51
|
Zhang HH, Wang YP, Chen DB. Analysis of nitroso-proteomes in normotensive and severe preeclamptic human placentas. Biol Reprod 2011; 84:966-75. [PMID: 21228217 DOI: 10.1095/biolreprod.110.090688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) plays a key role in placental biology, and placental dysfunction is the main pathogenesis pathway for preeclampsia, yet the direct placental targets of NO actions have not been determined. Covalent adduction of an NO moiety to cysteines, termed S-nitrosylation (SNO), is emerging as a key route by which NO can directly modulate protein functions. This study was conducted to analyze global S-nitroso (SNO)-proteins in human placentas and to determine if their levels differ in normotensive versus severe preeclamptic placentas. Although total nitrite/nitrate increased, total levels of SNO-proteins and nitrosylated forms of endothelial NO synthase and heat shock protein 90 were decreased by preeclampsia. We further compared normotensive and preeclamptic placental nitroso-proteomes (total SNO-protein profiles) by using a biotin and CyDye switch test combined with two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) and identified SNO-proteins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Numerous SNO-proteins were displayed as spots on 2D-DIGE gels. One hundred spots of interest were excised; 46 spots were identified, of which 8 spots were novel SNO-proteins; levels of 15 spots were increased, and 6 spots were decreased, and the rest were unchanged by preeclampsia. Pathway analysis suggested that placental SNO-proteins are involved in regulating various cellular functions including protein synthesis, cell movement and metabolism, cell signaling, and other functions. These data therefore show for the first time that SNO is a crucial mechanism by which NO directly regulates placental proteins linked to various biological pathways. The significantly altered placental nitroso-proteome in preeclampsia suggests that SNO plays a role in the placental pathophysiology in preeclampsia.
Collapse
Affiliation(s)
- Hong-hai Zhang
- Department of Obstetrics and Gynecology, University of California-Irvine, CA, USA
| | | | | |
Collapse
|
52
|
Transplantation of SNAP-treated adipose tissue-derived stem cells improves cardiac function and induces neovascularization after myocardium infarct in rats. Exp Mol Pathol 2010; 90:149-56. [PMID: 21111728 DOI: 10.1016/j.yexmp.2010.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 11/05/2010] [Indexed: 02/07/2023]
Abstract
Stem cell therapy has been considered a promise for damaged myocardial tissue. We have previously shown that S-nitroso-N-acetyl-D,L-penicillamine (SNAP) increases the expression of several muscular markers and VEGF in mesenchymal stem cells, indicating that transplantation of SNAP-treated cells could provide better functional outcomes. Here, we transplanted SNAP-treated adipose tissue-derived stem cells (ADSCs) in rat infarcted myocardium. After 30days, we observed a significant improvement of the ejection fraction in rats that received SNAP-treated ADSCs, compared with those that received untreated cells (p=0.008). Immunohistochemical reactions showed an increased expression of troponin T-C and von Willebrand factor, and organized vascular units in the infarcted area of tissue transplanted with treated ADSCs. SNAP exposure induced intracellular S-nitrosation, a decreased GSH/GSSG ratio, but did not increase cGMP levels. Collectively, these results indicate that SNAP alters the redox environment of ADSCs, possibly associated with a pre-differentiation state, which may improve cardiac function after transplantation.
Collapse
|
53
|
Chen YJ, Ku WC, Lin PY, Chou HC, Khoo KH, Chen YJ. S-alkylating labeling strategy for site-specific identification of the s-nitrosoproteome. J Proteome Res 2010; 9:6417-39. [PMID: 20925432 DOI: 10.1021/pr100680a] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
S-nitrosylation, a post-translational modification of cysteine residues induced by nitric oxide, mediates many physiological functions. Due to the labile nature of S-nitrosylation, detection by mass spectrometry (MS) is challenging. Here, we developed an S-alkylating labeling strategy using the irreversible biotinylation on S-nitrosocysteines for site-specific identification of the S-nitrosoproteome by LC-MS/MS. Using COS-7 cells without endogenous nitric oxide synthase, we demonstrated that the S-alkylating labeling strategy substantially improved the blocking efficiency of free cysteines, minimized the false-positive identification caused by disulfide interchange, and increased the digestion efficiency for improved peptide identification using MS analyses. Using this strategy, we identified total 586 unique S-nitrosylation sites corresponding to 384 proteins in S-nitroso-N-acetylpenicillamine (SNAP)/l-cysteine-treated mouse MS-1 endothelial cells, including 234 previously unreported S-nitrosylated proteins. When the topologies of 84 identified transmembrane proteins were further analyzed, their S-nitrosylation sites were found to mostly face the cytoplasmic side, implying that S-nitrosylation occurs in the cytoplasm. In addition to the previously known acid/basic motifs, the ten deduced consensus motifs suggested that combination of local hydrophobicity and acid/base motifs in the tertiary structure contribute to the specificity of S-nitrosylation. Moreover, the S-nitrosylated cysteines showed preference on beta-strand, having lower relative surface accessibility at the S-nitrosocysteines.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
54
|
Abstract
Dr. Joseph Loscalzo (M.D., 1978; Ph.D., 1977) is recognized here as a Redox Pioneer because he has published two articles in the field of antioxidant/redox biology that have been cited more than 1,000 times and 22 articles that have been cited more than 100 times. Dr. Loscalzo is known for his seminal contributions to our understanding of the vascular biology of nitric oxide. His initial discovery that the antiplatelet effects of organic nitrates are potentiated by thiols through a mechanism that involved metabolism to S-nitrosothiols was followed by the demonstration that S-nitrosothiols are formed endogenously through S-transnitrosation, stabilize nitric oxide, and facilitate the transport and transfer of nitric oxide between and within cells of the vessel wall. These properties led to the development of S-nitrosothiol-containing pharmacotherapies to treat disease states characterized by nitric oxide deficiency. Dr. Loscalzo's other scientific contributions include identifying the vascular functional consequences of genetic deficiencies of antioxidant enzymes that decrease nitric oxide bioavailability, collectively termed the "oxidative enzymopathies," and demonstrating the role of mitochondria in modulating the disulfide subproteome, and in redox signaling in hypoxia. He has received numerous awards and honors for his scientific contributions, including election to the Institute of Medicine of the National Academy of Sciences.
Collapse
Affiliation(s)
- Jane A Leopold
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
55
|
Zhang HH, Feng L, Livnat I, Hoh JK, Shim JY, Liao WX, Chen DB. Estradiol-17beta stimulates specific receptor and endogenous nitric oxide-dependent dynamic endothelial protein S-nitrosylation: analysis of endothelial nitrosyl-proteome. Endocrinology 2010; 151:3874-87. [PMID: 20519370 PMCID: PMC2940521 DOI: 10.1210/en.2009-1356] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Covalent adduction of a nitrosyl group to cysteines [S-nitrosylation (S-NO)] is emerging as a key route for nitric oxide (NO) to directly modulate protein functions. Here, we studied the effects of estrogens on endothelial protein S-NO and analyzed the nitrosyl-proteomes by biotin/CyDye switch technique combined with two-dimensional fluorescence difference gel electrophoresis and identified nitrosoproteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Estradiol-17beta (E2) rapidly stimulated protein S-NO in human umbilical vein endothelial cells, maximizing within 10- to 30-min post-E2 (10 nm) exposure. E2-BSA also rapidly stimulated protein S-NO. Both E2 and E2-BSA-induced protein S-NO was blocked by ICI 182,780 and N-nitro-l-arginine-methylester. Human umbilical vein endothelial cells expressed estrogen receptor (ER)alpha and ERbeta; both seemed to be required for E2 stimulation of protein S-NO because: 1) neither ERalpha or ERbeta agonist alone, but their combination, stimulated protein S-NO; and 2) either ERalpha or ERbeta antagonist blocked E2-induced protein S-NO. Numerous nitrosoproteins (spots) were observed on two-dimensional fluorescence difference gel. One hundred spots of interest were picked up; 58 were identified and, of which 15 were novel nitrosoproteins, 28 were up-regulated, 11 were decreased, and the rest were unchanged by E2. Pathway analysis suggested that nitrosoproteins are involved in regulating various endothelial functions, including apoptosis, cell structure and metabolism, redox homeostasis, etc. Thus, estrogens stimulate dynamic endothelial protein S-NO via mechanisms linked to specific ERs possibly on the plasma membrane and endogenous NO. These findings signify a critical next step for the understanding of the biological targets of enhanced NO production by estrogens.
Collapse
Affiliation(s)
- Hong-Hai Zhang
- Department of Obstetrics and Gynecology, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Abstract
Nitric oxide (NO) is a structurally simple, highly versatile molecule that was originally discovered over 30 years ago as an endothelium-derived relaxing factor. In addition to its vasorelaxing effects, NO is now recognized as a key determinant of vascular health, exerting antiplatelet, antithrombotic, and anti-inflammatory properties within the vasculature. This short-lived molecule exerts its inhibitory effect on vascular smooth muscle cells and platelets largely through cyclic guanosine monophosphate-dependent mechanisms, resulting in a multitude of molecular effects by which platelet activation and aggregation are prevented. The biosynthesis of NO occurs via the catalytic activity of NO synthase, an oxidoreductase found in many cell types. NO insufficiency can be attributed to limited substrate/cofactor availability as well as interactions with reactive oxygen species. Impaired NO bioavailability represents the central feature of endothelial dysfunction, a common abnormality found in many vascular diseases. In this review, we present an overview of NO synthesis and biochemistry, discuss the mechanisms of action of NO in regulating platelet and endothelial function, and review the effects of vascular disease states on NO bioavailability.
