of AS in individuals with NAFLD.
Collapse
|
65
|
Tian X, Zhao H, Guo Z. Effects of Carvedilol on the Expression of TLR4 and its Downstream Signaling Pathway in the Liver Tissues of Rats with Cholestatic Liver Fibrosis. Curr Mol Med 2021; 20:708-716. [PMID: 32077825 DOI: 10.2174/1566524020666200220130705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
Objectives:
This study was designed to investigate the effects of carvedilol
on the expression of TLR4 and its downstream signaling pathway in the liver tissues of
rats with cholestatic liver fibrosis and provide experimental evidence for clinical
treatment of liver fibrosis with carvedilol.
Methods:
A total of fifty male Sprague Dawley rats were randomly divided into five
groups (10 rats per group): sham operation (SHAM) control group, bile duct ligation
(BDL) model group, low-dose carvedilol treatment group (0.1mg·kg-1·d-1), medium-dose
carvedilol treatment group (1mg·kg-1·d-1), and high-dose carvedilol treatment group
(10mg·kg-1·d-1). Rat hepatic fibrosis model was established by applying BDL. Forty-eight
hours after the operation, carvedilol was administered twice a day. The blood and liver
were simultaneously collected under the aseptic condition for further detection in two
weeks after the operation. The alanine aminotransferase (ALT), aspartate
aminotransferase (AST), total bilirubin (TBil) and albumin (Alb) in serum were measured.
HE and Masson staining were used to determine hepatic fibrosis degree. Hydroxyproline
assay was employed to detect liver collagen synthesis. Western Blot was used to
measure the expression of TLR4, NF-κB p65 and β-arrestin2 protein. Quantitative
analysis of TLR4, MyD88, TNF-α and IL-6 mRNA was performed by Realtime-PCR.
Results:
Compared with the SHAM group, the BDL group showed obvious liver injury,
increased levels of inflammatory factors, and continued progression of liver fibrosis. The
above changes in the BDL group were alleviated in the carvedilol treatment groups. The
improvement effects augmented as dosages increased. In addition, compared with the
BDL group, the reduction of the expressions of TLR4, MyD88 and NF-κB p65 in liver
tissues and the increase of the expression of β -arrestin2 in the high-dose carvedilol
group were more significant.
Conclusions:
Carvedilol can reduce the release of inflammatory mediators by downregulating
TLR4 expression and inhibiting its downstream signaling pathway, thus
playing a potential therapeutic role in cholestatic liver fibrosis.
Collapse
Affiliation(s)
- Xiaopeng Tian
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei 054000, China
| | - Huimin Zhao
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei 054000, China
| | - Zengcai Guo
- Department of Gastroenterology, Xingtai People’s Hospital, Xingtai, Hebei 054000, China
| |
Collapse
|
66
|
Zhang Y, Li Y, Mu T, Tong N, Cheng P. Hepatic stellate cells specific liposomes with the Toll-like receptor 4 shRNA attenuates liver fibrosis. J Cell Mol Med 2021; 25:1299-1313. [PMID: 33336563 PMCID: PMC7812270 DOI: 10.1111/jcmm.16209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/04/2020] [Accepted: 12/04/2020] [Indexed: 02/05/2023] Open
Abstract
The hepatic stellate cells (HSCs) play a significant role in the onset of liver fibrosis, which can be treated by the inhibition and reversal of HSC activation. The RNA interference-mediated TLR4 gene silencing might be a potential therapeutic approach for liver fibrosis. The crucial challenge in this method is the absence of an efficient delivery system for the RNAi introduction in the target cells. HSCs have an enhanced capacity of vitamin A intake as they contain retinoic acid receptors (RARs). In the current study, we developed cationic liposomes modified with vitamin A to improve the specificity of delivery vehicles for HSCs. The outcome of this study revealed that the VitA-coupled cationic liposomes delivered the TLR4 shRNA to aHSCs more efficiently, as compared to the uncoupled cationic liposomes, both in the in vitro and in vivo conditions. Besides, as evident from the outcome of this study, the TLR4 gene silencing inhibited the HSCs activation and attenuated the liver fibrosis via the NF-κB transcriptional inactivation, pro-inflammatory cytokines secretion and reactive oxygen species (ROS) synthesis. Thus, the VitA-coupled liposomes encapsulated with the TLR4-shRNA might prove as an efficient therapeutic agent for liver fibrosis.
Collapse
Affiliation(s)
- Yuwei Zhang
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Yang Li
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Tong Mu
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Nanwei Tong
- Division of Endocrinology and MetabolismState Key Laboratory of BiotherapyWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University, and Collaborative Innovation Center for BiotherapyChengduChina
| |
Collapse
|
67
|
Wang Z, Cheng ZX, Abrams ST, Lin ZQ, Yates E, Yu Q, Yu WP, Chen PS, Toh CH, Wang GZ. Extracellular histones stimulate collagen expression in vitro and promote liver fibrogenesis in a mouse model via the TLR4-MyD88 signaling pathway. World J Gastroenterol 2020; 26:7513-7527. [PMID: 33384551 PMCID: PMC7754552 DOI: 10.3748/wjg.v26.i47.7513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/08/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver fibrosis progressing to liver cirrhosis and hepatic carcinoma is very common and causes more than one million deaths annually. Fibrosis develops from recurrent liver injury but the molecular mechanisms are not fully understood. Recently, the TLR4-MyD88 signaling pathway has been reported to contribute to fibrosis. Extracellular histones are ligands of TLR4 but their roles in liver fibrosis have not been investigated. AIM To investigate the roles and potential mechanisms of extracellular histones in liver fibrosis. METHODS In vitro, LX2 human hepatic stellate cells (HSCs) were treated with histones in the presence or absence of non-anticoagulant heparin (NAHP) for neutralizing histones or TLR4-blocking antibody. The resultant cellular expression of collagen I was detected using western blotting and immunofluorescent staining. In vivo, the CCl4-induced liver fibrosis model was generated in male 6-week-old ICR mice and in TLR4 or MyD88 knockout and parental mice. Circulating histones were detected and the effect of NAHP was evaluated. RESULTS Extracellular histones strongly stimulated LX2 cells to produce collagen I. Histone-enhanced collagen expression was significantly reduced by NAHP and TLR4-blocking antibody. In CCl4-treated wild type mice, circulating histones were dramatically increased and maintained high levels during the duration of fibrosis-induction. Injection of NAHP not only reduced alanine aminotransferase and liver injury scores, but also significantly reduced fibrogenesis. Since the TLR4-blocking antibody reduced histone-enhanced collagen I production in HSC, the CCl4 model with TLR4 and MyD88 knockout mice was used to demonstrate the roles of the TLR4-MyD88 signaling pathway in CCl4-induced liver fibrosis. The levels of liver fibrosis were indeed significantly reduced in knockout mice compared to wild type parental mice. CONCLUSION Extracellular histones potentially enhance fibrogenesis via the TLR4-MyD88 signaling pathway and NAHP has therapeutic potential by detoxifying extracellular histones.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Gastroenterology, Zhongda Hospital, Nanjing 210009, Jiangsu Province, China
| | - Zhen-Xing Cheng
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, United Kingdom
- Department of Gastroenterology, The First Affiliated Hospital, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| | - Zi-Qi Lin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Edwin Yates
- Department of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Qian Yu
- Department of Gastroenterology, Zhongda Hospital, Nanjing 210009, Jiangsu Province, China
| | - Wei-Ping Yu
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ping-Sheng Chen
- Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, United Kingdom
- Roald Dahl Haemostasis & Thrombosis Ctr, Royal Liverpool University Hospital, Liverpool L69 7BE, United Kingdom
| | - Guo-Zheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, United Kingdom
| |
Collapse
|
68
|
Liu J, Xie Y, Cui Z, Xia T, Wan L, Zhou H, Zhang P, Zhang Y, Guan F, Liu W, Shi C. Bnip3 interacts with vimentin, an intermediate filament protein, and regulates autophagy of hepatic stellate cells. Aging (Albany NY) 2020; 13:957-972. [PMID: 33290258 PMCID: PMC7834981 DOI: 10.18632/aging.202211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/09/2020] [Indexed: 04/21/2023]
Abstract
