51
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
52
|
Favarato D, Benvenuti LA. Case 6/2017 - A 28-Year-Old Man with Anasarca And Restrictive Heart Disease. Arq Bras Cardiol 2017; 109:609-614. [PMID: 29364352 PMCID: PMC5783443 DOI: 10.5935/abc.20170184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
53
|
Kabagambe SK, Lankford L, Kumar P, Chen YJ, Herout KT, Lee CJ, Stark RA, Farmer DL, Wang A. Isolation of myogenic progenitor cell population from human placenta: A pilot study. J Pediatr Surg 2017; 52:2078-2082. [PMID: 28964407 DOI: 10.1016/j.jpedsurg.2017.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 08/28/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE The purpose of this study was to demonstrate a method of isolating myogenic progenitor cells from human placenta chorionic villi and to confirm the myogenic characteristics of the isolated cells. METHODS Cells were isolated from chorionic villi of a second trimester male placenta via a combined enzymatic digestion and explant culture. A morphologically distinct subpopulation of elongated and multinucleated cells was identified. This subpopulation was manually passaged from the explant culture, expanded, and analyzed by fluorescence in situ hybridization (FISH) assay, immunocytochemistry, and flow cytometry. Myogenic characteristics including alignment and fusion were tested by growing these cells on aligned polylactic acid microfibrous scaffold in a fusion media composed of 2% horse serum in Dulbecco's modified Eagle medium/high glucose. RESULTS The expanded subpopulation was uniformly positive for integrin α-7. Presence of Y-chromosome by FISH analysis confirmed chorionic villus origin rather than maternal cell contamination. Isolated cells grew, aligned, and fused on the microfibrous scaffold, and they expressed myogenin, desmin, and MHC confirming their myogenic identity. CONCLUSION Myogenic progenitor cells can be isolated from human chorionic villi. This opens the possibility for translational and clinical applications using autologous myogenic cells for possible engraftment in treatment of chest and abdominal wall defects.
Collapse
Affiliation(s)
| | - Lee Lankford
- University of California, Davis Health, Sacramento, CA, USA
| | | | - Y Julia Chen
- University of California, Davis Health, Sacramento, CA, USA
| | - Kyle T Herout
- University of California, Davis Health, Sacramento, CA, USA
| | - Chelsey J Lee
- University of California, Davis Health, Sacramento, CA, USA
| | | | - Diana L Farmer
- University of California, Davis Health, Sacramento, CA, USA
| | - Aijun Wang
- University of California, Davis Health, Sacramento, CA, USA
| |
Collapse
|
54
|
Silvestri NJ, Ismail H, Zimetbaum P, Raynor EM. Cardiac involvement in the muscular dystrophies. Muscle Nerve 2017; 57:707-715. [DOI: 10.1002/mus.26014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo Jacobs School of Medicine and Biomedical Sciences; 1010 Main St Buffalo New York 14202 USA
| | - Haisam Ismail
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Peter Zimetbaum
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Elizabeth M. Raynor
- Department of Neurology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| |
Collapse
|
55
|
Phenotypic expression of a novel desmin gene mutation: hypertrophic cardiomyopathy followed by systemic myopathy. J Hum Genet 2017; 63:249-254. [DOI: 10.1038/s10038-017-0383-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/07/2017] [Accepted: 10/15/2017] [Indexed: 11/08/2022]
|
56
|
Gouveia M, Xia K, Colón W, Vieira SI, Ribeiro F. Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev 2017; 40:1-10. [PMID: 28757291 DOI: 10.1016/j.arr.2017.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Cells ensure their protein quality control through the proteostasis network. Aging and age-related diseases, such as neurodegenerative and cardiovascular diseases, have been associated to the reduction of proteostasis network efficiency and, consequently, to the accumulation of protein misfolded aggregates. The decline in protein homeostasis has been associated with the development and progression of atherosclerotic cardiovascular disease, cardiac hypertrophy, cardiomyopathies, and heart failure. Exercise training is a key component of the management of patients with cardiovascular disease, consistently improving quality of life and prognosis. In this review, we give an overview on age-related protein aggregation, the role of the increase of misfolded protein aggregates on cardiovascular pathophysiology, and describe the beneficial or deleterious effects of the proteostasis network on the development of cardiovascular disease. We subsequently discuss how exercise training, a key lifestyle intervention in those with cardiovascular disease, could restore proteostasis and improve disease status.
Collapse
|
57
|
Xu J, Lian W, Jia Y, Li L, Huang Z. Optimized guide RNA structure for genome editing via Cas9. Oncotarget 2017; 8:94166-94171. [PMID: 29212218 PMCID: PMC5706864 DOI: 10.18632/oncotarget.21607] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022] Open
Abstract
The genome editing tool Cas9-gRNA (guide RNA) has been successfully applied in different cell types and organisms with high efficiency. However, more efforts need to be made to enhance both efficiency and specificity. In the current study, we optimized the guide RNA structure of Streptococcus pyogenes CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system to improve its genome editing efficiency. Comparing with the original functional structure of guide RNA, which is composed of crRNA and tracrRNA, the widely used chimeric gRNA has shorter crRNA and tracrRNA sequence. The deleted RNA sequence could form extra loop structure, which might enhance the stability of the guide RNA structure and subsequently the genome editing efficiency. Thus the genome editing efficiency of different forms of guide RNA was tested. And we found that the chimeric structure of gRNA with original full length of crRNA and tracrRNA showed higher genome editing efficiency than the conventional chimeric structure or other types of gRNA we tested. Therefore our data here uncovered the new type of gRNA structure with higher genome editing efficiency.
Collapse
Affiliation(s)
- Jianyong Xu
- Institute of Biological Therapy, Shenzhen University, Shenzhen, P.R. China.,Department of Pathogen Biology and Immunology, School of Medicine, Shenzhen University, Shenzhen, P.R. China
| | - Wei Lian
- Institute of Biological Therapy, Shenzhen University, Shenzhen, P.R. China.,Department of Pathogen Biology and Immunology, School of Medicine, Shenzhen University, Shenzhen, P.R. China
| | - Yuning Jia
- Institute of Biological Therapy, Shenzhen University, Shenzhen, P.R. China.,Department of Pathogen Biology and Immunology, School of Medicine, Shenzhen University, Shenzhen, P.R. China
| | - Lingyun Li
- Institute of Biological Therapy, Shenzhen University, Shenzhen, P.R. China.,Department of Pathogen Biology and Immunology, School of Medicine, Shenzhen University, Shenzhen, P.R. China
| | - Zhong Huang
- Institute of Biological Therapy, Shenzhen University, Shenzhen, P.R. China.,Department of Pathogen Biology and Immunology, School of Medicine, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
58
|
Lee TM, Hsu DT, Kantor P, Towbin JA, Ware SM, Colan SD, Chung WK, Jefferies JL, Rossano JW, Castleberry CD, Addonizio LJ, Lal AK, Lamour JM, Miller EM, Thrush PT, Czachor JD, Razoky H, Hill A, Lipshultz SE. Pediatric Cardiomyopathies. Circ Res 2017; 121:855-873. [PMID: 28912187 DOI: 10.1161/circresaha.116.309386] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pediatric cardiomyopathies are rare diseases with an annual incidence of 1.1 to 1.5 per 100 000. Dilated and hypertrophic cardiomyopathies are the most common; restrictive, noncompaction, and mixed cardiomyopathies occur infrequently; and arrhythmogenic right ventricular cardiomyopathy is rare. Pediatric cardiomyopathies can result from coronary artery abnormalities, tachyarrhythmias, exposure to infection or toxins, or secondary to other underlying disorders. Increasingly, the importance of genetic mutations in the pathogenesis of isolated or syndromic pediatric cardiomyopathies is becoming apparent. Pediatric cardiomyopathies often occur in the absence of comorbidities, such as atherosclerosis, hypertension, renal dysfunction, and diabetes mellitus; as a result, they offer insights into the primary pathogenesis of myocardial dysfunction. Large international registries have characterized the epidemiology, cause, and outcomes of pediatric cardiomyopathies. Although adult and pediatric cardiomyopathies have similar morphological and clinical manifestations, their outcomes differ significantly. Within 2 years of presentation, normalization of function occurs in 20% of children with dilated cardiomyopathy, and 40% die or undergo transplantation. Infants with hypertrophic cardiomyopathy have a 2-year mortality of 30%, whereas death is rare in older children. Sudden death is rare. Molecular evidence indicates that gene expression differs between adult and pediatric cardiomyopathies, suggesting that treatment response may differ as well. Clinical trials to support evidence-based treatments and the development of disease-specific therapies for pediatric cardiomyopathies are in their infancy. This compendium summarizes current knowledge of the genetic and molecular origins, clinical course, and outcomes of the most common phenotypic presentations of pediatric cardiomyopathies and highlights key areas where additional research is required. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifiers: NCT02549664 and NCT01912534.
