51
|
Kok-Jacon GA, Ji Q, Vincken JP, Visser RGF. Towards a more versatile alpha-glucan biosynthesis in plants. JOURNAL OF PLANT PHYSIOLOGY 2003; 160:765-777. [PMID: 12940545 DOI: 10.1078/0176-1617-01028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Starch is an important storage polysaccharide in many plants. It is composed of densely packed alpha-glucans, consisting of 1,4- and 1,4,6-linked glucose residues. The starch polymers are used in many industrial applications. The biosynthetic machinery for assembling the granule has been manipulated in many different ways to gain insight into the process of starch biosynthesis and to engineer starches with improved functionalities. With respect to the latter, two generic technologies with great potential have been developed: (i) introduction of new linkage types in starch polymers (1,3- and 1,6-linkages), and (ii) engineering granule-boundness. The toolbox to engineer this new generation of starch polymers is discussed.
Collapse
|
52
|
James MG, Denyer K, Myers AM. Starch synthesis in the cereal endosperm. CURRENT OPINION IN PLANT BIOLOGY 2003; 6:215-22. [PMID: 12753970 DOI: 10.1016/s1369-5266(03)00042-6] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pathway of starch synthesis in the cereal endosperm is unique, and requires enzyme isoforms that are not present in other cereal tissues or non-cereal plants. Recent information on the functions of individual enzyme isoforms has provided insight into how the linear chains and branch linkages in cereal starch are synthesized and distributed. Genetic analyses have led to the formulation of models for the roles of de-branching enzymes in cereal starch production, and reveal pleiotropic effects that suggest that certain enzymes may be physically associated. For the first time, tools for global analyses of starch biosynthesis are available for cereal crops, and are heralded by the draft sequence of the rice genome.
Collapse
Affiliation(s)
- Martha G James
- Department of Biochemistry, Biophysics, and Molecular Biology, 1210 Molecular Biology Building, Iowa State University, Ames, Iowa 50011, USA.
| | | | | |
Collapse
|
53
|
Abstract
14-3-3 proteins are phosphoserine-binding proteins that regulate the activities of a wide array of targets via direct protein-protein interactions. In animal cells, the majority of their known targets are involved in signal transduction and transcription. In plants, we know about them primarily through their regulation of the plasma membrane H(+)-ATPase and enzymes of carbon and nitrogen metabolism. Nevertheless, an increasing number of plant signalling proteins are now being recognized as 14-3-3-interacting proteins. Plant 14-3-3 proteins bind a range of transcription factors and other signalling proteins, and have roles regulating plant development and stress responses. Important mechanisms of regulation by 14-3-3 include shuttling proteins between different cellular locations and acting as scaffolds for the assembly of larger signalling complexes.
Collapse
Affiliation(s)
- Michael R Roberts
- Department of Biological Sciences, IENS, Lancaster University, Lancaster, UK LA1 4YQ.
| |
Collapse
|
54
|
Tenorio G, Orea A, Romero JM, Mérida A. Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle. PLANT MOLECULAR BIOLOGY 2003; 51:949-958. [PMID: 12777053 DOI: 10.1023/a:1023053420632] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Granule-bound starch synthase (GBSSI) is one of the most extensively studied enzymes of the starch synthesis pathway and its role in the synthesis of amylose has been well established. However, few studies have been carried out to characterize the regulation of GBSSI gene. Regulation of starch synthesis genes is especially interesting in photosynthetic tissues, where starch is subjected to a periodical alternation of synthesis and degradation during the day/night cycle. In this report we show a circadian oscillation of GBSSI mRNA levels in leaves of Arabidopsis during the day/night cycle, and provide evidence that GBSSI expression is controlled by the transcription factors CCA1 and LHY. Over-expression of both CCA1 and LHY genes causes the elimination of GBSSI mRNA oscillation. Binding shift assays indicate that this control may be exerted through a direct interaction of those regulatory proteins with the GBSSI promoter. Oscillation is not observed on the GBSSI protein levels, which remains constant along the cycle. However, GBSSI activity shows a clear oscillation with a period of 24 h that is altered in transgenic plants over-expressing CCA1. Possible mechanisms controlling GBSSI activity during the day/night cycle are discussed.