Bnip3, which is regulated by Hif-1 in cells under oxygen deprivation, is a death related protein associated with autophagy and apoptosis. Hif-1 was reported to regulate autophagy to activate hepatic stellate cells (HSCs), while the specific molecular mechanism is vague. The possible mechanism of Hif-1 regulating autophagy of HSCs via Bnip3 was explored in this study. Bnip3 was detected in fibrotic liver tissues from humans and mice. Hif-1 was inhibited by chemical inhibitor and Bnip3 was detected in activated HSCs. The co-localization of Bnip3 and LC3B was captured by confocal microscopy and autophagic flow was assessed in Bnip3 siRNA transfected cells. Bnip3 interacted proteins were screened with mass spectrometry. The interaction of Bnip3 and vimentin was detected with co-immunoprecipitation and confocal microscopy. The results showed that Bnip3 was increased in fibrotic liver tissues and activated HSCs. Hif-1 inhibition suppressed Bnip3 expression in activated HSCs. Bnip3 was partially co-localized with autophagosomes and Bnip3 inhibition suppessed autophagy in activated HSCs. Bnip3 interacted with vimentin and Bnip3 expression was inhibited as vimentin was inhibited in activated HSCs. Conclusively, this study indicated that Bnip3 promoted autophagy and activation of HSCs, via interacting with vimentin, an intermediate filament protein with highly abundant expression in HSCs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Hospital Infection Management, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yuyu Xie
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhangbo Cui
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Tian Xia
- Department of Surgery, Wuhan Third Hospital, Wuhan, PR China
| | - Lu Wan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Peng Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yijie Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Fei Guan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenqi Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
69
|
Silva RMD, Zarricueta ML, Moreira DKT, de Morais TR, Rizzardi KF, Parisotto TM, Gandra RLDP, Zuin JC, Caria CREP, Macedo JA, Macedo GA, Gambero A. STRUCTURED LIPID CONTAINING BEHENIC ACID VERSUS ORLISTAT FOR WEIGHT LOSS: AN EXPERIMENTAL STUDY IN MICE. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
70
|
Tian X, Zhao H, Guo Z. WITHDRAWN: Effects of carvedilol on expression of TLR4 and its downstream signaling pathway in liver tissue of rats with cholestatic liver fibrosisjaundice. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2020. [PMID: 33200614 DOI: 10.17235/reed.2020.6075/2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ahead of Print article withdrawn by publisher. OBJECTIVES This study was designed to investigate the effects of carvedilol on the expression of TLR4 and its downstream signaling pathway in liver tissue of rats with cholestatic liver fibrosis, and provided experimental evidence for clinical treatment of liver fibrosis with carvedilol.? METHODS A total of fifty male Sprague Dawley rats were randomly divided into five groups (10 rats per group): sham surgery control group, bile duct ligation (BDL) model group, low-dose carvedilol treatment group (0.1mgkg-1d-1), medium-dose carvedilol treatment group (1mgkg-1d-1), high-dose carvedilol treatment group (10mgkg-1d-1). Rat hepatic fibrosis model was established by applying BDL. Forty-eight hours after the operation, carvedilol was administered twice a day. The blood and liver were simultaneously collected under the aseptic condition for further detection in two weeks after operation.? RESULTS Compared with the sham group, the BDL group showed obvious liver injury, increased levels of inflammatory factors, and continued progression of liver fibrosis. Carvedilol could alleviate the above changes. The improvement effects were augmenting as dosages increasing. In addition, compared with the BDL group, carvedilol can reduce the expressions of TLR4, MyD88 and NF-?B p65 in liver tissue and increase the expression of ?-arrestin2, and the effect in the high dose group was more obvious. CONCLUSIONS Carvedilol can reduce the release of inflammatory mediators by down-regulating TLR4 expression and inhibiting its downstream signaling pathway, thus playing a therapeutic role in cholestatic liver fibrosis.
Collapse
|
71
|
Hu N, Guo C, Dai X, Wang C, Gong L, Yu L, Peng C, Li Y. Forsythiae Fructuse water extract attenuates liver fibrosis via TLR4/MyD88/NF-κB and TGF-β/smads signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113275. [PMID: 32810620 DOI: 10.1016/j.jep.2020.113275] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructuse water extract (FSE) is a water-soluble component extracted from the traditional Chinese medicine Forsythiae Fructuse (The fruit of Forsythia suspensa (Thunb.) Vahl) usually used to treat inflammatory diseases. However, little is known about the therapeutic effect of FSE on liver fibrosis. AIM OF THE STUDY The purpose of our study was to investigate the therapeutic effect of FSE on liver fibrosis and reveal the underlying mechanism. MATERIALS AND METHODS Liver fibrosis model was established by subcutaneous injection of olive oil containing 40% CCl4. Rat liver tissue morphologic pathology was investigated by using HE staining, Masson staining and Sirius red staining. Several biochemical markers including liver (ALT, AST, AKP, γ-GT), fibrosis (HA, LN, PC III, Col IV) and inflammation (IL-6, IL-1β, TNF-α) were determined by using Elisa kits. Immunohistochemistry was used to observe the distribution of α-SMA and COL1 in liver tissue. Effects of FSE on inflammatory pathway (TLR4/MyD88/NF-κB) and fibrotic pathway (TGF-β/smads) were detected by western blot and qPCR. RESULTS The results showed that hepatic histopathological injury, abnormal liver function, fibrosis and inflammation induced by CCl4 were improved by FSE (2.5, 5 g/kg). Immunohistochemistry and western blot results indicated that the expression of α-SMA and COL1 in liver tissue was inhibited by FSE (2.5, 5 g/kg). Western blot and qPCR results further proved that FSE (2.5, 5 g/kg) inhibited the transduction of TLR4/MyD88/NF-κB and TGF-β/smads signaling pathways. CONCLUSION FSE can inhibit the expression of inflammatory factors and fibrotic cytokines, reduce liver injury, and inhibit the development of liver fibrosis through TLR4/MyD88/NF-κB and TGF-β/smads signaling pathways.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Chaocheng Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lingyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
72
|
Sharma A, Verma AK, Kofron M, Kudira R, Miethke A, Wu T, Wang J, Gandhi CR. Lipopolysaccharide Reverses Hepatic Stellate Cell Activation Through Modulation of cMyb, Small Mothers Against Decapentaplegic, and CCAAT/Enhancer-Binding Protein C/EBP Transcription Factors. Hepatology 2020; 72:1800-1818. [PMID: 32064648 PMCID: PMC8009050 DOI: 10.1002/hep.31188] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/26/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS During liver injury, quiescent hepatic stellate cells (qHSCs) transdifferentiate into proliferative and fibrogenic activated myofibroblastic phenotype (activated hepatic stellate cell; aHSCs) expressing smooth muscle α-actin (αSMA) and platelet-derived growth factor beta receptor (PDGFβR). Their interactions with gut-derived bacterial lipopolysaccharide (LPS) are implicated in hepatic fibrogenesis. However, LPS can also attenuate fibrogenic characteristics of aHSCs. APPROACH AND RESULTS We examined molecular mechanisms of antifibrogenic effects of LPS on aHSCs in vitro and in vivo. Culture-activated rat HSCs were exposed to 0-100 ng/mL of LPS or its active component, diphosphoryl-lipid A (DPLA), and parameters of fibrosis and inflammatory cytokines/chemokines were determined by qRT-PCR, western, and immunohistochemical analyses. In vivo, HSCs were activated by repeated CCl4 administration to rats every 3 days for 3 or 8 weeks, then challenged with LPS (5 mg/kg; IP). HSCs were isolated 24 hours later, and fibrogenic/inflammatory parameters were analyzed. LPS induced phenotypic changes in aHSCs (rounding, size reduction) and loss of proliferation. LPS down-regulated expression of αSMA, PDGFβR, transforming growth factor beta receptor 1 (TGFβR1), collagen 1α1 (Col1α1), and fibronectin while up-regulating tumor necrosis factor alpha, interleukin-6, and C-X-C motif chemokine ligand 1 expression. LPS did not increase peroxisome proliferation-activated receptor gamma expression or lipid accumulation typical of qHSCs. DPLA elicited the same effects as LPS on aHSCs, indicating specificity, and monophosphoryl lipid A down-regulated fibrogenic markers, but elicited very weak inflammatory response. LPS down-regulated the expression of cMyb, a transcription factor for αSMA, and up-regulated small mother against decapentaplegic (SMAD)7 and CCAAT/enhancer-binding protein (C/EBP)δ, the transcriptional inhibitors of Col1α1 expression. In vivo LPS treatment of aHSCs inhibited their proliferation, down-regulated PDGFβR, αSMA, TGFβR1, Col1α1, and cMyb expression, and increased expression of SMAD7, C/EBPα, and C/EBPδ. CONCLUSIONS In conclusion, LPS induces a unique phenotype in aHSCs associated with down-regulation of key fibrogenic mechanisms and thus may have an important role in limiting fibrosis.
