51
|
Genetic diversity in Passiflora species assessed by morphological and its sequence analysis. ScientificWorldJournal 2014; 2014:598313. [PMID: 25050402 PMCID: PMC4090459 DOI: 10.1155/2014/598313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 11/28/2022] Open
Abstract
This study used morphological characterization and phylogenetic analysis of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA to investigate the phylogeny of Passiflora species. The samples were collected from various regions of East Malaysia, and discriminant function analysis based on linear combinations of morphological variables was used to classify the Passiflora species. The biplots generated five distinct groups discriminated by morphological variables. The group consisted of cultivars of P. edulis with high levels of genetic similarity; in contrast, P. foetida was highly divergent from other species in the morphological biplots. The final dataset of aligned sequences from nine studied Passiflora accessions and 30 other individuals obtained from GenBank database (NCBI) yielded one most parsimonious tree with two strongly supported clades. Maximum parsimony (MP) tree showed the phylogenetic relationships within this subgenus Passiflora support the classification at the series level. The constructed phylogenic tree also confirmed the divergence of P. foetida from all other species and the closeness of wild and cultivated species. The phylogenetic relationships were consistent with results of morphological assessments. The results of this study indicate that ITS region analysis represents a useful tool for evaluating genetic diversity in Passiflora at the species level.
Collapse
|
52
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
53
|
Patterns of Evolutionary Speed: In Search of a Causal Mechanism. DIVERSITY-BASEL 2013. [DOI: 10.3390/d5040811] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
54
|
Botero CA, Dor R, McCain CM, Safran RJ. Environmental harshness is positively correlated with intraspecific divergence in mammals and birds. Mol Ecol 2013; 23:259-68. [PMID: 24283535 DOI: 10.1111/mec.12572] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 12/01/2022]
Abstract
Life on Earth is conspicuously more diverse in the tropics. Although this intriguing geographical pattern has been linked to many biotic and abiotic factors, their relative importance and potential interactions are still poorly understood. The way in which latitudinal changes in ecological conditions influence evolutionary processes is particularly controversial, as there is evidence for both a positive and a negative latitudinal gradient in speciation rates. Here, we identify and address some methodological issues (how patterns are analysed and how latitude is quantified) that could lead to such conflicting results. To address these issues, we assemble a comprehensive data set of the environmental correlates of latitude (including climate, net primary productivity and habitat heterogeneity) and combine it with biological, historical and molecular data to explore global patterns in recent divergence events (subspeciation). Surprisingly, we find that the harsher conditions that typify temperate habitats (lower primary productivity, decreased rainfall and more variable and unpredictable temperatures) are positively correlated with greater subspecies richness in terrestrial mammals and birds. Thus, our findings indicate that intraspecific divergence is greater in regions with lower biodiversity, a pattern that is robust to both sampling variation and latitudinal biases in taxonomic knowledge. We discuss possible causal mechanisms for the link between environmental harshness and subspecies richness (faster rates of evolution, greater likelihood of range discontinuities and more opportunities for divergence) and conclude that this pattern supports recent indications that latitudinal gradients of diversity are maintained by simultaneously higher potentials for both speciation and extinction in temperate than tropical regions.
Collapse
Affiliation(s)
- Carlos A Botero
- Initiative in Biological Complexity, North Carolina State University, Raleigh, NC, 27695, USA.,Southeast Climate Science Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Roi Dor
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.,Department of Zoology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Christy M McCain
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Rebecca J Safran
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| |
Collapse
|
55
|
Pramual P, Adler PH. DNA barcoding of tropical black flies (Diptera: Simuliidae) of Thailand. Mol Ecol Resour 2013; 14:262-71. [PMID: 24112561 DOI: 10.1111/1755-0998.12174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/09/2013] [Accepted: 09/13/2013] [Indexed: 11/30/2022]
Abstract
The ecological and medical importance of black flies drives the need for rapid and reliable identification of these minute, structurally uniform insects. We assessed the efficiency of DNA barcoding for species identification of tropical black flies. A total of 351 cytochrome c oxidase subunit 1 sequences were obtained from 41 species in six subgenera of the genus Simulium in Thailand. Despite high intraspecific genetic divergence (mean = 2.00%, maximum = 9.27%), DNA barcodes provided 96% correct identification. Barcodes also differentiated cytoforms of selected species complexes, albeit with varying levels of success. Perfect differentiation was achieved for two cytoforms of Simulium feuerborni, and 91% correct identification was obtained for the Simulium angulistylum complex. Low success (33%), however, was obtained for the Simulium siamense complex. The differential efficiency of DNA barcodes to discriminate cytoforms was attributed to different levels of genetic structure and demographic histories of the taxa. DNA barcode trees were largely congruent with phylogenies based on previous molecular, chromosomal and morphological analyses, but revealed inconsistencies that will require further evaluation.