Collapse
Affiliation(s)
- Richard C Jin
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | |
Collapse
|
57
|
Gonzalez DR, Treuer AV, Castellanos J, Dulce RA, Hare JM. Impaired S-nitrosylation of the ryanodine receptor caused by xanthine oxidase activity contributes to calcium leak in heart failure. J Biol Chem 2010; 285:28938-45. [PMID: 20643651 DOI: 10.1074/jbc.m110.154948] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
S-Nitrosylation is a ubiquitous post-translational modification that regulates diverse biologic processes. In skeletal muscle, hypernitrosylation of the ryanodine receptor (RyR) causes sarcoplasmic reticulum (SR) calcium leak, but whether abnormalities of cardiac RyR nitrosylation contribute to dysfunction of cardiac excitation-contraction coupling remains controversial. In this study, we tested the hypothesis that cardiac RyR2 is hyponitrosylated in heart failure, because of nitroso-redox imbalance. We evaluated excitation-contraction coupling and nitroso-redox balance in spontaneously hypertensive heart failure rats with dilated cardiomyopathy and age-matched Wistar-Kyoto rats. Spontaneously hypertensive heart failure myocytes were characterized by depressed contractility, increased diastolic Ca(2+) leak, hyponitrosylation of RyR2, and enhanced xanthine oxidase derived superoxide. Global S-nitrosylation was decreased in failing hearts compared with nonfailing. Xanthine oxidase inhibition restored global and RyR2 nitrosylation and reversed the diastolic SR Ca(2+) leak, improving Ca(2+) handling and contractility. Together these findings demonstrate that nitroso-redox imbalance causes RyR2 oxidation, hyponitrosylation, and SR Ca(2+) leak, a hallmark of cardiac dysfunction. The reversal of this phenotype by inhibition of xanthine oxidase has important pathophysiologic and therapeutic implications.
Collapse
Affiliation(s)
- Daniel R Gonzalez
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
58
|
Huang B, Liao CL, Lin YP, Chen SC, Wang DL. S-nitrosoproteome in endothelial cells revealed by a modified biotin switch approach coupled with Western blot-based two-dimensional gel electrophoresis. J Proteome Res 2010; 8:4835-43. [PMID: 19673540 DOI: 10.1021/pr9005662] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NO-mediated S-nitrosation of cysteine residues has been recognized as a fundamental post-translational modification. S-Nitrosation of endothelial cell (EC) proteins can alter function and affect vascular homeostasis. Trace amounts of S-nitrosoproteins in endothelial cells (ECs) in vivo coupled with lability of the S-nitroso bond have hindered a comprehensive characterization. We demonstrate a convenient and reliable method, requiring minimal sample, for the screening and identification of S-nitrosoproteins. ECs treated with the NO donor S-nitroso-N-acetylpenicillamine (SNAP) were subjected to the biotin switch method of labeling, then detected by analytical Western blot-based two-dimensional gel electrophoresis (2-DE). More than 89 SNAP-increased S-nitrosoproteins were detected and 28 of these were successfully excised from preparative 2-DE gel and identified by LC-MS/MS. Moreover, the nitrosocysteine residue for each protein (HSPA9/368, beta-actin/16, TMP3/170, vimentin/328) was also determined, and the relative ratio of S-nitrosation/non-S-nitrosation for Cys328 of vimentin was estimated using MASIC software. By the combination of the biotin switch method with 2-DE and Western blot analysis, S-nitrosoproteins can be screened and characterized by MS, providing a basis for further study of the physiological significance of each S-nitrosoproteins.
Collapse
Affiliation(s)
- Bin Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | |
Collapse
|
59
|
Qian J, Zhang Q, Church JE, Stepp DW, Rudic RD, Fulton DJR. Role of local production of endothelium-derived nitric oxide on cGMP signaling and S-nitrosylation. Am J Physiol Heart Circ Physiol 2010; 298:H112-8. [PMID: 19855060 PMCID: PMC3774418 DOI: 10.1152/ajpheart.00614.2009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/13/2009] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), exerts control over vascular function via two distinct mechanisms, the activation of soluble guanylate cyclase (sGC)/cGMP-dependent signaling or through S-nitrosylation of proteins with reactive thiols (S-nitrosylation). Previous studies in cultured endothelial cells revealed that eNOS targeted to the plasma membrane (PM) releases greater amounts of NO compared with Golgi tethered eNOS. However, the significance of eNOS localization to sGC-dependent or -independent signaling is not known. Here we show that PM-targeted eNOS, when expressed in human aortic endothelial cells (HAEC) and isolated blood vessels, increases sGC/cGMP signaling to a greater extent than Golgi-localized eNOS. The ability of local NO production to influence sGC-independent mechanisms was also tested by monitoring the secretion of Von Willebrand factor (vWF), which is tonically inhibited by the S-nitrosylation of N-ethylmaleimide sensitive factor (NSF). In eNOS "knockdown" HAECs, vWF secretion was attenuated to a greater degree by PM eNOS compared with a Golgi-restricted eNOS. Moreover, the PM-targeted eNOS induced greater S-nitrosylation of NSF vs. Golgi eNOS. To distinguish between the amount of NO generated and the intracellular location of synthesis, we expressed Golgi and PM-targeted calcium-insensitive forms of eNOS in HAEC. These constructs, which generate equal amounts of NO regardless of location, produced equivalent increases in cGMP in bioassays and equal inhibition of vWF secretion. We conclude that the greater functional effects of PM eNOS are due to the increased amount of NO produced rather than effects derived from the local synthesis of NO.
Collapse
Affiliation(s)
- Jin Qian
- Vascular Biology Center, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
60
|
Hill BG, Higdon AN, Dranka BP, Darley-Usmar VM. Regulation of vascular smooth muscle cell bioenergetic function by protein glutathiolation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1797:285-95. [PMID: 19925774 DOI: 10.1016/j.bbabio.2009.11.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 01/23/2023]
Abstract
Protein thiolation by glutathione is a reversible and regulated post-translational modification that is increased in response to oxidants and nitric oxide. Because many mitochondrial enzymes contain critical thiol residues, it has been hypothesized that thiolation reactions regulate cell metabolism and survival. However, it has been difficult to differentiate the biological effects due to protein thiolation from other oxidative protein modifications. In this study, we used diamide to titrate protein glutathiolation and examined its impact on glycolysis, mitochondrial function, and cell death in rat aortic smooth muscle cells. Treatment of cells with diamide increased protein glutathiolation in a concentration-dependent manner and had comparably little effect on protein-protein disulfide formation. Diamide increased mitochondrial proton leak and decreased ATP-linked mitochondrial oxygen consumption and cellular bioenergetic reserve capacity. Concentrations of diamide above 200 microM promoted acute bioenergetic failure and caused cell death, whereas lower concentrations of diamide led to a prolonged increase in glycolytic flux and were not associated with loss of cell viability. Depletion of glutathione using buthionine sulfoximine had no effect on basal protein thiolation or cellular bioenergetics but decreased diamide-induced protein glutathiolation and sensitized the cells to bioenergetic dysfunction and death. The effects of diamide on cell metabolism and viability were fully reversible upon addition of dithiothreitol. These data suggest that protein thiolation modulates key metabolic processes in both the mitochondria and cytosol.
Collapse
Affiliation(s)
- Bradford G Hill
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
61
|
Tello D, Tarín C, Ahicart P, Bretón-Romero R, Lamas S, Martínez-Ruiz A. A “fluorescence switch” technique increases the sensitivity of proteomic detection and identification of S-nitrosylated proteins. Proteomics 2009; 9:5359-70. [DOI: 10.1002/pmic.200900070] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
62
|
Knorre DG, Kudryashova NV, Godovikova TS. Chemical and functional aspects of posttranslational modification of proteins. Acta Naturae 2009; 1:29-51. [PMID: 22649613 PMCID: PMC3347534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This paper reviews the chemical and functional aspects of the posttranslational modifications of proteins, which are achieved by the addition of various groups to the side chain of the amino acid residue backbone of proteins. It describes the main prosthetic groups and the interaction of these groups and the apoenzyme in the process of catalysis, using pyridoxal catalysis as an example. Much attention is paid to the role of posttranslational modification of proteins in the regulation of biochemical processes in live organisms, and especially to the role of protein kinases and their respective phosphotases. Methylation and acetylation reactions and their role in the "histone code", which regulates genome expression on the transcription level, are also reviewed. This paper also describes the modification of proteins by large hydrophobic residues and their role in the function of membrane-associated proteins. Much attention is paid to the glycosylation of proteins, which leads to the formation of glycoproteins. We also describe the main non-enzymatic protein modifications such as glycation, homocysteination, and desamida-tion of amide residues in dibasic acids.
