51
|
Gautier JF, Fetita S, Sobngwi E, Salaün-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. DIABETES & METABOLISM 2005; 31:233-42. [PMID: 16142014 DOI: 10.1016/s1262-3636(07)70190-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incretin hormones are defined as intestinal hormones released in response to nutrient ingestion, which potentiate the glucose-induced insulin response. In humans, the incretin effect is mainly caused by two peptide hormones, glucose-dependent insulin releasing polypeptide GIP, and glucagon-like peptide-1 GLP-1. GIP is secreted by K cells from the upper small intestine while GLP-1 is mainly produced in the enteroendocrine L cells located in the distal intestine. Their effect is mediated through their binding with specific receptors, though part of their biological action may also involve neural modulation. GIP and GLP-1 are both rapidly degraded into inactive metabolites by the enzyme dipeptidyl-peptidase-IV (DPP-IV). In addition to its effects on insulin secretion, GLP-1 exerts other significant actions, including stimulation of insulin biosynthesis, inhibition of glucagon secretion, inhibition of gastric emptying and acid secretion, reduction of food intake, and trophic effects on the pancreas. As the insulinotropic action of GLP-1 is preserved in type 2 diabetic patients, this peptide was a candidate as a therapeutic agent for this disease. A number of pharmacological strategies have been developed to provide continuous delivery of GLP-1 and to prevent degradation of GLP-1, including continuous administration of GLP-1, DPP-IV inhibitors and DPP-IV resistant GLP-1 analogues. Recent results of the most clinically advanced incretin mimetics confirmed their efficacy to improve glycemic control in type 2 diabetic patients. Further results are expected to confirm the efficacy/safety profile of these compounds, and to find their place in the therapeutic strategy of type 2 diabetes.
Collapse
Affiliation(s)
- J F Gautier
- Service de Diabétologie-Endocrinologie et INSERM CIC9504, Hôpital Saint-Louis, F-75475 Paris Cedex 10, France.
| | | | | | | |
Collapse
|
52
|
Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 2004; 280:1457-64. [PMID: 15525634 DOI: 10.1074/jbc.m411487200] [Citation(s) in RCA: 297] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proglucagon gene (glu) encodes glucagon, expressed in pancreatic islets, and the insulinotropic hormone GLP-1, expressed in the intestines. These two hormones exert critical and opposite effects on blood glucose homeostasis. An intriguing question that remains to be answered is whether and how glu gene expression is regulated in a cell type-specific manner. We reported previously that the glu gene promoter in gut endocrine cell lines was stimulated by beta-catenin, the major effector of the Wnt signaling pathway, whereas glu mRNA expression and GLP-1 synthesis were activated via inhibition of glycogen synthase kinase-3beta, the major negative modulator of the Wnt pathway (Ni, Z., Anini, Y., Fang, X., Mills, G. B., Brubaker, P. L., & Jin, T. (2003) J. Biol. Chem. 278, 1380-1387). We now show that beta-catenin and the glycogen synthase kinase-3beta inhibitor lithium do not activate glu mRNA or glu promoter expression in pancreatic cell lines. In the intestinal GLUTag cell line, but not in the pancreatic InR1-G9 cell line, the glu promoter G2 enhancer-element was activated by lithium treatment via a TCF-binding motif. TCF-4 is abundantly expressed in the gut but not in pancreatic islets. Furthermore, both TCF-4 and beta-catenin bind to the glu gene promoter, as detected by chromatin immunoprecipitation. Finally, stable introduction of dominant-negative TCF-4 into the GLUTag cell line repressed basal glu mRNA expression and abolished the effect of lithium on glu mRNA expression and GLP-1 synthesis. We have therefore identified a unique mechanism that regulates glu expression in gut endocrine cells only. Tissue-specific expression of TCF factors thus may play a role in the diversity of the Wnt pathway.
