51
|
Kaore SN, Langade DK, Yadav VK, Sharma P, Thawani VR, Sharma R. Novel actions of progesterone: what we know today and what will be the scenario in the future? J Pharm Pharmacol 2012; 64:1040-62. [DOI: 10.1111/j.2042-7158.2012.01464.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Objectives
This article is aimed to review the novel actions of progesterone, which otherwise is considered as a female reproductive hormone. The article focuses on its important physiological actions in males too and gives an overview of its novel perspectives in disorders of central and peripheral nervous system.
Key findings
Progesterone may have a potential benefit in treatment of traumatic brain injury, various neurological disorders and male related diseases like benign prostatic hypertrophy (BPH), prostate cancer and osteoporosis. Norethisterone (NETA), a progesterone derivative, decreases bone mineral loss in male castrated mice suggesting its role in osteoporosis. In the future, progesterone may find use as a male contraceptive too, but still needs confirmatory trials for safety, tolerability and acceptability. Megestrol acetate, a progesterone derivative is preferred in prostatic cancer. Further, it may find utility in nicotine addiction, traumatic brain injury (recently entered Phase III trial) and Alzheimer's disease, diabetic neuropathy and crush injuries. Studies also suggest role of progesterone in stroke, for which further clinical trials are needed. The non genomic actions of progesterone may be in part responsible for these novel actions.
Summary
Although progesterone has shown promising role in various non-hormonal benefits, further clinical studies are needed to prove its usefulness in conditions like stroke, traumatic brain injury, neuropathy and crush injury. In male related illnesses like BPH and prostatic Ca, it may prove a boon in near future. New era of hormonal male contraception may be initiated by use of progesterone along with testosterone.
Collapse
Affiliation(s)
- Shilpa N Kaore
- Department of Pharmacology, Peoples College of Medical Sciences & Research Center, Bhopal, Madhya Pradesh, India
| | - Deepak Kumar Langade
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay Kumar Yadav
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Parag Sharma
- Department of Pharmacology, Peoples College of Medical Sciences & RC, Bhopal, Madhya Pradesh, India
| | - Vijay R Thawani
- Department of Pharmacology, VCSG GMSRI, Srinagar and Pauri Garhwal, Uttarakhand, India
| | - Raj Sharma
- Department of Pharmacology, Govt medical College, Jagdalpur, Chhatisgarh, India
| |
Collapse
|
52
|
Kuroda KO, Tachikawa K, Yoshida S, Tsuneoka Y, Numan M. Neuromolecular basis of parental behavior in laboratory mice and rats: with special emphasis on technical issues of using mouse genetics. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1205-31. [PMID: 21338647 DOI: 10.1016/j.pnpbp.2011.02.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 01/07/2023]
Abstract
To support the well-being of the parent-infant relationship, the neuromolecular mechanisms of parental behaviors should be clarified. From neuroanatomical analyses in laboratory rats, the medial preoptic area (MPOA) has been shown to be of critical importance in parental retrieving behavior. More recently, various gene-targeted mouse strains have been found to be defective in different aspects of parental behaviors, contributing to the identification of molecules and signaling pathways required for the behavior. Therefore, the neuromolecular basis of "mother love" is now a fully approachable research field in modern molecular neuroscience. In this review, we will provide a summary of the required brain areas and gene for parental behavior in laboratory mice (Mus musculus) and rats (Rattus norvegicus). Basic protocols and technical considerations on studying the mechanism of parental behavior using genetically-engineered mouse strains will also be presented.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Unit for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
53
|
O’Connell LA, Ding JH, Ryan MJ, Hofmann HA. Neural distribution of the nuclear progesterone receptor in the túngara frog, Physalaemus pustulosus. J Chem Neuroanat 2011; 41:137-47. [DOI: 10.1016/j.jchemneu.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 11/28/2022]
|
54
|
O’Connell LA, Matthews BJ, Patel SB, O’Connell JD, Crews D. Molecular characterization and brain distribution of the progesterone receptor in whiptail lizards. Gen Comp Endocrinol 2011; 171:64-74. [PMID: 21185292 PMCID: PMC3041865 DOI: 10.1016/j.ygcen.2010.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 12/06/2010] [Accepted: 12/16/2010] [Indexed: 11/21/2022]
Abstract
Progesterone and its nuclear receptor are critical in modulating reproductive physiology and behavior in female and male vertebrates. Whiptail lizards (genus Cnemidophorus) are an excellent model system in which to study the evolution of sexual behavior, as both the ancestral and descendent species exist. Male-typical sexual behavior is mediated by progesterone in both the ancestral species and the descendant all-female species, although the molecular characterization and distribution of the progesterone receptor protein throughout the reptilian brain is not well understood. To better understand the gene targets and ligand binding properties of the progesterone receptor in whiptails, we cloned the promoter and coding sequence of the progesterone receptor and analyzed the predicted protein structure. We next determined the distribution of the progesterone receptor protein and mRNA throughout the brain of Cnemidophorus inornatus and Cnemidophorus uniparens by immunohistochemistry and in situ hybridization. We found the progesterone receptor to be present in many brain regions known to regulate social behavior and processing of stimulus salience across many vertebrates, including the ventral tegmental area, amygdala, nucleus accumbens and several hypothalamic nuclei. Additionally, we quantified immunoreactive cells in the preoptic area and ventromedial hypothalamus in females of both species and males of the ancestral species. We found differences between both species and across ovarian states. Our results significantly extend our understanding of progesterone modulation in the reptilian brain and support the important role of the nuclear progesterone receptor in modulating sexual behavior in reptiles and across vertebrates.