Collapse
Affiliation(s)
- Teresa M Lee
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.).
| | - Daphne T Hsu
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Paul Kantor
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jeffrey A Towbin
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Stephanie M Ware
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Steven D Colan
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Wendy K Chung
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - John L Jefferies
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Joseph W Rossano
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Chesney D Castleberry
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Linda J Addonizio
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Ashwin K Lal
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jacqueline M Lamour
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Erin M Miller
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Philip T Thrush
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Jason D Czachor
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Hiedy Razoky
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Ashley Hill
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| | - Steven E Lipshultz
- From the Department of Pediatrics, Columbia University Medical Center, New York, NY (T.M.L., W.K.C., L.J.A.); Department of Pediatrics, Albert Einstein College of Medicine, The Children's Hospital at Montefiore, Bronx, NY (D.T.H., J.M.L.); Department of Pediatrics, Stollery Children's Hospital, University of Alberta, Edmonton, Canada (P.K.); Department of Pediatrics, The Heart Institute, Le Bonheur Children's Hospital, Memphis, TN (J.A.T.); Indiana University School of Medicine, Indianapolis (S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (S.D.C.); Department of Pediatrics, Cincinnati Children's Hospital Medical Center, OH (J.L.J., E.M.M.); Department of Pediatrics, Children's Hospital of Philadelphia, PA (J.W.R.); Department of Pediatrics, Washington University School of Medicine, St. Louis, MO (C.D.C.); Department of Pediatrics, Primary Children's Hospital, Salt Lake City, UT (A.K.L.); Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Chicago, IL (P.T.T.); and Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit (J.D.C., H.R., A.H., S.E.L.)
| |
Collapse
|
59
|
Feingold B, Mahle WT, Auerbach S, Clemens P, Domenighetti AA, Jefferies JL, Judge DP, Lal AK, Markham LW, Parks WJ, Tsuda T, Wang PJ, Yoo SJ. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation 2017; 136:e200-e231. [DOI: 10.1161/cir.0000000000000526] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
60
|
Xu N, Bitan G, Schrader T, Klärner FG, Osinska H, Robbins J. Inhibition of Mutant αB Crystallin-Induced Protein Aggregation by a Molecular Tweezer. J Am Heart Assoc 2017; 6:JAHA.117.006182. [PMID: 28862927 PMCID: PMC5586456 DOI: 10.1161/jaha.117.006182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Compromised protein quality control causes the accumulation of misfolded proteins and intracellular aggregates, contributing to cardiac disease and heart failure. The development of therapeutics directed at proteotoxicity‐based pathology in heart disease is just beginning. The molecular tweezer CLR01 is a broad‐spectrum inhibitor of abnormal self‐assembly of amyloidogenic proteins, including amyloid β‐protein, tau, and α‐synuclein. This small molecule interferes with aggregation by binding selectively to lysine side chains, changing the charge distribution of aggregation‐prone proteins and thereby disrupting aggregate formation. However, the effects of CLR01 in cardiomyocytes undergoing proteotoxic stress have not been explored. Here we assess whether CLR01 can decrease cardiac protein aggregation catalyzed by cardiomyocyte‐specific expression of mutated αB‐crystallin (CryABR120G). Methods and Results A proteotoxic model of desmin‐related cardiomyopathy caused by cardiomyocyte‐specific expression of CryABR120G was used to test the efficacy of CLR01 therapy in the heart. Neonatal rat cardiomyocytes were infected with adenovirus expressing either wild‐type CryAB or CryABR120G. Subsequently, the cells were treated with different doses of CLR01 or a closely related but inactive derivative, CLR03. CLR01 decreased aggregate accumulation and attenuated cytotoxicity caused by CryABR120G expression in a dose‐dependent manner, whereas CLR03 had no effect. Ubiquitin‐proteasome system function was analyzed using a ubiquitin‐proteasome system reporter protein consisting of a short degron, CL1, fused to the COOH‐terminus of green fluorescent protein. CLR01 improved proteasomal function in CryABR120G cardiomyocytes but did not alter autophagic flux. In vivo, CLR01 administration also resulted in reduced protein aggregates in CryABR120G transgenic mice. Conclusions CLR01 can inhibit CryABR120G aggregate formation and decrease cytotoxicity in cardiomyocytes undergoing proteotoxic stress, presumably through clearance of the misfolded protein via increased proteasomal function. CLR01 or related compounds may be therapeutically useful in treating the pathogenic sequelae resulting from proteotoxic heart disease.
Collapse
Affiliation(s)
- Na Xu
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, Brain Research Institute, and Molecular Biology Institute, University of California at Los Angeles, CA
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | | | - Hanna Osinska
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
| | - Jeffrey Robbins
- Division of Molecular Cardiovascular Biology, the Heart Institute, Cincinnati Children's Hospital, Cincinnati, OH
| |
Collapse
|
61
|
Handy DE, Loscalzo J. Responses to reductive stress in the cardiovascular system. Free Radic Biol Med 2017; 109:114-124. [PMID: 27940350 PMCID: PMC5462861 DOI: 10.1016/j.freeradbiomed.2016.12.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 11/29/2016] [Accepted: 12/03/2016] [Indexed: 12/13/2022]
Abstract
There is a growing appreciation that reductive stress represents a disturbance in the redox state that is harmful to biological systems. On a cellular level, the presence of increased reducing equivalents and the lack of beneficial fluxes of reactive oxygen species can prevent growth factor-mediated signaling, promote mitochondrial dysfunction, increase apoptosis, and decrease cell survival. In this review, we highlight the importance of redox balance in maintaining cardiovascular homeostasis and consider the tenuous balance between oxidative and reductive stress. We explain the role of reductive stress in models of protein aggregation-induced cardiomyopathies, such as those caused by mutations in αB-crystallin. In addition, we discuss the role of NADPH oxidases in models of heart failure and ischemia-reperfusion to illustrate how oxidants may mediate the adaptive responses to injury. NADPH oxidase 4, a hydrogen peroxide generator, also has a major role in promoting vascular homeostasis through its regulation of vascular tone, angiogenic responses, and effects on atherogenesis. In contrast, the lack of antioxidant enzymes that reduce hydrogen peroxide, such as glutathione peroxidase 1, promotes vascular remodeling and is deleterious to endothelial function. Thus, we consider the role of oxidants as necessary signals to promote adaptive responses, such as the activation of Nrf2 and eNOS, and the stabilization of Hif1. In addition, we discuss the adaptive metabolic reprogramming in hypoxia that lead to a reductive state, and the subsequent cellular redistribution of reducing equivalents from NADH to other metabolites. Finally, we discuss the paradoxical ability of excess reducing equivalents to stimulate oxidative stress and promote injury.
Collapse
Affiliation(s)
- Diane E Handy
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, USA.
| |
Collapse
|
62
|
Marian AJ, van Rooij E, Roberts R. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders. J Am Coll Cardiol 2017; 68:2831-2849. [PMID: 28007145 DOI: 10.1016/j.jacc.2016.09.968] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper.
Collapse
Affiliation(s)
- Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, and Texas Heart Institute, Houston, Texas.
| | - Eva van Rooij
- Hubrecht Institute, KNAW and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Robert Roberts
- University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
63
|
Early signs of architectural and biomechanical failure in isolated myofibers and immortalized myoblasts from desmin-mutant knock-in mice. Sci Rep 2017; 7:1391. [PMID: 28469177 PMCID: PMC5431221 DOI: 10.1038/s41598-017-01485-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 01/25/2023] Open
Abstract
In striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network’s pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P. We demonstrate that mutant desmin alters myofibrillar cytoarchitecture, markedly disrupts the lateral sarcomere lattice and distorts myofibrillar angular axial orientation. Biomechanical assessment revealed a high predisposition to stretch-induced damage in fiber bundles of R349P mice. Notably, Ca2+-sensitivity and passive myofibrillar tension were decreased in heterozygous fiber bundles, but increased in homozygous fiber bundles compared to wildtype mice. In a parallel approach, we generated and subsequently subjected immortalized heterozygous R349P desmin knock-in myoblasts to magnetic tweezer experiments that revealed a significantly increased sarcolemmal lateral stiffness. Our data suggest that mutated desmin already markedly impedes myocyte structure and function at pre-symptomatic stages of myofibrillar myopathies.
Collapse
|
64
|
Guichard JL, Rogowski M, Agnetti G, Fu L, Powell P, Wei CC, Collawn J, Dell'Italia LJ. Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiol Heart Circ Physiol 2017; 313:H32-H45. [PMID: 28455287 PMCID: PMC5538858 DOI: 10.1152/ajpheart.00027.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 01/10/2023]
Abstract
Heart failure due to chronic volume overload (VO) in rats and humans is characterized by disorganization of the cardiomyocyte desmin/mitochondrial network. Here, we tested the hypothesis that desmin breakdown is an early and continuous process throughout VO. Male Sprague-Dawley rats had aortocaval fistula (ACF) or sham surgery and were examined 24 h and 4 and 12 wk later. Desmin/mitochondrial ultrastructure was examined by transmission electron microscopy (TEM) and immunohistochemistry (IHC). Protein and kinome analysis were performed in isolated cardiomyocytes, and desmin cleavage was assessed by mass spectrometry in left ventricular (LV) tissue. Echocardiography demonstrated a 40% decrease in the LV mass-to-volume ratio with spherical remodeling at 4 wk with ACF and LV systolic dysfunction at 12 wk. Starting at 24 h and continuing to 4 and 12 wk, with ACF there is TEM evidence of extensive mitochondrial clustering, IHC evidence of disorganization associated with desmin breakdown, and desmin protein cleavage verified by Western blot analysis and mass spectrometry. IHC results revealed that ACF cardiomyocytes at 4 and 12 wk had perinuclear translocation of αB-crystallin from the Z disk with increased α, β-unsaturated aldehyde 4-hydroxynonelal. Use of protein markers with verification by TUNEL staining and kinome analysis revealed an absence of cardiomyocyte apoptosis at 4 and 12 wk of ACF. Significant increases in protein indicators of mitophagy were countered by a sixfold increase in p62/sequestosome-1, which is indicative of an inability to complete autophagy. An early and continuous disruption of the desmin/mitochondrial architecture, accompanied by oxidative stress and inhibition of apoptosis and mitophagy, suggests its causal role in LV dilatation and systolic dysfunction in VO.NEW & NOTEWORTHY This study provides new evidence of early onset (24 h) and continuous (4-12 wk) desmin misarrangement and disruption of the normal sarcomeric and mitochondrial architecture throughout the progression of volume overload heart failure, suggesting a causal link between desmin cleavage and mitochondrial disorganization and damage.
