51
|
Thomas D, Maloney ME, Raval G. Concomitant EGFR Mutations and ALK Rearrangements in Lung Adenocarcinoma Treated With Osimertinib. Cureus 2023; 15:e48122. [PMID: 38046784 PMCID: PMC10690068 DOI: 10.7759/cureus.48122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Lung cancer is the third most common cancer in addition to being the cancer responsible for the most annual deaths in the United States, comprising 15% of all diagnosed cancers, and 28% of all cancer deaths in 2020. Major advances in survival are because of gene sequencing and the advent of targeted biological therapy. The prevalence of epidermal growth factor receptor (EGFR) mutations coexisting with anaplastic lymphoma kinase (ALK) rearrangements is quite low. However, the clinical relevance and effective treatment of these cancers require further investigation. This case series describes two patients diagnosed with stage IV adenocarcinoma with coexisting EGFR and ALK rearrangements. In Case 1, a 73-year-old male presented with worsening ataxia and headaches. In Case 2, a 64-year-old female presented with worsening dyspnea. Molecular studies revealed ALK gene fusion and the L861Q EGFR mutation in Case 1 and L858R EGFR mutation and ALK gene fusion in Case 2. Both patients received a gamma knife and an EGFR-tyrosine kinase inhibitor (TKI), osimertinib. In one of the cases, following the discovery of new brain metastases, the dose of osimertinib was increased from 80 to 160 mg. The patient passed away nine months after beginning EGFR-TKI treatment, one month after increasing the dose. The second patient experienced a significant interval reduction in the size of enhancing metastasis in both the right frontal and left parietal lobe after four months of EGFR-TKI treatment. The cases of coexisting EGFR mutations and ALK rearrangements are quite rare, and treatment can be challenging. Here, EGFR-TKI had a mixed response among our patients.
Collapse
Affiliation(s)
- David Thomas
- Hematology and Oncology, Medical College of Georgia, Augusta University, Augusta, USA
| | - McKenzie E Maloney
- Hematology and Oncology, Medical College of Georgia, Augusta University, Augusta, USA
| | - Girindra Raval
- Hematology and Oncology, Medical College of Georgia, Augusta University, Augusta, USA
| |
Collapse
|
52
|
Kiełbowski K, Żychowska J, Becht R. Anaplastic lymphoma kinase inhibitors-a review of anticancer properties, clinical efficacy, and resistance mechanisms. Front Pharmacol 2023; 14:1285374. [PMID: 37954850 PMCID: PMC10634320 DOI: 10.3389/fphar.2023.1285374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Fusions and mutations of anaplastic lymphoma kinase (ALK), a tyrosine kinase receptor, have been identified in several neoplastic diseases. Rearranged ALK is a driver of tumorigenesis, which activates various signaling pathway associated with proliferation and survival. To date, several agents that target and inhibit ALK have been developed. The most studied ALK-positive disease is non-small cell lung cancer, and three generations of ALK tyrosine kinase inhibitors (TKIs) have been approved for the treatment of metastatic disease. Nevertheless, the use of ALK-TKIs is associated with acquired resistance (resistance mutations, bypass signaling), which leads to disease progression and may require a substitution or introduction of other treatment agents. Understanding of the complex nature and network of resistance mutations may allow to introduce sequential and targeted therapies. In this review, we aim to summarize the efficacy and safety profile of ALK inhibitors, describe off-target anticancer effects, and discuss resistance mechanisms in the context of personalized oncology.
Collapse
Affiliation(s)
| | | | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
53
|
Abuhejail RM, Alzoman NZ, Darwish IA. Three Innovative Green and High-Throughput Microwell Spectrophotometric Methods for the Quantitation of Ceritinib, a Potent Drug for the Treatment of ALK-Positive Non-Small Cell Lung Cancer: An Application to the Analysis of Capsules and Drug Uniformity Testing. Molecules 2023; 28:7054. [PMID: 37894533 PMCID: PMC10609451 DOI: 10.3390/molecules28207054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Ceritinib (CER) is a potent drug that has been recently approved by the Food and Drug Administration for the treatment of patients with non-small cell lung cancer harboring the anaplastic lymphoma kinase mutation gene. The existing methods for the quality control of CER are very limited and suffer from limited analytical throughput and do not meet the requirements of the green analytical principles. This study presented the first-ever development and validation of three innovative green and high-throughput microwell spectrophotometric methods (MW-SPMs) for the quality control of CER in its dosage form (Zykadia® capsules). These MW-SPMs were based on the formation of colored N-vinylamino-substituted haloquinone derivatives of CER upon its reactions with each of chloranil, bromanil, and 2,3-dichloro-1,4-naphthoquinone in the presence of acetaldehyde. The optimized procedures of the MW-SPMs were established, and their analytical performances were validated according to the ICH. The linear range of the MW-SPMs was 5-150 µg/mL, with limits of quantitation of 5.3-7.6 µg/mL. The accuracy and precision of the MW-SPMs were proved, as the average recovery values were 99.9-101.0%, and the relative standard deviations did not exceed 1.8%. The three methods were applied to the determination of CER content in Zykadia® capsules and drug content uniformity testing. The greenness of the MW-SPMs was proved using three different metric tools. In addition, these methods encompassed the advantage of high-throughput analysis. In conclusion, the three methods are valuable tools for convenient and reliable application in the pharmaceutical quality control units for CER-containing capsules.
Collapse
Affiliation(s)
| | | | - Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
54
|
Abuhejail RM, Alzoman NZ, Darwish IA. Development of Two Novel One-Step and Green Microwell Spectrophotometric Methods for High-Throughput Determination of Ceritinib, a Potent Drug for Treatment of Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1813. [PMID: 37893531 PMCID: PMC10608039 DOI: 10.3390/medicina59101813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Ceritinib (CER) is a potent drug of the third-generation tyrosine kinase inhibitor class. CER has been approved for the treatment of patients with non-small-cell lung cancer (NSCLC) harboring the anaplastic lymphoma kinase (ALK) mutation gene. In the literature, there is no green and high-throughput analytical method for the quantitation of CER in its dosage form (Zykadia® capsules). This study describes, for the first time, the development and validation of two novel one-step and green microwell spectrophotometric methods (MW-SPMs) for the high-throughput quantitation of CER in Zykadia® capsules. Materials and Methods: These two methods were based on an in microwell formation of colored derivatives upon the reaction of CER with two different benzoquinone reagents via two different mechanisms. These reagents were ortho-benzoquinone (OBQ) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and their reactions proceeded via condensation and charge transfer reactions, respectively. The reactions were carried out in 96-well transparent plates, and the absorbances of the colored reaction products were measured with an absorbance microplate reader at 540 and 460 nm for reactions with OBQ and DDQ, respectively. The optimum conditions of reactions were established, their molar ratios were determined, and reaction mechanisms were postulated. Under the refined optimum reaction conditions, procedures of MW-SPMs were established and validated according to the guidelines of the International Council on Harmonization. Results: The limits of quantitation were 6.5 and 10.2 µg/well for methods involving reactions with OBQ and DDQ, respectively. Both methods were applied with great reliability to the determination of CER content in Zykadia® capsules and their drug uniformity. Greenness of the MW-SPMs was evaluated using three different metric tools, and the results proved that the two methods fulfil the requirements of green analytical approaches. In addition, the simultaneous handling of a large number of samples with microvolumes in the proposed methods gave them the advantage of a high-throughput analysis. Conclusions: The two methods are valuable tools for rapid routine application in pharmaceutical quality control units for the quantitation of CER.
Collapse
Affiliation(s)
| | | | - Ibrahim A. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
55
|
Li X, Zheng J, Li X, Chen Y, Liu K, Li F, Lu Z. Case Report: Ensartinib for gastric epithelioid inflammatory myofibrosarcoma with STRN-ALK fusion. Front Oncol 2023; 13:1252221. [PMID: 37869075 PMCID: PMC10585149 DOI: 10.3389/fonc.2023.1252221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023] Open
Abstract
Epithelioid inflammatory myofibroblastic sarcoma (EIMS) is a highly aggressive malignant subtype of inflammatory myofibroblastoma (IMT) associated with poor prognosis. IMT can occur in various parts of the body, most frequently in the lungs, followed by the mesentery, omentum, retroperitoneum, and pelvis, among other areas; however, it is exceptionally rare in the stomach. Anaplastic lymphoma kinase (ALK) is a critical driver of lung cancer development and is currently the "gold standard" target for non-small cell lung cancer treatment. However, there are few reports on the use of ALK inhibitors for EIMS, necessitating further investigation. A male patient with postoperative inflammatory myofibroblastic sarcoma of the stomach received postoperative chemotherapy and had a stable outcome. However, a repeat CT scan performed 11 months later revealed disease progression. The patient later underwent immunohistochemistry testing that indicated ALK positivity, and next-generation sequencing revealed STRN-ALK fusion. Ensartinib 225 mg qd was administered as recommended, and the patient experienced only mild pruritus and no adverse effects such as rash. Eight months after CT follow-up, the patient's subseptal soft tissue nodules had decreased, and the outcome was assessed as a partial response. The findings of this case report introduce a novel strategy for treating ALK-positive EIMS that utilizes ensartinib, a drug with previously demonstrated success in the treatment of ALK-positive cancer.
Collapse
Affiliation(s)
- XiaoQing Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - JingFan Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - XinYi Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - YuYu Chen
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Kang Liu
- Department of Oncology, Affiliated Hospital Of Weifang Medical University, Weifang, Shandong, China
| | - FangChao Li
- Department of Oncology, Affiliated Hospital Of Weifang Medical University, Weifang, Shandong, China
| | - Zhong Lu
- Department of Oncology, Affiliated Hospital Of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
56
|
Schütte W, Gütz S, Nehls W, Blum TG, Brückl W, Buttmann-Schweiger N, Büttner R, Christopoulos P, Delis S, Deppermann KM, Dickgreber N, Eberhardt W, Eggeling S, Fleckenstein J, Flentje M, Frost N, Griesinger F, Grohé C, Gröschel A, Guckenberger M, Hecker E, Hoffmann H, Huber RM, Junker K, Kauczor HU, Kollmeier J, Kraywinkel K, Krüger M, Kugler C, Möller M, Nestle U, Passlick B, Pfannschmidt J, Reck M, Reinmuth N, Rübe C, Scheubel R, Schumann C, Sebastian M, Serke M, Stoelben E, Stuschke M, Thomas M, Tufman A, Vordermark D, Waller C, Wolf J, Wolf M, Wormanns D. [Prevention, Diagnosis, Therapy, and Follow-up of Lung Cancer - Interdisciplinary Guideline of the German Respiratory Society and the German Cancer Society - Abridged Version]. Pneumologie 2023; 77:671-813. [PMID: 37884003 DOI: 10.1055/a-2029-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The current S3 Lung Cancer Guidelines are edited with fundamental changes to the previous edition based on the dynamic influx of information to this field:The recommendations include de novo a mandatory case presentation for all patients with lung cancer in a multidisciplinary tumor board before initiation of treatment, furthermore CT-Screening for asymptomatic patients at risk (after federal approval), recommendations for incidental lung nodule management , molecular testing of all NSCLC independent of subtypes, EGFR-mutations in resectable early stage lung cancer in relapsed or recurrent disease, adjuvant TKI-therapy in the presence of common EGFR-mutations, adjuvant consolidation treatment with checkpoint inhibitors in resected lung cancer with PD-L1 ≥ 50%, obligatory evaluation of PD-L1-status, consolidation treatment with checkpoint inhibition after radiochemotherapy in patients with PD-L1-pos. tumor, adjuvant consolidation treatment with checkpoint inhibition in patients withPD-L1 ≥ 50% stage IIIA and treatment options in PD-L1 ≥ 50% tumors independent of PD-L1status and targeted therapy and treatment option immune chemotherapy in first line SCLC patients.Based on the current dynamic status of information in this field and the turnaround time required to implement new options, a transformation to a "living guideline" was proposed.