Collapse
Affiliation(s)
- D G Knorre
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences
| | | | | |
Collapse
|
63
|
López-Sánchez LM, Muntané J, de la Mata M, Rodríguez-Ariza A. Unraveling the S-nitrosoproteome: tools and strategies. Proteomics 2009; 9:808-18. [PMID: 19160395 DOI: 10.1002/pmic.200800546] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
One of the major tasks to be accomplished in the postgenomic era is the characterization of PTMs in proteins. The S-nitrosation of protein thiols is a redox-based PTM that modulating enzymatic activity, subcellular localization, complex formation, and degradation of proteins, largely contributes to the complexity of cellular proteomes. Although the detection of S-nitrosated proteins is problematical due to the lability of S-nitrosothiols, with the improvement of molecular tools an increasing range of proteins has been shown to undergo S-nitrosation. We here review recent proteomic approaches for the systematic assessment of potential targets for protein S-nitrosation. The development of new analytical methods and strategies over the past several years now allows us to investigate the nitrosoproteome on a global scale.
Collapse
|
64
|
López-Sánchez LM, Collado JA, Corrales FJ, López-Cillero P, Montero JL, Fraga E, Serrano J, De La Mata M, Muntané J, Rodríguez-Ariza A. S-nitrosation of proteins duringd-galactosamine-induced cell death in human hepatocytes. Free Radic Res 2009; 41:50-61. [PMID: 17164178 DOI: 10.1080/10715760600943918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nitric oxide (NO) participates in the cell death induced by d-Galactosamine (d-GalN) in hepatocytes, and NO-derived reactive oxygen intermediates are critical contributors to protein modification and hepatocellular injury. It is anticipated that S-nitrosation of proteins will participate in the mechanisms leading to cell death in d-GalN-treated human hepatocytes. In the present study, d-GalN-induced cell death was related to augmented levels of NO production and S-nitrosothiol (SNO) content. The biotin switch assay confirmed that d-GalN increased the levels of S-nitrosated proteins in human hepatocytes. S-nitrosocysteine (CSNO) enhanced protein S-nitrosation and altered cell death parameters that were related to S-nitrosation of the executioner caspase-3. Fifteen S-nitrosated proteins participating in metabolism, antioxidative defense and cellular homeostasis were identified in human hepatocytes treated with CSNO. Among them, seven were also identified in d-GalN-treated hepatocytes. The results here reported underline the importance of the alteration of SNO homeostasis during d-GalN-induced cell death in human hepatocytes.
Collapse
|
65
|
Huang B, Chen SC, Wang DL. Shear flow increases S-nitrosylation of proteins in endothelial cells. Cardiovasc Res 2009; 83:536-46. [PMID: 19447776 DOI: 10.1093/cvr/cvp154] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Endothelial cells (ECs) constantly exposed to shear flow increase nitric oxide production via the activation of endothelial nitric oxide synthase. Nitric oxide-mediated S-nitrosylation has recently been identified as an important post-translational modification that may alter signalling and/or protein function. S-nitrosylation of endothelial proteins after shear flow treatment has not been fully explored. In this study, the CyDye switch method was utilized to examine S-nitrosylated proteins in ECs after exposure to shear flow. METHODS AND RESULTS Human umbilical vein ECs were subjected to shear flow for 30 min, and S-nitrosylated proteins were detected by the CyDye switch method. In principle, free thiols in proteins become blocked by alkylation, the S-nitrosylated bond is reduced by ascorbate, and then CyDye labels proteins. Proteins that separately labelled with Cy3 or Cy5 were mixed and subjected to two-dimensional gel electrophoresis for further analysis. More than 100 S-nitrosoproteins were detected in static and shear-treated ECs. Among these, 12 major proteins of heterogeneous function showed a significant increase in S-nitrosylation following shear flow. The S-nitrosylated residues in tropomyosin and vimentin, which were localized in the hydrophobic motif of each protein, were identified as Cys170 and Cys328, respectively. CONCLUSION Post-translational S-nitrosylation of proteins in ECs can be detected by a reliable CyDye switch method. This flow-induced S-nitrosylation of endothelial proteins may be essential for the adaptation and remodelling of ECs under flow conditions.
Collapse
Affiliation(s)
- Bin Huang
- Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, 128 sec. 2 Academia Rd. NanKang, Taipei 11529, Taiwan
| | | | | |
Collapse
|
66
|
Dinitrosyliron complexes and the mechanism(s) of cellular protein nitrosothiol formation from nitric oxide. Proc Natl Acad Sci U S A 2009; 106:4671-6. [PMID: 19261856 DOI: 10.1073/pnas.0710416106] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nitrosothiols (RSNO), formed from thiols and metabolites of nitric oxide (*NO), have been implicated in a diverse set of physiological and pathophysiological processes, although the exact mechanisms by which they are formed biologically are unknown. Several candidate nitrosative pathways involve the reaction of *NO with O(2), reactive oxygen species (ROS), and transition metals. We developed a strategy using extracellular ferrocyanide to determine that under our conditions intracellular protein RSNO formation occurs from reaction of *NO inside the cell, as opposed to cellular entry of nitrosative reactants from the extracellular compartment. Using this method we found that in RAW 264.7 cells RSNO formation occurs only at very low (<8 microM) O(2) concentrations and exhibits zero-order dependence on *NO concentration. Indeed, RSNO formation is not inhibited even at O(2) levels <1 microM. Additionally, chelation of intracellular chelatable iron pool (CIP) reduces RSNO formation by >50%. One possible metal-dependent, O(2)-independent nitrosative pathway is the reaction of thiols with dinitrosyliron complexes (DNIC), which are formed in cells from the reaction of *NO with the CIP. Under our conditions, DNIC formation, like RSNO formation, is inhibited by approximately 50% after chelation of labile iron. Both DNIC and RSNO are also increased during overproduction of ROS by the redox cycler 5,8-dimethoxy-1,4-naphthoquinone. Taken together, these data strongly suggest that cellular RSNO are formed from free *NO via transnitrosation from DNIC derived from the CIP. We have examined in detail the kinetics and mechanism of RSNO formation inside cells.
Collapse
|
67
|
Torta F, Usuelli V, Malgaroli A, Bachi A. Proteomic analysis of protein S-nitrosylation. Proteomics 2008; 8:4484-94. [PMID: 18846506 DOI: 10.1002/pmic.200800089] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) produces covalent PTMs of specific cysteine residues, a process known as S-nitrosylation. This route is dynamically regulated and is one of the major NO signalling pathways known to have strong and dynamic interactions with redox signalling. In agreement with this scenario, binding of NO to key cysteine groups can be linked to a broad range of physiological and pathological cellular events, such as smooth muscle relaxation, neurotransmission and neurodegeneration. The characterization of S-nitrosylated residues and the functional relevance of this protein modification are both essential information needed to understand the action of NO in living organisms. In this review, we focus on recent advances in this field and on state-of-the-art proteomic approaches which are aimed at characterizing the S-nitrosylome in different biological backgrounds.
Collapse
Affiliation(s)
- Federico Torta
- Mass Spectrometry Unit DIBIT, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | |
Collapse
|
68
|
Machado-Oliveira G, Lefièvre L, Ford C, Herrero MB, Barratt C, Connolly TJ, Nash K, Morales-Garcia A, Kirkman-Brown J, Publicover S. Mobilisation of Ca2+ stores and flagellar regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female reproductive tract. Development 2008; 135:3677-86. [PMID: 18842814 PMCID: PMC2777309 DOI: 10.1242/dev.024521] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Generation of NO by nitric oxide synthase (NOS) is implicated in gamete interaction and fertilisation. Exposure of human spermatozoa to NO donors caused mobilisation of stored Ca(2+) by a mechanism that did not require activation of guanylate cyclase but was mimicked by S-nitroso-glutathione (GSNO; an S-nitrosylating agent). Application of dithiothreitol, to reduce protein -SNO groups, rapidly reversed the actions of NO and GSNO on [Ca(2+)](i). The effects of NO, GSNO and dithiothreitol on sperm protein S-nitrosylation, assessed using the biotin switch method, closely paralleled their actions on [Ca(2+)](i). Immunofluorescent staining revealed constitutive and inducible NOS in human oviduct and cumulus (the cellular layer investing the oocyte). 4,5-diaminofluorescein (DAF) staining demonstrated production of NO by these tissues. Incubation of human sperm with oviduct explants induced sperm protein S-nitrosylation resembling that induced by NO donors and GSNO. Progesterone (a product of cumulus cells) also mobilises stored Ca(2+) in human sperm. Pre-treatment of sperm with NO greatly enhanced the effect of progesterone on [Ca(2+)](i), resulting in a prolonged increase in flagellar excursion. We conclude that NO regulates mobilisation of stored Ca(2+) in human sperm by protein S-nitrosylation, that this action is synergistic with that of progesterone and that this synergism is potentially highly significant in gamete interactions leading to fertilisation.