Collapse
Affiliation(s)
- Germán Tenorio
- Instituto de Bioquímica Vegetal y Fotosíntesis CSIC-USE, Avda Américo Vespucio s/n. Isla de la Cartuja, 41092-Sevilla
| | | | | | | |
Collapse
|
55
|
Maraschin SDF, Lamers GEM, de Pater BS, Spaink HP, Wang M. 14-3-3 isoforms and pattern formation during barley microspore embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:1033-43. [PMID: 12598573 DOI: 10.1093/jxb/erg098] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The members of the 14-3-3 isoform family have been shown to be developmentally regulated during animal embryogenesis, where they take part in cell differentiation processes. 14-3-3 isoform-specific expression patterns were studied in plant embryogenic processes, using barley (Hordeum vulgare L.) microspore embryogenesis as a model system. After embryogenesis induction by stress, microspores with enlarged morphology showed higher viability than non-enlarged ones. Following microspore culture, cell division was only observed among the enlarged microspores. Western blot and immunolocalization of three barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C were carried out using isoform-specific antibodies. The level of 14-3-3C protein was higher in enlarged microspores than in non-enlarged ones. A processed form of 14-3-3A was associated with the death pathway of the non-enlarged microspores. In the early embryogenesis stage, 14-3-3 subcellular localization differed among dividing and non-dividing microspores and the microspore-derived multicellular structures showed a polarized expression pattern of 14-3-3C and a higher 14-3-3A signal in epidermis primordia. In the late embryogenesis stage, 14-3-3C was specifically expressed underneath the L(1) layer of the shoot apical meristem and in the scutellum of embryo-like structures (ELSs). 14-3-3C was also expressed in the scutellum and underneath the L(1) layer of the shoot apical meristem of 21 d after pollination (DAP) zygotic embryos. These results reveal that 14-3-3A processing and 14-3-3C isoform tissue-specific expression are closely related to cell fate and initiation of specific cell type differentiation, providing a new insight into the study of 14-3-3 proteins in plant embryogenesis.
Collapse
Affiliation(s)
- Simone de F Maraschin
- Center for Phytotechnology LU/TNO, TNO Department of Applied Plant Sciences, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
56
|
Comparot S, Lingiah G, Martin T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:595-604. [PMID: 12508070 DOI: 10.1093/jxb/erg057] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Protein phosphorylation is key to the regulation of many proteins. Altered protein activity often requires the interaction of the phosphorylated protein with a class of "adapters" known as 14-3-3 proteins. This review will cover aspects of 14-3-3 interaction with key proteins of carbon and nitrogen metabolism such as nitrate reductase, glutamine synthetase and sucrose-phosphate synthase. It will also address 14-3-3 involvement in signal transduction pathways with emphasis on the regulation of plant metabolism. To date, 14-3-3 proteins have been identified and studied in many diverse systems, yielding a plethora of data, requiring careful analysis and interpretation. Problems such as these are not uncommon when dealing with multigene families. The number of isoforms makes the question of redundancy versus specificity of 14-3-3 proteins a crucial one. This issue is discussed in relation to structure, function and expression of 14-3-3 proteins.
Collapse
Affiliation(s)
- Sylviane Comparot
- University of Cambridge, Department of Plant Sciences, Downing Site, Cambridge CB2 3EA, UK
| | | | | |
Collapse
|
57
|
Sehnke PC, Rosenquist M, Alsterfjord M, DeLille J, Sommarin M, Larsson C, Ferl RJ. Evolution and isoform specificity of plant 14-3-3 proteins. PLANT MOLECULAR BIOLOGY 2002; 50:1011-1018. [PMID: 12516868 DOI: 10.1023/a:1021289127519] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The 14-3-3 proteins, once thought of as obscure mammalian brain proteins, are fast becoming recognized as major regulators of plant primary metabolism and of other cellular processes. Their presence as large gene families in plants underscores their essential role in plant physiology. We have examined the Arabidopsis thaliana 14-3-3 gene family, which currently is the largest and most complete 14-3-3 family with at least 12 expressed members and 15 genes from the now completed Arabidopsis thaliana genome project. The phylogenetic branching of this family serves as the prototypical model for comparison with other large plant 14-3-3 families and as such may serve to rationalize clustering in a biological context. Equally important for ascribing common functions for the various 14-3-3 isoforms is determining an isoform-specific correlation with localization and target partnering. A summary of localization information available in the literature is presented. In an effort to identify specific 14-3-3 isoform location and participation in cellular processes, we have produced a panel of isoform-specific antibodies to Arabidopsis thaliana 14-3-3s and present initial immunolocalization studies that suggest biologically relevant, discriminative partnering of 14-3-3 isoforms.