Collapse
Affiliation(s)
- Wolfgang Schütte
- Klinik für Innere Medizin II, Krankenhaus Martha Maria Halle-Dölau, Halle (Saale)
| | - Sylvia Gütz
- St. Elisabeth-Krankenhaus Leipzig, Abteilung für Innere Medizin I, Leipzig
| | - Wiebke Nehls
- Klinik für Palliativmedizin und Geriatrie, Helios Klinikum Emil von Behring
| | - Torsten Gerriet Blum
- Helios Klinikum Emil von Behring, Klinik für Pneumologie, Lungenklinik Heckeshorn, Berlin
| | - Wolfgang Brückl
- Klinik für Innere Medizin 3, Schwerpunkt Pneumologie, Klinikum Nürnberg Nord
| | | | - Reinhard Büttner
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Uniklinik Köln, Berlin
| | | | - Sandra Delis
- Helios Klinikum Emil von Behring, Klinik für Pneumologie, Lungenklinik Heckeshorn, Berlin
| | | | - Nikolas Dickgreber
- Klinik für Pneumologie, Thoraxonkologie und Beatmungsmedizin, Klinikum Rheine
| | | | - Stephan Eggeling
- Vivantes Netzwerk für Gesundheit, Klinikum Neukölln, Klinik für Thoraxchirurgie, Berlin
| | - Jochen Fleckenstein
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Homburg
| | - Michael Flentje
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Würzburg, Würzburg
| | - Nikolaj Frost
- Medizinische Klinik mit Schwerpunkt Infektiologie/Pneumologie, Charite Universitätsmedizin Berlin, Berlin
| | - Frank Griesinger
- Klinik für Hämatologie und Onkologie, Pius-Hospital Oldenburg, Oldenburg
| | | | - Andreas Gröschel
- Klinik für Pneumologie und Beatmungsmedizin, Clemenshospital, Münster
| | | | | | - Hans Hoffmann
- Klinikum Rechts der Isar, TU München, Sektion für Thoraxchirurgie, München
| | - Rudolf M Huber
- Medizinische Klinik und Poliklinik V, Thorakale Onkologie, LMU Klinikum Munchen
| | - Klaus Junker
- Klinikum Oststadt Bremen, Institut für Pathologie, Bremen
| | - Hans-Ulrich Kauczor
- Klinikum der Universität Heidelberg, Abteilung Diagnostische Radiologie, Heidelberg
| | - Jens Kollmeier
- Helios Klinikum Emil von Behring, Klinik für Pneumologie, Lungenklinik Heckeshorn, Berlin
| | | | - Marcus Krüger
- Klinik für Thoraxchirurgie, Krankenhaus Martha-Maria Halle-Dölau, Halle-Dölau
| | | | - Miriam Möller
- Krankenhaus Martha-Maria Halle-Dölau, Klinik für Innere Medizin II, Halle-Dölau
| | - Ursula Nestle
- Kliniken Maria Hilf, Klinik für Strahlentherapie, Mönchengladbach
| | | | - Joachim Pfannschmidt
- Klinik für Thoraxchirurgie, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Berlin
| | - Martin Reck
- Lungeclinic Grosshansdorf, Pneumologisch-onkologische Abteilung, Grosshansdorf
| | - Niels Reinmuth
- Klinik für Pneumologie, Thorakale Onkologie, Asklepios Lungenklinik Gauting, Gauting
| | - Christian Rübe
- Klinik für Strahlentherapie und Radioonkologie, Universitätsklinikum des Saarlandes, Homburg/Saar, Homburg
| | | | | | - Martin Sebastian
- Medizinische Klinik II, Universitätsklinikum Frankfurt, Frankfurt
| | - Monika Serke
- Zentrum für Pneumologie und Thoraxchirurgie, Lungenklinik Hemer, Hemer
| | | | - Martin Stuschke
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinikum Essen, Essen
| | - Michael Thomas
- Thoraxklinik am Univ.-Klinikum Heidelberg, Thorakale Onkologie, Heidelberg
| | - Amanda Tufman
- Medizinische Klinik und Poliklinik V, Thorakale Onkologie, LMU Klinikum München
| | - Dirk Vordermark
- Universitätsklinik und Poliklinik für Strahlentherapie, Universitätsklinikum Halle, Halle
| | - Cornelius Waller
- Klinik für Innere Medizin I, Universitätsklinikum Freiburg, Freiburg
| | | | - Martin Wolf
- Klinikum Kassel, Klinik für Onkologie und Hämatologie, Kassel
| | - Dag Wormanns
- Evangelische Lungenklinik, Radiologisches Institut, Berlin
| |
Collapse
|
57
|
Okazaki T, Iwasaki Y, Kubo Y, Kodama K, Nakatsuka SI. Anaplastic Lymphoma Kinase (ALK)-Rearranged Lung Cancer That Showed Exclusively Scattered Isolated Cells Devoid of Mucin Production in Cytology. Cureus 2023; 15:e46339. [PMID: 37920641 PMCID: PMC10618568 DOI: 10.7759/cureus.46339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2023] [Indexed: 11/04/2023] Open
Abstract
We present a rare case of Anaplastic Lymphoma Kinase (ALK)-rearranged lung cancer characterized by isolated scattered mucin-free cancer cells forming no clusters in the cytology of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) samples from a paratracheal lymph node. A female patient in her late 40s underwent chest and abdominal CT scan, revealing a 6 cm diameter tumor in the upper lobe of the left lung along with enlargement of mediastinal and hilar lymph nodes, bilateral pleural effusion, and an additional 5.5 cm diameter tumor in the right greater psoas muscle. EBUS-TBNA was performed to obtain samples for cytological and histological examination. Cytology showed exclusively solitary cancer cells that were negative for Periodic Acid-Schiff (PAS) and Alcian blue staining, without clusters. Immunohistochemical analysis of cell block and histology specimens demonstrated positive expression of TTF-1, ALK, and vimentin, while E-cadherin expression was absent. Genetic analysis of samples obtained by EBUS-TBNA confirmed the presence of EML4-ALK fusion. The tumor in the right greater psoas muscle was identified as a metastatic tumor from the lung tumor based on ALK-positivity and the EML4-ALK fusion. The absence of E-cadherin expression and the presence of vimentin expression suggest that this ALK-rearranged lung cancer may have undergone epithelial-mesenchymal transition, resulting in the loss of cellular adhesiveness.
Collapse
Affiliation(s)
- Tsuyoshi Okazaki
- Department of Clinical Laboratory, Yao Tokushukai General Hospital, Yao, JPN
| | - Yoshie Iwasaki
- Department of Clinical Laboratory, Yao Tokushukai General Hospital, Yao, JPN
| | - Yuki Kubo
- Department of Pathology, Yao Tokushukai General Hospital, Yao, JPN
| | - Ken Kodama
- Department of Thoracic Surgery, Yao Municipal Hospital, Yao, JPN
| | | |
Collapse
|
58
|
Konda P, Garinet S, Van Allen EM, Viswanathan SR. Genome-guided discovery of cancer therapeutic targets. Cell Rep 2023; 42:112978. [PMID: 37572322 DOI: 10.1016/j.celrep.2023.112978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
The success of precision oncology-which aims to match the right therapies to the right patients based on molecular status-is predicated on a robust pipeline of molecular targets against which therapies can be developed. Recent advances in genomics and functional genetics have enabled the unbiased discovery of novel molecular targets at scale. We summarize the promise and challenges in integrating genomic and functional genetic landscapes of cancer to establish the next generation of cancer targets.
Collapse
Affiliation(s)
- Prathyusha Konda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon Garinet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Srinivas R Viswanathan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
59
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
60
|
Gupta N, Hanley MJ, Griffin RJ, Zhang P, Venkatakrishnan K, Sinha V. Clinical Pharmacology of Brigatinib: A Next-Generation Anaplastic Lymphoma Kinase Inhibitor. Clin Pharmacokinet 2023; 62:1063-1079. [PMID: 37493887 PMCID: PMC10386943 DOI: 10.1007/s40262-023-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Brigatinib, a next-generation anaplastic lymphoma kinase (ALK) inhibitor designed to overcome mechanisms of resistance associated with crizotinib, is approved for the treatment of ALK-positive advanced or metastatic non-small cell lung cancer. After oral administration of single doses of brigatinib 30-240 mg, the median time to reach maximum plasma concentration ranged from 1 to 4 h. In patients with advanced malignancies, brigatinib showed dose linearity over the dose range of 60-240 mg once daily. A high-fat meal had no clinically meaningful effect on systemic exposures of brigatinib (area under the plasma concentration-time curve); thus, brigatinib can be administered with or without food. In a population pharmacokinetic analysis, a three-compartment pharmacokinetic model with transit absorption compartments was found to adequately describe brigatinib pharmacokinetics. In addition, the population pharmacokinetic analyses showed that no dose adjustment is required based on body weight, age, race, sex, total bilirubin (< 1.5× upper limit of normal), and mild-to-moderate renal impairment. Data from dedicated phase I trials have indicated that no dose adjustment is required for patients with mild or moderate hepatic impairment, while a dose reduction of approximately 40% (e.g., from 180 to 120 mg) is recommended for patients with severe hepatic impairment, and a reduction of approximately 50% (e.g., from 180 to 90 mg) is recommended when administering brigatinib to patients with severe renal impairment. Brigatinib is primarily metabolized by cytochrome P450 (CYP) 3A, and results of clinical drug-drug interaction studies and physiologically based pharmacokinetic analyses have demonstrated that coadministration of strong or moderate CYP3A inhibitors or inducers with brigatinib should be avoided. If coadministration with a strong or moderate CYP3A inhibitor cannot be avoided, the dose of brigatinib should be reduced by approximately 50% (strong CYP3A inhibitor) or approximately 40% (moderate CYP3A inhibitor), respectively. Brigatinib is a weak inducer of CYP3A in vivo; data from a phase I drug-drug interaction study showed that coadministration of brigatinib 180 mg once daily reduced the oral midazolam area under the plasma concentration-time curve from time zero to infinity by approximately 26%. Brigatinib did not inhibit CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, or CYP2D6 at clinically relevant concentrations in vitro. Exposure-response analyses based on data from the ALTA (ALK in Lung Cancer Trial of AP26113) and ALTA-1L pivotal trials of brigatinib confirm the favorable benefit versus risk profile of the approved titration dosing regimen of 180 mg once daily (after a 7-day lead-in at 90 mg once daily).
Collapse
Affiliation(s)
- Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, MA, USA.
- Takeda Development Centers America, Inc., 40 Landsdowne Street, MA, 02139, Cambridge, USA.
| | | | | | - Pingkuan Zhang
- Takeda Development Center Americas, Inc., Lexington, MA, USA
| | - Karthik Venkatakrishnan
- Millennium Pharmaceuticals, Inc., a Wholly Owned Subsidiary of Takeda Pharmaceutical Company Limited, 40 Landsdowne Street, MA, 02139, Cambridge, USA
- EMD Serono Research and Development Institute, Inc., Billerica, MA, USA
| | - Vikram Sinha
- Takeda Development Center Americas, Inc., Lexington, MA, USA
- Novartis Development Corporation, East Hanover, NJ, USA
| |
Collapse
|
61
|
Zhang H, Li X, Zhang Z, Huang S, Guo Q, Yan N. Activity of ceritinib in crizotinib-resistant ROS1-rearranged non-small-cell lung cancer patients. Medicine (Baltimore) 2023; 102:e33543. [PMID: 37478263 PMCID: PMC10662874 DOI: 10.1097/md.0000000000033543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/27/2023] [Indexed: 07/23/2023] Open
Abstract
As a second-generation selective oral anaplastic lymphoma kinase inhibitor, ceritinib is an effective first-line treatment for c-ros oncogene 1 (ROS1)-rearranged non-small-cell lung cancer (NSCLC). Its efficacy and safety for the treatment of crizotinib-resistant ROS1-rearranged NSCLC were explored in the study. A retrospective single-center study was conducted to investigate the efficacy of ceritinib in crizotinib-resistant ROS1-rearranged NSCLC. The objective response rate was the primary objective, while the disease control rate, progression-free survival and adverse events were secondary objectives. From December 2015 to October 2021, a total of 246 patients with ROS1-rearranged NSCLC were screened, 12 (4.9%) of whom were treated with ceritinib after the development of crizotinib resistance. Among the 12 crizotinib-resistant patients included, 3 displayed the efficacy of partial response and 3 had the efficacy of stable condition. The objective response rate, disease control rate and median progression-free survival of all patients were 25% (95% confidence interval [CI]: -3.7% to 53.7%; 3 of 12 patients), 50% (95% CI: 16.8% to 83.2%; 6 of 12 patients), and 10.5 months (95% CI, 5.7 to 15.3 months), respectively. In addition, of the 6 patients with brain metastases, an intracranial disease control rate of 66.7% (95% CI:12.5% to 120.9%) was obtained. The research results reveal that ceritinib can be a treatment option for ROS1-rearranged NSCLC patients after the development of crizotinib resistance.
Collapse
Affiliation(s)
- Huixian Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Ziheng Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Siyuan Huang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Qianqian Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| | - Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province 450052, People’s Republic of China
| |
Collapse
|
62
|
Sun MG, Park SJ, Kim YJ, Moon KS, Kim IY, Jung S, Oh HJ, Oh IJ, Jung TY. Intracranial Efficacy of Systemic Therapy in Patients with Asymptomatic Brain Metastases from Lung Cancer. J Clin Med 2023; 12:4307. [PMID: 37445347 DOI: 10.3390/jcm12134307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
There has been controversy over whether to radiologically follow up or use local treatment for asymptomatic small-sized brain metastases from primary lung cancer. For brain tumors without local treatment, we evaluated potential factors related to the brain progression and whether systemic therapy controlled the tumor. We analyzed 96 patients with asymptomatic small-sized metastatic brain tumors from lung cancer. These underwent a radiologic follow-up every 2 or 3 months without local treatment of brain metastases. The pathologies of the tumors were adenocarcinoma (n = 74), squamous cell carcinoma (n = 11), and small cell carcinoma (n = 11). The primary lung cancer was treated with cytotoxic chemotherapy (n = 57) and targeted therapy (n = 39). Patients who received targeted therapy were divided into first generation (n = 23) and second or third generation (n = 16). The progression-free survival (PFS) of brain metastases and the overall survival (OS) of patients were analyzed depending on the age, tumor pathology, number, and location of brain metastases, the extent of other organ metastases, and chemotherapy regimens. The median PFS of brain metastases was 7.4 months (range, 1.1-48.3). Targeted therapy showed statistically significant PFS improvement compared to cytotoxic chemotherapy (p = 0.020). Especially, on univariate and multivariate analyses, the PFS in the second or third generation targeted therapy was more significantly improved compared to cytotoxic chemotherapy (hazard ratio 0.229; 95% confidence interval, 0.082-0.640; p = 0.005). The median OS of patients was 13.7 months (range, 2.0-65.0). Univariate and multivariate analyses revealed that the OS of patients was related to other organ metastases except for the brain (p = 0.010 and 0.020, respectively). Three out of 52 patients with brain recurrence showed leptomeningeal dissemination, while the recurrence patterns of brain metastases were mostly local and/or distant metastases (94.2%). Of the 52 patients who relapsed, 25 patients received local brain treatment. There was brain-related mortality in two patients (2.0%). The intracranial anti-tumor effect was superior to cytotoxic chemotherapy in the treatment of asymptomatic small-sized brain metastases with targeted therapy. Consequently, it becomes possible to determine the optimal timing for local brain treatment while conducting radiological follow-up for these tumors, which do not appear to increase brain-related mortality. Furthermore, this approach has the potential to reduce the number of cases requiring brain local treatment.