Collapse
Affiliation(s)
- Fenghua Yi
- Division of Cell & Molecular Biology, Toronto General Research Institute, University Health Network, University of Toronto, Toronto, Ontario, M5G 2M1, Canada
| | | | | |
Collapse
|
53
|
Nisoli E, Carruba MO. Emerging aspects of pharmacotherapy for obesity and metabolic syndrome. Pharmacol Res 2004; 50:453-69. [PMID: 15458765 DOI: 10.1016/j.phrs.2004.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Obesity is a multifactorial, chronic disorder that has reached epidemic proportions in most industrialized countries and is threatening to become a global epidemic. Obese patients are at higher risk from coronary artery disease, hypertension, hyperlipidemia, diabetes mellitus, cancers, cerebrovascular accidents, osteoarthritis, restrictive pulmonary disease, and sleep apnoea. In particular, visceral fat accumulation is usually accompanied by insulin resistance or type 2 diabetes mellitus, hypertension, hypertriglyceridemia, high uremic acid levels, low high density lipoprotein (HDL) cholesterol to define a variously named syndrome or metabolic syndrome. Metabolic syndrome is now considered a major cardiovascular risk factor in a large percentage of population in worldwide. Both obesity and metabolic syndrome are particularly challenging clinical conditions to treat because of their complex pathophysiological basis. Indeed, body weight represents the integration of many biological and environmental components and relationships among fat and glucose tolerance or blood pressure are not completely understood. Efforts to develop innovative anti-obesity drugs, with benefits for metabolic syndrome, have been recently intensified. In general two distinct strategies can be adopted: first, to reduce energy intake; second, to increase energy expenditure. Here we review some among the most promising avenues in these two fields of drug therapy of obesity and, consequently, of metabolic syndrome.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Preclinical Sciences, Center for Study and Research on Obesity, L. Sacco Hospital, University of Milan, LITA Vialba, via G.B. Grassi 74, 20157 Milan, Italy.
| | | |
Collapse
|
54
|
Abstract
The physiological mechanisms that control energy balance are reciprocally linked to those that control reproduction, and together, these mechanisms optimize reproductive success under fluctuating metabolic conditions. Thus, it is difficult to understand the physiology of energy balance without understanding its link to reproductive success. The metabolic sensory stimuli, hormonal mediators and modulators, and central neuropeptides that control reproduction also influence energy balance. In general, those that increase ingestive behavior inhibit reproductive processes, with a few exceptions. Reproductive processes, including the hypothalamic-pituitary-gonadal (HPG) system and the mechanisms that control sex behavior are most proximally sensitive to the availability of oxidizable metabolic fuels. The role of hormones, such as insulin and leptin, are not understood, but there are two possible ways they might control food intake and reproduction. They either mediate the effects of energy metabolism on reproduction or they modulate the availability of metabolic fuels in the brain or periphery. This review examines the neural pathways from fuel detectors to the central effector system emphasizing the following points: first, metabolic stimuli can directly influence the effector systems independently from the hormones that bind to these central effector systems. For example, in some cases, excess energy storage in adipose tissue causes deficits in the pool of oxidizable fuels available for the reproductive system. Thus, in such cases, reproduction is inhibited despite a high body fat content and high plasma concentrations of hormones that are thought to stimulate reproductive processes. The deficit in fuels creates a primary sensory stimulus that is inhibitory to the reproductive system, despite high concentrations of hormones, such as insulin and leptin. Second, hormones might influence the central effector systems [including gonadotropin-releasing hormone (GnRH) secretion and sex behavior] indirectly by modulating the metabolic stimulus. Third, the critical neural circuitry involves extrahypothalamic sites, such as the caudal brain stem, and projections from the brain stem to the forebrain. Catecholamines, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH) are probably involved. Fourth, the metabolic stimuli and chemical messengers affect the motivation to engage in ingestive and sex behaviors instead of, or in addition to, affecting the ability to perform these behaviors. Finally, it is important to study these metabolic events and chemical messengers in a wider variety of species under natural or seminatural circumstances.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| |
Collapse
|
55
|
Abstract
The increasing prevalence of obesity is accompanied by an increasing prevalence of type 2 diabetes. Obesity not only increases the risk of developing type 2 diabetes but also compounds its health risks and complicates its management. The health benefits of weight loss and the efficacy of current weight loss strategies in obese persons with type 2 diabetes are evaluated. In addition, the article reviews the results of lifestyle intervention trials designed to reduce conversion to type 2 diabetes in at-risk individuals.