Collapse
Affiliation(s)
- Akanksha Sharma
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Cincinnati VA Medical Center, Cincinnati, OH
| | - Alok K. Verma
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Cincinnati VA Medical Center, Cincinnati, OH
| | - Matthew Kofron
- Developmental Biology, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ramesh Kudira
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Alexander Miethke
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA
| | - Jiang Wang
- Deparment of Pathology, University of Cincinnati, Cincinnati, OH
| | - Chandrashekhar R. Gandhi
- Division of Gastroenterology, Hepatology & Nutrition, Department of Pediatries, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Cincinnati VA Medical Center, Cincinnati, OH
| |
Collapse
|
73
|
Jadhav K, Cohen TS. Can You Trust Your Gut? Implicating a Disrupted Intestinal Microbiome in the Progression of NAFLD/NASH. Front Endocrinol (Lausanne) 2020; 11:592157. [PMID: 33193105 PMCID: PMC7641624 DOI: 10.3389/fendo.2020.592157] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of disorders, ranging from fatty liver to a more insulin resistant, inflammatory and fibrotic state collectively termed non-alcoholic steatohepatitis (NASH). In the United States, 30%-40% of the adult population has fatty liver and 3%-12% has NASH, making it a major public health concern. Consumption of diets high in fat, obesity and Type II diabetes (T2D) are well-established risk factors; however, there is a growing body of literature suggesting a role for the gut microbiome in the development and progression of NAFLD. The gut microbiota is separated from the body by a monolayer of intestinal epithelial cells (IECs) that line the small intestine and colon. The IEC layer is exposed to luminal contents, participates in selective uptake of nutrients and acts as a barrier to passive paracellular permeability of luminal contents through the expression of tight junctions (TJs) between adjacent IECs. A dysbiotic gut microbiome also leads to decreased gut barrier function by disrupting TJs and the gut vascular barrier (GVB), thus exposing the liver to microbial endotoxins. These endotoxins activate hepatic Toll-like receptors (TLRs), further promoting the progression of fatty liver to a more inflammatory and fibrotic NASH phenotype. This review will summarize major findings pertaining to aforementioned gut-liver interactions and its role in the pathophysiology of NAFLD.
Collapse
Affiliation(s)
| | - Taylor S. Cohen
- Microbiome Discovery, Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, United States
| |
Collapse
|
74
|
Gao Y, Xi B, Li J, Li Z, Xu J, Zhong M, Xu Q, Lian Y, Wei R, Wang L, Cao H, Jin L, Zhang K, Dong J. Scoparone alleviates hepatic fibrosis by inhibiting the TLR-4/NF-κB pathway. J Cell Physiol 2020; 236:3044-3058. [PMID: 33090488 DOI: 10.1002/jcp.30083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the role of scoparone (SCO) in hepatic fibrosis. For this, we conducted in vivo and in vitro experiments. In vivo rats that were divided into six groups, control, carbon tetrachloride, and colchicine, as well as SCO groups, SCO50, SCO100, and SCO200 treated with 50, 100, and 200 mg/kg SCO doses, respectively. Furthermore, SCO was shown to inhibit Toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB; TLR-4/NF-κB) signals by inhibiting TLR-4, which in turn downregulates the expression of MyD88, promotes NF-κB inhibitor-α, NF-κB inhibitor-β, and NF-κB inhibitor-ε activation, while inhibiting NF-κB inhibitor-ζ. Subsequently, the decrease of phosphorylation of nuclear factor-κB levels leads to the downregulation of the downstream inflammatory factors' tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta, thus weakening hepatic fibrosis. Notably, the SCO200 treated group presented the most significant improvement. Hence, we conclude that SCO alleviates hepatic fibrosis by inhibiting TLR-4/NF-κB signals.
Collapse
Affiliation(s)
- Ya Gao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Boting Xi
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jiani Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Zimeng Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jie Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Qiongmei Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Yuanyu Lian
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Riming Wei
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Liping Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Houkang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Kefeng Zhang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianghui Dong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
75
|
Han H, Desert R, Das S, Song Z, Athavale D, Ge X, Nieto N. Danger signals in liver injury and restoration of homeostasis. J Hepatol 2020; 73:933-951. [PMID: 32371195 PMCID: PMC7502511 DOI: 10.1016/j.jhep.2020.04.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Damage-associated molecular patterns are signalling molecules involved in inflammatory responses and restoration of homeostasis. Chronic release of these molecules can also promote inflammation in the context of liver disease. Herein, we provide a comprehensive summary of the role of damage-associated molecular patterns as danger signals in liver injury. We consider the role of reactive oxygen species and reactive nitrogen species as inducers of damage-associated molecular patterns, as well as how specific damage-associated molecular patterns participate in the pathogenesis of chronic liver diseases such as alcohol-related liver disease, non-alcoholic steatohepatitis, liver fibrosis and liver cancer. In addition, we discuss the role of damage-associated molecular patterns in ischaemia reperfusion injury and liver transplantation and highlight current studies in which blockade of specific damage-associated molecular patterns has proven beneficial in humans and mice.