Collapse
Affiliation(s)
- Min-Gwan Sun
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Sue Jee Park
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Yeong Jin Kim
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Kyung-Sub Moon
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - In-Young Kim
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Hyung-Joo Oh
- Department of Internal Medicine, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| | - Tae-Young Jung
- Department of Neurosurgery, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea
| |
Collapse
|
63
|
Shen F, Guo W, Song X, Wang B. Molecular profiling and prognostic biomarkers in chinese non-small cell lung cancer cohort. Diagn Pathol 2023; 18:71. [PMID: 37301854 PMCID: PMC10257305 DOI: 10.1186/s13000-023-01349-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/25/2023] [Indexed: 06/12/2023] Open
Abstract
INTRODUCTION Comprehensive information about the genome analysis and its prognostic values of NSCLC patients in Chinese population are still needed. PATIENTS A total of 117 Chinese patients with NSCLC were enrolled in this study. Tumor tissues or blood were collected and sequenced by targeted next-generation sequencing of 556 cancer related genes. The associations between clinical outcomes and clinical characteristics, TMB, mutated genes, treatment therapies were analyzed using Kaplan-Meier methods and further evaluated using multivariable Cox proportional hazards regression model. RESULTS A total of 899 mutations were identified by targeted NGS. The most frequently mutations included EGFR (47%), TP53 (46%), KRAS (18%), LRP1B (12%) and SPTA1 (10%). Patients with mutant TP53, PREX2, ARID1A, PTPRT and PIK3CG had lower median overall survival (OS) than those patients with wild-type (P = 0.0056, P < 0.001, P < 0.0001, P < 0.0001 and P = 0.036, respectively). Using a multivariate Cox regression model, PREX2 (P < 0.001), ARID1A (P < 0.001) and PIK3CG (P = 0.04) were independent prognostic factors in NSCLC. In the patients received chemotherapy, squamous patients had a significantly longer median OS than adenocarcinoma patients (P = 0.011). In the patients received targeted therapy, adenocarcinoma patients had a significantly longer survival period than squamous patients (P = 0.01). CONCLUSIONS Our study provided comprehensive genomic alterations in a cohort of Chinese NSCLC. We also identified new prognostic biomarkers, which could provide potential clues for targeted therapies.
Collapse
Affiliation(s)
- Fangfang Shen
- Department of Respiratory Medicine, Shanxi Hospital Affiliated to Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030001, China
| | - Wei Guo
- Department of Respiratory Medicine, Shanxi Hospital Affiliated to Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030001, China
| | - Xia Song
- Department of Respiratory Medicine, Shanxi Hospital Affiliated to Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Taiyuan, 030001, China
| | - Bei Wang
- The Second Hospital, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
64
|
Kong Y, Jiang C, Wei G, Sun K, Wang R, Qiu T. Small Molecule Inhibitors as Therapeutic Agents Targeting Oncogenic Fusion Proteins: Current Status and Clinical. Molecules 2023; 28:4672. [PMID: 37375228 DOI: 10.3390/molecules28124672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Oncogenic fusion proteins, arising from chromosomal rearrangements, have emerged as prominent drivers of tumorigenesis and crucial therapeutic targets in cancer research. In recent years, the potential of small molecular inhibitors in selectively targeting fusion proteins has exhibited significant prospects, offering a novel approach to combat malignancies harboring these aberrant molecular entities. This review provides a comprehensive overview of the current state of small molecular inhibitors as therapeutic agents for oncogenic fusion proteins. We discuss the rationale for targeting fusion proteins, elucidate the mechanism of action of inhibitors, assess the challenges associated with their utilization, and provide a summary of the clinical progress achieved thus far. The objective is to provide the medicinal community with current and pertinent information and to expedite the drug discovery programs in this area.
Collapse
Affiliation(s)
- Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
65
|
Elshatlawy M, Sampson J, Clarke K, Bayliss R. EML4-ALK biology and drug resistance in non-small cell lung cancer: a new phase of discoveries. Mol Oncol 2023; 17:950-963. [PMID: 37149843 PMCID: PMC10257413 DOI: 10.1002/1878-0261.13446] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/08/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) can be driven to oncogenic activity by different types of mutational events such as point-mutations, for example F1174L in neuroblastoma, and gene fusions, for example with echinoderm microtubule-associated protein-like 4 (EML4) in non-small cell lung cancer (NSCLC). EML4-ALK variants result from different breakpoints, generating fusions of different sizes and properties. The most common variants (Variant 1 and Variant 3) form cellular compartments with distinct physical properties. The presence of a partial, probably misfolded beta-propeller domain in variant 1 confers solid-like properties to the compartments it forms, greater dependence on Hsp90 for protein stability and higher cell sensitivity to ALK tyrosine kinase inhibitors (TKIs). These differences translate to the clinic because variant 3, on average, worsens patient prognosis and increases metastatic risk. Latest generation ALK-TKIs are beneficial for most patients with EML4-ALK fusions. However, resistance to ALK inhibitors can occur via point-mutations within the kinase domain of the EML4-ALK fusion, for example G1202R, reducing inhibitor effectiveness. Here, we discuss the biology of EML4-ALK variants, their impact on treatment response, ALK-TKI drug resistance mechanisms and potential combination therapies.
Collapse
Affiliation(s)
- Mariam Elshatlawy
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Josephina Sampson
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| | - Katy Clarke
- Leeds Cancer Center, St.James' University HospitalLeeds Teaching Hospitals NHS TrustUK
| | - Richard Bayliss
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| |
Collapse
|
66
|
Hessey S, Fessas P, Zaccaria S, Jamal-Hanjani M, Swanton C. Insights into the metastatic cascade through research autopsies. Trends Cancer 2023; 9:490-502. [PMID: 37059687 DOI: 10.1016/j.trecan.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 04/16/2023]
Abstract
Metastasis is a complex process and the leading cause of cancer-related death globally. Recent studies have demonstrated that genomic sequencing data from paired primary and metastatic tumours can be used to trace the evolutionary origins of cells responsible for metastasis. This approach has yielded new insights into the genomic alterations that engender metastatic potential, and the mechanisms by which cancer spreads. Given that the reliability of these approaches is contingent upon how representative the samples are of primary and metastatic tumour heterogeneity, we review insights from studies that have reconstructed the evolution of metastasis within the context of their cohorts and designs. We discuss the role of research autopsies in achieving the comprehensive sampling necessary to advance the current understanding of metastasis.
Collapse
Affiliation(s)
- Sonya Hessey
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Petros Fessas
- Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Metastasis Laboratory, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
67
|
Zhou F, Yang Y, Zhang L, Cheng Y, Han B, Lu Y, Wang C, Wang Z, Yang N, Fan Y, Wang L, Ma Z, Zhang L, Yao Y, Zhao J, Dong X, Zhu B, Zhou C. Expert consensus of management of adverse drug reactions with anaplastic lymphoma kinase tyrosine kinase inhibitors. ESMO Open 2023; 8:101560. [PMID: 37230029 PMCID: PMC10225873 DOI: 10.1016/j.esmoop.2023.101560] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/26/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements occur in ∼3%-6% of patients with advanced non-small-cell lung cancer (NSCLC). Small molecular drugs that effectively inhibit ALK gene have revolutionized the therapeutic paradigm for patients with ALK rearrangements, resulting in significant improvements in objective response rate, progression-free survival, and overall survival compared with classical platinum-based chemotherapy. Several ALK tyrosine kinase inhibitors (ALK-TKIs), including crizotinib, alectinib, ceritinib, brigatinib, ensartinib, and lorlatinib, have been recommended as standard first-line treatment for advanced NSCLC patients with ALK rearrangements. Patients with ALK rearrangements typically exhibit long-term durable responses to ALK-TKIs; therefore, the management of adverse drug reactions (ADRs) with ALK-TKIs is crucial in clinical practice to maximize clinical benefits, prevent an adverse impact on quality of life, and improve patient compliance. In general, ALK-TKIs are well tolerated. There are, however, a number of serious toxicities that may necessitate dose modification or even discontinuation of treatment and the management of ADRs with ALK-TKIs has grown in importance. The therapeutic use of this class of medications still carries some risk because there are currently no pertinent guidelines or consensus recommendations for managing ADRs caused by ALK-TKIs in China. In order to improve the clinical management of ADRs with ALK-TKIs, the Chinese Society of Clinical Oncology (CSCO) Non-small Cell Lung Cancer Professional Committee led the discussion and summary of the incidence, diagnosis and grading standards, and prevention and treatment of ADRs caused by ALK-TKIs.
Collapse
Affiliation(s)
- F Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai
| | - Y Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - L Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Y Cheng
- Department of Internal Medicine-Oncology, Jilin Cancer Hospital, Changchun
| | - B Han
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai
| | - Y Lu
- Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu
| | - C Wang
- Department of Lung Cancer, Lung Cancer Center, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin
| | - Z Wang
- Department of Medical Oncology, Shandong Cancer Hospital and Institute, Jinan
| | - N Yang
- Department of Medical Oncology, Lung Cancer and Gastrointestinal Unit, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha
| | - Y Fan
- Department of Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences/Zhejiang Cancer Hospital, Hangzhou
| | - L Wang
- Department of Medical Oncology, Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing
| | - Z Ma
- Department of Respiratory Medicine, Affiliated Cancer Hospital of Zhengzhou University/Henan Cancer Hospital, Zhengzhou
| | - L Zhang
- Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Y Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an
| | - J Zhao
- Department of Thoracic Medical Oncology, Peking University Cancer Hospital & Institute, Beijing
| | - X Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - B Zhu
- Department of Oncology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - C Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai.
| |
Collapse
|
68
|
Lei Z, Tian Q, Teng Q, Wurpel JND, Zeng L, Pan Y, Chen Z. Understanding and targeting resistance mechanisms in cancer. MedComm (Beijing) 2023; 4:e265. [PMID: 37229486 PMCID: PMC10203373 DOI: 10.1002/mco2.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023] Open
Abstract
Resistance to cancer therapies has been a commonly observed phenomenon in clinical practice, which is one of the major causes of treatment failure and poor patient survival. The reduced responsiveness of cancer cells is a multifaceted phenomenon that can arise from genetic, epigenetic, and microenvironmental factors. Various mechanisms have been discovered and extensively studied, including drug inactivation, reduced intracellular drug accumulation by reduced uptake or increased efflux, drug target alteration, activation of compensatory pathways for cell survival, regulation of DNA repair and cell death, tumor plasticity, and the regulation from tumor microenvironments (TMEs). To overcome cancer resistance, a variety of strategies have been proposed, which are designed to enhance the effectiveness of cancer treatment or reduce drug resistance. These include identifying biomarkers that can predict drug response and resistance, identifying new targets, developing new targeted drugs, combination therapies targeting multiple signaling pathways, and modulating the TME. The present article focuses on the different mechanisms of drug resistance in cancer and the corresponding tackling approaches with recent updates. Perspectives on polytherapy targeting multiple resistance mechanisms, novel nanoparticle delivery systems, and advanced drug design tools for overcoming resistance are also reviewed.
Collapse
Affiliation(s)
- Zi‐Ning Lei
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Qin Tian
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Qiu‐Xu Teng
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - John N. D. Wurpel
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Leli Zeng
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Yihang Pan
- PrecisionMedicine CenterScientific Research CenterThe Seventh Affiliated HospitalSun Yat‐Sen UniversityShenzhenP. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNew YorkUSA
| |
Collapse
|
69
|
Mulder J, Teerenstra S, van Hennik PB, Pasmooij AMG, Stoyanova-Beninska V, Voest EE, de Boer A. Single-arm trials supporting the approval of anticancer medicinal products in the European Union: contextualization of trial results and observed clinical benefit. ESMO Open 2023; 8:101209. [PMID: 37054504 PMCID: PMC10163162 DOI: 10.1016/j.esmoop.2023.101209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Single-arm trials (SATs) can sometimes be used to support marketing authorization of anticancer medicinal products in the European Union. The level and durability of antitumor activity of the product as well as context are important aspects to determine the relevance of trial results. The aim of this study is to provide details on the contextualization of trial results and to evaluate the magnitude of benefit of medicinal products approved based on SATs. MATERIALS AND METHODS We focused on anticancer medicinal products for solid tumors approved on the basis of SAT results (2012-2021). Data were retrieved from European public assessment reports and/or published literature. The benefit of these medicinal products was evaluated via the European Society for Medical Oncology (ESMO)-Magnitude of Clinical Benefit Scale (MCBS). RESULTS Eighteen medicinal products were approved based on 21 SATs-few medicinal products were supported by >1 SAT. For the majority of clinical trials, a clinically relevant treatment effect was (pre)specified (71.4%) and most often an accompanying sample size calculation was provided. For 10 studies, each testing a different medicinal product, a justification for the threshold for a clinically relevant treatment effect could be identified. At least 12 out of 18 applications included information to facilitate the contextualization of trial results, including six supportive studies. Of the pivotal SATs analyzed (n = 21), three were assigned an ESMO-MCBS score of 4, which corresponds to 'substantial' benefit. CONCLUSIONS The clinical relevance of the treatment effects shown by medicinal products for solid tumors tested in SATs is dependent on the effect size and context. To better facilitate regulatory decision making, prespecifying and motivating a clinically relevant effect and aligning the sample size to that effect is important. External controls may facilitate in the contextualization process, but the associated limitations must be addressed.