Collapse
Affiliation(s)
- Jason L Guichard
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama.,Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael Rogowski
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama.,Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Giulio Agnetti
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; and
| | - Lianwu Fu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Pamela Powell
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Chih-Chang Wei
- Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama; .,Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, Alabama.,Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
65
|
Chen Y, Barajas-Martinez H, Zhu D, Wang X, Chen C, Zhuang R, Shi J, Wu X, Tao Y, Jin W, Wang X, Hu D. Novel trigenic CACNA1C/DES/MYPN mutations in a family of hypertrophic cardiomyopathy with early repolarization and short QT syndrome. J Transl Med 2017; 15:78. [PMID: 28427417 PMCID: PMC5399316 DOI: 10.1186/s12967-017-1180-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/10/2017] [Indexed: 01/12/2023] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) patients with early repolarization (ER) pattern are at higher risk of ventricular arrhythmia, yet the genetic background of this situation has not been well investigated. Here we report novel trigenic mutations detected in a Chinese family of obstructive HCM with ER and short QT syndrome (SQTS). Methods Proband and family members underwent detailed medical assessments. DNAs were extracted from peripheral blood leukocytes for genetic screening with next generation method. The functional characterization of the mutation was conducted in TSA201 cells with patch-clamp experiment. Results The proband was a 52-year-old male who had a ER pattern ECG in inferioral-lateral leads with atrioventricular block and QTc of 356 ms. He also suffered from severe left ventricular hypertrophy and dysfunction. Targeted sequencing revealed trigenic mutations: c.700G>A/p.E234K in DES, c.2966G>A/p.R989H in MYPN, and c.5918G>C/p.R1973P in CACNA1C. All mutations were also detected in his daughter with ER and mild myocardium hypertrophy. The CACNA1C-R1973P mutation caused significant reduction (68.4%) of ICa compared to CACNA1C-WT (n = 14 and 14, P < 0.05). The computer modeling showed that all 3 mutations were highly disease-causing. The proband received the CRT-D (cardiac resynchronizing therapy) implantation, which lowered the left ventricular outflow tract gradient (LVOTG, 124 mmHg pre vs. 27 mmHg post) and restored the LV function (LVEF 40% pre vs. 63% post). Conclusions The study reveals a novel CACNA1C mutation underlying the unique ER pattern ECGs with SQTS. It also shows the rare trigenic mutations are the pathogenic substrates for the complicated clinical manifestation in HCM patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1180-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhong Chen
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan University, Wuhan, 430022, China.,Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | | | - Dongxiao Zhu
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Xihui Wang
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Chonghao Chen
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Ruijuan Zhuang
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Jingjing Shi
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Xueming Wu
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Yijia Tao
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Weidong Jin
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China
| | - Xiaoyan Wang
- Department of Cardiology, Nantong University, 3rd People's Hospital of Wuxi Affiliated To Nantong University, 585 Xingyuan Road, Wuxi, 214043, Jiangsu, China.
| | - Dan Hu
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY, 13501, USA. .,Molecular Genetics Department, SCRO Chair of Stem Cell Center, Masonic Medical Research Laboratory, 2150 Bleecker St, Utica, NY, 13501, USA.
| |
Collapse
|
66
|
Shintani-Domoto Y, Hayasaka T, Maeda D, Masaki N, Ito TK, Sakuma K, Tanaka M, Kabashima K, Takei S, Setou M, Fukayama M. Different desmin peptides are distinctly deposited in cytoplasmic aggregations and cytoplasm of desmin-related cardiomyopathy patients. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:828-836. [PMID: 28341603 DOI: 10.1016/j.bbapap.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/16/2022]
Abstract
Desmin-related cardiomyopathy is a heterogeneous group of myofibrillar myopathies characterized by aggregates of desmin and related proteins in myocytes. It has been debated how the expression and protein structure are altered in the aggregates and other parts of myocytes in patients. To address this question, we investigated the proteome quantification as well as localization in formalin-fixed and paraffin-embedded specimens of the heart of patients by imaging mass spectrometry and liquid chromatography-mass spectrometry analyses. Fifteen tryptic peptide signals were enriched in the desmin-related cardiomyopathy myocardium, twelve of which were identified as desmin peptides with 14.3- to 27.3-fold increase compared to normal hearts. High-intensity signals at m/z 1032.5 and 1002.5, which were desmin peptides 59-70 at the head portion and 213-222 at the 1B domain, were with infrequent colocalization distributed not only in desmin-positive intracytoplasmic aggregates but also in histologically normal cytoplasm, indicating that desmin protein is fragmented and different types of naturally-occurring truncated proteins ectopically assemble throughout the heart of patients. Thus, in addition to conventional histological identification of protein aggregates, specific desmin peptides show a marked difference in quantity and localization in a tissue section of desmin-related cardiomyopathy and differentiate from other cardiomyopathies. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Yukako Shintani-Domoto
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Hayasaka
- Laboratory for Advanced Lipid Analysis, Health Innovation & Technology Center, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan; Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daichi Maeda
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cellular and Organ Pathology, Akita University, Akita, Japan
| | - Noritaka Masaki
- Department of Medical Spectroscopy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education &Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi K Ito
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kei Sakuma
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michio Tanaka
- Department of Pathology, Tokyo Metropolitan Hiroo Hospital, Tokyo, Japan
| | - Katsuya Kabashima
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiro Takei
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan; International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan; Riken Center for Molecular Imaging Science, Kobe, Japan; Department of Anatomy, The University of Hong Kong, Hong Kong, China; Division of Neural Systematics, National Institute for Physiological Sciences, Okazaki, Japan.
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
67
|
Kimura H, Eguchi S, Sasaki J, Kuba K, Nakanishi H, Takasuga S, Yamazaki M, Goto A, Watanabe H, Itoh H, Imai Y, Suzuki A, Mizushima N, Sasaki T. Vps34 regulates myofibril proteostasis to prevent hypertrophic cardiomyopathy. JCI Insight 2017; 2:e89462. [PMID: 28097232 DOI: 10.1172/jci.insight.89462] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a common heart disease with a prevalence of 1 in 500 in the general population. Several mutations in genes encoding cardiac proteins have been found in HCM patients, but these changes do not predict occurrence or prognosis and the molecular mechanisms underlying HCM remain largely elusive. Here we show that cardiac expression of vacuolar protein sorting 34 (Vps34) is reduced in a subset of HCM patients. In a mouse model, muscle-specific loss of Vps34 led to HCM-like manifestations and sudden death. Vps34-deficient hearts exhibited abnormal histopathologies, including myofibrillar disarray and aggregates containing αB-crystallin (CryAB). These features result from a block in the ESCRT-mediated proteolysis that normally degrades K63-polyubiquitinated CryAB. CryAB deposition was also found in myocardial specimens from a subset of HCM patients whose hearts showed decreased Vps34. Our results identify disruption of the previously unknown Vps34-CryAB axis as a potentially novel etiology of HCM.
Collapse
Affiliation(s)
- Hirotaka Kimura
- Research Center for Biosignaling, Department of.,Medical Biology
| | | | | | - Keiji Kuba
- Biological Informatics and Experimental Therapeutics Pathology
| | | | | | | | | | - Hiroyuki Watanabe
- Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Itoh
- Cardiovascular and Respiratory Medicine, Akita University Graduate School of Medicine, Akita, Japan
| | - Yumiko Imai
- Biological Informatics and Experimental Therapeutics Pathology
| | - Akira Suzuki
- Department of Molecular Genetics, Division of Cancer Genetics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takehiko Sasaki
- Research Center for Biosignaling, Department of.,Medical Biology
| |
Collapse
|
68
|
Abstract
The investigation of the aetiology of sudden cardiac arrest or death in a young person combines features of a traditional clinical medical examination with those of forensic medicine. Nuances of the immediate peri-event history, when available, can be paramount. New genetic tools have greatly improved the yield of such investigations, but they must be carefully interpreted by genetic specialists. The approach to surviving patients, their family members, and to family members of non-survivors is best achieved in a structured programme that includes all appropriate specialists and support personnel. As an example, this may include all appropriate paediatric and internal medicine specialists, a geneticist, a genetic counsellor, a clinical psychologist, nurse specialist(s), and a programme coordinator. This family-centred strategy affords the patient, if surviving, and all family members the necessary emotional and medical support while at the same time providing the necessary diagnostic and therapeutic approaches.
Collapse
|
69
|
Li H, Zheng L, Mo Y, Gong Q, Jiang A, Zhao J. Voltage-Dependent Anion Channel 1(VDAC1) Participates the Apoptosis of the Mitochondrial Dysfunction in Desminopathy. PLoS One 2016; 11:e0167908. [PMID: 27941998 PMCID: PMC5152834 DOI: 10.1371/journal.pone.0167908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Desminopathies caused by the mutation in the gene coding for desmin are genetically protein aggregation myopathies. Mitochondrial dysfunction is one of pathological changes in the desminopathies at the earliest stage. The molecular mechanisms of mitochondria dysfunction in desminopathies remain exclusive. VDAC1 regulates mitochondrial uptake across the outer membrane and mitochondrial outer membrane permeabilization (MOMP). Relationships between desminopathies and Voltage-dependent anion channel 1 (VDAC1) remain unclear. Here we successfully constructed the desminopathy rat model, evaluated with conventional stains, containing hematoxylin and eosin (HE), Gomori Trichrome (MGT), (PAS), red oil (ORO), NADH-TR, SDH staining and immunohistochemistry. Immunofluorescence results showed that VDAC1 was accumulated in the desmin highly stained area of muscle fibers of desminopathy patients or desminopathy rat model compared to the normal ones. Meanwhile apoptosis related proteins bax and ATF2 were involved in desminopathy patients and desminopathy rat model, but not bcl-2, bcl-xl or HK2.VDAC1 and desmin are closely relevant in the tissue splices of deminopathies patients and rats with desminopathy at protein lever. Moreover, apoptotic proteins are also involved in the desminopathies, like bax, ATF2, but not bcl-2, bcl-xl or HK2. This pathological analysis presents the correlation between VDAC1 and desmin, and apoptosis related proteins are correlated in the desminopathy. Furthermore, we provide a rat model of desminopathy for the investigation of desmin related myopathy.