Collapse
|
69
|
Santhanam L, Gucek M, Brown TR, Mansharamani M, Ryoo S, Lemmon CA, Romer L, Shoukas AA, Berkowitz DE, Cole RN. Selective fluorescent labeling of S-nitrosothiols (S-FLOS): a novel method for studying S-nitrosation. Nitric Oxide 2008; 19:295-302. [PMID: 18706513 PMCID: PMC3705760 DOI: 10.1016/j.niox.2008.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 11/21/2022]
Abstract
Protein S-nitrosation is a reversible post-translation modification critical for redox-sensitive cell signaling that is typically studied using the Biotin Switch method. This method and subsequent modifications usually require avidin binding or Western blot analysis to detect biotin labeled proteins. We describe here a modification of the Biotin Switch assay that eliminates the need for Western blot or avidin enrichment protocols and allows direct comparison of the S-nitrosation state proteins from two different samples in the same gel lane or on the same 2D gel. This S-FLOS method offers detection, identification and quantification of S-nitrosated proteins, with the potential for site-specific identification of nitrosation events.
Collapse
Affiliation(s)
- Lakshmi Santhanam
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Marjan Gucek
- The Johns Hopkins School of Medicine, Mass Spectrometry and Proteomics Facility, IBBS, 733 Broadway St., BRB 371, Baltimore, MD 21205, USA
| | - Tashalee R. Brown
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Malini Mansharamani
- The Johns Hopkins School of Medicine, Mass Spectrometry and Proteomics Facility, IBBS, 733 Broadway St., BRB 371, Baltimore, MD 21205, USA
| | - Sungwoo Ryoo
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Christopher A. Lemmon
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Lewis Romer
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Artin A. Shoukas
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Dan E. Berkowitz
- The Johns Hopkins School of Medicine, Anesthesiology and CCM, 720 Rutland Avenue, Traylor 621, Baltimore, MD 21205, USA
| | - Robert N. Cole
- The Johns Hopkins School of Medicine, Mass Spectrometry and Proteomics Facility, IBBS, 733 Broadway St., BRB 371, Baltimore, MD 21205, USA
| |
Collapse
|
70
|
López-Sánchez LM, Corrales FJ, González R, Ferrín G, Muñoz-Castañeda JR, Ranchal I, Hidalgo AB, Briceño J, López-Cillero P, Gómez MA, De La Mata M, Muntané J, Rodríguez-Ariza A. Alteration of S-nitrosothiol homeostasis and targets for protein S-nitrosation in human hepatocytes. Proteomics 2008; 8:4709-20. [DOI: 10.1002/pmic.200700313] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Thomas SR, Witting PK, Drummond GR. Redox control of endothelial function and dysfunction: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 2008; 10:1713-65. [PMID: 18707220 DOI: 10.1089/ars.2008.2027] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The endothelium is essential for the maintenance of vascular homeostasis. Central to this role is the production of endothelium-derived nitric oxide (EDNO), synthesized by the endothelial isoform of nitric oxide synthase (eNOS). Endothelial dysfunction, manifested as impaired EDNO bioactivity, is an important early event in the development of various vascular diseases, including hypertension, diabetes, and atherosclerosis. The degree of impairment of EDNO bioactivity is a determinant of future vascular complications. Accordingly, growing interest exists in defining the pathologic mechanisms involved. Considerable evidence supports a causal role for the enhanced production of reactive oxygen species (ROS) by vascular cells. ROS directly inactivate EDNO, act as cell-signaling molecules, and promote protein dysfunction, events that contribute to the initiation and progression of endothelial dysfunction. Increasing data indicate that strategies designed to limit vascular ROS production can restore endothelial function in humans with vascular complications. The purpose of this review is to outline the various ways in which ROS can influence endothelial function and dysfunction, describe the redox mechanisms involved, and discuss approaches for preventing endothelial dysfunction that may highlight future therapeutic opportunities in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Shane R Thomas
- Centre for Vascular Research, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | |
Collapse
|
72
|
Abstract
PURPOSE OF REVIEW To understand the principles and limits of the methodologies used for the measurement of S-nitrosylated proteins. RECENT FINDINGS Among methods for studying protein S-nitrosylation, chemoluminescence and biotin switch assay have rapidly gained popularity. However, recent findings have attempted to highlight potential pitfalls for these methods. Many assays for biological S-nitrosylated proteins are used near the limit of detection and pretreatment of the biological samples can modify the S-NO bond. These results suggest that additional controls are essential in order to identify S-nitrosylated proteins and results should be quantitatively validated using more than one methodology. SUMMARY Protein S-nitrosylation is emerging as a key mechanism by which nitric oxide regulates cell signalling. This review focuses on existing methodologies for the measurement of S-nitrosylated proteins in biological matrices and the potential pitfalls of each method.
Collapse
Affiliation(s)
- Didier Borderie
- Laboratoire de biochimie A, Hôpital Cochin APHP, 27 rue du faubourg Saint Jacques, France.
| | | |
Collapse
|
73
|
Abstract
Recent advances in techniques that allow sensitive and specific measurement of S-nitrosothiols (RSNOs) have provided evidence for a role for these compounds in various aspects of nitric oxide (NO) biology. The most widely used approach is to couple reaction chemistry that selectively reduces RSNOs by one electron to produce NO, with the sensitive detection of the latter under anaerobic conditions using ozone based chemiluminescence in NO analyzers. Herein, we report a novel reaction that is readily adaptable for commercial NO analyzers that utilizes hydrogen sulfide (H2S), a gas that can reduce RSNO to NO and, analogous to NO, is produced by endogenous metabolism and has effects on diverse biological functions. We discuss factors that affect H2S based methods for RSNO measurement and discuss the potential of H2S as an experimental tool to measure RSNO.
Collapse
|
74
|
S-nitrosation and thiol switching in the mitochondrion: a new paradigm for cardioprotection in ischaemic preconditioning. Biochem J 2008; 412:e11-3. [PMID: 18466111 DOI: 10.1042/bj20080716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the molecular mechanisms through which the heart could be protected from ischaemic injury is of major interest and offers a potential route for the development of new therapies. Recently, several studies have uncovered intriguing relationships between nitric oxide-induced protein thiol modifications and the cardioprotected phenotype. In a highly cited, seminal article published in the Biochemical Journal in 2006, Burwell and colleagues addressed this issue and provided direct evidence for S-nitrosation of complex I of the mitochondrial electron transport chain. These authors were the first to show increased S-nitrosation of mitochondrial proteins from hearts subjected to the cardioprotective process known as ischaemic preconditioning. This study has paved the way for further investigations that collectively reveal a potential link between the mitochondrial S-nitrosoproteome and ischaemic preconditioning.
Collapse
|
75
|
Zhang H, Xu Y, Joseph J, Kalyanaraman B. Influence of intramolecular electron transfer mechanism in biological nitration, nitrosation, and oxidation of redox-sensitive amino acids. Methods Enzymol 2008; 440:65-94. [PMID: 18423211 DOI: 10.1016/s0076-6879(07)00804-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Using both high-performance liquid chromatography (HPLC) and electron spin resonance (ESR) spin-trappng techniques, we developed an analytical methodology for investigating intramolecular electron transfer-mediated tyrosyl nitration and cysteine nitrosation in model peptides. Peptides N-acetyl-TyrCys-amide (YC), N-acetyl-TyrAlaCys-amide, N-acetyl-TyrAlaAlaCys-amide, and N-acetyl-TyrAlaAlaAlaAlaCys-amide were used as models. Product analysis showed that nitration and oxidation products derived from YC and related peptides in the presence of myeloperoxidase (MPO)/H(2)O(2)/NO(2)(-) were not detectable. The major product was determined to be the corresponding disulfide (e.g., YCysCysY), suggestive of a rapid electron transfer from the tyrosyl radical to the cysteinyl residue. ESR spin-trapping experiments with 5,5'-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that thiyl radical intermediates were formed from peptides (e.g., YC) treated with MPO/H(2)O(2) and MPO/H(2)O(2)/NO(2)(-). Blocking the thiol group in YC totally abrogated thiyl radical formation. Under similar conditions, we were, however, able to trap the tyrosyl radical using the spin trap dibromonitrosobenzene sulfonic acid (DBNBS). Competition spin-trapping experiments revealed that intramolecular electron transfer is the dominant mechanism for thiyl radical formation in YC peptides. We conclude that a rapid intramolecular electron transfer mechanism between redox-sensitive amino acids could influence both protein nitration and nitrosation reactions. This mechanism brings together nitrative, nitrosative, and oxidative mechanisms in free radical biology.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | |
Collapse
|
76
|
Tummala M, Ryzhov V, Ravi K, Black SM. Identification of the cysteine nitrosylation sites in human endothelial nitric oxide synthase. DNA Cell Biol 2008; 27:25-33. [PMID: 17941803 DOI: 10.1089/dna.2007.0655] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
S-nitrosylation, or the replacement of the hydrogen atom in the thiol group of cysteine residues by a -NO moiety, is a physiologically important posttranslational modification. In our previous work we have shown that S-nitrosylation is involved in the disruption of the endothelial nitric oxide synthase (eNOS) dimer and that this involves the disruption of the zinc (Zn) tetrathiolate cluster due to the S-nitrosylation of Cysteine 98. However, human eNOS contains 28 other cysteine residues whose potential to undergo S-nitrosylation has not been determined. Thus, the goal of this study was to identify the cysteine residues within eNOS that are susceptible to S-nitrosylation in vitro. To accomplish this, we utilized a modified biotin switch assay. Our modification included the tryptic digestion of the S-nitrosylated eNOS protein to allow the isolation of S-nitrosylated peptides for further identification by mass spectrometry. Our data indicate that multiple cysteine residues are capable of undergoing S-nitrosylation in the presence of an excess of a nitrosylating agent. All these cysteine residues identified were found to be located on the surface of the protein according to the available X-ray structure of the oxygenase domain of eNOS. Among those identified were Cys 93 and 98, the residues involved in the formation of the eNOS dimer through a Zn tetrathiolate cluster. In addition, cysteine residues within the reductase domain were identified as undergoing S-nitrosylation. We identified cysteines 660, 801, and 1113 as capable of undergoing S-nitrosylation. These cysteines are located within regions known to bind flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide (NADPH) although from our studies their functional significance is unclear. Finally we identified cysteines 852, 975/990, and 1047/1049 as being susceptible to S-nitrosylation. These cysteines are located in regions of eNOS that have not been implicated in any known biochemical functions and the significance of their S-nitrosylation is not clear from this study. Thus, our data indicate that the eNOS protein can be S-nitrosylated at multiple sites other than within the Zn tetrathiolate cluster, suggesting that S-nitrosylation may regulate eNOS function in ways other than simply by inducing dimer collapse.