Collapse
Affiliation(s)
- Hui Han
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Sukanta Das
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL 60612, USA; Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, 840 S. Wood St., Suite 1020N, MC 787, Chicago, IL 60612, USA.
| |
Collapse
|
76
|
Taddio MF, Castro Jaramillo CA, Runge P, Blanc A, Keller C, Talip Z, Béhé M, van der Meulen NP, Halin C, Schibli R, Krämer SD. In Vivo Imaging of Local Inflammation: Monitoring LPS-Induced CD80/CD86 Upregulation by PET. Mol Imaging Biol 2020; 23:196-207. [PMID: 32989622 PMCID: PMC7910267 DOI: 10.1007/s11307-020-01543-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
Abstract
Purpose The co-stimulatory molecules CD80 and CD86 are upregulated on activated antigen-presenting cells (APC). We investigated whether local APC activation, induced by subcutaneous (s.c.) inoculation of lipopolysaccharides (LPS), can be imaged by positron emission tomography (PET) with CD80/CD86-targeting 64Cu-labelled abatacept. Procedures Mice were inoculated s.c. with extracellular-matrix gel containing either LPS or vehicle (PBS). Immune cell populations were analysed by flow cytometry and marker expression by RT-qPCR. 64Cu-NODAGA-abatacept distribution was analysed using PET/CT and ex vivo biodistribution. Results The number of CD80+ and CD86+ immune cells at the LPS inoculation site significantly increased a few days after inoculation. CD68 and CD86 expression were higher at the LPS than the PBS inoculation site, and CD80 was only increased at the LPS inoculation site. CTLA-4 was highest 10 days after LPS inoculation, when CD80/CD86 decreased again. A few days after inoculation, 64Cu-NODAGA-abatacept distribution to the inoculation site was significantly higher for LPS than PBS (4.2-fold). Co-administration of unlabelled abatacept or human immunoglobulin reduced tracer uptake. The latter reduced the number of CD86+ immune cells at the LPS inoculation site. Conclusions CD80 and CD86 are upregulated in an LPS-induced local inflammation, indicating invasion of activated APCs. 64Cu-NODAGA-abatacept PET allowed following APC activation over time. Electronic supplementary material The online version of this article (10.1007/s11307-020-01543-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco F Taddio
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| | - Claudia A Castro Jaramillo
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Peter Runge
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Claudia Keller
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Martin Béhé
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland.,Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Cornelia Halin
- Pharmaceutical Immunology, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.,Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
77
|
Yue Y, Liu X, Li Y, Xia B, Yu W. The role of TLR4/MyD88/NF-κB pathway in periodontitis-induced liver inflammation of rats. Oral Dis 2020; 27:1012-1021. [PMID: 32853444 PMCID: PMC8247295 DOI: 10.1111/odi.13616] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to clarify the immune mechanism of hepatic injury induced by periodontitis using a rat model. METHODS Twenty-four SPF male Wistar rats were randomly divided into two groups: control group (CG) and periodontitis group (PG). In order to induce experimental periodontitis, we tied the wire ligature around bilateral maxillary first molar of rats. After 8 weeks, the following indicators were valued: gingival index, tooth mobility, probing pocket depth; indexes about oxidative stress and circulating biomarkers; bone retraction by micro-CT analysis; Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and nuclear factor kappa B (NF-κB) by qRT-PCR and Western blotting; tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) by qRT-PCR and immunohistochemical staining; inflammation of periodontal and hepatic tissues by histopathological observation. RESULTS Periodontal indicators and micro-CT results showed the raised levels of inflammatory response and bone retraction in PG compared with CG. The mRNA and protein levels of TLR4, MyD88, NF-κB, TNF-α, and IL-6 have indicated high values in PG versus CG. Histopathological analysis revealed a correlation between periodontitis and hepatic injury. CONCLUSION TLR4/MyD88/NF-κB pathway may play a role in periodontitis-induced liver inflammation of rats.
Collapse
Affiliation(s)
- Yiyun Yue
- Department of Periodontology, Jilin University, Changchun, China
| | - Xinchan Liu
- Department of Geriatric Stomatology, Jilin University, Changchun, China
| | - Yan Li
- Department of Periodontology, Jilin University, Changchun, China
| | - Boyuan Xia
- Department of Periodontology, Jilin University, Changchun, China
| | - Weixian Yu
- Department of Geriatric Stomatology, Jilin University, Changchun, China.,Jilin Provincial Laboratory of Biomedical Engineering, School and Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
78
|
Żeromski J, Kierepa A, Brzezicha B, Kowala-Piaskowska A, Mozer-Lisewska I. Pattern Recognition Receptors: Significance of Expression in the Liver. Arch Immunol Ther Exp (Warsz) 2020; 68:29. [PMID: 32944845 PMCID: PMC7498499 DOI: 10.1007/s00005-020-00595-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Pattern recognition receptors (PRRs) are a pivotal part of the immune system. They are distributed in almost every site of higher organisms, able to recognize foreign pathogens or unwanted remnants of metabolism and mount innate immune response. Moreover, PRRs create bridging signaling to initiate adaptive immunity. The liver being the largest organ of the body, exposed to myriads of foreign substances often being immunogenic, is well equipped with PRRs. They act as sentinels of the organ, both in health and disease. In viral hepatitis C at least two of them, RIG-1 and TLR3 sense HCV, induce protective interferon production and create proinflammatory status. The hepatitis B virus is apparently invisible to PRRs, which has recently been denied. Besides, they are active in the course of infection. In liver injury and hepatic fibrogenesis Toll-like receptors (TLRs), predominantly TLR4, TLR3 and TLR9 are associated with gut microflora-related products and DNA from dying hepatocytes, lead to the activation of hepatic stellate cells. The latter initiate production of fibrillar collagens, the main agents forming hepatic fibrosis. Tumor cells of primary liver cancer also express PRRs, mainly TLRs. In concert with non-resolving liver inflammation, they are considered pivotal factors leading to carcinogenesis.
Collapse
Affiliation(s)
- Jan Żeromski
- Chair of Pathomorphology and Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland.
| | - Agata Kierepa
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Bartosz Brzezicha
- Chair of Pathomorphology and Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Arleta Kowala-Piaskowska
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Iwona Mozer-Lisewska
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| |
Collapse
|
79
|
Ren Y, Li HX, Zhou L, Lu ZM, Shi J, Geng Y, Xu ZH. Protective Effect of Spore Powder of Antrodia camphorata ATCC 200183 on CCl 4-Induced Liver Fibrosis in Mice. Nutrients 2020; 12:nu12092778. [PMID: 32932919 PMCID: PMC7551437 DOI: 10.3390/nu12092778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is a pathological process with intrahepatic diffused deposition of the excess extracellular matrix, which leads to various chronic liver diseases. Drugs with high efficacy and low toxicity for liver fibrosis are still unavailable. Antrodia camphorata has antioxidant, antivirus, antitumor and anti-inflammation roles, and has been used to treat liver diseases in the population. However, the hepatoprotective effects of A. camphorata spores and the mechanisms behind it have not been investigated. In this study, we evaluate the hepatoprotective effect of spore powder of A. camphorata (SP, 100 mg/kg/day or 200 mg/kg/day) on carbon tetrachloride (CCl4)-induced liver fibrosis in mice. SP groups reduced serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities compared with the CCl4 group. SP also showed a decrease in hydroxyproline (Hyp) content in liver tissues. SP improved cell damage and reduced collagen deposition by H&E, Sirius red and Masson staining. Furthermore, SP down-regulated the mRNA levels of α-SMA and Col 1, and the protein expression of α-smooth muscle actin (α-SMA), collagen I (Col 1), tumor necrosis factor alpha (TNF-α), toll like receptor 4 (TLR4) and nuclear factor-Κb (NF-κB) p65. In summary, SP has an ameliorative effect on hepatic fibrosis, probably by inhibiting the activation of hepatic stellate cells, reducing the synthesis of extracellular matrix.