Collapse
Affiliation(s)
- Lauren A. O’Connell
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Bryan J. Matthews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Sagar B. Patel
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
| | - Jeremy D. O’Connell
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
| | - David Crews
- Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Section of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- All correspondence and requests for reprints should to addressed to: David Crews, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78712, Phone: 512-471-1113,
| |
Collapse
|
55
|
Yao W, Dai W, Shahnazari M, Pham A, Chen Z, Chen H, Guan M, Lane NE. Inhibition of the progesterone nuclear receptor during the bone linear growth phase increases peak bone mass in female mice. PLoS One 2010; 5:e11410. [PMID: 20625385 PMCID: PMC2895664 DOI: 10.1371/journal.pone.0011410] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/05/2010] [Indexed: 01/01/2023] Open
Abstract
Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis.
Collapse
Affiliation(s)
- Wei Yao
- Department of Internal Medicine, Center for Healthy Aging, University of California Davis Medical Center, Sacramento, California, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Fernandez-Valdivia R, Jeong J, Mukherjee A, Soyal SM, Li J, Ying Y, Demayo FJ, Lydon JP. A mouse model to dissect progesterone signaling in the female reproductive tract and mammary gland. Genesis 2010; 48:106-13. [PMID: 20029965 DOI: 10.1002/dvg.20586] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Considering the regulatory complexities of progesterone receptor (PR) action throughout the female reproductive axis and mammary gland, we generated a mouse model that enables conditional ablation of PR function in a spatiotemporal specific manner. Exon 2 of the murine PR gene was floxed to generate a conditional PR allele (PR(flox)) in mice. Crossing the PR(flox/flox) mouse with the ZP3-cre transgenic demonstrated that the PR(flox) allele recombines to a PR null allele (PR(d)). Mice homozygous for the recombined null PR allele (PR(d/d)) exhibit uterine, ovarian, and mammary gland defects that phenocopy those of our previously described PR knockout (PRKO) model. Therefore, this conditional mouse model for PR ablation represents an invaluable resource with which to further define in a developmental and/or reproductive stage-specific manner the individual and integrative roles of distinct PR populations resident in multiple progesterone-responsive target sites.
Collapse
|
57
|
Brock O, Douhard Q, Baum MJ, Bakker J. Reduced prepubertal expression of progesterone receptor in the hypothalamus of female aromatase knockout mice. Endocrinology 2010; 151:1814-21. [PMID: 20181795 PMCID: PMC2850240 DOI: 10.1210/en.2009-1379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous research using alpha-fetoprotein knockout and aromatase knockout (ArKO) female mice suggested that the developing hypothalamic mechanisms that later control feminine sexual behavior are protected prenatally from estradiol, whereas shortly after birth, they may be stimulated by this same sex hormone. In the present study, we found that the amount of progesterone receptor immunoreactivity (PR-ir) in the anteroventral periventricular nucleus and medial part of the medial preoptic nucleus was significantly lower in ArKO female mice than in wild-type (WT) females at several prepubertal ages including postnatal d 15 (P15), P15, P20, and P25 but not neonatally at P0, P5, or P10. Likewise, PR-ir in the lateral subdivision of the ventromedial hypothalamic nucleus was significantly lower at P25 in ArKO vs. WT female mice but not at earlier postnatal ages. PR-ir was consistently higher in male than in female WT mice in the anteroventral periventricular nucleus and medial preoptic nucleus over P0-P10 and in the ventromedial hypothalamic nucleus over P0-P20. In these brain regions across these latter ages, PR-ir in male ArKO mice was significantly lower than in WT males and resembled the values seen in WT females, confirming previous reports that estradiol formed in the developing male hypothalamus from testicular testosterone is responsible for male-typical levels of neural PR expression. Thus, estradiol induces both female- and male-typical expression of PR postnatally in the mouse hypothalamus. Future experiments will determine whether this estradiol-induced PR expression contributes to either female- or male-typical brain and behavioral differentiation.