Collapse
Affiliation(s)
- Huanyin Li
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Lan Zheng
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Yanqing Mo
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Qi Gong
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Aihua Jiang
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Jing Zhao
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
- * E-mail:
| |
Collapse
|
70
|
Ortiz-Genga MF, Cuenca S, Dal Ferro M, Zorio E, Salgado-Aranda R, Climent V, Padrón-Barthe L, Duro-Aguado I, Jiménez-Jáimez J, Hidalgo-Olivares VM, García-Campo E, Lanzillo C, Suárez-Mier MP, Yonath H, Marcos-Alonso S, Ochoa JP, Santomé JL, García-Giustiniani D, Rodríguez-Garrido JL, Domínguez F, Merlo M, Palomino J, Peña ML, Trujillo JP, Martín-Vila A, Stolfo D, Molina P, Lara-Pezzi E, Calvo-Iglesias FE, Nof E, Calò L, Barriales-Villa R, Gimeno-Blanes JR, Arad M, García-Pavía P, Monserrat L. Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies. J Am Coll Cardiol 2016; 68:2440-2451. [DOI: 10.1016/j.jacc.2016.09.927] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/23/2022]
|
71
|
Ackerman JP, Bartos DC, Kapplinger JD, Tester DJ, Delisle BP, Ackerman MJ. The Promise and Peril of Precision Medicine: Phenotyping Still Matters Most. Mayo Clin Proc 2016; 91:S0025-6196(16)30463-3. [PMID: 27810088 PMCID: PMC6365209 DOI: 10.1016/j.mayocp.2016.08.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 10/20/2022]
Abstract
We illustrate the work necessary to reverse course after identification of a KCNQ1 variant interpreted erroneously as causing long QT syndrome (LQTS) and to identify the true cause of a case of sudden death in the young. Surrogate genetic testing of a decedent's living brother identified a rare KCNQ1-V133I variant, which prompted an implantable cardioverter defibrillator and subsequent diagnosis of LQTS in other family members. Subsequently, this presumed LQT1 family came to our institution for further clinical evaluation and research-based investigations, including KCNQ1-V133I variant-specific analysis of the decedent, heterologous expression studies of KCNQ1-V133I, and a whole-exome molecular autopsy along with genomic triangulation using his unaffected parents' DNA. After evaluating several V133I-positive family members, clinical doubt was cast on the veracity of the previously levied diagnosis of LQT1, resulting in a re-opening of the case and an intense pursuit of the lethal substrate. Furthermore, the decedent tested negative for V133I, and heterologous expression studies demonstrated a normal cellular phenotype for V133I-containing Kv7.1 channels. Instead, after whole-exome molecular autopsy, a de novo pathogenic variant (p.R454W) in DES-encoded desmin was identified. As detailed herein, the forensic evaluation of sudden death in the young requires meticulous focus on the decedent followed by a careful and deliberate assessment of the decedent's relatives. Surrogate genetic testing can have disastrous consequences and should be avoided. Genetic test results require careful scrutiny to avoid unintended and potentially devastating repercussions. Although the root cause of the decedent's tragic death would have remained a mystery, the unintended consequences for the living relatives described herein might have been avoided based on clinical grounds alone. All family members had electrocardiograms with normal QT intervals, making the diagnosis of familial LQTS unlikely. As such, if the clinicians caring for these patients had focused solely on clinical data from the survivors, there might have been no reason to embark on a path of inappropriate treatment based on genetic testing.
Collapse
Affiliation(s)
- Jaeger P Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Daniel C Bartos
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, KY; Department of Pharmacology, University of California, Davis, CA
| | - Jamie D Kapplinger
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - David J Tester
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Brian P Delisle
- Department of Physiology, Center for Muscle Biology, University of Kentucky, Lexington, KY
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN; Division of Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN; Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.
| |
Collapse
|
72
|
Ahmed MI, Guichard JL, Soorappan RN, Ahmad S, Mariappan N, Litovsky S, Gupta H, Lloyd SG, Denney TS, Powell PC, Aban I, Collawn J, Davies JE, McGiffin DC, Dell'Italia LJ. Disruption of desmin-mitochondrial architecture in patients with regurgitant mitral valves and preserved ventricular function. J Thorac Cardiovasc Surg 2016; 152:1059-1070.e2. [PMID: 27464577 DOI: 10.1016/j.jtcvs.2016.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/02/2016] [Accepted: 06/10/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Recent studies have demonstrated improved outcomes in patients receiving early surgery for degenerative mitral regurgitation (MR) rather than adhering to conventional guidelines for surgical intervention. However, studies providing a mechanistic basis for these findings are limited. METHODS Left ventricular (LV) myocardium from 22 patients undergoing mitral valve repair for American Heart Association class I indications was evaluated for desmin, the voltage-dependent anion channel, α-B-crystallin, and α, β-unsaturated aldehyde 4-hydroxynonenal by fluorescence microscopy. The same was evaluated in 6 normal control LV autopsy specimens. Cardiomyocyte ultrastructure was examined by transmission electron microscopy. Magnetic resonance imaging with tissue tagging was performed in 55 normal subjects and 22 MR patients before and 6 months after mitral valve repair. RESULTS LV end-diastolic volume was 1.5-fold (P < .0001) higher and LV mass-to-volume ratio was lower in MR (P = .004) hearts versus normal hearts and showed improvement 6 months after mitral valve surgery. However, LV ejection fraction decreased from 65% ± 7% to 52% ± 9% (P < .0001) and LV circumferential (P < .0001) and longitudinal strain decreased significantly below normal values (P = .002) after surgery. Hearts with MR had a 53% decrease in desmin (P < .0001) and a 2.6-fold increase in desmin aggregates (P < .0001) versus normal, along with substantial, intense perinuclear staining of α, β-unsaturated aldehyde 4-hydroxynonenal in areas of mitochondrial breakdown and clustering. Transmission electron microscopy demonstrated numerous electron-dense deposits, myofibrillar loss, Z-disc abnormalities, and extensive granulofilamentous debris identified as desmin-positive by immunogold transmission electron microscopy. CONCLUSIONS Despite well-preserved preoperative LV ejection fraction, severe oxidative stress and disruption of cardiomyocyte desmin-mitochondrial sarcomeric architecture may explain postoperative LV functional decline and further supports the move toward earlier surgical intervention.
Collapse
Affiliation(s)
- Mustafa I Ahmed
- Department of Medicine, Division of Cardiovascular Disease, UAB
| | | | | | - Shama Ahmad
- Department of Anesthesiology& Perioperative Medicine, UAB
| | | | | | - Himanshu Gupta
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| | - Steven G Lloyd
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| | - Thomas S Denney
- Auburn University School of Engineering, Auburn, Alabama, USA
| | - Pamela Cox Powell
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA
| | | | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, UAB
| | - James E Davies
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Surgery, Division of Thoracic and Cardiovascular Surgery, UAB
| | | | - Louis J Dell'Italia
- Department of Veterans Affairs Medical Center, Birmingham (UAB), Alabama, USA.,Department of Medicine, Division of Cardiovascular Disease, UAB
| |
Collapse
|
73
|
Egorova IF, Penyaeva EV, Bockeria LA. [Altered Z-disks of myofibrils in the cardiomyocytes from patients with Ebstein's anomaly]. Arkh Patol 2016; 77:3-8. [PMID: 26841643 DOI: 10.17116/patol20157763-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
UNLABELLED The aim of the study was to examine the peculiarities of the changes in Z-bands of myofibrils in the cardiomyocytes from patients with Ebstein's anomaly. MATERIAL AND METHODS Electron microscopy assay of intraoperative biopsies of the right heart chambers in 41 patients aged from 9 months to 57 years was performed. RESULTS Some patients exhibited Z-disk alterations of two types in individual cardiomyocytes, namely: local symmetrical bead-like expansions of Z-disks or longitudinal deposits of Z-material of different lengths along the myofibrils. Z-disk alterations were more common in atrial cardiomyocytes than in the ventricle. The presence of Z-disk alterations in the cardiomyocytes correlated with a number of clinical parameters. In particular, the occurrence of longitudinal deposits of Z-material in atrial cardiomyocytes directly correlated with the manifestation of the Wolff-Parkinson-White syndrome in the patients. CONCLUSIONS Above characteristic ultrastructural changes in Z-bands of myofibrils in the cardiomyocytes from patients with Ebstein's anomaly have a certain similarity to Z-band diseases in skeletal muscle at sarcomeric protein gene mutations described in the literature, which suggests the mutations in the genes of proteins included in Z-bands of myofibrils in the cardiomyocytes from patients with Ebstein's anomaly.
Collapse
Affiliation(s)
- I F Egorova
- A.N. Bakulev Scientific Center of Cardiovascular Surgery, Moscow
| | - E V Penyaeva
- A.N. Bakulev Scientific Center of Cardiovascular Surgery, Moscow
| | - L A Bockeria
- A.N. Bakulev Scientific Center of Cardiovascular Surgery, Moscow
| |
Collapse
|
74
|
Price JF, Jeewa A, Denfield SW. Clinical Characteristics and Treatment of Cardiomyopathies in Children. Curr Cardiol Rev 2016; 12:85-98. [PMID: 26926296 PMCID: PMC4861947 DOI: 10.2174/1573403x12666160301115543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 11/05/2015] [Accepted: 02/29/2016] [Indexed: 01/10/2023] Open
Abstract
Cardiomyopathies are diseases of the heart muscle, a term introduced in 1957 to identify a group of myocardial diseases not attributable to coronary artery disease. The definition has since been modified to refer to structural and or functional abnormalities of the myocardium where other known causes of myocardial dysfunction, such as systemic hypertension, valvular disease and ischemic heart disease, have been excluded. In this review, we discuss the pathophysiology, clinical assessment and therapeutic strategies for hypertrophic, dilated and hypertrophic cardiomyopathies, with a particular focus on aspects unique to children.
Collapse
Affiliation(s)
- Jack F Price
- Lillie Frank Abercrombie Section of Pediatric Cardiology, Section of Critical Care Medicine, Baylor College of Medicine, Texas Children's Hospital, 6621 Fannin MC19345C, Houston.
| | | | | |
Collapse
|
75
|
Su YR, Chiusa M, Brittain E, Hemnes AR, Absi TS, Lim CC, Di Salvo TG. Right ventricular protein expression profile in end-stage heart failure. Pulm Circ 2015; 5:481-97. [PMID: 26401249 DOI: 10.1086/682219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/30/2014] [Indexed: 11/03/2022] Open
Abstract
Little is known about the right ventricular (RV) proteome in human heart failure (HF), including possible differences compared to the left ventricular (LV) proteome. We used 2-dimensional differential in-gel electrophoresis (pH: 4-7, 10-150 kDa), followed by liquid chromatography tandem mass spectrometry, to compare the RV and LV proteomes in 12 explanted human hearts. We used Western blotting and multiple-reaction monitoring for protein verification and RNA sequencing for messenger RNA and protein expression correlation. In all 12 hearts, the right ventricles (RVs) demonstrated differential expression of 11 proteins relative to the left ventricles (LVs), including lesser expression of CRYM, TPM1, CLU, TXNL1, and COQ9 and greater expression of TNNI3, SAAI, ERP29, ACTN2, HSPB2, and NDUFS3. Principal-components analysis did not suggest RV-versus-LV proteome partitioning. In the nonischemic RVs (n = 6), 7 proteins were differentially expressed relative to the ischemic RVs (n = 6), including increased expression of CRYM, B7Z964, desmin, ANXA5, and MIME and decreased expression of SERPINA1 and ANT3. Principal-components analysis demonstrated partitioning of the nonischemic and ischemic RV proteomes, and gene ontology analysis identified differences in hemostasis and atherosclerosis-associated networks. There were no proteomic differences between RVs with echocardiographic dysfunction (n = 8) and those with normal function (n = 4). Messenger RNA and protein expression did not correlate consistently, suggesting a major role for RV posttranscriptional protein expression regulation. Differences in contractile, cytoskeletal, metabolic, signaling, and survival pathways exist between the RV and the LV in HF and may be related to the underlying HF etiology and differential posttranscriptional regulation.