Collapse
Affiliation(s)
- Carol A Maggio
- Division of Endocrinology, Diabetes, and Nutrition, St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, 1111 Amsterdam Avenue, Room 1020, New York, NY 10025, USA
| | | |
Collapse
|
56
|
Abstract
The prevalence of obesity and diabetes is increasing in the United States and worldwide. These diseases are predicted to explode to epidemic proportions, unless appropriate counteractive measures are taken. Several large studies (DCCT, UKPDS, Kumamoto) clearly showed that intensive glycemic control in the diabetic patient reduced microvascular complications and improved mortality. Despite this, the NHANES III showed that only 50% of diabetics have been able to achieve a HgbAic level that is less than 7%; this suggests the need for a re-evaluation of our approach to these patients. The management of the obese diabetic patient involves glycemic control and weight reduction. These goals are particularly difficult to achieve in the obese diabetic patient because progressive beta-cell dysfunction and increasing insulin resistance necessitates the administration of increasingly higher dosages of insulin, which, in turn, promotes weight gain. A vicious cycle may ensue. Lifestyle modifications with diet and exercise are an essential part of the management of the obese diabetic patient. These measures alone are often insufficient and concomitant pharmacologic therapy is usually required to achieve glycemic and weight control. Oral agents that improve glycemia, decrease insulin resistance, and limit weight gain are desirable. Because of the progressive nature of diabetes, glycemic control with monotherapy often deteriorates over time, which necessitates the addition of other pharmacologic agents, including insulin. When insulin therapy is required in the treatment of the obese diabetic patient, combinations with oral agents that have been shown to minimize the amount of exogenous insulin that is required, may minimize weight gain. In addition, the obese diabetic patient who is poorly controlled with maximum oral hypoglycemic therapy may benefit from weight-reducing agents, such as sibutramine or orlistat. The introduction of these agents at other points in the management of the obese diabetic patients have been successful. Finally, for the severely obese diabetic patient, bariatric surgery may be the only effective treatment. Gastric bypass has been unequivocally shown to produce significant weight loss and improve glycemic control on a long-term basis in the obese diabetic patient. It is recommended that physicians avail themselves of all of these strategies in the management of the obese patient who has type 2 diabetes.
Collapse
Affiliation(s)
- Jeanine Albu
- Division of Endocrinology, St. Luke's Roosevelt Hospital, 1111 Amsterdam Avenue, College of Physicians and Surgeons, Columbia University, New York, NY 10025, USA.
| | | |
Collapse
|
57
|
Abstract
OBJECTIVE To examine the mechanisms of action, therapeutic potential, and challenges inherent in the use of incretin peptides and dipeptidyl peptidase-IV (DPP-IV) inhibitors for the treatment of type 2 diabetes. RESEARCH DESIGN AND METHODS The scientific literature describing the biological importance of incretin peptides and DPP-IV inhibitors in the control of glucose homeostasis has been reviewed, with an emphasis on mechanisms of action, experimental diabetes, human physiological experiments, and short-term clinical studies in normal and diabetic human subjects. RESULTS Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) exert important effects on beta-cells to stimulate glucose-dependent insulin secretion. Both peptides also regulate beta-cell proliferation and cytoprotection. GLP-1, but not GIP, inhibits gastric emptying, glucagon secretion, and food intake. The glucose-lowering actions of GLP-1, but not GIP, are preserved in subjects with type 2 diabetes. However, native GLP-1 is rapidly degraded by DPP-IV after parenteral administration; hence, degradation-resistant, long-acting GLP-1 receptor (GLP-1R) agonists are preferable agents for the chronic treatment of human diabetes. Alternatively, inhibition of DPP-IV-mediated incretin degradation represents a complementary therapeutic approach, as orally available DPP-IV inhibitors have been shown to lower glucose in experimental diabetic models and human subjects with type 2 diabetes. CONCLUSIONS GLP-1R agonists and DPP-IV inhibitors have shown promising results in clinical trials for the treatment of type 2 diabetes. The need for daily injections of potentially immunogenic GLP-1-derived peptides and the potential for unanticipated side effects with chronic use of DPP-IV inhibitors will require ongoing scrutiny of the risk-benefit ratio for these new therapies as they are evaluated in the clinic.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Toronto General Hospital, University of Toronto, Ontario, Canada.