Collapse
Affiliation(s)
- Monorama Tummala
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | | | | | |
Collapse
|
77
|
Abat JK, Mattoo AK, Deswal R. S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 2008; 275:2862-72. [PMID: 18445036 DOI: 10.1111/j.1742-4658.2008.06425.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that affects a myriad of processes in plants. However, the mechanistic details are limited. NO post-translationally modifies proteins by S-nitrosylation of cysteines. The soluble S-nitrosoproteome of a medicinal, crassulacean acid metabolism (CAM) plant, Kalanchoe pinnata, was purified using the biotin switch technique. Nineteen targets were identified by MALDI-TOF mass spectrometry, including proteins associated with carbon, nitrogen and sulfur metabolism, the cytoskeleton, stress and photosynthesis. Some were similar to those previously identified in Arabidopsis thaliana, but kinesin-like protein, glycolate oxidase, putative UDP glucose 4-epimerase and putative DNA topoisomerase II had not been identified as targets previously for any organism. In vitro and in vivo nitrosylation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), one of the targets, was confirmed by immunoblotting. Rubisco plays a central role in photosynthesis, and the effect of S-nitrosylation on its enzymatic activity was determined using NaH14CO3. The NO-releasing compound S-nitrosoglutathione inhibited its activity in a dose-dependent manner suggesting Rubisco inactivation by nitrosylation for the first time.
Collapse
Affiliation(s)
- Jasmeet K Abat
- Department of Botany, Plant Molecular Physiology and Biochemistry Laboratory, University of Delhi, India
| | | | | |
Collapse
|
78
|
Abat JK, Saigal P, Deswal R. S-Nitrosylation - another biological switch like phosphorylation? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:119-30. [PMID: 23572879 PMCID: PMC3550662 DOI: 10.1007/s12298-008-0011-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) has emerged as a key-signaling molecule affecting plant growth and development right from seed germination to cell death. It is now being considered as a new plant hormone. NO is predominantly produced by nitric oxide synthase (NOS) in animal systems. NOS converts L-arginine (substrate) to citrulline and NO is a byproduct of the reaction. However, a similar biosynthetic mechanism is still not fully established in plants as NOS is still to be purified. First plant NOS gene (AtNOS1) was cloned from Arabidopsis suggesting the existence of NOS in plants. It was shown to be involved in hormonal signaling, stomatal closure, flowering, pathogen defense response, oxidative stress, senescence and salt tolerance. However, recent studies have raised critical questions/concerns about its substantial role in NO biosynthesis. Despite the ever increasing number of NO responses observed, little is known about the signal transduction pathway(s) and mechanisms by which NO interacts with different components and results in altered cellular activities. A brief overview is presented here. Proteins are one of the major bio-molecule besides DNA, RNA and lipids which are modified by NO and its derivatives. S-nitrosylation is a ubiquitous NO mediated posttranslational modification that might regulate broad spectrum of proteins. In this review S-nitrosylation formation, catabolism and its biological significance is discussed to present the current scenario of this modification in plants.
Collapse
Affiliation(s)
- Jasmeet Kaur Abat
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Pooja Saigal
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Renu Deswal
- Plant Molecular Physiology and Biochemistry Laboratory, Department of Botany, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
79
|
Abstract
The oxidizing nature of the extracellular environment is vastly different from the highly reducing nature of the intracellular compartment. The redox potential of the cytosolic compartment of the intracellular environment limits disulfide bond formation, whereas the oxidizing extracellular environment contains proteins rich in disulfide bonds. If not for an extracellular antioxidant system to eliminate reactive oxygen and nitrogen species, lipid peroxidation and protein oxidation would become excessive, resulting in cellular damage. Many reviews have focused on the role of intracellular antioxidants in the elimination of oxidative stress, but this one will focus on the coordinated action of both intracellular and extracellular antioxidants in limiting cellular oxidant stress.
Collapse
|
80
|
Marfella R, Filippo CD, Laieta MT, Vestini R, Barbieri M, Sangiulo P, Crescenzi B, Ferraraccio F, Rossi F, D'Amico M, Paolisso G. Effects of Ubiquitin-Proteasome System Deregulation on the Vascular Senescence and Atherosclerosis Process in Elderly Patients. J Gerontol A Biol Sci Med Sci 2008; 63:200-3. [DOI: 10.1093/gerona/63.2.200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
81
|
S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease. Proc Natl Acad Sci U S A 2007; 104:18742-7. [PMID: 18003920 DOI: 10.1073/pnas.0705904104] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peroxiredoxins (Prx), a family of peroxidases that reduce intracellular peroxides with the thioredoxin system as the electron donor, are highly expressed in various cellular compartments. Among the antioxidant Prx enzymes, Prx2 is the most abundant in mammalian neurons, making it a prime candidate to defend against oxidative stress. Here we report that Prx2 is S-nitrosylated (forming SNO-Prx2) by reaction with nitric oxide at two critical cysteine residues (C51 and C172), preventing its reaction with peroxides. We observed increased SNO-Prx2 in human Parkinson's disease (PD) brains, and S-nitrosylation of Prx2 inhibited both its enzymatic activity and protective function from oxidative stress. Dopaminergic neurons, which are lost in PD, become particularly vulnerable. Thus, our data provide a direct link between nitrosative/oxidative stress and neurodegenerative disorders such as PD.
Collapse
|
82
|
Wadham C, Parker A, Wang L, Xia P. High glucose attenuates protein S-nitrosylation in endothelial cells: role of oxidative stress. Diabetes 2007; 56:2715-21. [PMID: 17704302 DOI: 10.2337/db06-1294] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Hyperglycemia-induced endothelial dysfunction, via a defect of nitric oxide (NO) bioactivity and overproduction of superoxide, is regarded as one of the most significant events contributing to the vascular lesions associated with diabetes. However, the mechanisms underlying such hyperglycemic injury remain undefined. We hypothesized that alterations in cellular protein S-nitrosylation may contribute to hyperglycemia-induced endothelial dysfunction. RESEARCH DESIGN AND METHODS We exposed endothelial cells to high glucose in the presence and absence of reactive oxygen species inhibitors and used the biotin switch assay to analyze the alteration in the global pattern of protein S-nitrosylation compared with cells cultured under normal glucose conditions. We identified endogenous S-nitrosylated proteins by mass spectrometry and/or immunoblotting with specific antibodies. RESULTS High-glucose treatment induced a significant reduction of endogenous S-nitrosylated proteins that include endothelial NO synthase, beta-actin, vinculin, diacylglycerol kinase-alpha, GRP78, extracellular signal-regulated kinase 1, and transcription factor nuclear factor-kappaB (NF-kappaB). Interestingly, these changes were completely reversed by inhibition of superoxide production, suggesting a key role for oxidative stress in the regulation of S-nitrosylation under hyperglycemic conditions. In addition, we found that in parallel with the restoration of decreased S-nitrosylation of NF-kappaB, high glucose-induced NF-kappaB activation was blocked by the superoxide inhibitors. CONCLUSIONS The alterations in protein S-nitrosylation may underlie the adverse effect of hyperglycemia on the vasculature, such as endothelial dysfunction and the development of diabetic vascular complications.