Collapse
Affiliation(s)
- Yan Ru Su
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Manuel Chiusa
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Evan Brittain
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anna R Hemnes
- Division of Pulmonary Medicine and Critical Care, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Tarek S Absi
- Department of Surgical Science, Division of Cardiac Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Chee Chew Lim
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Thomas G Di Salvo
- Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
76
|
McCormick EM, Kenyon L, Falk MJ. Desmin common mutation is associated with multi-systemic disease manifestations and depletion of mitochondria and mitochondrial DNA. Front Genet 2015; 6:199. [PMID: 26097489 PMCID: PMC4456612 DOI: 10.3389/fgene.2015.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
Desmin (DES) is a major muscle scaffolding protein that also functions to anchor mitochondria. Pathogenic DES mutations, however, have not previously been recognized as a cause of multi-systemic mitochondrial disease. Here, we describe a 45-year-old man who presented to The Children's Hospital of Philadelphia Mitochondrial-Genetics Diagnostic Clinic for evaluation of progressive cardiac, neuromuscular, gastrointestinal, and mood disorders. Muscle biopsy at age 45 was remarkable for cytoplasmic bodies, as well as ragged red fibers and SDH positive/COX negative fibers that were suggestive of a mitochondrial myopathy. Muscle also showed significant reductions in mitochondrial content (16% of control mean for citrate synthase activity) and mitochondrial DNA (35% of control mean). His family history was significant for cardiac conduction defects and myopathy in multiple maternal relatives. Multiple single gene and panel-based sequencing studies were unrevealing. Whole exome sequencing identified a known pathogenic p.S13F mutation in DES that had previously been associated with desmin-related myopathy. Desmin-related myopathy is an autosomal dominant disorder characterized by right ventricular hypertrophic cardiomyopathy, myopathy, and arrhythmias. However, neuropathy, gastrointestinal dysfunction, and depletion of both mitochondria and mitochondrial DNA have not previously been widely recognized in this disorder. Recognition that mitochondrial dysfunction occurs in desmin-related myopathy clarifies the basis for the multi-systemic manifestations, as are typical of primary mitochondrial disorders. Understanding the mitochondrial pathophysiology of desmin-related myopathy highlights the possibility of new therapies for this otherwise untreatable and often fatal class of disease. We postulate that drug treatments aimed at improving mitochondrial biogenesis or reducing oxidative stress may be effective therapies to ameliorate the effects of desmin-related disease.
Collapse
Affiliation(s)
- Elizabeth M McCormick
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia Philadelphia, PA, USA
| | - Lawrence Kenyon
- Department of Pathology, Thomas Jefferson University Hospital Philadelphia, PA, USA
| | - Marni J Falk
- Division of Human Genetics, Department of Pediatrics, The Children's Hospital of Philadelphia Philadelphia, PA, USA ; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine Philadelphia, PA, USA
| |
Collapse
|
77
|
Wójtowicz I, Jabłońska J, Zmojdzian M, Taghli-Lamallem O, Renaud Y, Junion G, Daczewska M, Huelsmann S, Jagla K, Jagla T. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance. Development 2015; 142:994-1005. [PMID: 25715399 DOI: 10.1242/dev.115352] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture.
Collapse
Affiliation(s)
- Inga Wójtowicz
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Jadwiga Jabłońska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Monika Zmojdzian
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Ouarda Taghli-Lamallem
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Yoan Renaud
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Guillaume Junion
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Malgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland
| | - Sven Huelsmann
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Krzysztof Jagla
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| | - Teresa Jagla
- GReD - INSERM U1103, CNRS UMR6293, Clermont Université, 28, place Henri Dunant, Clermont-Ferrand 63000, France
| |
Collapse
|
78
|
Kakkar A, Sharma MC, Nambirajan A, Sarkar C, Suri V, Gulati S. Glycogen Storage Disorder due to Glycogen Branching Enzyme (GBE) Deficiency: A Diagnostic Dilemma. Ultrastruct Pathol 2015; 39:293-7. [PMID: 25867930 DOI: 10.3109/01913123.2015.1014612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glycogen branching enzyme deficiency/Andersen disease can manifest with a spectrum of clinical phenotypes, making the diagnosis difficult. An 11-year-old Pakistani boy presented with a history of progressive weakness and delayed milestones. Echocardiography showed features of dilated cardiomyopathy. He was suspected to have congenital myopathy and was evaluated further. Muscle biopsy showed subsarcolemmal accumulation of basophilic material, which stained positively with Periodic acid-Schiff reagent (diastase-resistant). Ultrastructural examination revealed accumulation of structurally abnormal forms of filamentous glycogen, confirming the diagnosis as Andersen disease. As histopathological and immunohistochemical evaluation of muscle biopsies is not always diagnostic, ultrastructural examination may serve as a valuable adjunct in difficult cases.
Collapse
|
79
|
Yu P, Zhang Y, Li C, Li Y, Jiang S, Zhang X, Ding Z, Tu F, Wu J, Gao X, Li L. Class III PI3K-mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure. J Cell Mol Med 2015; 19:1710-9. [PMID: 25851780 PMCID: PMC4511367 DOI: 10.1111/jcmm.12547] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/08/2015] [Indexed: 01/20/2023] Open
Abstract
Pathological cardiac hypertrophy often leads to heart failure. Activation of autophagy has been shown in pathological hypertrophic hearts. Autophagy is regulated positively by Class III phosphoinositide 3-kinase (PI3K). However, it is unknown whether Class III PI3K plays a role in the transition of cardiac hypertrophy to heart failure. To address this question, we employed a previously established cardiac hypertrophy model in heat shock protein 27 transgenic mice which shares common features with several types of human cardiomyopathy. Age-matched wild-type mice served as control. Firstly, a prolonged activation of autophagy, as reflected by autophagosome accumulation, increased LC3 conversion and decreased p62 protein levels, was detected in hypertrophic hearts from adaptive stage to maladaptive stage. Moreover, morphological abnormalities in myofilaments and mitochondria were presented in the areas accumulated with autophagosomes. Secondly, activation of Class III PI3K Vacuolar protein sorting 34 (Vps34), as demonstrated by upregulation of Vps34 expression, increased interaction of Vps34 with Beclin-1, and deceased Bcl-2 expression, was demonstrated in hypertrophic hearts from adaptive stage to maladaptive stage. Finally, administration with Wortmaninn, a widely used autophagy inhibitor by suppressing Class III PI3K activity, significantly decreased autophagy activity, improved morphologies of intracellular apartments, and most importantly, prevented progressive cardiac dysfunction in hypertrophic hearts. Collectively, we demonstrated that Class III PI3K plays a central role in the transition of cardiac hypertrophy to heart failure via a prolonged activation of autophagy in current study. Class III PI3K may serve as a potential target for the treatment and management of maladaptive cardiac hypertrophy.
Collapse
Affiliation(s)
- Peng Yu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Yangyang Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - Yuehua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Surong Jiang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiaojin Zhang
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Fei Tu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jun Wu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Xiang Gao
- Model Animal Research Center, Nanjing University, Nanjing, China
| | - Liu Li
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
80
|
Abstract
Myofibrillar myopathy (MFM) is a relatively newly recognized genetic disease that leads to progressive muscle deterioration. MFM has a varied phenotypic presentation and impacts cardiac, skeletal, and smooth muscles. Affected individuals are at increased risk of respiratory failure, significant cardiac conduction abnormalities, cardiomyopathy, and sudden cardiac death. In addition, significant skeletal muscle involvement is common, which may lead to contractures, respiratory insufficiency, and airway compromise as the disease progresses. This study is the first report of anesthetic management of a patient with MFM. We report multiple anesthetic encounters of a child with genetically confirmed BAG3-myopathy, a subtype of MFM with severe childhood disease onset. A review of the anesthetic implications of the disease is provided, with specific exploration of possible susceptibility to malignant hyperthermia, rhabdomyolysis, and sensitivity to other anesthetic agents.
Collapse
Affiliation(s)
- Gregory J Latham
- Department of Anesthesiology and Pain Medicine, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, USA
| | | |
Collapse
|
81
|
Cotta A, Carvalho E, da-Cunha-Júnior AL, Paim JF, Navarro MM, Valicek J, Menezes MM, Nunes SV, Xavier Neto R, Takata RI, Vargas AP. Common recessive limb girdle muscular dystrophies differential diagnosis: why and how? ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 72:721-34. [PMID: 25252238 DOI: 10.1590/0004-282x20140110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023]
Abstract
Limb girdle muscular dystrophies are heterogeneous autosomal hereditary neuromuscular disorders. They produce dystrophic changes on muscle biopsy and they are associated with mutations in several genes involved in muscular structure and function. Detailed clinical, laboratorial, imaging, diagnostic flowchart, photographs, tables, and illustrated diagrams are presented for the differential diagnosis of common autosomal recessive limb girdle muscular dystrophy subtypes diagnosed nowadays at one reference center in Brazil. Preoperative image studies guide muscle biopsy site selection. Muscle involvement image pattern differs depending on the limb girdle muscular dystrophy subtype. Muscle involvement is conspicuous at the posterior thigh in calpainopathy and fukutin-related proteinopathy; anterior thigh in sarcoglycanopathy; whole thigh in dysferlinopathy, and telethoninopathy. The precise differential diagnosis of limb girdle muscular dystrophies is important for genetic counseling, prognostic orientation, cardiac and respiratory management. Besides that, it may probably, in the future, provide specific genetic therapies for each subtype.