Collapse
Affiliation(s)
- Yilin Ren
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (Y.R.); (J.S.)
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Lingxi Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| | - Zhen-Ming Lu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (Y.R.); (J.S.)
| | - Yan Geng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China; (Y.R.); (J.S.)
- Correspondence: ; Tel.: +86-510-85918206
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; (Z.-M.L.); (Z.-H.X.)
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
80
|
Cruz AF, Rohban R, Esni F. Macrophages in the pancreas: Villains by circumstances, not necessarily by actions. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:807-824. [PMID: 32885589 PMCID: PMC7654401 DOI: 10.1002/iid3.345] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Introduction Mounting evidence suggest that macrophages play crucial roles in disease and tissue regeneration. However, despite much efforts during the past decade, our knowledge about the extent of macrophages' contribution to adult pancreatic regeneration after injury or during pancreatic disease progression is still limited. Nevertheless, it is generally accepted that some macrophage features that normally would contribute to healing and regeneration may be detrimental in pancreatic cancer. Altogether, the current literature contains conflicting reports on whether macrophages act as friends or foe in these conditions. Methods and Results In this review, we briefly review the origins of tissue resident and infiltrating macrophages and the importance of cellular crosstalking between macrophages and other resident cells in tissue regeneration. The primary objective of this review is to summarize our knowledge of the distinct roles of tissue resident and infiltrating macrophages, the impact of M1 and M2 macrophage phenotypes, and emerging evidence on macrophage crosstalking in pancreatic injury, regeneration, and disease. Conclusion Macrophages are involved with various stages of pancreatic cancer development, pancreatitis, and diabetes. Elucidating their role in these conditions will aid the development of targeted therapeutic treatments.
Collapse
Affiliation(s)
- Andrea F Cruz
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rokhsareh Rohban
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Farzad Esni
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
81
|
Liu J, Li X, Ke A. High-mobility group box-1 induces mechanical pain hypersensitivity through astrocytic connexin 43 via the toll-like receptor-4/JNK signaling pathway. Synapse 2020; 75:e22184. [PMID: 32761652 DOI: 10.1002/syn.22184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
The present study aimed to investigate the effects of high-mobility group box-1 (HMGB-1) on mechanical pain hypersensitivity and the underlying mechanism. Mouse primary astrocytes were isolated and treated as specified. A CCK-8 assay was used to determine cytotoxicity and a gap junctional communication assay was performed. Ethidium bromide (EtBr) uptake was used to evaluate the hemichannel activity of primary astrocytes. A mouse model of neuropathic pain was developed and paw withdrawal threshold was used to evaluate hind paw sensitivity. RT-qPCR and Western blot were used to determine mRNA and protein expression of genes, respectively. ELISA was used to measure the release of inflammatory cytokines. Treatment with HMGB-1 increased the expression of both toll-like receptor-4 (TLR-4) and connexin 43 (Cx43) in mouse primary astrocytes. HMGB-1 also promoted gap junctional intercellular communication and hemichannel function. Our results also demonstrated that HMGB-1-regulated Cx43 through the JNK signaling pathway, and Cx43 was involved in HMGB-1-mediated inflammation in astrocytes. In vivo analysis supported the idea that HMGB-1-induced mechanical hypersensitivity was associated with Cx43. We therefore conclude that HMGB-1-induced mechanical pain hypersensitivity occurs through modulating astrocytic Cx43 via the TLR-4/JNK signaling pathway.
Collapse
Affiliation(s)
- Jiang Liu
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Xiuhua Li
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| | - Ana Ke
- Department of Anesthesiology, Tangshan Gongren Hospital, Tangshan, China
| |
Collapse
|
82
|
Zhou SS, Auyeung KKW, Yip KM, Ye R, Zhao ZZ, Mao Q, Xu J, Chen HB, Li SL. Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 74:152761. [PMID: 31005370 DOI: 10.1016/j.phymed.2018.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ginseng has therapeutic potential for treating obesity and the associated gut microbiota dysbiosis. However, whether white ginseng and red ginseng, the two kinds of commonly used processed ginseng, possess different anti-obesity effects remains unknown. PURPOSE Anti-obesity effects of water extracts of white ginseng and red ginseng (WEWG and WERG) were compared, and the potential mechanisms were discussed. METHODS Chemical profiles of WEWG and WERG were characterized by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD). Anti-obesity effects of WEWG/WERG were examined by determining fat accumulation, systemic inflammation, enteric metabolic disorders and gut microbiota dysbiosis in high-fat diet (HFD)-fed obese mice. RESULTS Both WEWG and WERG exerted anti-obesity effects, with WEWG stronger than WERG. Compared to WERG, WEWG contained less contents of carbohydrates (polysaccharides, oligosaccharides, free monosaccharides) and ginsenosides, but chemical structures or compositions of these components in WEWG were characteristic, i.e. narrower molecular weight distribution and higher molar ratios of glucose residues of polysaccharides; higher content ratios of oligosaccharides DP2-3 (di-/tri-saccharides)-to-oligosaccharides DP4-7 (tetra-/penta-/hexa-/hepta-saccharides), sucrose-to-melibiose, maltose-to-trehalose and high-polar-to-low-polar ginsenosides. WEWG better ameliorated fat accumulation, enteric metabolic disorders and gut microbiota dysbiosis in HFD-fed obese mice than WERG. CONCLUSION The stronger anti-obesity effect of white ginseng appears to correlate with differences in its chemical profile as compared to red ginseng. The carbohydrates and ginsenosides in WEWG potentially present more structural and compositional specificity to the obesity-associated gut bacteria, allowing more beneficial effects of WEWG on the gut microbiota dysbiosis. This consequently better alleviates the enteric metabolic disorders and systemic inflammation, thereby contributing to the stronger anti-obesity effect of WEWG as compared to WERG.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| | | | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Rong Ye
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
83
|
Abstract
Parenteral nutrition has been widely used in patients whose gastrointestinal tract is anatomically or physiologically unavailable for sufficient food intake. It has been considered lifesaving but is not without adverse effects. It has been proven to cause liver injury through different mechanisms. We present a review of parenteral nutrition-associated liver disease.
Collapse
|
84
|
Colognesi M, Gabbia D, De Martin S. Depression and Cognitive Impairment-Extrahepatic Manifestations of NAFLD and NASH. Biomedicines 2020; 8:E229. [PMID: 32708059 PMCID: PMC7400092 DOI: 10.3390/biomedicines8070229] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/15/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its complication non-alcoholic steatohepatitis (NASH) are important causes of liver disease worldwide. Recently, a significant association between these hepatic diseases and different central nervous system (CNS) disorders has been observed in an increasing number of patients. NAFLD-related CNS dysfunctions include cognitive impairment, hippocampal-dependent memory impairment, and mood imbalances (in particular, depression and anxiety). This review aims at summarizing the main correlations observed between NAFLD development and these CNS dysfunctions, focusing on the studies investigating the mechanism(s) involved in this association. Growing evidences point at cerebrovascular alteration, neuroinflammation, and brain insulin resistance as NAFLD/NASH-related CNS manifestations. Since the pharmacological options available for the management of these conditions are still limited, further studies are needed to unravel the mechanism(s) of NAFLD/NASH and their central manifestations and identify effective pharmacological targets.