Collapse
Affiliation(s)
- Carol Wadham
- Signal Transduction Laboratory, Division of Human Immunology, Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | |
Collapse
|
83
|
Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA. Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic Biol Med 2007; 43:1099-108. [PMID: 17854705 PMCID: PMC2043132 DOI: 10.1016/j.freeradbiomed.2007.07.014] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 07/12/2007] [Accepted: 07/13/2007] [Indexed: 11/26/2022]
Abstract
Cysteine thiol modifications are increasingly recognized to occur under both physiological and pathophysiological conditions, making their accurate detection, identification, and quantification of growing importance. Among free cysteines, the bulk of modifications occurs on a subset of cysteines that are more reactive. These exist as thiolate anions at physiological pH because of their surrounding electrostatic environment. Reagents with iodoacetamide-active groups can be used to selectively label these reactive thiols with a high degree of selectivity. Thiol adducts can be detected by the failure to label with iodoacetamide or other reagents; restoration of labeling by specific reducing agents (e.g., ascorbate or glutaredoxin) can be used to detect reversible S-nitroso and S-glutathione adducts. These adducts also may be detected with radiolabels and antibodies. S-Glutathiolation in response to physiological stimuli may be detected in cells and tissues with glutathione ester labeled with biotin. Mass spectrometry can identify thiol modifications with precision, and with isotope-coded affinity tags, used to quantify modification of specific thiols. Combinations of these methods increase sensitivity and specificity, and enable quantification and precise identification of thiol modifications that occur under physiological and pathological conditions.
Collapse
Affiliation(s)
- Jia Ying
- Vascular Biology Unit X720, Whitaker Cardiovascular Institute, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
84
|
Erusalimsky JD, Moncada S. Nitric oxide and mitochondrial signaling: from physiology to pathophysiology. Arterioscler Thromb Vasc Biol 2007; 27:2524-31. [PMID: 17885213 DOI: 10.1161/atvbaha.107.151167] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has been known for many years to bind to cytochrome C oxidase, the terminal acceptor in the mitochondrial electron transport chain, in competition with oxygen. This interaction may be significant in vivo and explain some of the biological actions of NO. In this article we review the evidence showing that binding of NO to cytochrome C oxidase elicits intracellular signaling events, including the diversion of oxygen to nonrespiratory substrates and the generation of reactive oxygen species. We discuss findings indicating that these NO-elicited events act as triggers by which mitochondria modulate signal transduction cascades involved in the induction of cellular defense mechanisms and adaptive responses. We also discuss instances in which the effects of NO on the electron transport chain might lead to mitochondrial dysfunction and pathology.
Collapse
Affiliation(s)
- Jorge D Erusalimsky
- Cardiff School of Health Sciences, University of Wales Institute Cardiff, Western Avenue, Cardiff, CF5 2YB, UK.
| | | |
Collapse
|
85
|
Lefièvre L, Chen Y, Conner SJ, Scott JL, Publicover SJ, Ford WCL, Barratt CLR. Human spermatozoa contain multiple targets for protein S-nitrosylation: an alternative mechanism of the modulation of sperm function by nitric oxide? Proteomics 2007; 7:3066-84. [PMID: 17683036 PMCID: PMC2777308 DOI: 10.1002/pmic.200700254] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) enhances human sperm motility and capacitation associated with increased protein phosphorylation. NO activates soluble guanylyl cyclase, but can also modify protein function covalently via S-nitrosylation of cysteine. Remarkably, this mechanism remains unexplored in sperm although they depend on post-translational protein modification to achieve changes in function required for fertilisation. Our objective was to identify targets for S-nitrosylation in human sperm. Spermatozoa were incubated with NO donors and S-nitrosylated proteins were identified using the biotin switch assay and a proteomic approach using MS/MS. 240 S-nitrosylated proteins were detected in sperm incubated with S-nitroso-glutathione. Minimal levels were observed in glutathione or untreated samples. Proteins identified consistently based on multiple peptides included established targets for S-nitrosylation in other cells e.g. tubulin, GST and HSPs but also novel targets including A-kinase anchoring protein (AKAP) types 3 and 4, voltage-dependent anion-selective channel protein 3 and semenogelin 1 and 2. In situ localisation revealed S-nitrosylated targets on the postacrosomal region of the head and throughout the flagellum. Potential targets for S-nitrosylation in human sperm include physiologically significant proteins not previously reported in other cells. Their identification will provide novel insight into the mechanism of action of NO in spermatozoa.
Collapse
Affiliation(s)
- Linda Lefièvre
- Reproductive Biology and Genetics Group, Division of Reproductive and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Yongjian Chen
- The Center of Reproductive Medicine, Peking University Third Hospital, Beijing, China, 100083
| | - Sarah J Conner
- Reproductive Biology and Genetics Group, Division of Reproductive and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Centre for Human Reproductive Science, Birmingham Women's Hospital, Metchley Park Road, Edgbaston, Birmingham, B15 2TG, UK
| | - Joanna L Scott
- Reproductive Biology and Genetics Group, Division of Reproductive and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Steve J Publicover
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - W Christopher L Ford
- Reproductive Biology and Genetics Group, Division of Reproductive and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher LR Barratt
- Reproductive Biology and Genetics Group, Division of Reproductive and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
86
|
Abstract
NO (nitric oxide) can affect mitochondrial function by interacting with the cytochrome c oxidase (complex IV) of the electron transport chain in a manner that is reversible and in competition with oxygen. Concentrations of NO too low to inhibit respiration can trigger cell defence response mechanisms involving reactive oxygen species and various signalling molecules such as nuclear factor κB and AMP kinase. Inhibition of mitochondrial respiration by NO at low oxygen concentrations can cause so-called metabolic hypoxia and divert oxygen towards other oxygen-dependent systems. Such a diversion reactivates prolyl hydroxylases and thus accounts for the prevention by NO of the stabilization of hypoxia-inducible transcription factor. In certain circumstances NO interacts with superoxide radical to form peroxynitrite, which can affect the action of key enzymes, such as mitochondrial complex I, by S-nitrosation. This chapter discusses the physiological and pathophysiological implications of the interactions of NO with the cytochrome c oxidase.
Collapse
Affiliation(s)
- Alexander Galkin
- The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, U.K
| | | | | |
Collapse
|
87
|
Yang Y, Song Y, Loscalzo J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc Natl Acad Sci U S A 2007; 104:10813-7. [PMID: 17581874 PMCID: PMC1904139 DOI: 10.1073/pnas.0702027104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Indexed: 11/18/2022] Open
Abstract
The majority of protein disulfides in cells is considered an important inert structural, rather than a dynamic regulatory, determinant of protein function. Here, we show that some disulfides in proteins also are regulated by cell redox status with functional consequences. We find that reactive oxygen species (ROS) produced by mitochondria are actively used by cells to facilitate cell-surface protein disulfide formation, as well as folding and transport, in mammalian cells. Inhibition of mitochondrial ROS production suppresses protein disulfide formation and induces reductive stress, leading to dysfunction and retention (possibly in the Golgi, in part) of a group of cell-surface disulfide-containing proteins. Sparsely cultured cells produce less ROS than confluent cells do, which leads to decreased disulfide formation and decreased activity of a subgroup of disulfide-containing cell-surface receptors. These data support the concept of two subproteomes comprising the disulfide proteome, a structural group and a redox-sensitive regulatory group, with the latter having direct functional consequences for the cell.
Collapse
Affiliation(s)
- Yi Yang
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanli Song
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| | - Joseph Loscalzo
- *Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
88
|
Kettenhofen N, Broniowska K, Keszler A, Zhang Y, Hogg N. Proteomic methods for analysis of S-nitrosation. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:152-9. [PMID: 17360249 PMCID: PMC1997299 DOI: 10.1016/j.jchromb.2007.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 02/07/2023]
Abstract
This review discusses proteomic methods to detect and identify S-nitrosated proteins. Protein S-nitrosation, the post-translational modification of thiol residues to form S-nitrosothiols, has been suggested to be a mechanism of cellular redox signaling by which nitric oxide can alter cellular function through modification of protein thiol residues. It has become apparent that methods that will detect and identify low levels of S-nitrosated protein in complex protein mixtures are required in order to fully appreciate the range, extent and selectivity of this modification in both physiological and pathological conditions. While many advances have been made in the detection of either total cellular S-nitrosation or individual S-nitrosothiols, proteomic methods for the detection of S-nitrosation are in relative infancy. This review will discuss the major methods that have been used for the proteomic analysis of protein S-nitrosation and discuss the pros and cons of this methodology.
Collapse
Affiliation(s)
- Nicholas Kettenhofen
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin. Milwaukee WI 53226
| | - Katarzyna Broniowska
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin. Milwaukee WI 53226
| | - Agnes Keszler
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin. Milwaukee WI 53226
| | - Yanhong Zhang
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin. Milwaukee WI 53226
| | - Neil Hogg
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin. Milwaukee WI 53226
| |
Collapse
|
89
|
Gow A, Doctor A, Mannick J, Gaston B. S-Nitrosothiol measurements in biological systems. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:140-51. [PMID: 17379583 PMCID: PMC1949323 DOI: 10.1016/j.jchromb.2007.01.052] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/24/2022]
Abstract
S-Nitrosothiol (SNO) cysteine modifications are regulated signaling reactions that dramatically affect, and are affected by, protein conformation. The lability of the SNO bond can make SNO-modified proteins cumbersome to measure accurately. Here, we review methodologies for detecting SNO modifications in biology. There are three caveats. (1) Many assays for biological SNOs are used near the limit of detection: standard curves must be in the biologically relevant concentration range. (2) The assays that are most reliable are those that modify SNO protein or peptide chemistry the least. (3) Each result should be quantitatively validated using more than one assay. Improved assays are needed and are in development.