Collapse
Affiliation(s)
- Ana Cotta
- Departamento de Patologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Elmano Carvalho
- Departamento de Neurofisiologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | | | - Júlia Filardi Paim
- Departamento de Patologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Monica M Navarro
- Departamento de Pediatria, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Jaquelin Valicek
- Departamento de Neurofisiologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | | | | | - Rafael Xavier Neto
- Departamento de Neurologia, Rede SARAH de Hospitais de Reabilitação, Brazil
| | - Reinaldo Issao Takata
- Departamento de Biologia Molecular, Rede SARAH de Hospitais de Reabilitação, Brasília DF, Brazil
| | | |
Collapse
|
82
|
Yancey DM, Guichard JL, Ahmed MI, Zhou L, Murphy MP, Johnson MS, Benavides GA, Collawn J, Darley-Usmar V, Dell'Italia LJ. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload. Am J Physiol Heart Circ Physiol 2015; 308:H651-63. [PMID: 25599572 DOI: 10.1152/ajpheart.00638.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β₂-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF.
Collapse
Affiliation(s)
- Danielle M Yancey
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jason L Guichard
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mustafa I Ahmed
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lufang Zhou
- UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; UAB Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Louis J Dell'Italia
- Department of Veterans Affairs Medical Center, Birmingham, Alabama; UAB Comprehensive Cardiovascular Center, University of Alabama at Birmingham, Birmingham, Alabama; Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
83
|
Koutakis P, Miserlis D, Myers SA, Kim JKS, Zhu Z, Papoutsi E, Swanson SA, Haynatzki G, Ha DM, Carpenter LA, McComb RD, Johanning JM, Casale GP, Pipinos II. Abnormal accumulation of desmin in gastrocnemius myofibers of patients with peripheral artery disease: associations with altered myofiber morphology and density, mitochondrial dysfunction and impaired limb function. J Histochem Cytochem 2015; 63:256-69. [PMID: 25575565 DOI: 10.1369/0022155415569348] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Patients with peripheral artery disease (PAD) develop a myopathy in their ischemic lower extremities, which is characterized by myofiber degeneration, mitochondrial dysfunction and impaired limb function. Desmin, a protein of the cytoskeleton, is central to maintenance of the structure, shape and function of the myofiber and its organelles, especially the mitochondria, and to translation of sarcomere contraction into muscle contraction. In this study, we investigated the hypothesis that disruption of the desmin network occurs in gastrocnemius myofibers of PAD patients and correlates with altered myofiber morphology, mitochondrial dysfunction, and impaired limb function. Using fluorescence microscopy, we evaluated desmin organization and quantified myofiber content in the gastrocnemius of PAD and control patients. Desmin was highly disorganized in PAD but not control muscles and myofiber content was increased significantly in PAD compared to control muscles. By qPCR, we found that desmin gene transcripts were increased in the gastrocnemius of PAD patients as compared with control patients. Increased desmin and desmin gene transcripts in PAD muscles correlated with altered myofiber morphology, decreased mitochondrial respiration, reduced calf muscle strength and decreased walking performance. In conclusion, our studies identified disruption of the desmin system in gastrocnemius myofibers as an index of the myopathy and limitation of muscle function in patients with PAD.
Collapse
Affiliation(s)
- Panagiotis Koutakis
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Dimitrios Miserlis
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Sara A Myers
- Nebraska Biomechanics Core Facility, University of Nebraska at Omaha, Nebraska (SAM)
| | - Julian Kyung-Soo Kim
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Zhen Zhu
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Evlampia Papoutsi
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Stanley A Swanson
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Gleb Haynatzki
- Department of Biostatistics, College of Public Health (GH)
| | - Duy M Ha
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Lauren A Carpenter
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | | | - Jason M Johanning
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP),Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska (JMJ, IIP)
| | - George P Casale
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP)
| | - Iraklis I Pipinos
- Department of Surgery (PK, DM, JKK, ZZ, EP, SAS, DMH, LAC, JMJ, GPC, IIP),Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska (JMJ, IIP)
| |
Collapse
|
84
|
García-Pelagio KP, Muriel J, O'Neill A, Desmond PF, Lovering RM, Lund L, Bond M, Bloch RJ. Myopathic changes in murine skeletal muscle lacking synemin. Am J Physiol Cell Physiol 2015; 308:C448-62. [PMID: 25567810 DOI: 10.1152/ajpcell.00331.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diseases of striated muscle linked to intermediate filament (IF) proteins are associated with defects in the organization of the contractile apparatus and its links to costameres, which connect the sarcomeres to the cell membrane. Here we study the role in skeletal muscle of synemin, a type IV IF protein, by examining mice null for synemin (synm-null). Synm-null mice have a mild skeletal muscle phenotype. Tibialis anterior (TA) muscles show a significant decrease in mean fiber diameter, a decrease in twitch and tetanic force, and an increase in susceptibility to injury caused by lengthening contractions. Organization of proteins associated with the contractile apparatus and costameres is not significantly altered in the synm-null. Elastimetry of the sarcolemma and associated contractile apparatus in extensor digitorum longus myofibers reveals a reduction in tension consistent with an increase in sarcolemmal deformability. Although fatigue after repeated isometric contractions is more marked in TA muscles of synm-null mice, the ability of the mice to run uphill on a treadmill is similar to controls. Our results suggest that synemin contributes to linkage between costameres and the contractile apparatus and that the absence of synemin results in decreased fiber size and increased sarcolemmal deformability and susceptibility to injury. Thus synemin plays a moderate but distinct role in fast twitch skeletal muscle.
Collapse
Affiliation(s)
- Karla P García-Pelagio
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Joaquin Muriel
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Andrea O'Neill
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Patrick F Desmond
- Program in Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Richard M Lovering
- Department of Orthopaedics, School of Medicine, University of Maryland, Baltimore, Maryland
| | - Linda Lund
- Merrick School of Business, University of Baltimore, Baltimore, Maryland; and
| | - Meredith Bond
- College of Sciences and Health Professions, Cleveland State University, Cleveland, Ohio
| | - Robert J Bloch
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, Maryland;
| |
Collapse
|
85
|
Narayanaswami P, Weiss M, Selcen D, David W, Raynor E, Carter G, Wicklund M, Barohn RJ, Ensrud E, Griggs RC, Gronseth G, Amato AA. Evidence-based guideline summary: diagnosis and treatment of limb-girdle and distal dystrophies: report of the guideline development subcommittee of the American Academy of Neurology and the practice issues review panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology 2014; 83:1453-63. [PMID: 25313375 DOI: 10.1212/wnl.0000000000000892] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE To review the current evidence and make practice recommendations regarding the diagnosis and treatment of limb-girdle muscular dystrophies (LGMDs). METHODS Systematic review and practice recommendation development using the American Academy of Neurology guideline development process. RESULTS Most LGMDs are rare, with estimated prevalences ranging from 0.07 per 100,000 to 0.43 per 100,000. The frequency of some muscular dystrophies varies based on the ethnic background of the population studied. Some LGMD subtypes have distinguishing features, including pattern of muscle involvement, cardiac abnormalities, extramuscular involvement, and muscle biopsy findings. The few published therapeutic trials were not designed to establish clinical efficacy of any treatment. PRINCIPAL RECOMMENDATIONS For patients with suspected muscular dystrophy, clinicians should use a clinical approach to guide genetic diagnosis based on clinical phenotype, inheritance pattern, and associated manifestations (Level B). Clinicians should refer newly diagnosed patients with an LGMD subtype and high risk of cardiac complications for cardiology evaluation even if they are asymptomatic from a cardiac standpoint (Level B). In patients with LGMD with a known high risk of respiratory failure, clinicians should obtain periodic pulmonary function testing (Level B). Clinicians should refer patients with muscular dystrophy to a clinic that has access to multiple specialties designed specifically to care for patients with neuromuscular disorders (Level B). Clinicians should not offer patients with LGMD gene therapy, myoblast transplantation, neutralizing antibody to myostatin, or growth hormone outside of a research study designed to determine efficacy and safety of the treatment (Level R). Detailed results and recommendations are available on the Neurology® Web site at Neurology.org.
Collapse
Affiliation(s)
- Pushpa Narayanaswami
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Michael Weiss
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Duygu Selcen
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - William David
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Elizabeth Raynor
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Gregory Carter
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Matthew Wicklund
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Richard J Barohn
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Erik Ensrud
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Robert C Griggs
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Gary Gronseth
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | - Anthony A Amato
- From the Department of Neurology (P.N., E.R.), Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA; the Department of Neurology (M.W.), University of Washington Medical Center, Seattle; the Department of Neurology (D.S.), Mayo Clinic, Rochester, MN; the Department of Neurology (W.D.), Massachusetts General Hospital/Harvard Medical School, Boston; St Luke's Rehabilitation Institute (G.C.), Spokane, WA; the Department of Neurology (M.W.), Penn State Hershey Medical Center, PA; the Department of Neurology (R.J.B., G.G.), University of Kansas Medical Center, Kansas City; the Neuromuscular Center (E.E.), Boston VA Medical Center, MA; the Department of Neurology (R.C.G.), University of Rochester Medical Center, NY; and the Department of Neurology (E.E., A.A.A.), Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
86
|
Golbus JR, Puckelwartz MJ, Dellefave-Castillo L, Fahrenbach JP, Nelakuditi V, Pesce LL, Pytel P, McNally EM. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. ACTA ACUST UNITED AC 2014; 7:751-759. [PMID: 25179549 DOI: 10.1161/circgenetics.113.000578] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cardiomyopathy is highly heritable but genetically diverse. At present, genetic testing for cardiomyopathy uses targeted sequencing to simultaneously assess the coding regions of >50 genes. New genes are routinely added to panels to improve the diagnostic yield. With the anticipated $1000 genome, it is expected that genetic testing will shift toward comprehensive genome sequencing accompanied by targeted gene analysis. Therefore, we assessed the reliability of whole genome sequencing and targeted analysis to identify cardiomyopathy variants in 11 subjects with cardiomyopathy. METHODS AND RESULTS Whole genome sequencing with an average of 37× coverage was combined with targeted analysis focused on 204 genes linked to cardiomyopathy. Genetic variants were scored using multiple prediction algorithms combined with frequency data from public databases. This pipeline yielded 1 to 14 potentially pathogenic variants per individual. Variants were further analyzed using clinical criteria and segregation analysis, where available. Three of 3 previously identified primary mutations were detected by this analysis. In 6 subjects for whom the primary mutation was previously unknown, we identified mutations that segregated with disease, had clinical correlates, and had additional pathological correlation to provide evidence for causality. For 2 subjects with previously known primary mutations, we identified additional variants that may act as modifiers of disease severity. In total, we identified the likely pathological mutation in 9 of 11 (82%) subjects. CONCLUSIONS These pilot data demonstrate that ≈30 to 40× coverage whole genome sequencing combined with targeted analysis is feasible and sensitive to identify rare variants in cardiomyopathy-associated genes.