Collapse
Affiliation(s)
- J Mulder
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands.
| | - S Teerenstra
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands; Department for Health Evidence, Biostatistics Section, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P B van Hennik
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
| | - A M G Pasmooij
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands
| | | | - E E Voest
- The Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - A de Boer
- Dutch Medicines Evaluation Board, Utrecht, The Netherlands; Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
70
|
Arboleya L, Braña I, Pardo E, Loredo M, Queiro R. Osteomalacia in Adults: A Practical Insight for Clinicians. J Clin Med 2023; 12:jcm12072714. [PMID: 37048797 PMCID: PMC10094844 DOI: 10.3390/jcm12072714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/26/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The term osteomalacia (OM) refers to a series of processes characterized by altered mineralization of the skeleton, which can be caused by various disorders of mineral metabolism. OM can be genetically determined or occur due to acquired disorders, among which the nutritional origin is particularly relevant, due to its wide epidemiological extension and its nature as a preventable disease. Among the hereditary diseases associated with OM, the most relevant is X-linked hypophosphatemia (XLH), which manifests in childhood, although its consequences persist into adulthood where it can acquire specific clinical characteristics, and, although rare, there are XLH cases that reach the third or fourth decade of life without a diagnosis. Some forms of OM present very subtle initial manifestations which cause both considerable diagnosis and treatment delay. On occasions, the presence of osteopenia and fragility fractures leads to an erroneous diagnosis of osteoporosis, which may imply the prescription of antiresorptive drugs (i.e., bisphosphonates or denosumab) with catastrophic consequences for OM bone. On the other hand, some radiological features of OM can be confused with those of axial spondyloarthritis and lead to erroneous diagnoses. The current prevalence of OM is not known and is very likely that its incidence is much higher than previously thought. Moreover, OM explains part of the therapeutic failures that occur in patients diagnosed with other bone diseases. Therefore, it is essential that clinicians who treat adult skeletal diseases take into account the considerations provided in this practical review when focusing on the diagnosis and treatment of their patients with bone diseases.
Collapse
Affiliation(s)
- Luis Arboleya
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Ignacio Braña
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Estefanía Pardo
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Marta Loredo
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
| | - Rubén Queiro
- Rheumatology Division, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain
- ISPA Translational Immunology Division, Biohealth Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- School of Medicine, Oviedo University, 33011 Oviedo, Spain
| |
Collapse
|
71
|
Patterson A, Elbasir A, Tian B, Auslander N. Computational Methods Summarizing Mutational Patterns in Cancer: Promise and Limitations for Clinical Applications. Cancers (Basel) 2023; 15:1958. [PMID: 37046619 PMCID: PMC10093138 DOI: 10.3390/cancers15071958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023] Open
Abstract
Since the rise of next-generation sequencing technologies, the catalogue of mutations in cancer has been continuously expanding. To address the complexity of the cancer-genomic landscape and extract meaningful insights, numerous computational approaches have been developed over the last two decades. In this review, we survey the current leading computational methods to derive intricate mutational patterns in the context of clinical relevance. We begin with mutation signatures, explaining first how mutation signatures were developed and then examining the utility of studies using mutation signatures to correlate environmental effects on the cancer genome. Next, we examine current clinical research that employs mutation signatures and discuss the potential use cases and challenges of mutation signatures in clinical decision-making. We then examine computational studies developing tools to investigate complex patterns of mutations beyond the context of mutational signatures. We survey methods to identify cancer-driver genes, from single-driver studies to pathway and network analyses. In addition, we review methods inferring complex combinations of mutations for clinical tasks and using mutations integrated with multi-omics data to better predict cancer phenotypes. We examine the use of these tools for either discovery or prediction, including prediction of tumor origin, treatment outcomes, prognosis, and cancer typing. We further discuss the main limitations preventing widespread clinical integration of computational tools for the diagnosis and treatment of cancer. We end by proposing solutions to address these challenges using recent advances in machine learning.
Collapse
Affiliation(s)
- Andrew Patterson
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Bin Tian
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
72
|
Viganò M, La Milia M, Grassini MV, Pugliese N, De Giorgio M, Fagiuoli S. Hepatotoxicity of Small Molecule Protein Kinase Inhibitors for Cancer. Cancers (Basel) 2023; 15:cancers15061766. [PMID: 36980652 PMCID: PMC10046041 DOI: 10.3390/cancers15061766] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Small molecule protein kinase inhibitors (PKIs) have become an effective strategy for cancer patients. However, hepatotoxicity is a major safety concern of these drugs, since the majority are reported to increase transaminases, and few of them (Idelalisib, Lapatinib, Pazopanib, Pexidartinib, Ponatinib, Regorafenib, Sunitinib) have a boxed label warning. The exact rate of PKI-induced hepatoxicity is not well defined due to the fact that the majority of data arise from pre-registration or registration trials on fairly selected patients, and the post-marketing data are often based only on the most severe described cases, whereas most real practice studies do not include drug-related hepatotoxicity as an end point. Although these side effects are usually reversible by dose adjustment or therapy suspension, or by switching to an alternative PKI, and fatality is uncommon, all patients undergoing PKIs should be carefully pre-evaluated and monitored. The management of this complication requires an individually tailored reappraisal of the risk/benefit ratio, especially in patients who are responding to therapy. This review reports the currently available data on the risk and management of hepatotoxicity of all the approved PKIs.
Collapse
Affiliation(s)
- Mauro Viganò
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Correspondence: ; Tel.: +39-035-2674259; Fax: +39-035-2674964
| | - Marta La Milia
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Maria Vittoria Grassini
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Section of Gastroenterology & Hepatology, Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, 90127 Palermo, Italy
| | - Nicola Pugliese
- Department of Gastroenterology, Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Massimo De Giorgio
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Stefano Fagiuoli
- Gastroenterology Hepatology and Transplantation Unit, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
- Gastroenterology, Department of Medicine, University of Milan Bicocca, 20126 Milan, Italy
| |
Collapse
|
73
|
Yang S, Feng W, Deng Y, Liang J. First case report of ensartinib in a patient with metastatic ALK rearranged lung cancer with ALK I1171N mutation: a case report. World J Surg Oncol 2023; 21:74. [PMID: 36864442 PMCID: PMC9979531 DOI: 10.1186/s12957-023-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND The acquired resistance to ALK tyrosine kinase inhibitors (TKIs) in ALK-rearranged NSCLC is associated with poor survival outcomes and poses distinct clinical challenges. It is essential to develop potential therapeutic strategies for overcoming resistance. CASE PRESENTATION Here, we first report a female lung adenocarcinoma patient with an acquired ALK resistance mutation (ALK 11171N) who was treated with ensartinib. Her symptoms significantly improved after only 20 days, and with a side effect of mild rash. Follow-up images observed no further brain metastases after 3 months. CONCLUSIONS This treatment may provide a new therapeutic strategy for ALK TKIs resistant patients, especially in position 1171 of ALK exon20.
Collapse
Affiliation(s)
- Shuang Yang
- grid.452881.20000 0004 0604 5998Department of Head, Neck and Thoracic Oncology, First People’s Hospital of Foshan, Foshan, China
| | - Weineng Feng
- grid.452881.20000 0004 0604 5998Department of Head, Neck and Thoracic Oncology, First People’s Hospital of Foshan, Foshan, China
| | - Yanming Deng
- grid.452881.20000 0004 0604 5998Department of Head, Neck and Thoracic Oncology, First People’s Hospital of Foshan, Foshan, China
| | - Jianmiao Liang
- Department of Head, Neck and Thoracic Oncology, First People's Hospital of Foshan, Foshan, China.
| |
Collapse
|
74
|
Hou D, Zheng X, Song W, Liu X, Wang S, Zhou L, Tao X, Lv L, Sun Q, Jin Y, Zhang Z, Ding L, Wu N, Zhao S. Radiomic-signature changes after early treatment improve the prediction of progression-free survival in patients with advanced anaplastic lymphoma kinase-positive non-small cell lung cancer. Acta Radiol 2023; 64:1194-1204. [PMID: 35971221 DOI: 10.1177/02841851221119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The prognosis of lung cancer varies widely, even in cases wherein the tumor stage, genetic mutation, and treatment regimens are the same. Thus, an effective means for risk stratification of patients with lung cancer is needed. PURPOSE To develop and validate a combined model for predicting progression-free survival and risk stratification in patients with advanced anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) treated with ensartinib. MATERIAL AND METHODS We analyzed 203 tumor lesions in 114 patients and evaluated average radiomic feature measures from all lesions at baseline and changes in these features after early treatment (Δradiomic features). Combined models were developed by integrating clinical with radiomic features. The prediction performance and clinical value of the proposed models were evaluated using receiver operating characteristic analysis, calibration curve, decision curve analysis (DCA), and Kaplan-Meier survival analysis. RESULTS Both the baseline and delta combined models achieved predictive efficacy with a high area under the curve. The calibration curve and DCA indicated the high accuracy and clinical usefulness of the combined models for tumor progression prediction. In the Kaplan-Meier analysis, the delta and baseline combined models, Δradiomic signature, and two selected clinical features could distinguish patients with a higher progression risk within 42 weeks. The delta combined model had the best performance. CONCLUSION The combination of clinical and radiomic features provided a prognostic value for survival and progression in patients with NSCLC receiving ensartinib. Radiomic-signature changes after early treatment could be more valuable than those at baseline alone.
Collapse
Affiliation(s)
- Donghui Hou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiaomin Zheng
- Department of Endocrinology, Chui Yang Liu Hospital affiliated to Tsinghua University, Beijing, PR China
| | - Wei Song
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, PR China
| | - Xiaoqing Liu
- Department of Pulmonary Oncology, the Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Sicong Wang
- Life Sciences, GE Healthcare, Beijing, PR China
| | - Lina Zhou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiuli Tao
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lv Lv
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Qi Sun
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, PR China
| | - Yujing Jin
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Zewei Zhang
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Lieming Ding
- 576287Betta Pharmaceuticals Co., Ltd, Hangzhou, PR China
| | - Ning Wu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
- PET-CT Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Shijun Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
75
|
Sarkar N, Singh A, Kumar P, Kaushik M. Protein kinases: Role of their dysregulation in carcinogenesis, identification and inhibition. Drug Res (Stuttg) 2023; 73:189-199. [PMID: 36822216 DOI: 10.1055/a-1989-1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Protein kinases belong to the phosphor-transferases superfamily of enzymes, which "activate" enzymes via phosphorylation. The kinome of an organism is the total set of genes in the genome, which encode for all the protein kinases. Certain mutations in the kinome have been linked to dysregulation of protein kinases, which in turn can lead to several diseases and disorders including cancer. In this review, we have briefly discussed the role of protein kinases in various biochemical processes by categorizing cancer associated phenotypes and giving their protein kinase examples. Various techniques have also been discussed, which are being used to analyze the structure of protein kinases, and associate their roles in the oncogenesis. We have also discussed protein kinase inhibitors and United States Federal Drug Administration (USFDA) approved drugs, which target protein kinases and can serve as a counter to protein kinase dysregulation and mitigate the effects of oncogenesis. Overall, this review briefs about the importance of protein kinases, their roles in oncogenesis on dysregulation and how their inhibition via various drugs can be used to mitigate their effects.
Collapse
Affiliation(s)
- Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Environmental Studies, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India.,Department of Chemistry, University of Delhi, Delhi, India
| | - Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India
| |
Collapse
|
76
|
Soltantabar P, Lon HK, Parivar K, Wang DD, Elmeliegy M. Optimizing benefit/risk in oncology: Review of post-marketing dose optimization and reflections on the road ahead. Crit Rev Oncol Hematol 2023; 182:103913. [PMID: 36681205 DOI: 10.1016/j.critrevonc.2023.103913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Oncology therapies shifted from chemotherapy to molecularly targeted agents and finally to the era of immune-oncology agents. In contrast to cytotoxic agents, molecularly targeted agents are more selective, exhibit a wider therapeutic window, and may maximally modulate tumor growth at doses lower than the maximum tolerated dose (MTD). However, first-in-patient oncology studies for molecularly targeted agents continued to evaluate escalating doses using limited number of patients per dose cohort assessing dose-limiting toxicities to identify the MTD which is commonly selected for further development adopting a 'more is better' approach that led to several post-marketing requirement (PMR) studies to evaluate alternative, typically lower, doses or dosing frequencies to optimize the benefit-risk profile. In this review, post-marketing dose optimization efforts were reviewed including those required by a regulatory pathway or voluntarily conducted by the sponsor to improve efficacy, safety, or method of administration. Lessons learned and future implications from this deep dive review are discussed considering the evolving regulatory landscape on dose optimization for oncology compounds.
Collapse
Affiliation(s)
| | - Hoi-Kei Lon
- Global Product Development, Pfizer Inc, San Diego, CA, USA
| | | | - Diane D Wang
- Global Product Development, Pfizer Inc, San Diego, CA, USA
| | | |
Collapse
|
77
|
Chen D, Ma S, Sun L, Lang Y, Yang B. EML4-ALK rearrangement of lung large cell neuroendocrine carcinoma: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:134. [PMID: 36819595 PMCID: PMC9929752 DOI: 10.21037/atm-22-6062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Background Lung large cell neuroendocrine carcinoma (L-LCNEC) is a subtype of lung cancer with a low incidence and a high degree of malignancy. For early stage patients, surgical treatment is limited, and the risk of postoperative recurrence is high. For patients with unresectable or advanced disease, platinum-based chemotherapy is currently the mainstay of treatment, but its efficacy is unsatisfactory. L-LCNEC with the anaplastic lymphoma kinase (ALK) gene mutation is very rare and currently has no standard therapy. In this article, we report the case of a locally advanced L-LCNEC patient with ALK mutations who underwent first-line treatment with alectinib. Case Description A previously healthy, 46-year-old, non-smoking woman was clinically diagnosed with unresectable locally advanced L-LCNEC. Next generation sequencing (NGS) of the patient's plasma and tumor specimen showed echinoderm microtubule-associated protein-like 4 (EML-4) (exon 13)-ALK (exon 20) fusion with a mutation frequency of 14.48% and 15.37%. The patient refused chemotherapy, and received first-line treatment with alectinib 600 mg, bis in die (bid), per day. After taking alectinib for 1 month, the patient's chest enhanced computed tomography (CT) scan showed a partial response (PR). After 12 months of treatment with alectinib, a radiological evaluation showed that the patient had maintained the PR. A grade 2-3 rash was observed at the beginning of the treatment. After symptomatic treatment, the rash disappeared, and the side effects were fully tolerated. At present, the patient can work normally, has a performance status of 0 and has not experience any major adverse events. Conclusions Our case suggests that the first-line use of targeted therapy is also a good choice for L-LCNEC patients of stage III with gene mutations. The side effects are light, the patient can tolerate well, and the quality of life of can be improved.