Collapse
Affiliation(s)
- Paul C Sehnke
- Program in Plant Cellular and Molecular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Fulgosi H, Soll J, de Faria Maraschin S, Korthout HAAJ, Wang M, Testerink C. 14-3-3 proteins and plant development. PLANT MOLECULAR BIOLOGY 2002; 50:1019-1029. [PMID: 12516869 DOI: 10.1023/a:1021295604109] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The 14-3-3 proteins are a family of ubiquitous regulatory molecules which have been found in virtually every eukaryotic organism and tissue. Discovered 34 years ago, 14-3-3 proteins have first been studied in mammalian nervous tissues, but in the past decade their indispensable role in various plant regulatory and metabolic pathways has been increasingly established. We now know that 14-3-3 members regulate fundamental processes of nitrogen assimilation and carbon assimilation, play an auxiliary role in regulation of starch synthesis, ATP production, peroxide detoxification, and participate in modulation of several other important biochemical pathways. Plant development and seed germination appear also to be under control of factors whose interaction with 14-3-3 molecules is crucial for their activation. Located within the nucleus, 14-3-3 isoforms are constituents of transcription factor complexes and interact with components of abscisic acid (ABA)-induced gene expression machinery. In addition, in animal cells they participate in nucleo-cytoplasmic trafficking and molecular sequestration. Cytoplasmic 14-3-3 members form a guidance complex with chloroplast destined preproteins and facilitate their import into these photosynthetic organelles. Recently, several 14-3-3s have been identified within chloroplasts where they could be involved in targeting and insertion of thylakoid proteins. The identification of 14-3-3 isoform specificity, and in particular the elucidation of the signal transduction mechanisms connecting 14-3-3 members with physiological responses, are central and developing topics of current research in this field.
Collapse
Affiliation(s)
- Hrvoje Fulgosi
- Botanisches Institut der Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, 24105 Kiel, Germany
| | | | | | | | | | | |
Collapse
|
59
|
Datta R, Chamusco KC, Chourey PS. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. PLANT PHYSIOLOGY 2002; 130:1645-56. [PMID: 12481048 PMCID: PMC166680 DOI: 10.1104/pp.006908] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2002] [Revised: 07/31/2002] [Accepted: 09/17/2002] [Indexed: 05/18/2023]
Abstract
Starch biosynthesis during pollen maturation is not well understood in terms of genes/proteins and intracellular controls that regulate it in developing pollen. We have studied two specific developmental stages: "early," characterized by the lack of starch, before or during pollen mitosis I; and "late," an actively starch-filling post-pollen mitosis I phase in S-type cytoplasmic male-sterile (S-CMS) and two related male-fertile genotypes. The male-fertile starch-positive, but not the CMS starch-deficient, genotypes showed changes in the expression patterns of a large number of genes during this metabolic transition. In addition to a battery of housekeeping genes of carbohydrate metabolism, we observed changes in hexose transporter, plasma membrane H(+)-ATPase, ZmMADS1, and 14-3-3 proteins. Reduction or deficiency in 14-3-3 protein levels in all three major cellular sites (amyloplasts [starch], mitochondria, and cytosol) in male-sterile relative to male-fertile genotypes are of potential interest because of interorganellar communication in this CMS system. Further, the levels of hexose sugars were significantly reduced in male-sterile as compared with male-fertile tissues, not only at "early" and "late" stages but also at an earlier point during meiosis. Collectively, these data suggest that combined effects of both reduced sugars and their reduced flux in starch biosynthesis along with a strong possibility for altered redox passage may lead to the observed temporal changes in gene expressions, and ultimately pollen sterility.