Collapse
Affiliation(s)
- Martina Colognesi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, L.go Meneghetti 2, 35131 Padova, Italy
| |
Collapse
|
85
|
Chrysophanol Prevents Lipopolysaccharide-Induced Hepatic Stellate Cell Activation by Upregulating Apoptosis, Oxidative Stress, and the Unfolded Protein Response. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8426051. [PMID: 32714424 PMCID: PMC7355365 DOI: 10.1155/2020/8426051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/14/2022]
Abstract
Hepatic stellate cell (HSC) activation is a vital driver of liver fibrosis. Recent research efforts have emphasized the clearance of activated HSCs by apoptosis, senescence, or reversion to the quiescent state. LPS induces human HSC activation directly and contributes to liver disease progression. Chrysophanol is an anthraquinone with hepatoprotective and anti-inflammatory effects. This study aimed to investigate the pharmacological effects and mechanisms of chrysophanol in an LPS-induced activated rat HSC cell line (HSC-T6). The fibrosis phenotype was identified from the expression of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), and integrin β1 by western blot analysis. We examined DNA fragmentation by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. We detected the apoptotic markers p53 and cleaved caspase-3 by western blot analysis. Intracellular ROS were labeled with 2′,7′-dichlorofluorescein diacetate (DCF-DA) and the levels were measured by flow cytometry. Finally, we evaluated the ER stress markers binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP) by Western blot analysis. Our results showed that chrysophanol decreased HSC-T6 cell viability in LPS-induced activated HSCs. Chrysophanol increased the expression of α-SMA, CTGF, integrin βI, p53, cleaved caspase-3, and DNA fragmentation. Chrysophanol also elevated ROS levels and increased the expression of BiP and CHOP. Pretreatment with chrysophanol prevented LPS-induced HSC-T6 cell activation by upregulating apoptosis, ROS accumulation, unfolded protein response (UPR) activation, and the UPR proapoptotic effect.
Collapse
|
86
|
Engelmann C, Sheikh M, Sharma S, Kondo T, Loeffler-Wirth H, Zheng YB, Novelli S, Hall A, Kerbert AJC, Macnaughtan J, Mookerjee R, Habtesion A, Davies N, Ali T, Gupta S, Andreola F, Jalan R. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure. J Hepatol 2020; 73:102-112. [PMID: 31987990 DOI: 10.1016/j.jhep.2020.01.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/22/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Toll-like receptor 4 (TLR4) plays an essential role in mediating organ injury in acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). Herein, we assess whether inhibiting TLR4 signaling can ameliorate liver failure and serve as a potential treatment. METHODS Circulating TLR4 ligands and hepatic TLR4 expression were measured in plasma samples and liver biopsies from patients with cirrhosis. TAK-242 (TLR4 inhibitor) was tested in vivo (10 mg/kg intraperitoneally) in rodent models of ACLF (bile duct ligation + lipopolysaccharide [LPS]; carbon tetrachloride + LPS) and ALF (galactosamine + LPS) and in vitro on immortalized human monocytes (THP-1) and hepatocytes (HHL5). The in vivo therapeutic effect was assessed by coma-free survival, organ injury and cytokine release and in vitro by measuring IL-6, IL-1β or cell injury (TUNEL), respectively. RESULTS In patients with cirrhosis, hepatic TLR4 expression was upregulated and circulating TLR4 ligands were increased (p <0.001). ACLF in rodents was associated with a switch from apoptotic cell death in ALF to non-apoptotic forms of cell death. TAK-242 reduced LPS-induced cytokine secretion and cell death (p = 0.002) in hepatocytes and monocytes in vitro. In rodent models of ACLF, TAK-242 administration improved coma-free survival, reduced the degree of hepatocyte cell death in the liver (p <0.001) and kidneys (p = 0.048) and reduced circulating cytokine levels (IL-1β, p <0.001). In a rodent model of ALF, TAK-242 prevented organ injury (p <0.001) and systemic inflammation (IL-1β, p <0.001). CONCLUSION This study shows that TLR4 signaling is a key factor in the development of both ACLF and ALF; its inhibition reduces the severity of organ injury and improves outcome. TAK-242 may be of therapeutic relevance in patients with liver failure. LAY SUMMARY Toll-like receptor 4 (or TLR4) mediates endotoxin-induced tissue injury in liver failure and cirrhosis. This receptor sensitizes cells to endotoxins, which are produced by gram-negative bacteria. Thus, inhibiting TLR4 signaling with an inhibitor (TAK-242) ameliorates organ injury and systemic inflammation in rodent models of acute and acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Section Hepatology, Clinic for Gastroenterology and Rheumatology, University Hospital Leipzig, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charite - Universitätsmedizin Berlin, Germany
| | - Mohammed Sheikh
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Shreya Sharma
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Takayuki Kondo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Gastroenterology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig, Leipzig, Germany
| | - Yu Bao Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou, 510630, China
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Andrew Hall
- Sheila Sherlock Liver Centre, Royal Free London NHS Foundation Trust, Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, United Kingdom
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Jane Macnaughtan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajeshwar Mookerjee
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Tauhid Ali
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Saurabh Gupta
- Takeda Pharmaceuticals International Co, Cambridge, United States of America
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
87
|
Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The Gut-liver Axis in Immune Remodeling: New insight into Liver Diseases. Int J Biol Sci 2020; 16:2357-2366. [PMID: 32760203 PMCID: PMC7378637 DOI: 10.7150/ijbs.46405] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, playing a fundamental role in the induction, training, and function of the host immune system. The liver is anatomically and physiologically linked to the gut microbiota via enterohepatic circulation, specifically receiving intestine-derived blood through the portal vein. The gut microbiota is crucial for maintaining immune homeostasis of the gut-liver axis. A shift in gut microbiota composition can result in activation of the mucosal immune response causing homeostasis imbalance. This imbalance results in translocation of bacteria and migration of immune cells to the liver, which is related to inflammation-mediated liver injury and tumor progression. In this review, we outline the role of the gut microbiota in modulating host immunity and summarize novel findings and recent advances in immune-based therapeutics associated with the gut-liver axis. Moving forward, a deep understanding of the microbiome-immune-liver axis will provide insight into the basic mechanisms of gut microbiota dysbiosis affecting liver diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| |
Collapse
|
88
|
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
|
89
|
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30:492-506. [PMID: 32433595 PMCID: PMC7264227 DOI: 10.1038/s41422-020-0332-7] [Citation(s) in RCA: 1733] [Impact Index Per Article: 433.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host's innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
Collapse
Affiliation(s)
- Danping Zheng
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Timur Liwinski
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel.,1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 234 Herzl Street, 7610001, Rehovot, Israel. .,Cancer-Microbiome Division, Deutsches Krebsforschungszentrum (DKFZ), Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
90
|
Gandhi CR. Pro- and Anti-fibrogenic Functions of Gram-Negative Bacterial Lipopolysaccharide in the Liver. Front Med (Lausanne) 2020; 7:130. [PMID: 32373617 PMCID: PMC7186417 DOI: 10.3389/fmed.2020.00130] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Extensive research performed over several decades has identified cells participating in the initiation and progression of fibrosis, and the numerous underlying inter- and intra-cellular signaling pathways. However, liver fibrosis continues to be a major clinical challenge as the precise targets of treatment are still elusive. Activation of physiologically quiescent perisinusoidal hepatic stellate cells (HSCs) to a myofibroblastic proliferating, contractile and fibrogenic phenotype is a critical event in the pathogenesis of chronic liver disease. Thus, elucidation of the mechanisms of the reversal to quiescence or inhibition of activated HSCs, and/or their elimination via apoptosis has been the focus of intense investigation. Lipopolysaccharide (LPS), a gut-resident Gram-negative bacterial endotoxin, is a powerful pro-inflammatory molecule implicated in hepatic injury, inflammation and fibrosis. In both acute and chronic liver injury, portal venous levels of LPS are elevated due to increased intestinal permeability. LPS, via CD14 and Toll-like receptor 4 (TLR4) and its adapter molecules, stimulates macrophages, neutrophils and several other cell types to produce inflammatory mediators as well as factors that can activate HSCs and stimulate their fibrogenic activity. LPS also stimulates synthesis of pro- and anti-inflammatory cytokines/chemokines, growth mediators and molecules of immune regulation by HSCs. However, LPS was found to arrest proliferation of activated HSCs and to convert them into non-fibrogenic phenotype. Interestingly, LPS can elicit responses in HSCs independent of CD14 and TLR4. Identifying and/or developing non-inflammatory but anti-fibrogenic mimetics of LPS could be relevant for treating liver fibrosis.