Collapse
Affiliation(s)
- Dianjun Chen
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Shuangyue Ma
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Lili Sun
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuehong Lang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Boyan Yang
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China;,Department of Comprehensive Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
78
|
Ortega MA, Pekarek L, Navarro F, Fraile-Martínez O, García-Montero C, Álvarez-Mon MÁ, Diez-Pedrero R, Boyano-Adánez MDC, Guijarro LG, Barrena-Blázquez S, Gómez-Lahoz AM, Haro S, Arroyo M, Monserrat J, Saez MA, Alvarez-Mon M. Updated Views in Targeted Therapy in the Patient with Non-Small Cell Lung Cancer. J Pers Med 2023; 13:jpm13020167. [PMID: 36836402 PMCID: PMC9959016 DOI: 10.3390/jpm13020167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent form of lung cancer and represents a set of histological entities that have an ominous long-term prognosis, for example, adenocarcinoma, squamous carcinoma and large cell carcinoma. Both small cell and non-small cell lung cancer are the main causes of oncological death and the oncological diseases with the highest incidence worldwide. With regard to clinical approaches for NSCLC, several advances have been achieved in diagnosis and treatment; the analysis of different molecular markers has led to the development of new targeted therapies that have improved the prognosis for selected patients. Despite this, most patients are diagnosed in an advanced stage, presenting a limited life expectancy with an ominous short-term prognosis. Numerous molecular alterations have been described in recent years, allowing for the development of therapies directed against specific therapeutic targets. The correct identification of the expression of different molecular markers has allowed for the individualization of treatment throughout the disease course, expanding the available therapeutic arsenal. The purpose of this article is to summarize the main characteristics of NSCLC and the advances that have occurred in the use of targeted therapies, thus explaining the limitations that have been observed in the management of this disease.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
- Correspondence:
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Fátima Navarro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Prince of Asturias University Hospital, 28806 Alcalá de Henares, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Raúl Diez-Pedrero
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcalá de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - María del Carmen Boyano-Adánez
- Unit of Biochemistry and Molecular Biology, Department of Systems Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Unit of Biochemistry and Molecular Biology, Department of Systems Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | - Silvestra Barrena-Blázquez
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcalá de Henares, Spain
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sergio Haro
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Mónica Arroyo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of General and Digestive Surgery, General and Digestive Surgery, Príncipe de Asturias Teaching Hospital, 28805 Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcalá de Henares, Spain
- Ramon and Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| |
Collapse
|
79
|
Wahida A, Buschhorn L, Fröhling S, Jost PJ, Schneeweiss A, Lichter P, Kurzrock R. The coming decade in precision oncology: six riddles. Nat Rev Cancer 2023; 23:43-54. [PMID: 36434139 DOI: 10.1038/s41568-022-00529-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2022] [Indexed: 11/27/2022]
Abstract
High-throughput methods to investigate tumour omic landscapes have quickly catapulted cancer specialists into the precision oncology era. The singular lesson of precision oncology might be that, for it to be precise, treatment must be personalized, as each cancer's complex molecular and immune landscape differs from patient to patient. Transformative therapies include those that are targeted at the sequelae of molecular abnormalities or at immune mechanisms, and, increasingly, pathways previously thought to be undruggable have become druggable. Critical to applying precision medicine is the concept that the right combination of drugs must be chosen for each patient and used at the right stage of the disease. Multiple puzzles remain that complicate therapy choice, including evidence that deleterious mutations are common in normal tissues and non-malignant conditions. The host's role is also likely to be key in determining treatment response, especially for immunotherapy. Indeed, maximizing the impact of immunotherapy will require omic analyses to match the right immune-targeted drugs to the individualized patient and tumour setting. In this Perspective, we discuss six key riddles that must be solved to optimize the application of precision oncology to otherwise lethal malignancies.
Collapse
Affiliation(s)
- Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
- Medical Department III for Hematology and Oncology, Klinikum rechts der Isar, TUM School of Medicine, Technical University of Munich, Munich, Germany.
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| | - Lars Buschhorn
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.
| | - Stefan Fröhling
- Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Philipp J Jost
- Division of Clinical Oncology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Andreas Schneeweiss
- Division of Gynecological Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Razelle Kurzrock
- WIN Consortium, Paris, France.
- Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
80
|
Hilzenrat RA, Yip S, Melosky B, Ho C, Laskin J, Sun S, Choi JJ, McGuire AL. Disparate Time-to-Treatment and Varied Incidence of Actionable Non-Small Cell Lung Cancer Molecular Alterations in British Columbia: A Historical Cohort Study. Curr Oncol 2022; 30:145-156. [PMID: 36661661 PMCID: PMC9858228 DOI: 10.3390/curroncol30010012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background: non-small cell lung cancer (NSCLC) outcomes remain suboptimal for early-stage disease despite emerging advances in systemic therapy for the peri-operative period. Next-generation sequencing (NGS) identifies driver mutations for which targeted therapies have been developed that improve survival. The BC lung cancer screening program, which was initiated in May 2022, is expected to identify people with early and late stages of NSCLC. It is crucial to first understand the molecular epidemiology and patterns of time to initiate treatment across its five health authorities (HA) to optimize the delivery of care for NSCLC in BC. In this way, we may harness the benefits of targeted therapy for more people with NSCLC as novel advances in therapy continue to emerge. Objective: to compare (a) the frequency of actionable NSCLC molecular alterations among HAs and (b) the time to treatment initiation. Methods: a retrospective observational study was conducted with prospectively collected data from the BC CGL Database. Adults with late stage NSCLC who underwent targeted NGS were included for the time period from May 2020 to June 2021. Demographics, actionable molecular alterations, PDL-1 expression, and time to treatment across HAs were examined. Using appropriate statistical tests for comparison among HAs, p>0.05 was deemed significant. Results: 582 patients underwent NGS/IHC and analysis during the study period. The mean age was 71 (10.1), and 326 (56%) patients were female. A significantly higher proportion of all EGFRm+ were identified within Vancouver Coastal Health (VCHA) and Fraser Health Authority (FHA) compared to the other health authorities (p < 0.001). This also holds true for common sensitizing EGFRm+ alone (p < 0.001) and for sensitizing EGFRm+ when adjusted for females and smoker status (OR 0.75; 95% CI 0.62, 0.92; p = 0.005). Patients residing within the Northern, Interior, and Island HAs were less likely to receive treatment at the same rate as those in VCHA and FHA HAs. Conclusion: actionable NSCLC driver mutations are present in all regional HAs, with disparity noted in time to initiate treatment between HAs. This provides evidence for the importance of molecular testing for patients in all BC HAs to guide personalized and timely NSCLC treatment.
Collapse
Affiliation(s)
- Roy Avraham Hilzenrat
- Department of Surgery, Division of Thoracic Surgery, Vancouver Coastal Health, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Stephen Yip
- Cancer Genetics & Genomic Laboratory, BC Cancer—Vancouver Centre, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Barbara Melosky
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Cheryl Ho
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Janessa Laskin
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Sophie Sun
- Department of Medicine, Division of Medical Oncology, BC Cancer Vancouver Centre, University of British Columbia, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - James J. Choi
- Department of Surgery, Division of Thoracic Surgery, Vancouver Coastal Health, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| | - Anna L. McGuire
- Department of Surgery, Division of Thoracic Surgery, Vancouver Coastal Health, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada
- Vancouver Coastal Health Research Institute, 2635 Laurel Street, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
81
|
Silibinin Overcomes EMT-Driven Lung Cancer Resistance to New-Generation ALK Inhibitors. Cancers (Basel) 2022; 14:cancers14246101. [PMID: 36551587 PMCID: PMC9777025 DOI: 10.3390/cancers14246101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) may drive the escape of ALK-rearranged non-small-cell lung cancer (NSCLC) tumors from ALK-tyrosine kinase inhibitors (TKIs). We investigated whether first-generation ALK-TKI therapy-induced EMT promotes cross-resistance to new-generation ALK-TKIs and whether this could be circumvented by the flavonolignan silibinin, an EMT inhibitor. ALK-rearranged NSCLC cells acquiring a bona fide EMT phenotype upon chronic exposure to the first-generation ALK-TKI crizotinib exhibited increased resistance to second-generation brigatinib and were fully refractory to third-generation lorlatinib. Such cross-resistance to new-generation ALK-TKIs, which was partially recapitulated upon chronic TGFβ stimulation, was less pronounced in ALK-rearranged NSCLC cells solely acquiring a partial/hybrid E/M transition state. Silibinin overcame EMT-induced resistance to brigatinib and lorlatinib and restored their efficacy involving the transforming growth factor-beta (TGFβ)/SMAD signaling pathway. Silibinin deactivated TGFβ-regulated SMAD2/3 phosphorylation and suppressed the transcriptional activation of genes under the control of SMAD binding elements. Computational modeling studies and kinase binding assays predicted a targeted inhibitory binding of silibinin to the ATP-binding pocket of TGFβ type-1 receptor 1 (TGFBR1) and TGFBR2 but solely at the two-digit micromolar range. A secretome profiling confirmed the ability of silibinin to normalize the augmented release of TGFβ into the extracellular fluid of ALK-TKIs-resistant NSCLC cells and reduce constitutive and inducible SMAD2/3 phosphorylation occurring in the presence of ALK-TKIs. In summary, the ab initio plasticity along the EMT spectrum may explain the propensity of ALK-rearranged NSCLC cells to acquire resistance to new-generation ALK-TKIs, a phenomenon that could be abrogated by the silibinin-driven attenuation of the TGFβ/SMAD signaling axis in mesenchymal ALK-rearranged NSCLC cells.
Collapse
|
82
|
Wang HY, Wu SG, Lin YT, Chen CY, Shih JY. Risk of thromboembolism in non-small-cell lung cancers patients with different oncogenic drivers, including ROS1, ALK, and EGFR mutations. ESMO Open 2022; 7:100742. [PMID: 36493600 PMCID: PMC9808475 DOI: 10.1016/j.esmoop.2022.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/30/2022] [Accepted: 11/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase-positive (ALK+) and ROS proto-oncogene 1 (ROS1)-positive (ROS1+) lung cancers have been reported to be associated with an elevated risk of thromboembolic events. This study aimed to assess the long-term risk of developing thromboembolism (TE) in ROS1+ lung cancer and to compare it with other oncogenic drivers in the Asian population. MATERIALS AND METHODS We retrospectively enrolled a cohort of ROS1+ lung adenocarcinoma in a medical center in Taiwan and a comparison cohort of ALK+ and epidermal growth factor receptor-positive (EGFR+) lung cancers. Venous and arterial TEs were identified throughout the cancer course, and the incidence rate was calculated. RESULTS We enrolled 44 ROS1+, 98 ALK+, and 168 EGFR+ non-small-cell lung cancer (NSCLC) patients. A total of 11 (25%), 36 (36.7%), and 38 (22.6%) patients in the ROS1, ALK, and EGFR cohorts, respectively, were diagnosed with thromboembolic events throughout the follow-up course of the disease (P = 0.042). The incidence rates were 99.0, 91.9, and 82.5 events per 1000 person-years for the ROS1, ALK, and EGFR cohorts, respectively. The majority of thrombosis events in the ROS1 (91.6%) and ALK (85.4%) cohorts were venous. On the contrary, 43.2% of thromboembolic events were arterial in the EGFR cohort. A higher proportion of thromboembolic events were noted during cancer diagnosis in the ROS1 cohort (36.3%) than in the ALK (16.7%) and EGFR (10.5%) cohorts. The stage was the only clinical variable associated with thromboembolic risk. There was a significant difference in survival between patients with and without TE in the EGFR cohort, but not in the ALK and ROS1 cohorts. CONCLUSIONS Although ROS1+ and ALK+ NSCLCs had a higher cumulative incidence of TE than EGFR+ NSCLC, the person-year incidence rates were similar among the three groups. EGFR-mutated NSCLC had more arterial events. Nevertheless, ALK+ lung cancer had higher venous events than EGFR-mutated lung cancer.
Collapse
Affiliation(s)
- H.-Y. Wang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - S.-G. Wu
- National Taiwan University Cancer Centre, Taipei, Taiwan
| | - Y.-T. Lin
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,National Taiwan University Cancer Centre, Taipei, Taiwan
| | - C.-Y. Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Douliu, Taiwan
| | - J.-Y. Shih
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan,Correspondence to: Prof. Jin-Yuan Shih, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Zhongzheng Dist., Taipei 100, Taiwan. Tel: +886223562905
| |
Collapse
|
83
|
Agüloğlu N, Aksu A, Unat DS, Akyol M. The prognostic relationship of 18F-FDG PET/CT metabolic and volumetric parameters in metastatic ALK + NSCLC. Nucl Med Commun 2022; 43:1217-1224. [PMID: 36345766 DOI: 10.1097/mnm.0000000000001625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The aim of this study is to determine the role of metabolic and volumetric parameters obtained from 18Fluorine-Fluorodeoxyglucose PET/computed tomography (18F-FDG PET/CT) imaging on progression-free survival (PFS) and overall survival (OS) in patients with advanced nonsquamous cell lung carcinoma (NSCLC) with anaplastic lymphoma kinase (ALK) rearrangement. METHODS Pre and post-treatment PET/CT images of the ALK + NSCLC patients between January 2015 and July 2020 were evaluated. The highest standardized uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) values were obtained from pre-tyrosine kinase inhibitor (TKI) basal PET/CT (PETpre) and post-TKI PET/CT (PETpost) images. Total MTV (tMTV) and total TLG (tTLG) values were calculated by summing MTV and TLG values in all tumor foci. The change (Δ) in pSUVmax, pMTV, pTLG, tMTV and tTLG before and after treatment was calculated.The relationship of these parameters with OS and PFS was analyzed. RESULTS tTLGpre, tMTVpre, pTLGpre, pMTVpre, ∆SUVmax, ∆tMTV and ∆tTLG values were found to be associated with OS; ∆tMTV, ∆tTLG, tTLGpre, tMTVpre, pTLGpre and pMTVpre were associated with PFS. The cutoff values in both predicting OS and PFS were calculated as -31.6 and 391.1 for ∆tMTV and tTLGpre, respectively. In Cox regression analysis, ∆tMTV and stage for OS and ∆tMTV and tTLGpre for PFS were obtained as prognostic factors. CONCLUSIONS Metabolic and volumetric parameters, especially TLG values in the whole body before treatment and change in whole body MTV value, obtained from PET/CT may be useful in predicting prognosis and determining treatment strategies for patients with advanced ALK + NSCLC.