Collapse
Affiliation(s)
- Pairot Pramual
- Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Maha Sarakham, 44150, Thailand
| | | |
Collapse
|
56
|
Affiliation(s)
- Shane D. Wright
- School of Biological Sciences; University of Auckland; 22 Princes St; Auckland; 1010; New Zealand
| | - Klaus Rohde
- School of Environmental and Rural Sciences; University of New England; Elm Avenue; Armidale; NSW; 2351; Australia
| |
Collapse
|
57
|
Mitterboeck TF, Adamowicz SJ. Flight loss linked to faster molecular evolution in insects. Proc Biol Sci 2013; 280:20131128. [PMID: 23884090 PMCID: PMC3735250 DOI: 10.1098/rspb.2013.1128] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/02/2013] [Indexed: 12/19/2022] Open
Abstract
The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne.
Collapse
Affiliation(s)
- T Fatima Mitterboeck
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1.
| | | |
Collapse
|
58
|
Pyron RA, Wiens JJ. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc Biol Sci 2013; 280:20131622. [PMID: 24026818 DOI: 10.1098/rspb.2013.1622] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many groups show higher species richness in tropical regions but the underlying causes remain unclear. Despite many competing hypotheses to explain latitudinal diversity gradients, only three processes can directly change species richness across regions: speciation, extinction and dispersal. These processes can be addressed most powerfully using large-scale phylogenetic approaches, but most previous studies have focused on small groups and recent time scales, or did not separate speciation and extinction rates. We investigate the origins of high tropical diversity in amphibians, applying new phylogenetic comparative methods to a tree of 2871 species. Our results show that high tropical diversity is explained by higher speciation in the tropics, higher extinction in temperate regions and limited dispersal out of the tropics compared with colonization of the tropics from temperate regions. These patterns are strongly associated with climate-related variables such as temperature, precipitation and ecosystem energy. Results from models of diversity dependence in speciation rate suggest that temperate clades may have lower carrying capacities and may be more saturated (closer to carrying capacity) than tropical clades. Furthermore, we estimate strikingly low tropical extinction rates over geological time scales, in stark contrast to the dramatic losses of diversity occurring in tropical regions presently.
Collapse
Affiliation(s)
- R Alexander Pyron
- Department of Biological Sciences, The George Washington University, , 2023 G Street NW, Washington, DC 20052, USA, Department of Ecology and Evolutionary Biology, University of Arizona, , Tucson, AZ 85721-0088, USA
| | | |
Collapse
|
59
|
Bromham L, Cowman PF, Lanfear R. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol 2013; 13:126. [PMID: 23782527 PMCID: PMC3694452 DOI: 10.1186/1471-2148-13-126] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/05/2013] [Indexed: 11/26/2022] Open
Abstract
Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra, A.C.T. 0200, Australia.
| | | | | |
Collapse
|
60
|
Dowle EJ, Morgan-Richards M, Trewick SA. Molecular evolution and the latitudinal biodiversity gradient. Heredity (Edinb) 2013; 110:501-10. [PMID: 23486082 PMCID: PMC3656639 DOI: 10.1038/hdy.2013.4] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 12/18/2012] [Accepted: 01/08/2013] [Indexed: 12/13/2022] Open
Abstract
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
Collapse
Affiliation(s)
- E J Dowle
- Massey University, Palmerston North, New Zealand.