Collapse
Affiliation(s)
- Jessica R Golbus
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Megan J Puckelwartz
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Lisa Dellefave-Castillo
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - John P Fahrenbach
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Viswateja Nelakuditi
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Lorenzo L Pesce
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Peter Pytel
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| | - Elizabeth M McNally
- Department of Medicine, Department of Human Genetics, Department of Pathology, The Computation Institute, The University of Chicago & Argonne National Laboratories, Chicago, IL
| |
Collapse
|
87
|
Abstract
In this article, distal myopathy syndromes are discussed. A discussion of the more traditional distal myopathies is followed by discussion of the myofibrillar myopathies. Other clinically and genetically distinctive distal myopathy syndromes usually based on single or smaller family cohorts are reviewed. Other neuromuscular disorders that are important to recognize are also considered, because they show prominent distal limb weakness.
Collapse
Affiliation(s)
- Mazen M Dimachkie
- Neuromuscular Section, Neurophysiology Division, Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| |
Collapse
|
88
|
Stöllberger C, Gatterer E, Finsterer J, Kuck KH, Tilz RR. Repeated radiofrequency ablation of atrial tachycardia in restrictive cardiomyopathy secondary to myofibrillar myopathy. J Cardiovasc Electrophysiol 2014; 25:905-907. [PMID: 24758315 DOI: 10.1111/jce.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 11/30/2022]
Abstract
Myofibrillar myopathy is characterized by nonhyaline and hyaline lesions due to mutations in nuclear genes encoding for extra-myofibrillar or myofibrillar proteins. Cardiac involvement in myofibrillar myopathy may be phenotypically expressed as dilated, hypertrophic, or restrictive cardiomyopathy. Radiofrequency ablation of atrial fibrillation and flutter has so far not been reported in myofibrillar myopathy. We report the case of a young female with myofibrillar myopathy and deteriorating heart failure due to restrictive cardiomyopathy and recurrent atrial fibrillation and atrial tachycardias intolerant to pharmacotherapy. Cardiac arrhythmias were successfully treated with repeat radiofrequency ablations and resulted in regression of heart failure, thus postponing the necessity for cardiac transplantation.
Collapse
Affiliation(s)
| | | | | | - Karl-Heinz Kuck
- Asklepios-Klinik St. Georg, Department of Cardiology, Hamburg, Germany
| | | |
Collapse
|
89
|
Tarone G, Brancaccio M. Keep your heart in shape: molecular chaperone networks for treating heart disease. Cardiovasc Res 2014; 102:346-61. [PMID: 24585203 DOI: 10.1093/cvr/cvu049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Despite major advances in the treatment of cardiac diseases, there is still a great need for drugs capable of counteracting the deterioration of cardiac muscle function in congestive heart failure. The role of misfolded protein accumulation as a causal event in the physiopathology of common cardiac diseases is an important emerging concept. Indeed, diverse stress conditions, including mechanical stretching and oxidative stress, can induce misfolded protein accumulation, causing cardiomyocyte death. Cells react to these stress conditions by activating molecular chaperones, a class of proteins that represents an endogenous salvage machinery, essential for rescuing physiological cell functions and sustaining cell survival. Chaperones, also known as heat shock proteins (Hsps), prevent accumulation of damaged proteins by promoting either their refolding or degradation via the proteasome or the autophagosome systems. In addition, molecular chaperones play a key role in intracellular signalling by controlling conformational changes required for activation/deactivation of signalling proteins, and their assembly in specific signalosome complexes. The key role of molecular chaperones in heart function is highlighted by the fact that a number of genetic mutations in chaperone proteins result in different forms of cardiomyopathies. Moreover, a considerable amount of experimental evidence indicates that increasing expression of chaperone proteins leads to an important cardio-protective role in ischaemia/reperfusion injury, heart failure, and arrhythmia, implicating these molecules as potential innovative therapeutic agents.
Collapse
Affiliation(s)
- Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy, Via Nizza 52, Torino 10126, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Italy, Via Nizza 52, Torino 10126, Italy
| |
Collapse
|
90
|
Li M, Andersson-Lendahl M, Sejersen T, Arner A. Knockdown of desmin in zebrafish larvae affects interfilament spacing and mechanical properties of skeletal muscle. ACTA ACUST UNITED AC 2013; 141:335-45. [PMID: 23440276 PMCID: PMC3581687 DOI: 10.1085/jgp.201210915] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Skeletal muscle was examined in zebrafish larvae in order to address questions related to the function of the intermediate filament protein desmin and its role in the pathogenesis of human desminopathy. A novel approach including mechanical and structural studies of 4–6-d-old larvae was applied. Morpholino antisense oligonucleotides were used to knock down desmin. Expression was assessed using messenger RNA and protein analyses. Histology and synchrotron light–based small angle x-ray diffraction were applied. Functional properties were analyzed with in vivo studies of swimming behavior and with in vitro mechanical examinations of muscle. The two desmin genes normally expressed in zebrafish could be knocked down by ∼50%. This resulted in a phenotype with disorganized muscles with altered attachments to the myosepta. The knockdown larvae were smaller and had diminished swimming activity. Active tension was lowered and muscles were less vulnerable to acute stretch-induced injury. X-ray diffraction revealed wider interfilament spacing. In conclusion, desmin intermediate filaments are required for normal active force generation and affect vulnerability during eccentric work. This is related to the role of desmin in anchoring sarcomeres for optimal force transmission. The results also show that a partial lack of desmin, without protein aggregates, is sufficient to cause muscle pathology resembling that in human desminopathy.
Collapse
Affiliation(s)
- Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
91
|
N-acetyl-L-cysteine prevents stress-induced desmin aggregation in cellular models of desminopathy. PLoS One 2013; 8:e76361. [PMID: 24098483 PMCID: PMC3788106 DOI: 10.1371/journal.pone.0076361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 08/24/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations within the human desmin gene are responsible for a subcategory of myofibrillar myopathies called desminopathies. However, a single inherited mutation can produce different phenotypes within a family, suggesting that environmental factors influence disease states. Although several mouse models have been used to investigate organ-specific desminopathies, a more general mechanistic perspective is required to advance our knowledge toward patient treatment. To improve our understanding of disease pathology, we have developed cellular models to observe desmin behaviour in early stages of disease pathology, e.g., upon formation of cytoplasmic desmin aggregates, within an isogenic background. We cloned the wildtype and three mutant desmin cDNAs using a Tet-On Advanced® expression system in C2C12 cells. Mutations were selected based on positioning within desmin and capacity to form aggregates in transient experiments, as follows: DesS46Y (head domain; low aggregation), DesD399Y (central rod domain; high aggregation), and DesS460I (tail domain; moderate aggregation). Introduction of these proteins into a C2C12 background permitted us to compare between desmin variants as well as to determine the role of external stress on aggregation. Three different types of stress, likely encountered during muscle activity, were introduced to the cell models-thermal (heat shock), redox-associated (H2O2 and cadmium chloride), and mechanical (stretching) stresses-after which aggregation was measured. Cells containing variant DesD399Y were more sensitive to stress, leading to marked cytoplasmic perinuclear aggregations. We then evaluated the capacity of biochemical compounds to prevent this aggregation, applying dexamethasone (an inducer of heat shock proteins), fisetin or N-acetyl-L-cysteine (antioxidants) before stress induction. Interestingly, N-acetyl-L-cysteine pre-treatment prevented DesD399Y aggregation during most stress. N-acetyl-L-cysteine has recently been described as a promising antioxidant in myopathies linked to selenoprotein N or ryanodin receptor defects. Our findings indicate that this drug warrants further study in animal models to speed its potential development as a therapy for DesD399Y-linked desminopathies.
Collapse
|
92
|
McLaughlin HM, Kelly MA, Hawley PP, Darras BT, Funke B, Picker J. Compound heterozygosity of predicted loss-of-function DES variants in a family with recessive desminopathy. BMC MEDICAL GENETICS 2013; 14:68. [PMID: 23815709 PMCID: PMC3711885 DOI: 10.1186/1471-2350-14-68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 06/24/2013] [Indexed: 11/29/2022]
Abstract
Background Variants in the desmin gene (DES) are associated with desminopathy; a myofibrillar myopathy mainly characterized by muscle weakness, conduction block, and dilated cardiomyopathy. To date, only ~50 disease-associated variants have been described, and the majority of these lead to dominant-negative effects. However, the complete genotypic spectrum of desminopathy is not well established. Case presentation Next-generation sequencing was performed on 51 cardiac disease genes in a proband with profound skeletal myopathy, dilated cardiomyopathy, and respiratory dysfunction. Our analyses revealed compound heterozygous DES variants, both of which are predicted to lead to a loss-of-function. Consistent with recessive inheritance, each variant was identified in an unaffected parent. Conclusions This case report serves to broaden the variant spectrum of desminopathies and provides insight into the molecular mechanisms of desminopathy, supporting distinct dominant-negative and loss-of-function etiologies.