Collapse
Affiliation(s)
- Olivier Brock
- GIGA-Neurosciences, Avenue de l'Hopital (B36), 4000 Liege, Belgium
| | | | | | | |
Collapse
|
58
|
Kentner AC, Abizaid A, Bielajew C. Modeling dad: animal models of paternal behavior. Neurosci Biobehav Rev 2009; 34:438-51. [PMID: 19744516 DOI: 10.1016/j.neubiorev.2009.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 01/02/2023]
Abstract
In humans, paternal behaviors have a strong influence on the emotional and social development of children. Fathers, more frequently than mothers, leave the family nucleus, and/or become abusive, leading to offspring that are more likely to grow under stressful conditions and greater susceptibility to abnormal health and social outcomes. Literature on parental behaviors, human or animal, has primarily focused on the interactions between mothers and offspring, with little research directed at understanding paternal behavior. In animal studies, experimenters correlate paternal behaviors with those seen in rodent or primate mothers, often under situations in which behaviors such as nest protection, huddling, pup grooming, and retrieval are artificially induced. In humans, the majority of the studies have looked at paralleling hormonal changes in fathers with those occurring in mothers, or observed paternal behaviors in populations with specific anthropological backgrounds. These studies reveal commonalities in parental behaviors and their underlying neural circuits. However, this work highlights the possibility that paternal behavior has components that are strictly masculine with unique neurobiological mechanisms. This review summarizes this information and provides a current view of a topic that needs further exploration.
Collapse
Affiliation(s)
- Amanda C Kentner
- Hotckiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| | | | | |
Collapse
|
59
|
Díaz NF, Díaz-Martínez NE, Velasco I, Camacho-Arroyo I. Progesterone increases dopamine neurone number in differentiating mouse embryonic stem cells. J Neuroendocrinol 2009; 21:730-6. [PMID: 19500215 PMCID: PMC2763283 DOI: 10.1111/j.1365-2826.2009.01891.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Progesterone participates in the regulation of several functions in mammals, including brain differentiation and dopaminergic transmission, but the role of progesterone in dopaminergic cell differentiation is unknown. We investigated the effects of progesterone on dopaminergic differentiation of embryonic stem cells using a five-stage protocol. Cells were incubated with different progesterone concentrations during the proliferation (stage 4) or differentiation (stage 5) phases. Progesterone added at 1, 10 and 100 nm during stage 4 increased the number of dopamine neurones at stage 5 by 72%, 80% and 62%, respectively, compared to the control group. The administration of progesterone at stage 5 did not induce significant changes in the number of dopamine neurones. These actions were not mediated by the activation of intracellular progesterone receptors because RU 486 did not block the positive effects of progesterone on differentiation to dopaminergic neurones. The results obtained suggest that progesterone should prove useful with respect to producing higher proportions of dopamine neurones from embryonic stem cells in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Néstor F. Díaz
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México D.F. 04510, México
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Néstor E. Díaz-Martínez
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Iván Velasco
- Departamento de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F. 04510, México
| | - Ignacio Camacho-Arroyo
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, México D.F. 04510, México
- Corresponding author: Dr. Ignacio Camacho-Arroyo. Facultad de Química, Universidad Nacional Autónoma de Mexico. México D.F. 04510, México. Tel: (52) 555 622 3869. Fax: (52) 555 616 2010.
| |
Collapse
|
60
|
Saltzman W, Thinda S, Higgins AL, Matsumoto WR, Ahmed S, McGeehan L, Kolb EM. Effects of siblings on reproductive maturation and infanticidal behavior in cooperatively breeding Mongolian gerbils. Dev Psychobiol 2009; 51:60-72. [PMID: 18942052 PMCID: PMC2629731 DOI: 10.1002/dev.20347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mongolian gerbils living with their natal families undergo delayed reproductive maturation while helping to rear their younger siblings, whereas those housed away from their natal families may mature earlier but often respond aggressively to unfamiliar pups. We tested whether cohabitation with pups contributes to reproductive suppression and inhibition of infanticidal behavior, using young males and females housed with (1) their parents and younger siblings (pups), (2) parents without pups, (3) mixed-sex littermate groups, or (4) mixed-sex groups of unrelated peers. Maturation in males was inhibited by cohabitation with the parents, while maturation in females was further suppressed in the presence of pups. Males in all housing conditions showed little aggression towards unfamiliar pups, whereas females were usually infanticidal unless housed with pups. Aggression toward pups was especially pronounced in females that were pregnant or undergoing ovulatory cycles. Thus, cohabitation with younger siblings may intensify reproductive suppression and inhibit infanticidal behavior in female gerbils, whereas male gerbils exhibit parentally induced reproductive suppression and low rates of infanticide even in the absence of younger siblings.
Collapse
Affiliation(s)
- Wendy Saltzman
- Department of Biology University of California Riverside, CA 92521, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Effects of progesterone on male-mediated infant-directed aggression. Behav Brain Res 2008; 199:340-4. [PMID: 19146882 DOI: 10.1016/j.bbr.2008.12.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/09/2008] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Many species that engage in parental behavior exhibit infanticide under certain circumstances. The neural signals regulating the transition from infant care giver to infant killer and back remain unclear. Previously we demonstrated that progesterone (P) and its receptor (PR) have inhibitory effects on parental behavior and increase infant-directed aggression in male mice. In the present studies we sought to elucidate the mechanisms by which the effects of P are manifested. Because the onset of parental behavior in females is associated with the withdrawal of P at the end of pregnancy we tested the hypothesis that withdrawal of P would similarly enhance parental behavior in males. Virgin male mice were implanted with P or vehicle for 21 days, replicating the duration of pregnancy in females. Tests were run for parental and infanticidal behavior 5 days after removal of the capsules. P increased the proportion of nonparental males that attacked pups. However, neither the number of males exhibiting parental care nor the quality of care was affected by P treatment. Serum P and testosterone (T) levels were not different from controls at the time of behavioral testing indicating continued elevations in peripheral hormones are not required for the expression of infanticide. In conclusion, withdrawal of P does not trigger the onset of parental behavior in males. Rather, prior exposure to P induces persistent infanticidal behavior in adult male mice.