Collapse
Affiliation(s)
- Chandrashekhar R Gandhi
- Divisions of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Cincinnati VA Medical Center, Cincinnati, OH, United States
| |
Collapse
|
91
|
Aspirin alleviates hepatic fibrosis by suppressing hepatic stellate cells activation via the TLR4/NF-κB pathway. Aging (Albany NY) 2020; 12:6058-6066. [PMID: 32283542 PMCID: PMC7185140 DOI: 10.18632/aging.103002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Hepatic fibrosis arises from a sustained wound-healing response to chronic liver injury. Because the occurrence and development of hepatic fibrosis is always associated with chronic inflammation, controlling inflammation within the liver may be an effective means of controlling the development and progression of hepatic fibrosis. Aspirin is a non-steroidal anti-inflammatory drug used to relieve both inflammatory symptoms and pain. The results of our study showed that aspirin significantly attenuated hepatic inflammation and fibrosis. Aspirin effectively inhibited the activation and proliferation of hepatic stellate cells (HSCs), which led to downregulation of inflammatory factors, including IL-6 and TNF-α in those cells. Aspirin also downregulated expression of Toll-like receptor-4 (TLR4) on HSCs, as well as its downstream mediators, MyD88 and NF-κB. The results of our study demonstrate aspirin's potential to inhibit the development of hepatic fibrosis and the molecular mechanism by which it acts. They suggest aspirin may be an effective therapeutic agent for the treatment of hepatic fibrosis.
Collapse
|
92
|
Dessein H, Duflot N, Romano A, Opio C, Pereira V, Mola C, Kabaterene N, Coutinho A, Dessein A. Genetic algorithms identify individuals with high risk of severe liver disease caused by schistosomes. Hum Genet 2020; 139:821-831. [PMID: 32277285 DOI: 10.1007/s00439-020-02160-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/28/2020] [Indexed: 02/06/2023]
Abstract
Schistosomes induce severe hepatic disease, which is fatal in 2-10% of cases, mortality being higher in cases of co-infection with HBV or HCV. Hepatic disease occurs as a consequence of the chronic inflammation caused by schistosome eggs trapped in liver sinusoids. In certain individuals, the repair process leads to a massive accumulation of fibrosis in the periportal spaces. We and others have shown that genetic variants play a crucial role in disease progression from mild to severe fibrosis and explain why hepatic fibrosis progresses rapidly in certain subjects only. We will review here published findings concerning the strategies that have been used in the analysis of hepatic fibrosis in schistosome-infected individuals, the genetic variants that have associated with fibrosis, and variants in new pathways crucial for fibrosis progression. Together, these studies show that the development of fibrosis is under the tight genetic control of various common variants with moderate effects. This polygenic control has made it possible to develop models that identify schistosome-infected individual at risk of severe hepatic disease. We discuss the performances and limitations of these models.
Collapse
Affiliation(s)
- Hélia Dessein
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Nicolas Duflot
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Audrey Romano
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France
| | - Christopher Opio
- Department of Medicine, Mulago Hospital, Makerere University College of Health Sciences, Kampala, Uganda
| | - Valeria Pereira
- Instituto Aggeu Magalhães, Fiocruz, Fundaçao Oswaldo Cruz, Av. Professor Moraes Rego, S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Carla Mola
- Instituto Aggeu Magalhães, Fiocruz, Fundaçao Oswaldo Cruz, Av. Professor Moraes Rego, S/N Cidade Universitária, Recife, PE, 50740-465, Brazil
| | - Narcis Kabaterene
- Vector Control Division Uganda, Ministry of Health, Queen's Ln, Kampala, Uganda
| | - Ana Coutinho
- Fundação Oswaldo Cruz Rio de Janeiro, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Alain Dessein
- BILHI Genetics, 60 Avenue André Roussin, 13016, Marseille, France.
- UMR_S906-Génétique Et Immunologie Des Maladies Parasitaires, Aix Marseille Université-INSERM, Marseille, France.
| |
Collapse
|
93
|
Wang YH, Suk FM, Liu CL, Chen TL, Twu YC, Hsu MH, Liao YJ. Antifibrotic Effects of a Barbituric Acid Derivative on Liver Fibrosis by Blocking the NF-κB Signaling Pathway in Hepatic Stellate Cells. Front Pharmacol 2020; 11:388. [PMID: 32296336 PMCID: PMC7136425 DOI: 10.3389/fphar.2020.00388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatic stellate cells (HSCs) are the major profibrogenic cells that promote the pathogenesis of liver fibrosis. The crosstalk between transforming growth factor-β1 (TGF-β1) signaling and lipopolysaccharide (LPS)-induced NF-κB signaling plays a critical role in accelerating liver fibrogenesis. Until now, there have been no FDA-approved drug treatments for liver fibrosis. Barbituric acid derivatives have been used as antiasthmatic drugs in the clinic; however, the effect of barbituric acid derivatives in treating liver fibrosis remains unknown. In this study, we synthesized a series of six barbituric acid (BA) derivatives, and one of the compounds, BA-5, exhibited the best ability to ameliorate TGF-β1-induced HSC activation without overt cytotoxic effects. Then, we treated HSCs and RAW264.7 macrophages with BA-5 to analyze the cross-talk of anti-fibrotic and anti-inflammatory effects. Carbon tetrachloride (CCl4)-induced liver fibrosis mouse model was used to evaluate the therapeutic effects of BA-5. Treatment with BA-5 inhibited TGF-β1-induced α-SMA, collagen1a2, and phosphorylated smad2/3 expression in HSCs. Furthermore, BA-5 treatment reversed the LPS-induced reduction in BAMBI protein and decreased IκBα and NF-κB phosphorylation in HSCs. NF-κB nuclear translocation, MCP-1 secretion, and ICAM-1 expression were also inhibited in BA-5-treated HSCs. Conditioned medium collected from BA-5-treated HSCs showed a reduced ability to activate RAW264.7 macrophages by inhibiting the MAPK pathway. In the mouse model, BA-5 administration reduced CCl4-induced liver damage, liver fibrosis, and F4/80 expression without any adverse effects. In conclusion, our study showed that the barbituric acid derivative BA-5 inhibits HSCs activation and liver fibrosis by blocking both the TGF-β1 and LPS-induced NF-κB signaling pathways and further inhibits macrophages recruitment and activation.