Collapse
Affiliation(s)
- Andrew Gow
- School of Pharmacology and Toxicology, Rutgers University, 160 Frelinghuysen Road Piscataway, NJ 08854
| | - Allan Doctor
- Departments of Pediatrics and Biochemistry & Molecular Biophysics, Washington University in St. Louis, Campus Box 8116, 1 Children’s Place, Suite 5S20, St. Louis, MO 63110
| | - Joan Mannick
- Infectious Diseases and Immunology, Department of Internal Medicine University of Massachusetts School of Medicine, 55 Lake Avenue, North Worcester, MA 01655
| | - Benjamin Gaston
- Department of Pediatrics, University of Virginia Health System, 409 Lane Rd, Charlottesville, VA 22908
| |
Collapse
|
90
|
Gorren ACF, Mayer B. Nitric-oxide synthase: A cytochrome P450 family foster child. Biochim Biophys Acta Gen Subj 2007; 1770:432-45. [PMID: 17014963 DOI: 10.1016/j.bbagen.2006.08.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Accepted: 08/25/2006] [Indexed: 11/28/2022]
Abstract
Nitric-oxide synthase (NOS), the enzyme responsible for mammalian NO generation, is no cytochrome P450, but there are striking similarities between both enzymes. First and foremost, both are heme-thiolate proteins, employing the same prosthetic group to perform similar chemistry. Moreover, they share the same redox partner, a diflavoprotein reductase, which in the case of NOS is incorporated with the oxygenase in one polypeptide chain. There are, however, also conspicuous differences, such as the presence in NOS of the additional cofactor tetrahydrobiopterin, which is applied as an auxiliary electron donor to prevent decay of the oxyferrous complex to ferric heme and superoxide. In this review similarities and differences between NOS and cytochrome P450 are analyzed in an attempt to explain why NOS requires BH4 and why NO synthesis is not catalyzed by a member of the cytochrome P450 family.
Collapse
Affiliation(s)
- Antonius C F Gorren
- Department of Pharmacology und Toxicology, Karl-Franzens-Universität Graz, Universitätsplatz 2, A-8010 Graz, Austria.
| | | |
Collapse
|
91
|
Spurny R, Abdoulrahman K, Janda L, Rünzler D, Köhler G, Castañón MJ, Wiche G. Oxidation and Nitrosylation of Cysteines Proximal to the Intermediate Filament (IF)-binding Site of Plectin. J Biol Chem 2007; 282:8175-87. [PMID: 17224453 DOI: 10.1074/jbc.m608473200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an intermediate filament (IF)-based cytolinker protein, plectin plays a key role in the maintenance of cellular cytoarchitecture and serves at the same time as a scaffolding platform for signaling cascades. Consisting of six structural repeats (R1-6) and harboring binding sites for different IF proteins and proteins involved in signaling, the plectin C-terminal domain is of strategic functional importance. Depending on the species, it contains at least 13 cysteines, 4 of which reside in the R5 domain. To investigate the structural and biological functions of R5 cysteines, we used cysteine-to-serine mutagenesis and spectroscopic, biochemical, and functional analyses. Urea-induced unfolding experiments indicated that wild-type R5 in the oxidized, disulfide bond-mediated conformation was more stable than its cysteine-free mutant derivative. The binding affinity of R5 for vimentin was significantly higher, however, when the protein was in the reduced, more relaxed conformation. Of the four R5 cysteines, one (Cys4) was particularly reactive as reflected by its ability to form disulfide bridges with R5 Cys1 and to serve as a target for nitrosylation in vitro. Using immortalized endothelial cell cultures from mice, we show that endogenous plectin is nitrosylated in vivo, and we found that NO donor-induced IF collapse proceeds dramatically faster in plectin-deficient compared with wild-type cells. Our data suggest an antagonistic role of plectin in nitrosylation (oxidative stress)-mediated alterations of IF cytoarchitecture and a possible role of R5 Cys4 as a regulatory switch.
Collapse
Affiliation(s)
- Radovan Spurny
- Department of Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
92
|
Bandow JE, Hecker M. Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2007; 64:79, 81-101. [PMID: 17195472 DOI: 10.1007/978-3-7643-7567-6_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Proteomic profiling provides a global view of the protein composition of the cell. In contrast to the static nature of the genome sequence, which provides the blueprint for all protein-based cellular building blocks, the proteome is highly dynamic. The protein composition is constantly adjusting to facilitate survival, growth, and reproduction in an ever-changing environment. In a quest to understand the regulation of cellular networks in bacteria and the role of individual proteins in the adaptation process, the proteomic response to stress and starvation was analyzed in wild-type and mutant strains. The knowledge derived from these proteomic studies was applied to investigating the bacterial response to antibiotics. It was found that proteomics presents a powerful tool for hypothesis generation regarding antibiotic mechanism of action.
Collapse
Affiliation(s)
- Julia E Bandow
- Pfizer Global Research and Development, Pfizer Inc., Ann Arbor, Michigan, USA.
| | | |
Collapse
|
93
|
Cha W, Meyerhoff ME. Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials 2007; 28:19-27. [PMID: 16959311 DOI: 10.1016/j.biomaterials.2006.08.019] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 08/11/2006] [Indexed: 12/01/2022]
Abstract
Novel nitric oxide (NO) generating polymeric materials possessing immobilized organoselenium species are described. These materials mimic the capability of small organoselenium molecules as well as a known selenium-containing enzyme, glutathione peroxidase (GPx), by catalytically decomposing S-nitrosothiols (RSNO) into NO and the corresponding free thiol. Model polymeric materials, e.g., cellulose filter paper and polyethylenimine, are modified with an appropriate diselenide species covalently linked to the polymeric structures. Such organoselenium (RSe)-derivatized polymers are shown to generate NO from RSNO species in the presence of an appropriate thiol reducing agent (e.g., glutathione). The likely involvement of both immobilized selenol/selenolate and diselenide species for NO production is suggested via a catalytic pathway, as deduced in separate homogeneous solution phase experiments using non-immobilized forms of small organodiselenide species. Preliminary experiments with the new RSe-polymers clearly demonstrate the ability of such materials to generate NO from RSNO species even after the contact with fresh animal plasma. It is anticipated that such NO generation from endogenous S-nitrosothiols in blood could render RSe-containing polymeric materials more thromboresistant when in contact with flowing blood, owing to NO's ability to inhibit platelet adhesion and activation.
Collapse
Affiliation(s)
- Wansik Cha
- Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
94
|
Al-Ani B, Hewett PW, Ahmed S, Cudmore M, Fujisawa T, Ahmad S, Ahmed A. The release of nitric oxide from S-nitrosothiols promotes angiogenesis. PLoS One 2006; 1:e25. [PMID: 17183652 PMCID: PMC1762402 DOI: 10.1371/journal.pone.0000025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Accepted: 09/25/2006] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Free nitric oxide (NO) reacts with sulphydryl residues to form S-nitrosothiols, which act as NO reservoirs. We sought to determine whether thiol-preserving agents and antioxidants, such as dithiothreitol (DTT) and vitamin C, induce NO release from S-nitrosylated proteins in endothelial cell cultures to promote angiogenesis. METHODOLOGY/PRINCIPAL FINDINGS NO release was measured directly in cell supernatants using a Sievers NO Analyser, and in vitro angiogenesis was assessed by quantifying capillary-like tube network formation of porcine aortic endothelial cells (PAEC) on growth factor-reduced Matrigel. Incubation of PAEC with DTT or vitamin C significantly increased NO release in a concentration-dependent manner. However, the nitric oxide synthase (NOS) inhibitors, L-NNA and L-NIO, had no effect on DTT- or vitamin C-induced NO release, and there was no concomitant increase in the phosphorylation of endothelial NOS at serine-1177 following DTT or vitamin C treatment. DTT and vitamin C increased capillary-like tube network formation by nine- and two-fold, respectively, and the addition of copper ions doubled the effect of vitamin C. Surprisingly, DTT maintained endothelial tube networks for up to one month under serum-free conditions, and selective inhibitors of guanylyl cyclase (ODQ) and PKG (KT-5823) blocked this, demonstrating the requirement of cyclic GMP and PKG in this process. CONCLUSIONS/SIGNIFICANCE Both DTT and vitamin C are capable of releasing sufficient NO from S-nitrosothiols to induce capillary morphogenesis. This study provides the first evidence that increased denitrosylation leads to increased bioavailability of NO, independent of NOS activity, to promote sustained angiogenesis.