| |
Collapse
|
58
|
Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, Parker TG, Huang Q, Drucker DJ, Husain M. Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 2003; 144:2242-52. [PMID: 12746281 DOI: 10.1210/en.2003-0007] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) acts via its G protein-coupled receptor (GLP-1R) to regulate blood glucose. Although the GLP-1R is widely expressed in peripheral tissues, including the heart, and exogenous GLP-1 administration increases heart rate and blood pressure in rodents, the physiological importance of GLP-1R action in the cardiovascular system remains unclear. We now show that 2-month-old mice with genetic deletion of the GLP-1R (GLP-1R(-/-)) exhibit reduced resting heart rate and elevated left ventricular (LV) end diastolic pressure compared with CD-1 wild-type controls. At the age of 5 months, echocardiography and histology demonstrate increased LV thickness in GLP-1R(-/-) mice. Although baseline hemodynamic parameters of GLP-1R(-/-) did not differ significantly from those of wild type, GLP-1R(-/-) mice displayed impaired LV contractility and diastolic function after insulin administration. The defective cardiovascular response to insulin was not attributable to a generalized defect in the stress response, because GLP-1R(-/-) mice responded appropriately to insulin with increased c-fos expression in the hypothalamus and increased circulating levels of glucagon and epinephrine. Furthermore, LV contractility after exogenous epinephrine infusion was also reduced in GLP-1R(-/-) mice. These findings provide new evidence implicating an essential role for GLP-1R in the control of murine cardiac structure and function in vivo.
Collapse
Affiliation(s)
- Robert Gros
- Heart and Stroke Richard Lewar Center of Excellence, University of Toronto, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Ni Z, Anini Y, Fang X, Mills G, Brubaker PL, Jin T. Transcriptional activation of the proglucagon gene by lithium and beta-catenin in intestinal endocrine L cells. J Biol Chem 2003; 278:1380-7. [PMID: 12421827 DOI: 10.1074/jbc.m206006200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proglucagon gene encodes several peptide hormones that regulate blood glucose homeostasis, growth of the small intestine, and satiety. Among them, glucagon-like peptide 1 (GLP-1) lowers blood glucose levels in patients with diabetes and inhibits eating and drinking in fasted rats. Although proglucagon transcription and GLP-1 synthesis were shown to be activated by forskolin and other protein kinase A (PKA) activators, deleting or mutating the cAMP-response element (CRE) only moderately attenuates the proglucagon gene promoter in response to PKA activation. Therefore, PKA may activate proglucagon transcription via a mechanism independent of the CRE motif. Recently, PKA was shown to phosphorylate and inactivate GSK-3beta, a key mediator in the Wnt signaling pathway. We show here that lithium, an inhibitor of GSK-3beta, activates proglucagon gene transcription and stimulates GLP-1 synthesis in an intestinal endocrine L cell line, GLUTag. The activation was also observed in primary fetal rat intestinal cell (FRIC) cultures, but not in a pancreatic A cell line. Co-transfection of beta-catenin, a downstream effector of GSK-3beta activities, activated the proglucagon gene promoter without a CRE. Furthermore, forskolin and 8-Br-cAMP phosphorylated GSK-3beta at serine 9 in intestinal proglucagon-producing cells, and both lithium and forskolin induced the accumulation of free beta-catenin in these cell lines. These observations indicate that the proglucagon gene is among the targets of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zuyao Ni
- Division of Cell & Molecular Biology, Toronto General Research Institute, University Health Network, Ontario M5G 2M1, Canada
| | | | | | | | | | | |
Collapse
|
60
|
MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AMF, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 2002; 51 Suppl 3:S434-42. [PMID: 12475787 DOI: 10.2337/diabetes.51.2007.s434] [Citation(s) in RCA: 407] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physiological effects of glucagon-like peptide-1 (GLP-1) are of immense interest because of the potential clinical relevance of this peptide. Produced in intestinal L-cells through posttranslational processing of the proglucagon gene, GLP-1 is released from the gut in response to nutrient ingestion. Peripherally, GLP-1 is known to affect gut motility, inhibit gastric acid secretion, and inhibit glucagon secretion. In the central nervous system, GLP-1 induces satiety, leading to reduced weight gain. In the pancreas, GLP-1 is now known to induce expansion of insulin-secreting beta-cell mass, in addition to its most well-characterized effect: the augmentation of glucose-stimulated insulin secretion. GLP-1 is believed to enhance insulin secretion through mechanisms involving the regulation of ion channels (including ATP-sensitive K(+) channels, voltage-dependent Ca(2+) channels, voltage-dependent K(+) channels, and nonselective cation channels) and by the regulation of intracellular energy homeostasis and exocytosis. The present article will focus principally on the mechanisms proposed to underlie the glucose dependence of GLP-1's insulinotropic effect.