Collapse
Affiliation(s)
- Yuan-Hsi Wang
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Lang Chen
- Department of Medical Education, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
94
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, Peng C, Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112361. [PMID: 31683033 DOI: 10.1016/j.jep.2019.112361] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1β and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS The results showed that LPS could promote the expression of IL-6, IL-1β and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKβ, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lingyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
95
|
Modulation of hippocampal TLR4/BDNF signal pathway using probiotics is a step closer towards treating cognitive impairment in NASH model. Physiol Behav 2020; 214:112762. [DOI: 10.1016/j.physbeh.2019.112762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 02/08/2023]
|
96
|
Husain‐Syed F, Rosner MH, Ronco C. Distant organ dysfunction in acute kidney injury. Acta Physiol (Oxf) 2020; 228:e13357. [PMID: 31379123 DOI: 10.1111/apha.13357] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022]
Abstract
Acute kidney injury (AKI) is a common complication in critically ill patients and it is associated with increased morbidity and mortality. Epidemiological and clinical data show that AKI is linked to a wide range of distant organ injuries, with the lungs, heart, liver, and intestines representing the most clinically relevant affected organs. This distant organ injury during AKI predisposes patients to progression to multiple organ dysfunction syndrome and ultimately, death. The strongest direct evidence of distant organ injury occurring in AKI has been obtained from animal models. The identified mechanisms include systemic inflammatory changes, oxidative stress, increases in leucocyte trafficking and the activation of proapoptotic pathways. Understanding the pathways driving AKI-induced distal organ injury are critical for the development and refinement of therapies for the prevention and attenuation of AKI-related morbidity and mortality. The purpose of this review is to summarize both clinical and preclinical studies of AKI and its role in distant organ injury.
Collapse
Affiliation(s)
- Faeq Husain‐Syed
- Division of Nephrology, Pulmonology, and Critical Care Medicine, Department of Internal Medicine II University Hospital Giessen and Marburg Giessen Germany
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital Vicenza Italy
| | - Mitchell H. Rosner
- Department of Medicine University of Virginia Health System Charlottesville Virginia
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, International Renal Research Institute of Vicenza (IRRIV) San Bortolo Hospital Vicenza Italy
- Department of Medicine Università degli Studi di Padova Padova PD Italy
| |
Collapse
|
97
|
Crosstalk between NLRP12 and JNK during Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21020496. [PMID: 31941025 PMCID: PMC7013925 DOI: 10.3390/ijms21020496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC), a leading cause of cancer-related death, is initiated and promoted by chronic inflammation. Inflammatory mediators are transcriptionally regulated by several inflammatory signaling pathways, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK). cJun N-terminal kinase (JNK), a member of the MAPK family, plays a central role in HCC pathogenesis. Pathogen-associated molecular patterns (PAMPs) activate JNK and other MAPK upon recognition by toll-like receptors (TLRs). Apart from TLRs, PAMPs are sensed by several other pattern recognition receptors, including cytosolic NOD-like receptors (NLRs). In a recent study, we demonstrated that the NLR member NLRP12 plays a critical role in suppressing HCC via negative regulation of the JNK pathway. This article briefly reviews the crosstalk between NLRP12 and JNK that occurs during HCC.
Collapse
|
98
|
da Silva Meirelles L, Marson RF, Solari MIG, Nardi NB. Are Liver Pericytes Just Precursors of Myofibroblasts in Hepatic Diseases? Insights from the Crosstalk between Perivascular and Inflammatory Cells in Liver Injury and Repair. Cells 2020; 9:cells9010188. [PMID: 31940814 PMCID: PMC7017158 DOI: 10.3390/cells9010188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
Cirrhosis, a late form of liver disease, is characterized by extensive scarring due to exacerbated secretion of extracellular matrix proteins by myofibroblasts that develop during this process. These myofibroblasts arise mainly from hepatic stellate cells (HSCs), liver-specific pericytes that become activated at the onset of liver injury. Consequently, HSCs tend to be viewed mainly as myofibroblast precursors in a fibrotic process driven by inflammation. Here, the molecular interactions between liver pericytes and inflammatory cells such as macrophages and neutrophils at the first moments after injury and during the healing process are brought into focus. Data on HSCs and pericytes from other tissues indicate that these cells are able to sense pathogen- and damage-associated molecular patterns and have an important proinflammatory role in the initial stages of liver injury. On the other hand, further data suggest that as the healing process evolves, activated HSCs play a role in skewing the initial proinflammatory (M1) macrophage polarization by contributing to the emergence of alternatively activated, pro-regenerative (M2-like) macrophages. Finally, data suggesting that some HSCs activated during liver injury could behave as hepatic progenitor or stem cells will be discussed.
Collapse
Affiliation(s)
- Lindolfo da Silva Meirelles
- PPGBioSaúde and School of Medicine, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Renan Fava Marson
- PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS, Brazil
| | - Maria Inês Gonzalez Solari
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
| | - Nance Beyer Nardi
- Institute of Cardiology of Rio Grande do Sul, Av Princesa Isabel 370, 90620-001 Porto Alegre, RS, Brazil
- Correspondence: ; Tel.: +55-51-3230-3600
| |
Collapse
|
99
|
Seo B, Jeon K, Moon S, Lee K, Kim WK, Jeong H, Cha KH, Lim MY, Kang W, Kweon MN, Sung J, Kim W, Park JH, Ko G. Roseburia spp. Abundance Associates with Alcohol Consumption in Humans and Its Administration Ameliorates Alcoholic Fatty Liver in Mice. Cell Host Microbe 2020; 27:25-40.e6. [DOI: 10.1016/j.chom.2019.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 07/25/2019] [Accepted: 11/06/2019] [Indexed: 02/08/2023]
|
100
|
Hakimi Z, Salmani H, Marefati N, Arab Z, Gholamnezhad Z, Beheshti F, Shafei MN, Hosseini M. Protective Effects of Carvacrol on Brain Tissue Inflammation and Oxidative Stress as well as Learning and Memory in Lipopolysaccharide-Challenged Rats. Neurotox Res 2019; 37:965-976. [PMID: 31811590 DOI: 10.1007/s12640-019-00144-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 01/05/2023]
Abstract
Inflammation can cause memory impairment. In the present study, the effect of carvacrol on brain tissue inflammation and oxidative stress as well as learning and memory in lipopolysaccharide (LPS)-challenged rats was evaluated. The animals were grouped and treated: (1) control which received vehicle instead of LPS and carvacrol, (2) LPS (1 mg/kg; i.p. 120 min before behavioral tests), and (3-5) in these groups, 25, 50, or 100 mg/kg of carvacrol (i.p.) was administered 30 min prior to LPS. In a Morris water maze test, compared to LPS group, administration of all three doses of carvacrol shortened the elapsed time and the traveled distance to find the platform, while it prolonged the traveled time in the target area. In a passive avoidance test, administration of all 25, 50, and 100 mg/kg carvacrol significantly increased the latency at the 3 h, 24 h, 48 h, and 72 h after the shock compared to the LPS group. Interleukin (IL)-6, malondialdehyde (MDA), and NO (nitric oxide) metabolites were increased in the brain by LPS injection, while thiol, superoxide dismutase (SOD), and catalase (CAT) were decreased. Pretreatment with carvacrol reduced IL-6, NO metabolites, and MDA, while it improved thiol content, CAT, and SOD. The results indicated that carvacrol protected from learning and memory impairment and the brain tissue inflammation and oxidative stress in LPS-challenged rats.
Collapse
Affiliation(s)
- Zhara Hakimi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Marefati
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohre Arab
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Gholamnezhad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|