Collapse
|
62
|
Quadros PS, Schlueter LJ, Wagner CK. Distribution of progesterone receptor immunoreactivity in the midbrain and hindbrain of postnatal rats. Dev Neurobiol 2008; 68:1378-90. [PMID: 18712784 DOI: 10.1002/dneu.20664] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nuclear steroid hormone receptors are powerful transcription factors and therefore have the potential to influence and regulate fundamental processes of neural development. The expression of progesterone receptors (PR) has been described in the developing forebrain of rats and mice, and the mammalian brain may be exposed to significant amounts of progesterone, either from maternal sources and/or de novo synthesis of progesterone from cholesterol within the brain. The present study examined the distribution of PR immunoreactive (PRir) cells within the midbrain and hindbrain of postnatal rats. The results demonstrate that PR is transiently expressed within the first 2 weeks of life in specific motor, sensory and reticular core nuclei as well as within midbrain dopaminergic cell groups such as the substantia nigra and the ventral tegmental area. Additionally, robust PRir was observed in cells of the lower rhombic lip, a transient structure giving rise to precerebellar nuclei. These results suggest that progestins and progesterone receptors may play a fundamental role in the postnatal development of numerous midbrain and hindbrain nuclei, including some areas implicated in human disorders. Additionally, these findings contribute to the increasing evidence that steroid hormones and their receptors influence neural development in a wide range of brain areas, including many not typically associated with reproduction or neuroendocrine function.
Collapse
Affiliation(s)
- Princy S Quadros
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA.
| | | | | |
Collapse
|
63
|
Nephew BC, Lovelock DF, Bridges RS. The progesterone receptor and parental behavior in juvenile rats. Dev Psychobiol 2008; 50:535-41. [DOI: 10.1002/dev.20324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
64
|
Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol 2008; 19:1732-40. [PMID: 18508962 DOI: 10.1681/asn.2008020180] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Renal organic anion transporters (OAT) are known to mediate the excretion of many drugs, but their function in normal physiology is not well understood. In this study, mice lacking organic anion transporter 3 (Oat3) had a 10 to 15% lower BP than wild-type mice, raising the possibility that Oat3 transports an endogenous regulator of BP. The aldosterone response to a low-salt diet was blunted in Oat3-null mice, but baseline aldosterone concentration was higher in these mice, suggesting that aldosterone dysregulation does not fully explain the lower BP in the basal state; therefore, both targeted and global metabolomic analyses of plasma and urine were performed, and several potential endogenous substrates of Oat3 were found to accumulate in the plasma of Oat3-null mice. One of these substrates, thymidine, was transported by Oat3 expressed in vitro. In vivo, thymidine, as well as two of the most potent Oat3 inhibitors that were characterized, reduced BP by 10 to 15%; therefore, Oat3 seems to regulate BP, and Oat3 inhibitors might be therapeutically useful antihypertensive agents. Moreover, polymorphisms in human OAT3 might contribute to the genetic variation in susceptibility to hypertension.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego and VASDHCS, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Neurobehavioral basis of the impaired nurturing in mice lacking the immediate early gene FosB. Brain Res 2008; 1211:57-71. [DOI: 10.1016/j.brainres.2008.02.100] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 11/20/2022]
|
66
|
Steroid hormones alter neuroanatomy and aggression independently in the tree lizard. Physiol Behav 2007; 93:492-501. [PMID: 17996258 DOI: 10.1016/j.physbeh.2007.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 10/01/2007] [Accepted: 10/08/2007] [Indexed: 10/22/2022]
Abstract
Steroid hormones effect changes in both neuroanatomy and aggressive behavior in animals of various taxa. However, whether changes in neuroanatomy directly underlie changes in aggression is unknown. We investigate this relationship among steroid hormones, neuroanatomy, and aggression in a free-living vertebrate with a relatively simple nervous system, the tree lizard (Urosaurus ornatus). Weiss and Moore [1] manipulated testosterone and progesterone levels in adult male tree lizards and found that both hormones facilitated aggressive behavior toward a conspecific. In this study, we examined the brains of a subset of these animals to determine whether changes in limbic morphology were associated with hormone-induced changes in aggressive behavior. Specifically, we tested the hypothesis that testosterone and/or progesterone cause changes in neural morphology that are necessary for the expression of testosterone's effects on aggressive behavior. We found that both hormones increased aggression; however, only testosterone induced changes in neuroanatomy. Testosterone increased the size of both the amygdala and nucleus sphericus. However, we could detect no individual correlations between neuroanatomy and aggression levels suggesting that the observed large-scale changes in neuroanatomy are not precisely reflective of changes in mechanisms underlying aggression.