| | | | | |
Collapse
|
61
|
Taller plants have lower rates of molecular evolution. Nat Commun 2013; 4:1879. [DOI: 10.1038/ncomms2836] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 04/05/2013] [Indexed: 01/20/2023] Open
|
62
|
Jansson R, Rodríguez-Castañeda G, Harding LE. WHAT CAN MULTIPLE PHYLOGENIES SAY ABOUT THE LATITUDINAL DIVERSITY GRADIENT? A NEW LOOK AT THE TROPICAL CONSERVATISM, OUT OF THE TROPICS, AND DIVERSIFICATION RATE HYPOTHESES. Evolution 2013; 67:1741-55. [DOI: 10.1111/evo.12089] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Roland Jansson
- Department of Ecology and Environmental Science; Umeå University; SE-901 87 Umeå Sweden
| | | | - Larisa E. Harding
- Department of Ecology and Environmental Science; Umeå University; SE-901 87 Umeå Sweden
| |
Collapse
|
63
|
Duchene D, Bromham L. Rates of molecular evolution and diversification in plants: chloroplast substitution rates correlate with species-richness in the Proteaceae. BMC Evol Biol 2013; 13:65. [PMID: 23497266 PMCID: PMC3600047 DOI: 10.1186/1471-2148-13-65] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many factors have been identified as correlates of the rate of molecular evolution, such as body size and generation length. Analysis of many molecular phylogenies has also revealed correlations between substitution rates and clade size, suggesting a link between rates of molecular evolution and the process of diversification. However, it is not known whether this relationship applies to all lineages and all sequences. Here, in order to investigate how widespread this phenomenon is, we investigate patterns of substitution in chloroplast genomes of the diverse angiosperm family Proteaceae. We used DNA sequences from six chloroplast genes (6278bp alignment with 62 taxa) to test for a correlation between diversification and the rate of substitutions. RESULTS Using phylogenetically-independent sister pairs, we show that species-rich lineages of Proteaceae tend to have significantly higher chloroplast substitution rates, for both synonymous and non-synonymous substitutions. CONCLUSIONS We show that the rate of molecular evolution in chloroplast genomes is correlated with net diversification rates in this large plant family. We discuss the possible causes of this relationship, including molecular evolution driving diversification, speciation increasing the rate of substitutions, or a third factor causing an indirect link between molecular and diversification rates. The link between the synonymous substitution rate and clade size is consistent with a role for the mutation rate of chloroplasts driving the speed of reproductive isolation. We find no significant differences in the ratio of non-synonymous to synonymous substitutions between lineages differing in net diversification rate, therefore we detect no signal of population size changes or alteration in selection pressures that might be causing this relationship.
Collapse
Affiliation(s)
- David Duchene
- Centre for Macroevolution and Macroecology, Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, ACT, 0200, Australia.
| | | |
Collapse
|
64
|
Lourenço JM, Glémin S, Chiari Y, Galtier N. The determinants of the molecular substitution process in turtles. J Evol Biol 2012; 26:38-50. [PMID: 23176666 DOI: 10.1111/jeb.12031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 12/28/2022]
Abstract
Neutral rates of molecular evolution vary across species, and this variation has been shown to be related to biological traits. One of the first patterns to be observed in vertebrates has been an inverse relationship between body mass (BM) and substitution rates. The effects of three major life-history traits (LHT) that covary with BM - metabolic rate, generation time and longevity (LON) - have been invoked to explain this relationship. However, most of the theoretical and empirical evidence supporting this relationship comes from endothermic vertebrates, that is, mammals and birds, in which the environmental conditions, especially temperature, do not have a direct impact on cellular and molecular biology. We analysed the variations in mitochondrial and nuclear rates of synonymous substitution across 224 turtle species and examined their correlation with two LHT (LON and BM) and two environmental variables [latitude (LAT) and habitat]. Our analyses indicate that in turtles, neutral rates of molecular evolution are hardly correlated with LON or BM. Rather, both the mitochondrial and nuclear substitution rates are significantly correlated with LAT - faster evolution in the tropics - and especially so for aquatic species. These results question the generality of the relationships reported in mammals and birds and suggest that environmental factors might be the strongest determinants of the mutation rate in ectotherms.
Collapse
Affiliation(s)
- J M Lourenço
- Institut des Sciences de l'Evolution, Université Montpellier 2, Montpellier Cedex, France.