Collapse
Affiliation(s)
- Heather M McLaughlin
- Laboratory for Molecular Medicine, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
93
|
Recessive desmin-null muscular dystrophy with central nuclei and mitochondrial abnormalities. Acta Neuropathol 2013; 125:917-9. [PMID: 23575897 DOI: 10.1007/s00401-013-1113-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/02/2013] [Accepted: 04/02/2013] [Indexed: 01/23/2023]
|
94
|
Cetin N, Balci-Hayta B, Gundesli H, Korkusuz P, Purali N, Talim B, Tan E, Selcen D, Erdem-Ozdamar S, Dincer P. A novel desmin mutation leading to autosomal recessive limb-girdle muscular dystrophy: distinct histopathological outcomes compared with desminopathies. J Med Genet 2013; 50:437-43. [DOI: 10.1136/jmedgenet-2012-101487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Joanne P, Chourbagi O, Hourdé C, Ferry A, Butler-Browne G, Vicart P, Dumonceaux J, Agbulut O. Viral-mediated expression of desmin mutants to create mouse models of myofibrillar myopathy. Skelet Muscle 2013; 3:4. [PMID: 23425003 PMCID: PMC3599656 DOI: 10.1186/2044-5040-3-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/28/2013] [Indexed: 12/26/2022] Open
Abstract
Background The clinical features of myofibrillar myopathies display a wide phenotypic heterogeneity. To this date, no studies have evaluated this parameter due to the absence of pertinent animal models. By studying two mutants of desmin, which induce subtle phenotypic differences in patients, we address this issue using an animal model based on the use of adeno-associated virus (AAV) vectors carrying mutated desmin cDNA. Methods After preparation of the vectors, they were injected directly into the tibialis anterior muscles of C57BL/6 mice to allow expression of wild-type (WT) or mutated (R406W or E413K) desmin. Measurements of maximal force were carried out on the muscle in situ and then the injected muscles were analyzed to determine the structural consequences of the desmin mutations on muscle structure (microscopic observations, histology and immunohistochemistry). Results Injection of AAV carrying WT desmin results in the expression of exogenous desmin in 98% of the muscle fibers without any pathological or functional perturbations. Exogenous WT and endogenous desmin are co-localized and no differences were observed compared to non-injected muscle. Expression of desmin mutants in mouse muscles induce morphological changes of muscle fibers (irregular shape and size) and the appearance of desmin accumulations around the nuclei (for R406W) or in subsarcolemmal regions of fibers (for E413K). These accumulations seem to occur and disrupt the Z-line, and a strong regeneration was observed in muscle expressing the R406W desmin, which is not the case for E413K. Moreover, both mutants of desmin studied here induce a decrease in muscle force generation capacity. Conclusions In this study we show that AAV-mediated expression of desmin mutants in mouse muscles recapitulate the aggregation features, the decrease in contractile function and the morphological changes observed in patients with myofibrillar myopathy. More importantly, our results suggest that the R406W desmin mutant induces a robust muscle regeneration, which is not the case for the E413K mutant. This difference could help to explain the phenotypic differences observed in patients. Our results highlight the heterogeneous pathogenic mechanisms between different desmin mutants and open the way for new advances in the study of myofibrillar myopathies.
Collapse
Affiliation(s)
- Pierre Joanne
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| | - Oussama Chourbagi
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| | - Christophe Hourdé
- Department of Aging, Stress and Inflammation, Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, 75005, Paris, France
| | - Arnaud Ferry
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, 75013, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Gillian Butler-Browne
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, 75013, Paris, France
| | - Patrick Vicart
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| | - Julie Dumonceaux
- Université Pierre et Marie Curie-Paris 6, Sorbonne Universités, UMR S794, INSERM U974, CNRS UMR7215, Institut de Myologie, 75013, Paris, France
| | - Onnik Agbulut
- Université Paris Diderot, Sorbonne Paris Cité, CNRS EAC4413, Unit of Functional and Adaptive Biology, Laboratory of Stress and Pathologies of the Cytoskeleton, 75013, Paris, France
| |
Collapse
|
96
|
Lakdawala NK, Winterfield JR, Funke BH. Dilated cardiomyopathy. Circ Arrhythm Electrophysiol 2013; 6:228-37. [PMID: 23022708 PMCID: PMC3603701 DOI: 10.1161/circep.111.962050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 06/22/2012] [Indexed: 12/18/2022]
MESH Headings
- Animals
- Cardiomyopathy, Dilated/diagnosis
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/physiopathology
- Cardiomyopathy, Dilated/therapy
- Death, Sudden, Cardiac/pathology
- Death, Sudden, Cardiac/prevention & control
- Defibrillators, Implantable
- Electric Countershock/instrumentation
- Genetic Predisposition to Disease
- Genetic Testing
- Heart Failure/genetics
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Failure/therapy
- Humans
- Phenotype
- Treatment Outcome
Collapse
Affiliation(s)
- Neal K Lakdawala
- Brigham and Women's Hospital & Boston VA Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
97
|
Lorenzon A, Beffagna G, Bauce B, De Bortoli M, Li Mura IE, Calore M, Dazzo E, Basso C, Nava A, Thiene G, Rampazzo A. Desmin mutations and arrhythmogenic right ventricular cardiomyopathy. Am J Cardiol 2013; 111:400-5. [PMID: 23168288 PMCID: PMC3554957 DOI: 10.1016/j.amjcard.2012.10.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/28/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease characterized by fibrofatty replacement of the myocardium and ventricular arrhythmias, associated with mutations in the desmosomal genes. Only a missense mutation in the DES gene coding for desmin, the intermediate filament protein expressed by cardiac and skeletal muscle cells, has been recently associated with ARVC. We screened 91 ARVC index cases (53 negative for mutations in desmosomal genes and an additional 38 carrying desmosomal gene mutations) for DES mutations. Two rare missense variants were identified. The heterozygous p.K241E substitution was detected in 1 patient affected with a severe form of ARVC who also carried the p.T816RfsX10 mutation in plakophilin-2 gene. This DES substitution, showing an allele frequency of <0.01 in the control population, is predicted to cause an intolerant amino acid change in a highly conserved protein domain. Thus, it can be considered a rare variant with a possible modifier effect on the phenotypic expression of the concomitant mutation. The previously known p.A213V substitution was identified in 1 patient with ARVC who was negative for mutations in the desmosomal genes. Because a greater prevalence of p.A213V has been reported in patients with heart dilation than in control subjects, the hypothesis that this rare variant could have an unfavorable effect on cardiac remodeling cannot be ruled out. In conclusion, our data help to establish that, in the absence of skeletal muscle involvement suggestive of a desminopathy, the probability of DES mutations in ARVC is very low. These findings have important implications in the mutation screening strategy for patients with ARVC.
Collapse
Affiliation(s)
| | | | - Barbara Bauce
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | | | | | - Martina Calore
- Department of Biology, University of Padua, Padua, Italy
| | - Emanuela Dazzo
- Department of Biology, University of Padua, Padua, Italy
| | - Cristina Basso
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | - Andrea Nava
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | - Gaetano Thiene
- Department of Cardiothoracic-Vascular Sciences, University of Padua, Padua, Italy
| | | |
Collapse
|
98
|
Tse HF, Ho JCY, Choi SW, Lee YK, Butler AW, Ng KM, Siu CW, Simpson MA, Lai WH, Chan YC, Au KW, Zhang J, Lay KWJ, Esteban MA, Nicholls JM, Colman A, Sham PC. Patient-specific induced-pluripotent stem cells-derived cardiomyocytes recapitulate the pathogenic phenotypes of dilated cardiomyopathy due to a novel DES mutation identified by whole exome sequencing. Hum Mol Genet 2013; 22:1395-403. [PMID: 23300193 DOI: 10.1093/hmg/dds556] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this paper, we report a novel heterozygous mutation of A285V codon conversion on exon 4 of the desmin (DES), using whole exome sequencing (WES) in an isolated proband with documented dilated cardiomyopathy (DCM). This mutation is predicted to cause three-dimensional structure changes of DES. Immunohistological and electron microscopy studies demonstrated diffuse abnormal DES aggregations in DCM-induced-pluripotent stem cell (iPSC)-derived cardiomyocytes, and control-iPSC-derived cardiomyocytes transduced with A285V-DES. DCM-iPSC-derived cardiomyocytes also exhibited functional abnormalities in vitro. This is the first demonstration that patient-specific iPSC-derived cardiomyocytes can be used to provide histological and functional confirmation of a suspected genetic basis for DCM identified by WES.
Collapse
Affiliation(s)
- Hung-Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Desminopathies: pathology and mechanisms. Acta Neuropathol 2013; 125:47-75. [PMID: 23143191 PMCID: PMC3535371 DOI: 10.1007/s00401-012-1057-6] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 12/22/2022]
Abstract
The intermediate filament protein desmin is an essential component of the extra-sarcomeric cytoskeleton in muscle cells. This three-dimensional filamentous framework exerts central roles in the structural and functional alignment and anchorage of myofibrils, the positioning of cell organelles and signaling events. Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive, and sporadic myopathies and/or cardiomyopathies with marked phenotypic variability. The disease onset ranges from childhood to late adulthood. The clinical course is progressive and no specific treatment is currently available for this severely disabling disease. The muscle pathology is characterized by desmin-positive protein aggregates and degenerative changes of the myofibrillar apparatus. The molecular pathophysiology of desminopathies is a complex, multilevel issue. In addition to direct effects on the formation and maintenance of the extra-sarcomeric intermediate filament network, mutant desmin affects essential protein interactions, cell signaling cascades, mitochondrial functions, and protein quality control mechanisms. This review summarizes the currently available data on the epidemiology, clinical phenotypes, myopathology, and genetics of desminopathies. In addition, this work provides an overview on the expression, filament formation processes, biomechanical properties, post-translational modifications, interaction partners, subcellular localization, and functions of wild-type and mutant desmin as well as desmin-related cell and animal models.
Collapse
|
100
|
Abstract
Myofibrillar myopathies (MFMs) are rare, inherited or sporadic, progressive neuromuscular disorders with considerable clinical and genetic heterogeneity. MFMs are defined morphologically by foci of myofibril dissolution that begins at the Z-disk, accumulation of myofibrillar degradation products, and ectopic expression of a large number of proteins including desmin. To date, mutations in six genes are known to cause MFMs, accounting for approximately half of the MFM patients identified. The causative genes encode mainly sarcomeric Z-disk(-related) proteins: desmin, αB-crystallin, myotilin, Z-band alternatively spliced PDZ motif containing protein (ZASP), filamin C and the antiapoptotic BCL2-associated athanogene 3 (Bag3). Although in most MFM patients the disease presents in adulthood and evolves slowly, some patients with desminopathy, αB-crystallinopathy or Bag3opathies have an infantile or juvenile disease onset. Cardiac involvement is very common in desminopathies and can sometimes be the initial or only symptom of the disease. Respiratory symptoms are noted during childhood in αB-crystallinopathies. Early severe cardiac and respiratory involvement is seen in Bag3opathies. Optical microscopic and immunohistochemical features are similar in MFMs; however, ultrastructural findings can be useful to differentiate between the distinct MFM subtypes. No curative treatment for MFMs is currently available. Careful follow-up, especially of cardiac and respiratory function, is important.
Collapse
|