Collapse
|
67
|
Wynne-Edwards KE, Timonin ME. Paternal care in rodents: weakening support for hormonal regulation of the transition to behavioral fatherhood in rodent animal models of biparental care. Horm Behav 2007; 52:114-21. [PMID: 17482188 DOI: 10.1016/j.yhbeh.2007.03.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 11/26/2022]
Abstract
Male rodents that are naturally paternal, like all females, must inhibit infanticide and activate direct parental behavior as they become parents. Males, however, alter their behavior in the absence of parturition, postpartum ovulation and lactation, and therefore do not experience the hormone dynamics associated with such conditions. Paternal males might nevertheless use the same hormones to activate pre-existing maternal behavior pathways in the brain. Positive and inverse associations between prolactin, sex steroids (estradiol, testosterone, progesterone), glucocorticoids, oxytocin and vasopressin and paternal behavior are reviewed. Across biparental rodents (Phodopus campbelli, Peromyscus californicus, Microtus ochrogaster, and Meriones unguiculatus), as well as non-human primates and men, hormone-behavior associations are broadly supported. However, experimental manipulations (largely restricted to P. campbelli) suggest that the co-variation of hormones and paternal behavior is not causal in paternal behavior. Perhaps the hormone-behavior associations shared by P. campbelli and other paternal males are important for other challenges at the same time as fatherhood (e.g., mating during the postpartum estrus). On the other hand, each paternal species might, instead, have unique neuroendocrine pathways to parental behavior. In the latter case, future comparisons might reveal extraordinary plasticity in how the brain forms social bonds and alters behavior in family groups.
Collapse
|
68
|
Wagner CK. The many faces of progesterone: a role in adult and developing male brain. Front Neuroendocrinol 2006; 27:340-59. [PMID: 17014900 DOI: 10.1016/j.yfrne.2006.07.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 11/16/2022]
Abstract
In addition to its well documented action in female-typical behaviors, progesterone exerts an influence on the brain and behavior of males. This review will discuss the role of progesterone and its receptor in male-typical reproductive behaviors in adulthood and the role of progesterone and its receptor in neural development, in both sexual differentiation of the brain as well as in the development of "non-reproductive" functions. The seemingly inconsistent and contradictory results on progesterone in males that exist in the literature illustrate the complexity of progesterone's actions and illuminate the need for further research in this area. As progestin-containing contraceptives in men are currently being tested and progesterone administration to pregnant women and premature newborns increases, a better understanding of the role of this hormone in behavior and brain development becomes essential.
Collapse
Affiliation(s)
- Christine K Wagner
- Department of Psychology and Center for Neuroscience Research, Life Science Research Building 1037, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
69
|
Trainor BC, Kyomen HH, Marler CA. Estrogenic encounters: how interactions between aromatase and the environment modulate aggression. Front Neuroendocrinol 2006; 27:170-9. [PMID: 16376420 PMCID: PMC2080681 DOI: 10.1016/j.yfrne.2005.11.001] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 11/02/2005] [Accepted: 11/08/2005] [Indexed: 10/25/2022]
Abstract
Initial investigations into the mechanistic basis of aggression focused on the role of testosterone (T) and a variety of studies on non-human animals found that elevated T levels promote aggression. However, many correlational studies have not detected a significant association between aggression and peripheral T levels. One reason for this inconsistency may be due to differential metabolism of T within the brain, in particular, the conversion of T to estrogen by aromatase. Thus, differences in aromatase enzyme activity, estrogen receptor expression, and related cofactors may have important effects on how steroids affect aggressive behavior. Hormone manipulation studies conducted in a wide variety of species indicate that estrogens modulate aggression. There is also growing evidence that social experience has important effects on the production of estrogen within the brain, and some cases can not be explained by androgenic regulation of aromatase. Such changes in central aromatase activity may play an important role in determining how social experiences affect the probability of whether an individual engages in aggressive behavior. Although studies have been conducted in many taxa, there has been relatively little integration between literatures examining aggression in different species. In this review, we compare and contrast studies examining aggression in birds, mammals, and humans. By taking an integrative approach to our review, we consider mechanisms that could explain species differences in how estrogen modulates aggression.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, Ohio State University, Columbus, 43210, USA.
| | | | | |
Collapse
|
70
|
Auger CJ, Vanzo RJ. Progesterone treatment of adult male rats suppresses arginine vasopressin expression in the bed nucleus of the stria terminalis and the centromedial amygdala. J Neuroendocrinol 2006; 18:187-94. [PMID: 16454802 DOI: 10.1111/j.1365-2826.2005.01400.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steroid sensitive vasopressin cells of the bed nucleus of the stria terminalis (BST) and centromedial amygdala (CMA) are involved in numerous behavioural and physiological functions. These cells are known to be greatly influenced by gonadal steroids. Castration reduces and testosterone replacement restores arginine vasopressin (AVP)-immunoreactive (-ir) labelling and AVP mRNA expression in the BST and CMA. Gonadal steroids appear to act directly in AVP-expressing cells within the BST and CMA, because the majority of AVP-ir cells in these areas contain oestrogen and androgen receptor immunoreactivity. Recently, we have localised progestin receptor immunoreactivity in virtually all of the AVP-ir cells in the BST and CMA. To understand the role played by progestin receptors in AVP cells within the BST and CMA, we treated male rats with 1 mg of progesterone or oil for 5 days, and then examined AVP immunoreactivity within the brain. We found that progesterone decreased AVP-ir labelling within the BST and CMA, as well as in two of the projection sites of these cells, the lateral septum and lateral habenula. Progesterone treatment did not alter testosterone secretion from the testes, nor did it alter adult male sexual behaviour. These data illustrate an additional mechanism by which the AVP cells in the BST and CMA can be regulated. These data also suggest that progesterone may act in the male brain to influence behaviours that are AVP-dependent.