| | | | | | | |
Collapse
|
65
|
Renaud AK, Savage J, Adamowicz SJ. DNA barcoding of Northern Nearctic Muscidae (Diptera) reveals high correspondence between morphological and molecular species limits. BMC Ecol 2012; 12:24. [PMID: 23173946 PMCID: PMC3537539 DOI: 10.1186/1472-6785-12-24] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/16/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Various methods have been proposed to assign unknown specimens to known species using their DNA barcodes, while others have focused on using genetic divergence thresholds to estimate "species" diversity for a taxon, without a well-developed taxonomy and/or an extensive reference library of DNA barcodes. The major goals of the present work were to: a) conduct the largest species-level barcoding study of the Muscidae to date and characterize the range of genetic divergence values in the northern Nearctic fauna; b) evaluate the correspondence between morphospecies and barcode groupings defined using both clustering-based and threshold-based approaches; and c) use the reference library produced to address taxonomic issues. RESULTS Our data set included 1114 individuals and their COI sequences (951 from Churchill, Manitoba), representing 160 morphologically-determined species from 25 genera, covering 89% of the known fauna of Churchill and 23% of the Nearctic fauna. Following an iterative process through which all specimens belonging to taxa with anomalous divergence values and/or monophyly issues were re-examined, identity was modified for 9 taxa, including the reinstatement of Phaonia luteva (Walker) stat. nov. as a species distinct from Phaonia errans (Meigen). In the post-reassessment data set, no distinct gap was found between maximum pairwise intraspecific distances (range 0.00-3.01%) and minimum interspecific distances (range: 0.77-11.33%). Nevertheless, using a clustering-based approach, all individuals within 98% of species grouped with their conspecifics with high (>95%) bootstrap support; in contrast, a maximum species discrimination rate of 90% was obtained at the optimal threshold of 1.2%. DNA barcoding enabled the determination of females from 5 ambiguous species pairs and confirmed that 16 morphospecies were genetically distinct from named taxa. There were morphological differences among all distinct genetic clusters; thus, no cases of cryptic species were detected. CONCLUSIONS Our findings reveal the great utility of building a well-populated, species-level reference barcode database against which to compare unknowns. When such a library is unavailable, it is still possible to obtain a fairly accurate (within ~10%) rapid assessment of species richness based upon a barcode divergence threshold alone, but this approach is most accurate when the threshold is tuned to a particular taxon.
Collapse
Affiliation(s)
- Anaïs K Renaud
- Department of Entomology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
- Department of Biological Sciences, Bishop’s University, Sherbrooke, Québec J1M 1Z7, Canada
| | - Jade Savage
- Department of Biological Sciences, Bishop’s University, Sherbrooke, Québec J1M 1Z7, Canada
| | - Sarah J Adamowicz
- Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
66
|
Abstract
Two conflicting hypotheses have been proposed to explain large-scale species diversity patterns and dynamics. The unbounded hypothesis proposes that regional diversity depends only on time and diversification rate and increases without limit. The bounded hypothesis proposes that ecological constraints place upper limits on regional diversity and that diversity is usually close to its limit. Recent evidence from the fossil record, phylogenetic analysis, biogeography, and phenotypic disparity during lineage diversification suggests that diversity is constrained by ecological processes but that it is rarely asymptotic. Niche space is often unfilled or can be more finely subdivided and still permit coexistence, and new niche space is often created before ecological limits are reached. Damped increases in diversity over time are the prevalent pattern, suggesting the need for a new 'damped increase hypothesis'. The damped increase hypothesis predicts that diversity generally increases through time but that its rate of increase is often slowed by ecological constraints. However, slowing due to niche limitation must be distinguished from other possible mechanisms creating similar patterns. These include sampling artifacts, the inability to detect extinctions or declines in clade diversity with some methods, the distorting effects of correlated speciation-extinction dynamics, the likelihood that opportunities for allopatric speciation will vary in space and time, and the role of undetected natural enemies in reducing host ranges and thus slowing speciation rates. The taxonomic scope of regional diversity studies must be broadened to include all ecologically similar species so that ecological constraints may be accurately inferred. The damped increase hypothesis suggests that information on evolutionary processes such as time-for-speciation and intrinsic diversification rates as well as ecological factors will be required to explain why regional diversity varies among times, places and taxa.
Collapse
Affiliation(s)
- Howard V Cornell
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA.
| |
Collapse
|
67
|
Lasso E, Dalling JW, Bermingham E. Strong spatial genetic structure in five tropical Piper species: should the Baker-Fedorov hypothesis be revived for tropical shrubs? Ecol Evol 2012; 1:502-16. [PMID: 22393518 PMCID: PMC3287332 DOI: 10.1002/ece3.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker-Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200-750 m) populations showed significant genetic differentiation (Fst 0.11-0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03-0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus.