Collapse
Affiliation(s)
- Rupali Datta
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611-0680, USA
| | | | | |
Collapse
|
60
|
Huber SC, MacKintosh C, Kaiser WM. Metabolic enzymes as targets for 14-3-3 proteins. PLANT MOLECULAR BIOLOGY 2002; 50:1053-63. [PMID: 12516872 DOI: 10.1023/a:1021284002779] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The 14-3-3 proteins are binding proteins that have been shown to interact with a wide array of enzymes involved in primary biosynthetic and energy metabolism in plants. In most cases, the significance of binding of the 14-3-3 protein is not known. However, most of the interactions are phosphorylation-dependent and most of the known binding partners are found in the cytosol, while some may also be localized to plastids and mitochondria. In this review, we examine the factors that may regulate the binding of 14-3-3s to their target proteins, and discuss their possible roles in the regulation of the activity and proteolytic degradation of enzymes involved in primary carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Steven C Huber
- USDA/ARS and Department of Crop Science, North Carolina State University, Raleigh, NC 27695-7631, USA.
| | | | | |
Collapse
|
61
|
Roberts MR, Salinas J, Collinge DB. 14-3-3 proteins and the response to abiotic and biotic stress. PLANT MOLECULAR BIOLOGY 2002; 50:1031-9. [PMID: 12516870 DOI: 10.1023/a:1021261614491] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
14-3-3 proteins function as regulators of a wide range of target proteins in all eukaryotes by effecting direct protein-protein interactions. Primarily, interactions between 14-3-3 proteins and their targets are mediated by phosphorylation at specific sites on the target protein. Hence, interactions with 14-3-3s are subject to environmental control through signalling pathways which impact on 14-3-3 binding sites. Because 14-3-3 proteins regulate the activities of many proteins involved in signal transduction, there are multiple levels at which 14-3-3 proteins may play roles in stress responses in higher plants. In this article, we review evidence which implicates 14-3-3 proteins in responses to environmental, metabolic and nutritional stresses, as well as in defence responses to wounding and pathogen attack. This evidence includes stress-inducible changes in 14-3-3 gene expression, interactions between 14-3-3 proteins and signalling proteins and interactions between 14-3-3 proteins and proteins with defensive functions.
Collapse
Affiliation(s)
- Michael R Roberts
- Department of Biological Sciences, IENS, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
62
|
Abstract
Multiple members of the 14-3-3 protein family have been found in all eukaryotes so far investigated, yet they are apparently absent from prokaryotes. The major native forms of 14-3-3s are homo- and hetero-dimers, the biological functions of which are to interact physically with specific client proteins and thereby effect a change in the client. As a result, 14-3-3s are involved in a vast array of processes such as the response to stress, cell-cycle control, and apoptosis, serving as adapters, activators, and repressors. There are currently 133 full-length sequences available in GenBank for this highly conserved protein family. A phylogenetic tree based on the conserved middle core region of the protein sequences shows that, in plants, the 14-3-3 family can be divided into two clearly defined groups. The core region encodes an amphipathic groove that binds the multitude of client proteins that have conserved 14-3-3-recognition sequences. The amino and carboxyl termini of 14-3-3 proteins are much more divergent than the core region and may interact with isoform-specific client proteins and/or confer specialized subcellular and tissue localization.
Collapse
Affiliation(s)
- Robert J Ferl
- Program in Plant Molecular and Cellular Biology, Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
63
|
Sehnke PC, DeLille JM, Ferl RJ. Consummating signal transduction: the role of 14-3-3 proteins in the completion of signal-induced transitions in protein activity. THE PLANT CELL 2002; 14 Suppl:S339-54. [PMID: 12045287 PMCID: PMC151265 DOI: 10.1105/tpc.010430] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2001] [Accepted: 01/18/2002] [Indexed: 05/18/2023]
Affiliation(s)
| | | | - Robert J. Ferl
- To whom correspondence should be addressed. E-mail ; fax 352-392-4072
| |
Collapse
|