Collapse
Affiliation(s)
- C J Auger
- Department of Zoology, University of Wisconsin, Wisconsin, WI 53706, USA.
| | | |
Collapse
|
71
|
Buckley J, Willingham E, Agras K, Baskin LS. Embryonic exposure to the fungicide vinclozolin causes virilization of females and alteration of progesterone receptor expression in vivo: an experimental study in mice. Environ Health 2006; 5:4. [PMID: 16504050 PMCID: PMC1403752 DOI: 10.1186/1476-069x-5-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 02/21/2006] [Indexed: 05/06/2023]
Abstract
BACKGROUND Vinclozolin is a fungicide that has been reported to have anti-androgenic effects in rats. We have found that in utero exposure to natural or synthetic progesterones can induce hypospadias in mice, and that the synthetic progesterone medroxyprogesterone acetate (MPA) feminizes male and virilizes female genital tubercles. In the current work, we selected a relatively low dose of vinclozolin to examine its in utero effects on the development of the genital tubercle, both at the morphological and molecular levels. METHODS We gave pregnant dams vinclozolin by oral gavage from gestational days 13 through 17. We assessed the fetal genital tubercles from exposed fetuses at E19 to determine location of the urethral opening. After determination of gonadal sex, either genital tubercles were harvested for mRNA quantitation, or urethras were injected with a plastic resin for casting. We analyzed quantified mRNA levels between treated and untreated animals for mRNA levels of estrogen receptors alpha and beta, progesterone receptor, and androgen receptor using nonparametric tests or ANOVA. To determine effects on urethral length (males have long urethras compared to females), we measured the lengths of the casts and performed ANOVA analysis on these data. RESULTS Our morphological results indicated that vinclozolin has morphological effects similar to those of MPA, feminizing males (hypospadias) and masculinizing females (longer urethras). Because these results reflected our MPA results, we investigated the effects of in utero vinclozolin exposure on the mRNA expression levels of androgen, estrogen alpha and beta, and progesterone receptors. At the molecular level, vinclozolin down-regulated estrogen receptor alpha mRNA in females and up-regulated progesterone receptor mRNA. Vinclozolin-exposed males exhibited up-regulated estrogen receptor alpha and progesterone receptor mRNA, effects we have also seen with exposure to the synthetic estrogen, ethinyl estradiol. CONCLUSION The results suggest that vinclozolin virilizes females and directly or indirectly affects progesterone receptor expression. It also affects estrogen receptor expression in a sex-based manner. We found no in vivo effect of vinclozolin on androgen receptor expression. We propose that vinclozolin, which has been designated an anti-androgen, may also exert its effects by involving additional steroid-signaling pathways.
Collapse
Affiliation(s)
- Jill Buckley
- Institute for the Study and Treatment of Hypospadias, Department of Urology, School of Medicine, University of California, San Francisco, Parnassus Campus, HSW 1434, San Francisco, CA 94143, USA
| | - Emily Willingham
- Institute for the Study and Treatment of Hypospadias, Department of Urology, School of Medicine, University of California, San Francisco, Parnassus Campus, HSW 1434, San Francisco, CA 94143, USA
| | - Koray Agras
- Institute for the Study and Treatment of Hypospadias, Department of Urology, School of Medicine, University of California, San Francisco, Parnassus Campus, HSW 1434, San Francisco, CA 94143, USA
| | - Laurence S Baskin
- Institute for the Study and Treatment of Hypospadias, Department of Urology, School of Medicine, University of California, San Francisco, Parnassus Campus, HSW 1434, San Francisco, CA 94143, USA
| |
Collapse
|
72
|
Auger CJ, Jessen HM, Auger AP. Microarray profiling of gene expression patterns in adult male rat brain following acute progesterone treatment. Brain Res 2005; 1067:58-66. [PMID: 16376865 DOI: 10.1016/j.brainres.2005.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/07/2005] [Accepted: 10/16/2005] [Indexed: 12/31/2022]
Abstract
Progesterone can influence various behaviors in adult male rats, however, little is known about which particular genes are regulated by progesterone in the male rat brain. Using focused microarray technology, we where able to define a subset of genes that are responsive to progesterone. Nylon membrane-based cDNA microarrays were used to profile gene expression patterns in the preoptic area/mediobasal hypothalamus (POA/MBH) of male rat brain 7 h following a single injection of progesterone. RNA was isolated from the brains of 6 male rats injected with progesterone and 6 male rats injected with sesame oil. Next, we hybridized the RNA from each animal to individual cDNA microarrays that contained more than 100 target genes, all of which are involved in cAMP and or calcium signaling pathways. Direct side-by-side comparison of all 12 arrays revealed differences in the expression patterns of 12 different genes. We confirmed the data gathered from the arrays on 4 different genes using Real-Time PCR. These data begin to outline the important role played by progesterone in mediating changes in gene expression within the male brain.