Collapse
Affiliation(s)
- Nurşin Agüloğlu
- Department of Nuclear Medicine, Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital, İzmir
| | - Ayşegül Aksu
- Department of Nuclear Medicine, Başakşehir Çam and Sakura City Hospital, İstanbul
| | - Damla S Unat
- Dr. Suat Seren Chest Diseases and Surgery Training and Research Hospital İzmir, Turkey
| | - Murat Akyol
- Department of Medical Oncology, Bakirçay University Medical School İzmir, Turkey
| |
Collapse
|
84
|
Ma Y, Pan H, Liu Y, Zhang Y, Hong S, Huang J, Weng S, Yang Y, Fang W, Huang Y, Xiao S, Wang T, Ding L, Cui L, Zhang L, Zhao H. Ensartinib in advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, two-staged, phase 1 trial. J Thorac Dis 2022; 14:4751-4762. [PMID: 36647478 PMCID: PMC9840022 DOI: 10.21037/jtd-22-1606] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022]
Abstract
Background Ensartinib, a potent second-generation tyrosine kinase inhibitor (TKI) that targets anaplastic lymphoma kinase (ALK), MET and ROS1, was evaluated in a phase I clinical trial in patients with advanced, ALK-rearranged non-small cell lung cancer (NSCLC). Methods Patients with advanced, ALK or ROS1-positive NSCLC were recruited from 2 centers in China. This study consisted of dose escalation and expansion stages. Patients were treated with oral ensartinib [dosage of escalation stage was from 150, 200, 225 to 250 mg per day, expansion stage was recommended phase II dose (RP2D)] in continuous 28-day cycles. The primary objectives were safety, dose limited toxicity (DLT), maximum tolerated dose (MTD), and RP2D based on tolerability. Key secondary objectives included pharmacokinetic (PK) and anti-tumor activity. Results Forty-eight patients were enrolled, 37 (77.1%) were ALK TKI-naïve, 11 (22.9%) patients had previously received crizotinib, ceritinib or alectinib. Ensartinib was well tolerated and common treatment-related adverse events (TRAEs) included rash (87.5%), transaminase elevation (60.4%), pruritus (45.8%) and creatinine elevation (35.4%). The top 3 grade 3-5 TRAEs were rash (14.6%), elevated alanine aminotransferase (ALT) (12.5%) and aspartate transaminase (AST) (4.2%). Two DLTs were observed in 250 mg, so MTD and RP2D was 225 mg per day. Ensartinib was moderately absorbed (median Tmax: 3.00-4.00 h) and slowly eliminated (mean T1/2: 21.0-30.2 h). The area under the curve (AUC) of ensartinib reached saturation at 200 to 225 mg and no major accumulation after daily administration. For all patients, the objective response rate (ORR) and disease control rates (DCR) were 64.6 % and 81.3%, median progression-free survival (mPFS) was 16.79 months. In subgroup analysis, the ORR and mPFS was 81.3% and 45.5%, 25.73 and 4.14 months in TKI-naïve and -treated ALK+ patients, respectively. The intra-cranial ORR and mPFS for patients with measurable brain metastases were 66.7% and 22.90 months. ALK abundance may predict the efficacy of ensartinib. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed specific signaling pathways enrichment in long and short progression-free survival (PFS) groups. Conclusions Ensartinib was well tolerated under 225 mg (MTD) and demonstrated promising anti-tumor activity in ALK+ NSCLC patients, including those with CNS metastases and those previously TKI-treated. Trial Registration ClinicalTrials.gov NCT02959619.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China;,Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hui Pan
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yu Liu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China;,Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yang Zhang
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shaodong Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jianjin Huang
- Department of Medical Oncology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Shanshan Weng
- Department of Medical Oncology, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, China
| | - Yunpeng Yang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenfeng Fang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shanshan Xiao
- Department of R&D, Hangzhou Repugene Technology Co.,Ltd., Hangzhou, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co.,Ltd., Hangzhou, China
| | - Lieming Ding
- Betta Pharmaceuticals Co., Ltd., China, Hangzhou, China
| | - Lingling Cui
- Betta Pharmaceuticals Co., Ltd., China, Hangzhou, China
| | - Li Zhang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hongyun Zhao
- Department of Clinical Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
85
|
Liu S, She P, Li Z, Li Y, Yang Y, Li L, Zhou L, Wu Y. Insights into the antimicrobial effects of ceritinib against Staphylococcus aureus in vitro and in vivo by cell membrane disruption. AMB Express 2022; 12:150. [DOI: 10.1186/s13568-022-01492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractAccording to a 2019 report from the Centers of Disease Control and Prevention (CDC), methicillin-resistant Staphylococcus aureus (MRSA) was listed as one of the “serious threats” that had become a global public challenge in hospitals and community. Biofilm-associated infections and refractory persisters of S. aureus also impede the effectiveness of conventional antibiotics that have greatly increased difficulty in clinical therapy. There is an urgent need to develop new antimicrobials with antibiofilm and anti-persister capacities, and drug repurposing is the most effective and most economical solution to the problem. The present study profiles the antimicrobial activity of ceritinib, a tyrosine kinase inhibitor, against S. aureus in vitro and in vivo. We investigated the antimicrobial efficacy of ceritinib against planktonic and persistent S. aureus by a time-killing kinetics assay. Then, antibiofilm effect of ceritinib was assessed by crystal violet staining and laser confocal microscope observation. Ceritinib showed biofilm inhibition and mature biofilm eradication, and possesses robust bactericidal activity against S. aureus persisters. We also evaluated antimicrobial efficacy in vivo using a subcutaneous abscess infection model. Ceritinib ameliorated infection in a subcutaneous abscess mouse model and only showed negligible systemic toxicity in vivo. Mechanism exploration was conducted by transmission electron microscopy, fluorescently labeled giant unilamellar vesicle assays, and a series of fluorescent dyes. In conclusion, we find ceritinib represents potential bactericidal activity against MRSA by disrupting cell membrane integrity and inducing reactive oxygen species production, suggesting ceritinib has the potential to treat MRSA-related infections.
Collapse
|
86
|
Xing P, Zhao Q, Zhang L, Wang H, Huang D, Hu P, Sun Y, Shi Y. Conteltinib (CT-707) in patients with advanced ALK-positive non-small cell lung cancer: a multicenter, open-label, first-in-human phase 1 study. BMC Med 2022; 20:453. [PMID: 36424628 PMCID: PMC9694544 DOI: 10.1186/s12916-022-02646-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Conteltinib (CT-707) is a potent second-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor (TKI) showing promising anti-tumor activities in preclinical studies. This study aimed to assess the safety, pharmacokinetic (PK), and efficacy of conteltinib in patients with ALK-positive non-small cell lung cancer (NSCLC). METHODS In this multicenter, single-arm, open-label, first-in-human phase 1 study, conteltinib was taken orally at doses of 50 to 800 mg quaque die (QD) in a dose-escalation phase. If the response was observed in a dose cohort of the dose-escalation phase, dose expansion was started. The primary endpoints were maximum tolerated dose (MTD), dose-limiting toxicity (DLT), and adverse events assessed by investigators. RESULTS Between April 13, 2016, and February 8, 2020, 64 ALK-positive NSCLC patients were enrolled, including 41 (64.1%) patients with ALK TKI-naïve and 23 (35.9%) patients who received crizotinib previously. In the dose-escalation phase, 26 patients were treated with conteltinib at doses of 50 mg, 100 mg, 200 mg, 300 mg, 450 mg, 600 mg, and 800 mg QD. One DLT event was reported at the dose of 600 mg. MTD was not reached. Overall, 58 (90.6%) patients experienced treatment-related adverse events (TRAEs) and 9 (14.1%) patients had grade ≥ 3 TRAEs. The most common TRAEs were diarrhea (46 [71.9%]), serum creatinine elevated (29 [45.3%]), aspartate aminotransferase elevated (25 [39.1%]), and nausea (24 [37.5%]). Among 39 ALK TKI-naïve patients, the overall response rate (ORR) was 64.1% (25 of 39; 95% confidence interval [CI], 47.2-78.8), median progression-free survival (PFS) was 15.9 months (95% CI, 9.26-23.3), and median duration of response (DoR) was 15.0 months (95% CI, 9.06-25.8). Among 21 patients who received crizotinib previously, the ORR was 33.3% (7 of 21; 95% CI, 14.6-57.0), median PFS was 6.73 months (95% CI, 4.73-8.54), and median DoR was 6.60 months (95% CI, 3.77-13.3). CONCLUSIONS In this study, conteltinib showed manageable safety profile, favorable PK properties, and anti-tumor activity in advanced ALK-positive NSCLC patients. The recommended phase 2 dose was determined to be 600 mg QD for ALK TKI-naïve patients and 300 mg bis in die (BID) for patients who received crizotinib previously. TRIAL REGISTRATION ClinicalTrials.gov, NCT02695550.
Collapse
Affiliation(s)
- Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Qian Zhao
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Hanping Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060, China
| | - Pei Hu
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Yinghui Sun
- Department of Clinical Medicine, Shouyao Holdings (Beijing) Co., Ltd, Beijing, 100195, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, No. 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
87
|
Melichar B. Biomarkers in the management of lung cancer: changing the practice of thoracic oncology. Clin Chem Lab Med 2022; 61:906-920. [PMID: 36384005 DOI: 10.1515/cclm-2022-1108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/17/2022]
Abstract
Abstract
Lung cancer currently represents a leading cause of cancer death. Substantial progress achieved in the medical therapy of lung cancer during the last decade has been associated with the advent of targeted therapy, including immunotherapy. The targeted therapy has gradually shifted from drugs suppressing general mechanisms of tumor growth and progression to agents aiming at transforming mechanisms like driver mutations in a particular tumor. Knowledge of the molecular characteristics of a tumor has become an essential component of the more targeted therapeutic approach. There are specific challenges for biomarker determination in lung cancer, in particular a commonly limited size of tumor sample. Liquid biopsy is therefore of particular importance in the management of lung cancer. Laboratory medicine is an indispensable part of multidisciplinary management of lung cancer. Clinical
Chemistry and Laboratory Medicine (CCLM) has played and will continue playing a major role in updating and spreading the knowledge in the field.
Collapse
Affiliation(s)
- Bohuslav Melichar
- Department of Oncology , Palacký University Medical School and Teaching Hospital , Olomouc , Czech Republic
- Department of Oncology and Radiotherapy and Fourth Department of Medicine , Charles University Medical School and Teaching Hospital , Hradec Králové , Czech Republic
| |
Collapse
|
88
|
Multi-Omics Alleviates the Limitations of Panel Sequencing for Cancer Drug Response Prediction. Cancers (Basel) 2022; 14:cancers14225604. [PMID: 36428696 PMCID: PMC9688044 DOI: 10.3390/cancers14225604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Comprehensive genomic profiling using cancer gene panels has been shown to improve treatment options for a variety of cancer types. However, genomic aberrations detected via such gene panels do not necessarily serve as strong predictors of drug sensitivity. In this study, using pharmacogenomics datasets of cell lines, patient-derived xenografts, and ex vivo treated fresh tumor specimens, we demonstrate that utilizing the transcriptome on top of gene panel features substantially improves drug response prediction performance in cancer.
Collapse
|
89
|
Xing P, Hao X, Zhang X, Li J. Efficacy and safety of brigatinib in ALK-positive non-small cell lung cancer treatment: A systematic review and meta-analysis. Front Oncol 2022; 12:920709. [PMID: 36408160 PMCID: PMC9669367 DOI: 10.3389/fonc.2022.920709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Brigatinib is a central nervous system-active second-generation anaplastic lymphoma kinase (ALK) inhibitor that targets a broad range of ALK rearrangements in patients with non-small cell lung cancer (NSCLC). The current study aimed to analyze the pooled effects and adverse events of brigatinib in patients with ALK-positive NSCLC. Methods The pooled estimates and 95% confidence intervals (CI) were calculated with DerSimonian-Laird method and the random effect model. Results The pooled objective response rate (ORR) and disease control rate (DCR) of brigatinib were 64% (95% CI 45%-83%) and 88% (95% CI 80%-96%), respectively. The pooled mPFS was 10.52 months (95% CI 7.66-13.37). In the subgroup analyses by treatment line, the highest mPFS was reached in first-line treatment (24.00 months, 95% CI 18.40-43.20), followed by post-crizotinib second-line treatment (mPFS=16.26 months, 95% CI 12.87-19.65), and second-line with any prior ALK tyrosine kinase inhibitors (mPFS=12.96 months, 95% CI 11.14-14.78). Among patients with any baseline brain metastases, the pooled intracranial ORR (iORR) was estimated as 54% (95% CI 35%-73%) for any treatment line, and 60% (95% CI 39%-81%) for first-line treatment. Intracranial PFS (iPFS) reached 19.26 months (95% CI 14.82-23.70) in patients with any baseline brain metastases. Creatine phosphokinase (CPK) increased (44%, 95% CI 26%-63%), diarrhea (37%, 95% CI 27%-48%), and nausea (28%, 95% CI 17%-39%) of any grade were the most common adverse events. Conclusion Brigatinib is effective in the treatment of patients with ALK-positive NSCLC, particularly showing robust intracranial PFS. Brigatinib used as first-line treatment yielded superior PFS compared with brigatinib used as other treatment lines. These results suggested a benefit of using brigatinib earlier in the patient’s management. All adverse events are manageable, with CPK increased and gastrointestinal reactions found to be the most common types. Systematic Review Registration https://inplasy.com/inplasy-2022-3-0142/, identifier (INPLASY202230141).