Collapse
|
61
|
Abstract
Obesity is a multi-factorial, chronic disorder that has reached epidemic proportions in most industrialized countries and is threatening to become a global epidemic. Obese patients are at a higher risk from coronary artery disease, hypertension, hyperlipidemia, diabetes mellitus, certain cancers, cerebrovascular accidents, osteoarthritis, restrictive pulmonary disease, and sleep apnea. Obesity is a particularly challenging clinical condition to treat, because of its complex pathophysiological basis. Indeed, body weight represents the integration of many biological and environmental components. Efforts to develop innovative anti-obesity drugs have been recently intensified. In broad terms, researchers use different distinct strategies: first, to reduce energy intake; second, to increase energy expenditure; third, to alter the partitioning of nutrients between fat and lean tissue. In the present review we concentrate on the first of these strategies, by underlining the new pharmacological tools which are presently studied.
Collapse
Affiliation(s)
- E Nisoli
- Center for Study and Research on Obesity, University of Milan, Department of Preclinical Sciences, L. Sacco Hospital, Milan, Italy.
| | | |
Collapse
|
62
|
Strubbe JH, van Dijk G. The temporal organization of ingestive behaviour and its interaction with regulation of energy balance. Neurosci Biobehav Rev 2002; 26:485-98. [PMID: 12204194 DOI: 10.1016/s0149-7634(02)00016-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Body weight of man and animals is under homeostatic control mediated by the adjustment of food intake. It is discussed in this review that besides signals reporting energy deficits, optimized programs of body clocks take part in feeding behaviour as well. Circadian light- and food-entrainable clocks determine anticipatory adaptive behavioural and physiological mechanisms, promoting or inhibiting food intake. In fact these clocks form the constraints within which the homeostatic regulation of feeding behaviour is operating. Therefore, a strong interaction between circadian and homeostatic regulation must occur. In this homeostatic control, a wide variety of regulatory negative feedback mechanisms, or satiety signals, play a dominant role. In this respect several gut hormones and body temperature function as 'short-term' satiety factors and determine meal sizes and intermeal intervals. Leptin, secreted by fat cells in proportion to the size of adipose tissue mass, is probably an important determinant of the 'long-term' regulation of feeding behaviour by setting the motivational background level for feeding behaviour. Thus, initiation or termination of meals at any particular point in time, depends on the resultant of all satiety signals and on constraints imposed by circadian light- and food-entrainable oscillators.
Collapse
Affiliation(s)
- Jan H Strubbe
- Division of Neuroendocrinology, Department of Animal Physiology, School of Cognitive and Behavioural Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | |
Collapse
|
63
|
Mattson MP. Brain evolution and lifespan regulation: conservation of signal transduction pathways that regulate energy metabolism. Mech Ageing Dev 2002; 123:947-53. [PMID: 12044943 DOI: 10.1016/s0047-6374(02)00032-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanisms for sensing, acquiring, storing and using energy are fundamental to the survival of organisms at all levels of the phylogenetic scale. Single-cell organisms evolved surface receptors that sense an energy source and, via signal transduction pathways that couple the receptors to the cell cytoskeleton move towards the energy source. Mutlicellular organisms evolved under conditions that favored species that developed complex mechanisms for obtaining food, with nervous systems being critical mediators of energy acquisition and regulators of energy metabolism. A conserved signaling system involved in regulating cellular and organismal energy metabolism, and in sensing and responding to energy/food-related environmental signals, involves receptors coupled to the phosphatidylinositol-3-kinase-Akt signaling pathway. Prominent activators of this pathway are insulin, insulin-like growth factors and brain-derived neurotrophic factor (BDNF). Recent studies in diverse organisms including nematodes, flies and rodents have provided evidence that insulin-like signaling in the nervous system can control lifespan, perhaps by modulating stress responses and energy metabolism. Interestingly, the lifespan-extending effect of dietary restriction in rodents is associated with increased BDNF signaling in the brain, and a related increase of peripheral insulin sensitivity, suggesting a mechanism whereby the brain can control lifespan. Thus a prominent evolutionarily conserved function of the nervous system is to regulate food acquisition and energy metabolism, thereby controlling lifespan.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center 4F01, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA.