Collapse
Affiliation(s)
- Catherine J Auger
- Department of Zoology, Birge Hall, 430 Lincoln Drive, University of Wisconsin, Madison, WI 53706, USA.
| | | | | |
Collapse
|
73
|
Schneider JS, Burgess C, Sleiter NC, DonCarlos LL, Lydon JP, O'Malley B, Levine JE. Enhanced sexual behaviors and androgen receptor immunoreactivity in the male progesterone receptor knockout mouse. Endocrinology 2005; 146:4340-8. [PMID: 16002522 DOI: 10.1210/en.2005-0490] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Reproductive and behavioral functions of progesterone receptors (PRs) in males were assessed by examining consequences of PR gene deletion. Basal hormone levels were measured in male progesterone receptor knockout (PRKO) mice and compared to wild-type (WT) counterparts. RIA of serum LH, testosterone, and progesterone levels revealed no significant differences. Levels of FSH were moderately but significantly lower and inhibin levels were higher in PRKOs; these differences were not accompanied by gross differences in testicular weight or morphology. PRKOs exhibited significant alterations in sexual behavior. In initial tests PRKOs exhibited reduced latency to mount, compared with WT. In second sessions, PRKOs again showed a significantly reduced latency to mount and increased likelihood of achieving ejaculation. RU486 treatment in WT produced increased mount and intromission frequency and decreased latency to intromission. In anxiety-related behavior tests, PRKO mice exhibited intermediate anxiety levels, compared with WT, suggesting that enhanced sexual behavior in PRKOs is not secondary to reduced anxiety. Immunohistochemical analysis revealed significantly enhanced androgen receptor expression in the medial preoptic nucleus and bed nucleus of the stria terminalis of PRKO. We conclude that testicular development and function and homeostatic regulation of the hypothalamic-pituitary testicular axis are altered to a lesser extent by PR gene deletion. In contrast, PR appears to play a substantial role in inhibiting the anticipatory/motivational components of male sexual behavior in the mouse. The biological significance of this inhibitory mechanism and the extent to which it is mediated by reduced androgen receptor expression remain to be clarified.
Collapse
Affiliation(s)
- Johanna S Schneider
- Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Drive, Hogan Hall, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Pinna G, Costa E, Guidotti A. Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci U S A 2005; 102:2135-40. [PMID: 15677716 PMCID: PMC548579 DOI: 10.1073/pnas.0409643102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to an action on metabolism, anabolic/androgenic steroids also increase sex drive and mental acuity. If abused, such steroids can cause irritability, impulsive aggression, and signs of major depression [Pearson, H. (2004) Nature 431, 500-501], but the mechanisms that produce these symptoms are unknown. The present study investigates behavioral and neurochemical alterations occurring in association with protracted (3-week) administration of testosterone propionate (TP) to socially isolated (SI) and group-housed male and female mice. Male but not female SI mice exhibit aggression that correlates with the down-regulation of brain neurosteroid biosynthesis. However, in female mice, long-term TP administration induces aggression associated with a decrease of brain allopregnanolone (Allo) content and a decrease (approximately 40%) of 5alpha-reductase type I mRNA expression. In spayed mice treated with TP, restitution experiments with progesterone and estrogen normalize brain Allo content and prevent aggression. Submicromolar doses of S-norfluoxetine (S-NFLX) that are insufficient to inhibit serotonin reuptake selectively increase brain Allo content and abolish TP-induced aggression. Our results support the view that TP-induced aggressive behavior is the result of a TP-mediated neurosteroid biosynthesis down-regulation that can be reversed by the S-NFLX-induced increase of brain Allo content.
Collapse
Affiliation(s)
- Graziano Pinna
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
75
|
Gregg JK, Wynne-Edwards KE. Placentophagia in naïve adults, new fathers, and new mothers in the biparental dwarf hamster,Phodopus campbelli. Dev Psychobiol 2005; 47:179-88. [PMID: 16136563 DOI: 10.1002/dev.20079] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Placentophagia in mammals typically occurs only in females during the birth. Male hamsters, Phodopus campbelli, with an extensive paternal behavior repertoire eat placenta during the birth and as alloparental juveniles. Two fresh placentae were presented to sexually naïve males and females covering the developmental range from puberty through reproductive maturity and into senescence. Expectant parents and new mothers were also tested. Placentophagia occurred in both sexes at all developmental stages and was higher in reproductive than in naïve hamsters. Placentophagia declined with increasing age in females, but not males. Liver was readily accepted, but acceptance did not decline with age in females, and was not low in juvenile males, confirming that animals distinguished between the two tissues. Senescent females consumed both tissues willingly. In these paternal males, which do not experience pregnancy or parturition, and in naïve females that selectively refuse placenta, the stimuli influencing placentophagia remain unknown.