Collapse
|
90
|
Zhai X, Liu Y, Liang Z, Wang W, Qin T, Liu SV, Um SW, Luo F, Liu J. Classical ALK G1202R resistance mutation was identified in a lung adenocarcinoma patient with rare LOC388942-ALK fusion after sequential treatment with ALK-TKIs and anlotinib: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1180. [PMID: 36467355 PMCID: PMC9708479 DOI: 10.21037/atm-22-5194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/07/2022] [Indexed: 07/30/2023]
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) is a heterogeneous disease. To date, more than ninety ALK fusions in lung cancer have been found. Here, we report for the first time a rare LOC388942-ALK fusion in NSCLC was sensitive to crizotinib but resistant to the sequential ceritinib and alectinib and acquired classical ALK G1202R resistance mutation after long-term treatment with anlotinib. This case highlights dynamic monitoring of gene alteration using next-generation sequencing (NGS) is necessary during the anti-tumor process. CASE DESCRIPTION A 55-year-old male, with no history of smoking history and no family history of cancer, was found malignant pleural effusion and multiple metastasis nodules in the left lung. He was histopathologically diagnosed with ALK-positive cT4N0M1a adenocarcinoma in June 2016. NGS of the tumor identified a rare LOC388942-ALK fusion (L intergenic: A 20, 1.41%). Then, the patient was treated with chemotherapy, crizotinib, ceritinib, alectinib, and anlotinib sequentially. The patient achieved partial response (PR) to chemotherapy and crizotinib. No evidence of a secondary resistant molecular event was found after resistance to crizotinib, ceritinib, or Alectinib. After 8 months of alectinib treatment, the tumor gradually enlarged again. Anlotinib was followed for 13 months. Thirteen months later, new lesions in the lower lobe of the right lung appeared and increased gradually, indicating definite progression of the tumor. Classical ALK G1202R resistance mutations was detected using cfDNA NGS. The patient refused to receive lorlatinib targeting G1202R resistance mutations and continued with anlotinib. He dead in August 2022, achieving 5-year overall survival (OS). CONCLUSIONS Distinct ALK fusions in NSCLC have different cancer biology, leading to different response to ALK tyrosine kinase inhibitors (ALK-TKIs), even developed different resistance mechanism. Reporting the clinical details of rare ALK fusions in NSCLC is necessary to guide the treatment for clinicians and researchers.
Collapse
Affiliation(s)
- Xiaoqian Zhai
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyang Liu
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Zuoyu Liang
- Pathology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Weiya Wang
- Pathology Department, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Qin
- Burning Rock Biotech, Guangzhou, China
| | - Stephen V. Liu
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Sang-Won Um
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Feng Luo
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Jiewei Liu
- Lung Cancer Center & Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
91
|
Wu Q, Qian W, Sun X, Jiang S. Small-molecule inhibitors, immune checkpoint inhibitors, and more: FDA-approved novel therapeutic drugs for solid tumors from 1991 to 2021. J Hematol Oncol 2022; 15:143. [PMID: 36209184 PMCID: PMC9548212 DOI: 10.1186/s13045-022-01362-9] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
The United States Food and Drug Administration (US FDA) has always been a forerunner in drug evaluation and supervision. Over the past 31 years, 1050 drugs (excluding vaccines, cell-based therapies, and gene therapy products) have been approved as new molecular entities (NMEs) or biologics license applications (BLAs). A total of 228 of these 1050 drugs were identified as cancer therapeutics or cancer-related drugs, and 120 of them were classified as therapeutic drugs for solid tumors according to their initial indications. These drugs have evolved from small molecules with broad-spectrum antitumor properties in the early stage to monoclonal antibodies (mAbs) and antibody‒drug conjugates (ADCs) with a more precise targeting effect during the most recent decade. These drugs have extended indications for other malignancies, constituting a cancer treatment system for monotherapy or combined therapy. However, the available targets are still mainly limited to receptor tyrosine kinases (RTKs), restricting the development of antitumor drugs. In this review, these 120 drugs are summarized and classified according to the initial indications, characteristics, or functions. Additionally, RTK-targeted therapies and immune checkpoint-based immunotherapies are also discussed. Our analysis of existing challenges and potential opportunities in drug development may advance solid tumor treatment in the future.
Collapse
Affiliation(s)
- Qing Wu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Wei Qian
- Department of Radiology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xiaoli Sun
- Department of Radiation Oncology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
92
|
Altaf R, Jadoon SS, Muhammad SA, Ilyas U, Duan Y. Recent advances in immune checkpoint inhibitors for non-small lung cancer treatment. Front Oncol 2022; 12:1014156. [PMID: 36237320 PMCID: PMC9552217 DOI: 10.3389/fonc.2022.1014156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Lung cancer is one of the deadliest types of cancer responsible for thousands of cancer-related deaths. Its treatment has remained a challenge for researchers, but an increase in the knowledge of molecular pathways and biology of lung cancer has dramatically changed its management in recent decades. Immunotherapies and immunomodulation of lung cancer have previously failed for a long time but thanks to continuous research work and enthusiasm, now, this field is emerging as a novel effective therapy. Now, it is hope with potential benefits and promising results in the treatment of lung cancer. This review article focuses on immune checkpoints inhibitors: CTLA-4 inhibitors (ipilimumab and tremelimumab) and PDL-1 inhibitors (durvalumab and atezolizumab) that can be blocked to treat lung carcinoma. It is also focused on critically analyzing different studies and clinical trials to determine the potential benefits, risks, and adverse events associated with immunotherapeutic treatment.
Collapse
Affiliation(s)
- Reem Altaf
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan
| | - Sarmad Sheraz Jadoon
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
- *Correspondence: Syed Aun Muhammad, ; Umair Ilyas, ; Yongtao Duan,
| | - Umair Ilyas
- Department of Pharmaceutics, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
- *Correspondence: Syed Aun Muhammad, ; Umair Ilyas, ; Yongtao Duan,
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children’s Genetics and Metabolic Diseases, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, China
- *Correspondence: Syed Aun Muhammad, ; Umair Ilyas, ; Yongtao Duan,
| |
Collapse
|
93
|
Canale M, Petracci E, Cravero P, Mariotti M, Minuti G, Metro G, Ludovini V, Baglivo S, Puccetti M, Dubini A, Martinelli G, Delmonte A, Crinò L, Ulivi P. Prognosis of ALK-rearranged non-small-cell lung cancer patients carrying TP53 mutations. Transl Oncol 2022; 23:101471. [PMID: 35779323 PMCID: PMC9253903 DOI: 10.1016/j.tranon.2022.101471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 11/15/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the primary cause of cancer-related death. Gene rearrangements involving the anaplastic lymphoma kinase (ALK) tyrosine kinase identify a clinical and molecular subset of NSCLC patients, who benefit from the monotherapy with ALK tyrosine kinase inhibitors. Nonetheless, responsiveness to TKIs and prognosis of these patients are influenced by several factors, including resistance mechanisms and mutations affecting genes involved in key molecular pathways of cancer cells. In a cohort of 98 NSCLC patients with ALK gene rearrangements, we investigated the role of Tumor Protein (TP53) gene mutations in predicting patients prognosis. TP53 mutations were evaluated in relation to disease control rate (DCR), objective response rate (ORR), progression-free survival (PFS) and overall survival (OS).Results: In patients with available clinical and TP53 mutation information, we found that 13 patients (20.3%) were affected by TP53 mutations. Considered together, even though showing a trend, TP53 mutations were not associated with PFS and OS. Considering the different TP53 mutations by functionality in terms of disruptive and non-disruptive mutations, we observed that TP53 non-disruptive mutations were able to predict worse OS in the overall case series. Moreover, a worse PFS was seen in the subgroup of patients with TP53 non-disruptive mutation, in first-, second-, and third line of treatment. Our results show that mutations affecting TP53 gene, especially non-disruptive mutations, are able to affect prognosis of ALK-rearranged NSCLC patients.
Collapse
Affiliation(s)
- Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Elisabetta Petracci
- Biostatistics and Clinical Trials Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Cravero
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Marita Mariotti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Gabriele Minuti
- Department of Medical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy.
| | - Giulio Metro
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Vienna Ludovini
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Sara Baglivo
- Department of Medical Oncology, Santa Maria della Misericordia Hospital, 61029 Perugia, Italy.
| | - Maurizio Puccetti
- Anatomia Istologia Patologica e Citodiagnostica, Azienda Unità Sanitaria Locale, 40026 Imola, Italy.
| | - Alessandra Dubini
- Department of Pathology, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy.
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Angelo Delmonte
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Lucio Crinò
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| |
Collapse
|
94
|
Ma Y, Zhao H, Xue J, Liu L, Yang N, Zhang Y, Yang H, Hong S, Xiong Y, Zhang Z, Zeng L, Pan H, Zhou C, Zhang Y, Wang X, Han X, Wan X, Shao Y, Liu J, Yang Y, Huang Y, Zhao Y, Fang W, Li S, Zhang L. First-in-human phase I study of TQ-B3139 (CT-711) in advanced non-small cell lung cancer patients with ALK and ROS1 rearrangements. Eur J Cancer 2022; 173:238-249. [PMID: 35940055 DOI: 10.1016/j.ejca.2022.06.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND TQ-B3139 is a novel ALK tyrosine kinase inhibitor (TKI) against a broad range of ALK mutations. The aim of this first-in-human phase I trial was to investigate the safety, tolerability, pharmacokinetics, and clinical efficacy of TQ-B3139 in ALK or ROS1 positive advanced NSCLC patients. METHODS Following a 3 + 3 design, patients received escalating daily dose of TQ-B3139 (50-800 mg) continuously in 28-day cycles. Expansion stage started at dose of 200 mg twice daily (BID). The primary objectives were the safety, dose-limited toxicities (DLT) and recommended phase II dose (RP2D); secondary objectives included pharmacokinetics and antitumor activity. Non-obligatory tumor samples at baseline were collected and sequenced. RESULTS The study enrolled 63 patients. Fifty-nine (93.4%) patients experienced treatment-related adverse events (TRAEs), mostly grade 1-2 vomiting (79.3%), diarrhea (76.1%) or nausea (68.2%). 1 (1/6) DLT occurred at 600 mg BID and 1 (1/3) at 800 mg BID. Based on safety and pharmacokinetics data, the RP2D was selected as 600 mg BID. At a dose level ≥200 mg BID, the overall response rate (ORR) was 76.7% (33/43), and the median progression free survival (mPFS) was 25.2 months (95%CI 11.9-NR) for TKI-naive patients. For TKI-treated patients, the ORR was 37.5% (6/16), and the mPFS was 5.4 months (95%CI 3.6-9.1). The ORR was 66.7% (2/3) in patients with ROS1 fusion at dose level ≥200 mg BID. In patients with measurable brain metastases, the intracranial ORR was 70% (7/10), with median intracranial PFS of 15.9 months. In TKI-treated patients, variant 3 and TP53 alteration were associated with poor PFS. CONCLUSIONS TQ-B3139 was well-tolerated and exhibited promising anti-tumor activities in patients with ALK and ROS1 positive advanced NSCLC. CLINICAL TRIAL NUMBER NCT03099330.
Collapse
Affiliation(s)
- Yuxiang Ma
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Hongyun Zhao
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Jinhui Xue
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Li Liu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Nong Yang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Yang Zhang
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Haiyan Yang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Yi Xiong
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Liang Zeng
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Hui Pan
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Chunhua Zhou
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Yongchang Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, China.
| | - Xunqiang Wang
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China.
| | - Xi Han
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China.
| | - Xiaojing Wan
- Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China.
| | - Yang Shao
- Nanjing Geneseeq Technology Inc., Nanjing, China; School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Jingwen Liu
- Nanjing Geneseeq Technology Inc., Nanjing, China.
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Su Li
- Department of Clinical Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
95
|
Sakashita T, Yanagitani N, Koike S, Low SK, Takagi S, Baba S, Takeuchi K, Nishio M, Fujita N, Katayama R. Fibroblast growth factor receptor 3 overexpression mediates ALK inhibitor resistance in ALK-rearranged non-small cell lung cancer. Cancer Sci 2022; 113:3888-3900. [PMID: 35950895 PMCID: PMC9633314 DOI: 10.1111/cas.15529] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/14/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
The rearrangement of anaplastic lymphoma kinase (ALK) occurs in 3%‐5% of patients with non–small cell lung cancer (NSCLC) and confers sensitivity to ALK–tyrosine kinase inhibitors (TKIs). For the treatment of patients with ALK‐rearranged NSCLC, various additional ALK‐TKIs have been developed. Ceritinib is a second‐generation ALK‐TKI and has shown great efficacy in the treatment of patients with both newly diagnosed and crizotinib (a first‐generation ALK‐TKI)‐refractory ALK‐rearranged NSCLC. However, tumors can also develop ceritinib resistance. This may result from secondary ALK mutations, but other mechanisms responsible for this have not been fully elucidated. In this study, we explored the mechanisms of ceritinib resistance by establishing ceritinib‐resistant, echinoderm microtubule‐associated protein‐like 4 (EML4)‐ALK–positive H3122 cells and ceritinib‐resistant patient‐derived cells. We identified a mechanism of ceritinib resistance induced by bypass signals that is mediated by the overexpression and activation of fibroblast growth factor receptor 3 (FGFR3). FGFR3 knockdown by small hairpin RNA or treatment with FGFR inhibitors was found to resensitize the resistant cells to ceritinib in vitro and in vivo. FGFR ligands from either human serum or fetal bovine serum were able to activate FGFR3 and induce ceritinib resistance. A detailed analysis of ceritinib‐resistant patient‐derived specimens confirmed that tyrosine‐protein kinase Met (cMET) amplification induces ceritinib resistance. Amplified cMET counteractivated EGFR and/or Her3 and induced ceritinib resistance. These results reveal multiple ceritinib resistance mechanisms and suggest that ceritinib resistance might be overcome by identifying precise resistance mechanisms.