| |
Collapse
|
64
|
Larsen PJ, Vrang N, Tang-Christensen M, Jensen PB, Hay-Schmidt A, Rømer J, Bjerre-Knudsen L, Kristensen P. Ups and downs for neuropeptides in body weight homeostasis: pharmacological potential of cocaine amphetamine regulated transcript and pre-proglucagon-derived peptides. Eur J Pharmacol 2002; 440:159-72. [PMID: 12007533 DOI: 10.1016/s0014-2999(02)01426-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although most humans experience an underlying upwards drift of the body-weight set-point, body weight appears tightly regulated throughout life. The present review describes the structural basis of the adipostat and hypothesise, which components may constitute available targets for pharmacotherapy of excess body weight. Hypothalamic neurones constitute the major components of the body weight homeostasis maintaining device. Together with neurones of the nucleus of the solitary tract, neurones of the hypothalamic arcuate nucleus constitute the sensory components of the adipostat. The arcuate nucleus neurones respond to circulating levels of leptin and insulin, both of which reflect the levels of energy stored as triacylglycerol in adipocytes. The arcuate nucleus projects heavily to the hypothalamic paraventricular nucleus. Neurones of the hypothalamic paraventricular nucleus are hypothesised to constitute, at least partly, the adipostat motor pattern generator, which upon stimulation activates either net anabolic or catabolic physiological responses. The overall sensitivity of the adipostat is influenced by gain setting neurones hypothesised to be located in the dorsomedial hypothalamic nucleus and lateral hypothalamic area. Cocaine amphetamine regulated transcript (CART) peptides and pre-proglucagon derived peptides, glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) are catabolic neurotransmitters synthesised in neurones of the arcuate nucleus and the nucleus of the solitary tract, respectively. The present review summarises the available evidence that both families of peptides constitute endogenous transmitters mediating satiety and touch upon potential pharmacological exploitation of this knowledge.
Collapse
Affiliation(s)
- Philip J Larsen
- Laboratory of Obesity Research, Center for Clinical and Basic Research, Ballerup Byvej 222, 2750, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Crowley VEF, Yeo GSH, O'Rahilly S. Obesity therapy: altering the energy intake-and-expenditure balance sheet. Nat Rev Drug Discov 2002; 1:276-86. [PMID: 12120279 DOI: 10.1038/nrd770] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity is associated with numerous health complications, which range from non-fatal debilitating conditions such as osteoarthritis, to life-threatening chronic diseases such as coronary heart disease, diabetes and certain cancers. The psychological consequences of obesity can range from lowered self-esteem to clinical depression. Despite the high prevalence of obesity and the many advances in our understanding of how it develops, current therapies have persistently failed to achieve long-term success. This review focuses on how fat mass can be reduced by altering the balance between energy intake and expenditure.