Collapse
Affiliation(s)
- Bahjat Al-Ani
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Peter W. Hewett
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Suborna Ahmed
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Melissa Cudmore
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Takeshi Fujisawa
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Shakil Ahmad
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
| | - Asif Ahmed
- Department of Reproductive and Vascular Biology, Centre for Cardiovascular Sciences, Institute of Biomedical Research, Medical School, University of BirminghamBirmingham, United Kingdom
- Birmingham Women's Hospital NHS TrustBirmingham, United Kingdom
| |
Collapse
|
95
|
Giustarini D, Milzani A, Dalle-Donne I, Rossi R. Detection of S-nitrosothiols in biological fluids: a comparison among the most widely applied methodologies. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 851:124-39. [PMID: 17035104 DOI: 10.1016/j.jchromb.2006.09.031] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2006] [Revised: 09/15/2006] [Accepted: 09/20/2006] [Indexed: 12/21/2022]
Abstract
Many different methodologies have been applied for the detection of S-nitrosothiols (RSNOs) in human biological fluids. One unsatisfactory outcome of the last 14 years of research focused on this issue is that a general consensus on reference values for physiological RSNO concentration in human blood is still missing. Consequently, both RSNO physiological function and their role in disease have not yet been clarified. Here, a summary of the values measured for RSNOs in erythrocytes, plasma, and other biological fluids is provided, together with a critical review of the most widely used analytical methods. Furthermore, some possible methodological drawbacks, responsible for the highlighted discrepancies, are evidenced.
Collapse
Affiliation(s)
- Daniela Giustarini
- Department of Neuroscience, Pharmacology Section, Via A. Moro 4, University of Siena, 53100 Siena, Italy
| | | | | | | |
Collapse
|
96
|
Romero JM, Bizzozero OA. Extracellular S-nitrosoglutathione, but not S-nitrosocysteine or N(2)O(3), mediates protein S-nitrosation in rat spinal cord slices. J Neurochem 2006; 99:1299-310. [PMID: 17018024 DOI: 10.1111/j.1471-4159.2006.04180.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is evidence that protein S-nitrosothiols (PrSNOs) accumulate in inflammatory demyelinating disorders like multiple sclerosis and experimental allergic encephalomyelitis. However, very little is known regarding the mechanism by which PrSNOs are formed in target cells. The present study compares the ability of potential intercellular mediators of nitrosative damage including S-nitrosoglutathione (GSNO), S-nitrosocysteine and N(2)O(3) to induce protein S-nitros(yl)ation in the spinal cord, a CNS region that is commonly affected in multiple sclerosis and experimental allergic encephalomyelitis. The results clearly demonstrate that while all three NO-donors cause S-nitrosation of proteins in cell-free systems, only GSNO is a viable S-nitrosating agent in rat spinal cord slices. Generation of PrSNOs with GSNO occurs by S-transnitrosation as the process was not inhibited by either the NO-scavenger rutin or the N(2)O(3)-scavenger azide. Contrary to other cell types, nerve cells incorporate intact GSNO and neither functional l-amino acid transporters nor cell-surface thiols are required. We also found that there is a restricted number of proteins available for S-nitrosation, even at high, non-physiological concentrations of GSNO. These proteins are highly concentrated in mitochondria and mitochondria-rich subcellular compartments. This study is relevant to those CNS disorders characterized by excessive nitric oxide production.
Collapse
Affiliation(s)
- Jorge M Romero
- Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
97
|
Sun J, Steenbergen C, Murphy E. S-nitrosylation: NO-related redox signaling to protect against oxidative stress. Antioxid Redox Signal 2006; 8:1693-705. [PMID: 16987022 PMCID: PMC2443861 DOI: 10.1089/ars.2006.8.1693] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitric oxide (NO) plays an important role in the regulation of cardiovascular function. S-nitrosylation, the covalent attachment of an NO moiety to sulfhydryl residues of proteins, resulting in the formation of S-nitrosothiols (SNOs), is a prevalent posttranslational protein modification involved in redox-based cellular signaling. Under physiologic conditions, protein S-nitrosylation and SNOs provide protection preventing further cellular oxidative and nitrosative stress. However, oxidative stress and the resultant dysfunction of NO signaling have been implicated in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
- Junhui Sun
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
98
|
West MB, Hill BG, Xuan YT, Bhatnagar A. Protein glutathiolation by nitric oxide: an intracellular mechanism regulating redox protein modification. FASEB J 2006; 20:1715-7. [PMID: 16809435 DOI: 10.1096/fj.06-5843fje] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study was designed to examine whether NO regulates protein glutathiolation. Exposure to NO donors increased protein glutathiolation in COS-7 or rat aortic smooth muscle cells as detected by anti-protein glutathione (GSH) antibodies. This process was reversible and saturable. Stimulation with acetylcholine (ACh) increased protein glutathiolation in isolated rat aortic rings. This was prevented by inhibiting endothelial NO synthase (eNOS). In ACh-treated rings, proteins showing positive immunoreactivity with the anti-PSSG antibody (Ab) were identified by matrix assisted laser desorption-time-of-flight mass spectrometry to be actin, vimentin, and heat shock protein 70. Purified actin was more readily glutathiolated by S-nitrosoglutathione than by oxidized GSH as determined by electrospray-ionization mass spectrometry, and nitrosylated actin was glutathiolated by reduced GSH. Relative to wild-type (WT) mice, increased protein glutathiolation was observed in hearts of mice with cardiac-specific expression of inducible NO synthase (iNOS). Proteins immunoprecipitated from transgenic hearts revealed GSH-adducted peptides corresponding to adenine nucleotide translocator and the alpha-subunit of F1F0ATPase. These data suggest that exogenous NO or NO generated by eNOS or iNOS regulates protein adduction with GSH. This could be due to a direct reaction of proteins with S-nitrosoglutathione or denitrosylation of S-nitrosylated proteins by reduced GSH. Glutathiolation of cytoskeletal and mitochondrial proteins may be a significant feature of NO bioreactivity.
Collapse
Affiliation(s)
- Matthew B West
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | |
Collapse
|
99
|
Eaton P. Protein thiol oxidation in health and disease: techniques for measuring disulfides and related modifications in complex protein mixtures. Free Radic Biol Med 2006; 40:1889-99. [PMID: 16716890 DOI: 10.1016/j.freeradbiomed.2005.12.037] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 12/06/2005] [Accepted: 12/11/2005] [Indexed: 11/23/2022]
Abstract
Oxidant species are known to contribute to disease and dysfunction in biological systems. However, evidence has been progressively accumulating that demonstrates a more fundamental role for many oxidant species in the regulation of everyday function of healthy cells. Redox dependent signaling events involving the post-translational, oxidative modification of proteins has now been accepted as an important regulatory process, although the full extent of such mechanisms is yet to be determined. Some protein cysteinyl thiols are known to be susceptible to a number of redox-dependent modifications, including an interchange between the reduced thiol and several different oxidized disulfide states. Here, the role of oxidants as regulatory entities is reviewed, as are the many different ways protein disulfide formation can be analysed in complex protein mixtures. This includes an overview of many of the Proteomic strategies that can be used to identify proteins that form disulfides when pro-oxidizing conditions arise in cells, as well as related methods for studying intermediates that may precede disulfide formation.
Collapse
Affiliation(s)
- Philip Eaton
- Department of Cardiology, Cardiovascular Division, The Rayne Institute, St Thomas' Hospital, King's College London, London SE1 7EH, UK.
| |
Collapse
|
100
|
Greco TM, Hodara R, Parastatidis I, Heijnen HFG, Dennehy MK, Liebler DC, Ischiropoulos H. Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci U S A 2006; 103:7420-5. [PMID: 16648260 PMCID: PMC1464354 DOI: 10.1073/pnas.0600729103] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
S-nitrosylation, the selective modification of cysteine residues in proteins to form S-nitrosocysteine, is a major emerging mechanism by which nitric oxide acts as a signaling molecule. Even though nitric oxide is intimately involved in the regulation of vascular smooth muscle cell functions, the potential protein targets for nitric oxide modification as well as structural features that underlie the specificity of protein S-nitrosocysteine formation in these cells remain unknown. Therefore, we used a proteomic approach using selective peptide capturing and site-specific adduct mapping to identify the targets of S-nitrosylation in human aortic smooth muscle cells upon exposure to S-nitrosocysteine and propylamine propylamine NONOate. This strategy identified 20 unique S-nitrosocysteine-containing peptides belonging to 18 proteins including cytoskeletal proteins, chaperones, proteins of the translational machinery, vesicular transport, and signaling. Sequence analysis of the S-nitrosocysteine-containing peptides revealed the presence of acid/base motifs, as well as hydrophobic motifs surrounding the identified cysteine residues. High-resolution immunogold electron microscopy supported the cellular localization of several of these proteins. Interestingly, seven of the 18 proteins identified are localized within the ER/Golgi complex, suggesting a role for S-nitrosylation in membrane trafficking and ER stress response in vascular smooth muscle.
Collapse
Affiliation(s)
- Todd M. Greco
- *Stokes Research Institute and Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
| | - Roberto Hodara
- *Stokes Research Institute and Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
| | - Ioannis Parastatidis
- *Stokes Research Institute and Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
| | - Harry F. G. Heijnen
- Thrombosis and Haemostasis Laboratory, Department of Cell Biology, University Medical Center Utrecht, and Institute for Biomembranes, 3584 CH, Utrecht, The Netherlands; and
| | - Michelle K. Dennehy
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Daniel C. Liebler
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Harry Ischiropoulos
- *Stokes Research Institute and Departments of Pediatrics and Pharmacology, Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA 19104
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|