Collapse
Affiliation(s)
- Takuya Sakashita
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN.,Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, JAPAN.,AstraZeneca K.K., Osaka, JAPAN
| | - Noriko Yanagitani
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Sumie Koike
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Siew-Kee Low
- Cancer Precision Medicine Center, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Satoshi Takagi
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Satoko Baba
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, the Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, JAPAN
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Pathology Project for Molecular Targets, the Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto-ku, Tokyo, JAPAN.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Makoto Nishio
- Department of Thoracic Medical Oncology, The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Naoya Fujita
- Director, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN
| | - Ryohei Katayama
- Div. of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, JAPAN.,Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, JAPAN
| |
Collapse
|
96
|
Jawarkar RD, Sharma P, Jain N, Gandhi A, Mukerjee N, Al-Mutairi AA, Zaki MEA, Al-Hussain SA, Samad A, Masand VH, Ghosh A, Bakal RL. QSAR, Molecular Docking, MD Simulation and MMGBSA Calculations Approaches to Recognize Concealed Pharmacophoric Features Requisite for the Optimization of ALK Tyrosine Kinase Inhibitors as Anticancer Leads. Molecules 2022; 27:molecules27154951. [PMID: 35956900 PMCID: PMC9370430 DOI: 10.3390/molecules27154951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
ALK tyrosine kinase ALK TK is an important target in the development of anticancer drugs. In the present work, we have performed a QSAR analysis on a dataset of 224 molecules in order to quickly predict anticancer activity on query compounds. Double cross validation assigns an upward plunge to the genetic algorithm−multi linear regression (GA-MLR) based on robust univariate and multivariate QSAR models with high statistical performance reflected in various parameters like, fitting parameters; R2 = 0.69−0.87, F = 403.46−292.11, etc., internal validation parameters; Q2LOO = 0.69−0.86, Q2LMO = 0.69−0.86, CCCcv = 0.82−0.93, etc., or external validation parameters Q2F1 = 0.64−0.82, Q2F2 = 0.63−0.82, Q2F3 = 0.65−0.81, R2ext = 0.65−0.83 including RMSEtr < RMSEcv. The present QSAR evaluation successfully identified certain distinct structural features responsible for ALK TK inhibitory potency, such as planar Nitrogen within four bonds from the Nitrogen atom, Fluorine atom within five bonds beside the non-ring Oxygen atom, lipophilic atoms within two bonds from the ring Carbon atoms. Molecular docking, MD simulation, and MMGBSA computation results are in consensus with and complementary to the QSAR evaluations. As a result, the current study assists medicinal chemists in prioritizing compounds for experimental detection of anticancer activity, as well as their optimization towards more potent ALK tyrosine kinase inhibitor.
Collapse
Affiliation(s)
- Rahul D. Jawarkar
- Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India; (P.S.); (N.J.)
- Correspondence: (R.D.J.); (M.E.A.Z.); Tel.: +91-7385178762 (R.D.J.)
| | - Praveen Sharma
- Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India; (P.S.); (N.J.)
| | - Neetesh Jain
- Faculty of Pharmacy, Oriental University, Indore 453555, Madhya Pradesh, India; (P.S.); (N.J.)
| | - Ajaykumar Gandhi
- Department of Chemistry, Government College of Arts and Science, Aurangabad 431004, Maharashtra, India;
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, West Bengal, India;
| | - Aamal A. Al-Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia; (A.A.A.-M.); (S.A.A.-H.)
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia; (A.A.A.-M.); (S.A.A.-H.)
- Correspondence: (R.D.J.); (M.E.A.Z.); Tel.: +91-7385178762 (R.D.J.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 13318, Saudi Arabia; (A.A.A.-M.); (S.A.A.-H.)
| | - Abdul Samad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq;
| | - Vijay H. Masand
- Department of Chemistry, Vidyabharati Mahavidyalalya, Camp Road, Amravati 444602, Maharashtra, India;
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Guwahati 781014, Assam, India;
| | - Ravindra L. Bakal
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, University-Mardi Road, Amravati 444603, Maharashtra, India;
| |
Collapse
|
97
|
Cooper AJ, Sequist LV, Lin JJ. Third-generation EGFR and ALK inhibitors: mechanisms of resistance and management. Nat Rev Clin Oncol 2022; 19:499-514. [PMID: 35534623 PMCID: PMC9621058 DOI: 10.1038/s41571-022-00639-9] [Citation(s) in RCA: 270] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
The discoveries of EGFR mutations and ALK rearrangements as actionable oncogenic drivers in non-small-cell lung cancer (NSCLC) has propelled a biomarker-directed treatment paradigm for patients with advanced-stage disease. Numerous EGFR and ALK tyrosine kinase inhibitors (TKIs) with demonstrated efficacy in patients with EGFR-mutant and ALK-rearranged NSCLCs have been developed, culminating in the availability of the highly effective third-generation TKIs osimertinib and lorlatinib, respectively. Despite their marked efficacy, resistance to these agents remains an unsolved fundamental challenge. Both 'on-target' mechanisms (largely mediated by acquired resistance mutations in the kinase domains of EGFR or ALK) and 'off-target' mechanisms of resistance (mediated by non-target kinase alterations such as bypass signalling activation or phenotypic transformation) have been identified in patients with disease progression on osimertinib or lorlatinib. A growing understanding of the biology and spectrum of these mechanisms of resistance has already begun to inform the development of more effective therapeutic strategies. In this Review, we discuss the development of third-generation EGFR and ALK inhibitors, predominant mechanisms of resistance, and approaches to tackling resistance in the clinic, ranging from novel fourth-generation TKIs to combination regimens and other investigational therapies.
Collapse
Affiliation(s)
- Alissa J Cooper
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Lecia V Sequist
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Jessica J Lin
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, MA, USA.
| |
Collapse
|
98
|
Li H, Deng Y, Chen B, Xiao Y, Yang J, Liu Q, Lin G. Identification of a novel RMST-ALK rearrangement in advanced lung adenocarcinoma and durable response to ceritinib: A case report. Front Oncol 2022; 12:913838. [PMID: 35978810 PMCID: PMC9376587 DOI: 10.3389/fonc.2022.913838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Next-generation sequencing technology has enabled the identification of fusion partners of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer, and various ALK fusion partners have been confirmed. Here, a novel rhabdomyosarcoma 2-associated transcript (RMST)-ALK rearrangement was identified in an 80-year-old Chinese man with advanced lung adenocarcinoma. The patient was prescribed ceritinib and achieved a partial response, which has been sustained for more than 18 months. This is the first report of the RMST-ALK rearrangement, and we showed that a patient with lung adenocarcinoma carrying this rearrangement can benefit from ceritinib treatment; therefore, this is a significant finding in clinical practice.
Collapse
Affiliation(s)
- Hui Li
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yixiao Deng
- The Genetic Analysis Department, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Bin Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yajie Xiao
- The Genetic Analysis Department, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Jie Yang
- The Genetic Analysis Department, YuceBio Technology Co., Ltd., Shenzhen, China
| | - Qionghui Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| | - Gengpeng Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
99
|
Pisapia P, Iaccarino A, De Luca C, Acanfora G, Bellevicine C, Bianco R, Daniele B, Ciampi L, De Felice M, Fabozzi T, Formisano L, Giordano P, Gridelli C, Ianniello GP, Libroia A, Maione P, Nacchio M, Pagni F, Palmieri G, Pepe F, Russo G, Salatiello M, Santaniello A, Scamarcio R, Seminati D, Troia M, Troncone G, Vigliar E, Malapelle U. Evaluation of the Molecular Landscape in PD-L1 Positive Metastatic NSCLC: Data from Campania, Italy. Int J Mol Sci 2022; 23:ijms23158541. [PMID: 35955681 PMCID: PMC9369105 DOI: 10.3390/ijms23158541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Immune-checkpoint inhibitors (ICIs) have increased and improved the treatment options for patients with non-oncogene-addicted advanced stage non-small cell lung cancer (NSCLC). However, the role of ICIs in oncogene-addicted advanced stage NSCLC patients is still debated. In this study, in an attempt to fill in the informational gap on the effect of ICIs on other driver mutations, we set out to provide a molecular landscape of clinically relevant oncogenic drivers in programmed death-ligand 1 (PD-L1) positive NSCLC patients. Methods: We retrospectively reviewed data on 167 advanced stage NSCLC PD-L1 positive patients (≥1%) who were referred to our clinic for molecular evaluation of five driver oncogenes, namely, EGFR, KRAS, BRAF, ALK and ROS1. Results: Interestingly, n = 93 (55.7%) patients showed at least one genomic alteration within the tested genes. Furthermore, analyzing a subset of patients with PD-L1 tumor proportion score (TPS) ≥ 50% and concomitant gene alterations (n = 8), we found that n = 3 (37.5%) of these patients feature clinical benefit with ICIs administration, despite the presence of a concomitant KRAS gene alteration. Conclusions: In this study, we provide a molecular landscape of clinically relevant biomarkers in NSCLC PD-L1 positive patients, along with data evidencing the clinical benefit of ICIs in patient NSCLC PD-L1 positive alterations.
Collapse
Affiliation(s)
- Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Caterina De Luca
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Gennaro Acanfora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Bruno Daniele
- Oncology Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Luisa Ciampi
- Department of Pathology, Ente Ecclesiastico Ospedale Generale Regionale F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Marco De Felice
- Department of Oncology, A.O.R.N. Sant'Anna e San Sebastiano, 81100 Caserta, Italy
| | | | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | | | - Cesare Gridelli
- Division of Medical Oncology, "S.G. Moscati" Hospital, 83100 Avellino, Italy
| | | | - Annamaria Libroia
- Oncology Unit, "Andrea Tortora" Hospital, ASL Salerno, 84016 Pagani, Italy
| | - Paolo Maione
- Division of Medical Oncology, "S.G. Moscati" Hospital, 83100 Avellino, Italy
| | - Mariantonia Nacchio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giovanna Palmieri
- Department of Pathology, Ente Ecclesiastico Ospedale Generale Regionale F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Maria Salatiello
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Antonio Santaniello
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Rachele Scamarcio
- Department of Pathology, Ente Ecclesiastico Ospedale Generale Regionale F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Davide Seminati
- Department of Medicine and Surgery, Pathology, University of Milano-Bicocca, 20900 Monza, Italy
| | - Michele Troia
- Department of Pathology, Ente Ecclesiastico Ospedale Generale Regionale F. Miulli, 70021 Acquaviva delle Fonti, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
100
|
Schäkel L, Mirza S, Winzer R, Lopez V, Idris R, Al-Hroub H, Pelletier J, Sévigny J, Tolosa E, Müller CE. Protein kinase inhibitor ceritinib blocks ectonucleotidase CD39 - a promising target for cancer immunotherapy. J Immunother Cancer 2022; 10:jitc-2022-004660. [PMID: 35981785 PMCID: PMC9394215 DOI: 10.1136/jitc-2022-004660] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/08/2022] Open
Abstract
Background An important mechanism, by which cancer cells achieve immune escape, is the release of extracellular adenosine into their microenvironment. Adenosine activates adenosine A2A and A2B receptors on immune cells constituting one of the strongest immunosuppressive mediators. In addition, extracellular adenosine promotes angiogenesis, tumor cell proliferation, and metastasis. Cancer cells upregulate ectonucleotidases, most importantly CD39 and CD73, which catalyze the hydrolysis of extracellular ATP to AMP (CD39) and further to adenosine (CD73). Inhibition of CD39 is thus expected to be an effective strategy for the (immuno)therapy of cancer. However, suitable small molecule inhibitors for CD39 are not available. Our aim was to identify drug-like CD39 inhibitors and evaluate them in vitro. Methods We pursued a repurposing approach by screening a self-compiled collection of approved, mostly ATP-competitive protein kinase inhibitors, on human CD39. The best hit compound was further characterized and evaluated in various orthogonal assays and enzyme preparations, and on human immune and cancer cells. Results The tyrosine kinase inhibitor ceritinib, a potent anticancer drug used for the treatment of anaplastic lymphoma kinase (ALK)-positive metastatic non-small cell lung cancer, was found to strongly inhibit CD39 showing selectivity versus other ectonucleotidases. The drug displays a non-competitive, allosteric mechanism of CD39 inhibition exhibiting potency in the low micromolar range, which is independent of substrate (ATP) concentration. We could show that ceritinib inhibits ATP dephosphorylation in peripheral blood mononuclear cells in a dose-dependent manner, resulting in a significant increase in ATP concentrations and preventing adenosine formation from ATP. Importantly, ceritinib (1–10 µM) substantially inhibited ATP hydrolysis in triple negative breast cancer and melanoma cells with high native expression of CD39. Conclusions CD39 inhibition might contribute to the effects of the powerful anticancer drug ceritinib. Ceritinib is a novel CD39 inhibitor with high metabolic stability and optimized physicochemical properties; according to our knowledge, it is the first brain-permeant CD39 inhibitor. Our discovery will provide the basis (i) to develop more potent and balanced dual CD39/ALK inhibitors, and (ii) to optimize the ceritinib scaffold towards interaction with CD39 to obtain potent and selective drug-like CD39 inhibitors for future in vivo studies.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riekje Winzer
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vittoria Lopez
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Riham Idris
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Haneen Al-Hroub
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Quebec City, Quebec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Eva Tolosa
- Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|