Collapse
Affiliation(s)
- Vivion E F Crowley
- University Departments of Medicine and Clinical Biochemistry, Addenbrooke's Hospital, Cambridge CB2 2QR, UK
| | | | | |
Collapse
|
66
|
Abstract
The glucagon-like peptides (GLP-1 and GLP-2) are proglucagon-derived peptides cosecreted from gut endocrine cells in response to nutrient ingestion. GLP-1 acts as an incretin to lower blood glucose via stimulation of insulin secretion from islet beta cells. GLP-1 also exerts actions independent of insulin secretion, including inhibition of gastric emptying and acid secretion, reduction in food ingestion and glucagon secretion, and stimulation of beta-cell proliferation. Administration of GLP-1 lowers blood glucose and reduces food intake in human subjects with type 2 diabetes. GLP-2 promotes nutrient absorption via expansion of the mucosal epithelium by stimulation of crypt cell proliferation and inhibition of apoptosis in the small intestine. GLP-2 also reduces epithelial permeability, and decreases meal-stimulated gastric acid secretion and gastrointestinal motility. Administration of GLP-2 in the setting of experimental intestinal injury is associated with reduced epithelial damage, decreased bacterial infection, and decreased mortality or gut injury in rodents with chemically induced enteritis, vascular-ischemia reperfusion injury, and dextran sulfate-induced colitis. GLP-2 also attenuates chemotherapy-induced mucositis via inhibition of drug-induced apoptosis in the small and large bowel. GLP-2 improves intestinal adaptation and nutrient absorption in rats after major small bowel resection, and in humans with short bowel syndrome. The actions of GLP-2 are mediated by a distinct GLP-2 receptor expressed on subsets of enteric nerves and enteroendocrine cells in the stomach and small and large intestine. The beneficial actions of GLP-1 and GLP-2 in preclinical and clinical studies of diabetes and intestinal disease, respectively, has fostered interest in the potential therapeutic use of these gut peptides. Nevertheless, the actions of the glucagon-like peptides are limited in duration by enzymatic inactivation via cleavage at the N-terminal penultimate alanine by dipeptidyl peptidase IV (DP IV). Hence, inhibitors of DP IV activity, or DP IV-resistant glucagon-like peptide analogues, may be alternative therapeutic approaches for treatment of human diseases.
Collapse
Affiliation(s)
- Daniel J Drucker
- The Banting and Best Diabetes Centre, Department of Medicine, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
67
|
Abstract
Dietary fiber may be related to body-weight regulation through plausible physiologic mechanisms that have considerable support in the scientific literature. Many short-term studies suggest that high-fiber foods induce greater satiation and satiety. Epidemiologic studies generally [figure: see text] support a role for fiber in body-weight regulation among free-living individuals consuming self-selected diets, although conclusive intervention studies addressing this point are lacking. Thus, there is considerable reason to conclude that fiber-rich diets, containing non-starchy vegetables, fruits, whole grains, legumes, and nuts, may be effective in the prevention and treatment of obesity in children. Such diets may have additional benefits, independent of changes in adiposity, in the prevention of cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- M A Pereira
- Division of Endocrinology, Departments of Pediatrics and Medicine, Harvard Medical School and Children's Hospital, Boston, Massachusetts, USA.
| | | |
Collapse
|
68
|
Lovshin J, Estall J, Yusta B, Brown TJ, Drucker DJ. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J Biol Chem 2001; 276:21489-99. [PMID: 11262390 DOI: 10.1074/jbc.m009382200] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Glucagon-like peptide-2 (GLP-2) regulates energy homeostasis via effects on nutrient absorption and maintenance of gut mucosal epithelial integrity. The biological actions of GLP-2 in the central nervous system (CNS) remain poorly understood. We studied the sites of endogenous GLP-2 receptor (GLP-2R) expression, the localization of transgenic LacZ expression under the control of the mouse GLP-2R promoter, and the actions of GLP-2 in the murine CNS. GLP-2R expression was detected in multiple extrahypothalamic regions of the mouse and rat CNS, including cell groups in the cerebellum, medulla, amygdala, hippocampus, dentate gyrus, pons, cerebral cortex, and pituitary. A 1.5-kilobase fragment of the mouse GLP-2R promoter directed LacZ expression to the gastrointestinal tract and CNS regions in the mouse that exhibited endogenous GLP-2R expression, including the cerebellum, amygdala, hippocampus, and dentate gyrus. Intracerebroventricular injection of GLP-2 significantly inhibited food intake during dark-phase feeding in wild-type mice. Disruption of glucagon-like peptide-1 receptor (GLP-1R) signaling with the antagonist exendin-(9-39) in wild-type mice or genetically in GLP-1R(-)/- mice significantly potentiated the anorectic actions of GLP-2. These findings illustrate that CNS GLP-2R expression is not restricted to hypothalamic nuclei and demonstrate that the anorectic effects of GLP-2 are transient and modulated by the presence or absence of GLP-1R signaling in vivo.