Collapse
Affiliation(s)
- Jennifer K Gregg
- Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
76
|
Vella ET, Evans CCD, Ng MWS, Wynne-Edwards KE. Ontogeny of the transition from killer to caregiver in dwarf hamsters (Phodopus campbelli) with biparental care. Dev Psychobiol 2005; 46:75-85. [PMID: 15732058 DOI: 10.1002/dev.20047] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biparental Phodopus campbelli and uniparental P. sungorus juvenile litters (2 males, 2 females) both consumed amniotic fluid and placenta during the birth of younger siblings. Three days later, P. campbelli juveniles were most responsive to a displaced younger sibling. Thus, P. campbelli are responsive to pups as juvenile alloparents and as new parents; however, at intervening ages, infanticidal attack (bite) was seen. At 5, 7, 9, 11, or 13 weeks of age, male and female P. campbelli were given a 5-min test with an unrelated, 3-day-old, anesthetized pup. Females attacked more often than males, yet pup-retrieval rates did not differ. Female aggression increased with age and was replaced by retrieval behavior 3 days after parturition. Male attack ceased after a birth, but parental behavior did not increase, remaining below the rate for new fathers tested with their own awake pup. Over repeated testing, behavior in one test did not predict behavior in another. Transitions from caregiving alloparent to infanticidal adult and back to parental care were clear in females, but less discrete with this stimulus paradigm in these highly paternal males.
Collapse
Affiliation(s)
- Emily T Vella
- Department of Biology, Queen's University, Kingston Ontario, Canada K7L 3N6
| | | | | | | |
Collapse
|
77
|
Weiss SL, Moore MC. Activation of aggressive behavior by progesterone and testosterone in male tree lizards, Urosaurus ornatus. Gen Comp Endocrinol 2004; 136:282-8. [PMID: 15028533 DOI: 10.1016/j.ygcen.2004.01.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 12/19/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Testosterone is usually thought to be the major sex steroid regulating adult male territorial aggression in vertebrates. However, recent evidence has suggested a role for progesterone, as well as testosterone, in the organization of the two male reproductive phenotypes of tree lizards (Urosaurus ornatus), which differ in adult levels of territorial behavior. In the present experiment we tested whether progesterone and testosterone could also play an activational role in the expression of adult aggressive behavior. We subjected post-reproductive male tree lizards to the following treatments: sham surgery, castration, castration with progesterone supplementation, and castration with testosterone supplementation. We measured several different dimensions of aggressive behavior. Overall in these post-reproductive animals, the level of aggression from lowest to highest was: castrates, shams, progesterone-treated, and testosterone-treated. Although testosterone appears to be the more potent regulator of aggressive behavior, progesterone enhanced several measures of aggression suggesting that it could play a role in natural regulation of aggressive behavior. This initial study used very high levels of progesterone (similar to or above those experienced by hatchlings) to maximize the probability of detecting an effect. Further studies are needed to determine if natural adult progesterone levels are sufficiently high to influence aggressive behavior.
Collapse
Affiliation(s)
- S L Weiss
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA
| | | |
Collapse
|
78
|
Affiliation(s)
- David Ferster
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208-3520, USA.
| |
Collapse
|
79
|
Trainor BC, Bird IM, Alday NA, Schlinger BA, Marler CA. Variation in aromatase activity in the medial preoptic area and plasma progesterone is associated with the onset of paternal behavior. Neuroendocrinology 2003; 78:36-44. [PMID: 12869798 PMCID: PMC2080682 DOI: 10.1159/000071704] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 04/29/2003] [Indexed: 11/19/2022]
Abstract
The effects of aromatase within the brain on sexual behavior have been studied in a wide variety of species. Relatively few non-mating behaviors have been considered, despite evidence that estrogen affects many social behaviors. Testosterone promotes paternal behavior in California mouse (Peromyscus californicus) fathers, acting primarily via aromatization to estradiol. Virgin male California mice rarely exhibit paternal behavior, so we investigated whether aromatase in the brain changed with the onset of paternal behavior in California mouse fathers. In the medial preoptic area (MPOA), a brain area known to regulate parental behavior in rodents, we found that fathers had significantly more aromatase activity than mated males without pups, suggesting that an increase in estrogen production in this brain area contributes to the onset of paternal behavior. We also found that progesterone (P(4)) levels were lower in fathers compared to sexually inexperienced males and that P(4) was negatively correlated with aromatase activity in the MPOA. These P(4) findings agree with a recent study that found an inhibitory effect of P(4) on paternal behavior. Overall, we found that aromatase activity and P(4) levels change in association with an important life history transition, and may provide a mechanistic basis for plasticity in paternal behavior.
Collapse
Affiliation(s)
- Brian C Trainor
- Department of Psychology, University of Wisconsin at Madison, Madison, Wisc. USA.
| | | | | | | | | |
Collapse
|