Collapse
Affiliation(s)
- J Lovshin
- Department of Medicine, Banting and Best Diabetes Centre, Toronto General Hospital, Toronto, Ontario M5G 2C4, Canada
| | | | | | | | | |
Collapse
|
69
|
Silverstein JT, Bondareva VM, Leonard JB, Plisetskaya EM. Neuropeptide regulation of feeding in catfish, Ictalurus punctatus: a role for glucagon-like peptide-1 (GLP-1)? Comp Biochem Physiol B Biochem Mol Biol 2001; 129:623-31. [PMID: 11399498 DOI: 10.1016/s1096-4959(01)00357-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glucagon-like peptide 1 is a compound known to cause reduced food intake in mammals, though its action on feed intake in fish is unknown. The clear differences in the effects of GLP-1 on mammalian and teleostean glucose homeostasis suggest that we cannot assume a similar action of GLP-1 on feeding in mammals and fish. In this study the effects and specificity of centrally administered GLP-1 on feed intake were examined. It was demonstrated that intracerebroventricular (ICV) injection of glucagon-like peptide 1 (GLP-1) in the channel catfish (Ictalurus punctatus) is a potent inhibitor of feed intake with a dose of 0.25 ng g(-1) body wt. reducing feed intake by 50%. The weak response to intraperitoneal (i.p.) and intravenous (i.v.) injection treatments with GLP-1 suggests the major effects on feed intake are centrally mediated. GLP-1 action on feed intake was not antagonized by ICV injection of exendin(9-39). Immunoneutralization of GLP-1 by ICV injection of antisalmon GLP-1 antisera did not affect feed intake over 48 h, while ICV injection of GLP-1 at a dose of 30 ng g(-1) body wt. reduced feed intake for over 20 h. Additionally, there is some evidence that GLP-1 caused gastric evacuation. We conclude that GLP-1 is a potent inhibitor of feeding in fish, but its involvement in feed intake regulation under physiological conditions remains to be clarified.
Collapse
Affiliation(s)
- J T Silverstein
- USDA, ARS, Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, 38776, Stoneville, MS, USA.
| | | | | | | |
Collapse
|
70
|
Abstract
The search for anti-obesity agents has become one of the most exciting areas in drug discovery. Subsequent to an enormous increase in the number of possible molecular targets, the focus has shifted from target identification to target validation. Because important biological functions such as the regulation of energy intake and expenditure are controlled by complex systems, an improved understanding of pathophysiology is a prerequisite for the selection of successful development candidates for the treatment of obesity. Although most of the information on the regulation of energy balance has been obtained from rodents, various monogenic forms of human obesity provide clinical proof of concept for some of these mechanisms. However, it is still not known which are the most promising clinical approaches to lowering body weight and subsequently reducing morbidity and mortality.
Collapse
Affiliation(s)
- M Chiesi
- Cardiovascular and Metabolic Diseases Research, Novartis Pharma AG, CH 4002 Basel, Switzerland
| | | | | |
Collapse
|
71
|
Abstract
The increasing prevalence of obesity worldwide has prompted the World Health Organization (WHO) to classify it as a global epidemic. Around the globe, more than a half billion people are overweight, and the chronic disease of obesity represents a major threat to health care systems in developed and developing countries. The major health hazards associated with obesity are the risks of developing diabetes, cardiovascular disease, stroke, osteoarthritis and some forms of cancer. In this paper, we review the prevalence of obesity and its cost to health care systems and present the relative contribution of environmental conditions and genetic makeup to the development of obesity in people. We also discuss the concept of "essential" obesity in an "obesigenic" environment. Though weight gain results from a sustained imbalance between energy intake and energy expenditure, it is only recently that studies have identified important new mechanisms involved in the regulation of body weight. The etiology of the disease is presented as a feedback model in which afferent signals inform the central controllers in the brain as to the state of the external and internal environment and elicit responses related to the regulation of food intake and energy metabolism. Pharmaceutical agents may intervene at different levels of this feedback model, i.e., reinforce the afferent signals from the periphery, target the central pathways involved in the regulation of food intake and energy expenditure, and increase peripheral energy expenditure and fat oxidation directly. Since obesity results from genetic predisposition, combined with the proactive environmental situation, we discuss new potential targets for generation of drugs that may assist people in gaining control over appetite as well as increasing total energy expenditure and fat oxidation.
Collapse
Affiliation(s)
- E Ravussin
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808-4124, USA.
| | | |
Collapse
|