Collapse
|
68
|
|
69
|
Jetz W, Fine PVA. Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 2012; 10:e1001292. [PMID: 22479151 PMCID: PMC3313913 DOI: 10.1371/journal.pbio.1001292] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 02/16/2012] [Indexed: 11/25/2022] Open
Abstract
A novel hierarchical framework integrates the effects of time, area, productivity, and temperature at their respective relevant scales and successfully predicts the latitudinal gradient in global vertebrate diversity. Broad-scale geographic gradients in species richness have now been extensively documented, but their historical underpinning is still not well understood. While the importance of productivity, temperature, and a scale dependence of the determinants of diversity is broadly acknowledged, we argue here that limitation to a single analysis scale and data pseudo-replication have impeded an integrated evolutionary and ecological understanding of diversity gradients. We develop and apply a hierarchical analysis framework for global diversity gradients that incorporates an explicit accounting of past environmental variation and provides an appropriate measurement of richness. Due to environmental niche conservatism, organisms generally reside in climatically defined bioregions, or “evolutionary arenas,” characterized by in situ speciation and extinction. These bioregions differ in age and their total productivity and have varied over time in area and energy available for diversification. We show that, consistently across the four major terrestrial vertebrate groups, current-day species richness of the world's main 32 bioregions is best explained by a model that integrates area and productivity over geological time together with temperature. Adding finer scale variation in energy availability as an ecological predictor of within-bioregional patterns of richness explains much of the remaining global variation in richness at the 110 km grain. These results highlight the separate evolutionary and ecological effects of energy availability and provide a first conceptual and empirical integration of the key drivers of broad-scale richness gradients. Avoiding the pseudo-replication that hampers the evolutionary interpretation of non-hierarchical macroecological analyses, our findings integrate evolutionary and ecological mechanisms at their most relevant scales and offer a new synthesis regarding global diversity gradients. Understanding what determines the distribution of biodiversity across the planet remains one of the critical challenges in biology and has gained particular urgency in the face of environmental change and accelerating species extinctions. Our study develops a novel analytical framework to jointly evaluate historical and contemporary environmental predictors of the latitudinal gradient in the diversity of terrestrial vertebrates. The number of vertebrate species is greater in warm, productive biomes, such as tropical forests, that have both a large size and a long evolutionary history. Using just a few key predictor variables—time, area, productivity, and temperature—we are now able to explain more than 80% of the variability in biodiversity among bioregions. By integrating each of these factors at both the regional and local scale in a hierarchical model, we are able to provide a consensus explanation for broad-scale diversity gradients that encompasses both ecological and evolutionary mechanisms.
Collapse
Affiliation(s)
- Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.
| | | |
Collapse
|
70
|
ROSSER NEIL, PHILLIMORE ALBERTB, HUERTAS BLANCA, WILLMOTT KEITHR, MALLET JAMES. Testing historical explanations for gradients in species richness in heliconiine butterflies of tropical America. Biol J Linn Soc Lond 2012. [DOI: 10.1111/j.1095-8312.2011.01814.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
71
|
Premoli AC, Mathiasen P, Cristina Acosta M, Ramos VA. Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? THE NEW PHYTOLOGIST 2012; 193:261-275. [PMID: 21883239 DOI: 10.1111/j.1469-8137.2011.03861.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
• Here, we performed phylogenetic analyses and estimated the divergence times on mostly sympatric populations of five species within subgenus Nothofagus. We aimed to investigate whether phylogenetic relationships by nuclear internal transcribed spacer (ITS) and phylogeographic patterns by chloroplast DNA (cpDNA) mirror an ancient evolutionary history that was not erased by glacial eras. Extant species are restricted to Patagonia and share a pollen type that was formerly widespread in all southern land masses. Weak reproductive barriers exist among them. • Fifteen cpDNA haplotypes resulted from the analysis of three noncoding regions on 330 individuals with a total alignment of 1794 bp. Nuclear ITS data consisted of 822 bp. We found a deep cpDNA divergence dated 32 Ma at mid-latitudes of Patagonia that predates the phylogenetic divergence of extant taxa. Other more recent breaks by cpDNA occurred towards the north. • Complex paleogeographic features explain the genetic discontinuities. Long-lasting paleobasins and marine ingressions have impeded transoceanic dispersal during range expansion towards lower latitudes under cooler trends since the Oligocene. • Cycles of hybridization-introgression among extant and extinct taxa have resulted in widespread chloroplast capture events. Our data suggest that Nothofagus biogeography will be resolved only if thorough phylogeographic analyses and molecular dating methods are applied using distinct genetic markers.
Collapse
Affiliation(s)
- Andrea C Premoli
- Laboratorio Ecotono, Centro Regional Universitario Bariloche-Universidad Nacional Del Comahue and INIBIOMA-CONICET, Quintral 1250, 8400 Bariloche, Argentina
| | - Paula Mathiasen
- Laboratorio Ecotono, Centro Regional Universitario Bariloche-Universidad Nacional Del Comahue and INIBIOMA-CONICET, Quintral 1250, 8400 Bariloche, Argentina
| | - M Cristina Acosta
- Laboratorio Ecotono, Centro Regional Universitario Bariloche-Universidad Nacional Del Comahue and INIBIOMA-CONICET, Quintral 1250, 8400 Bariloche, Argentina
| | - Victor A Ramos
- Laboratorio de Tectónica Andina, Departamento de Geología, Universidad de Buenos Aires, Pabellón 2 Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
72
|
Aguirre-Planter É, Jaramillo-Correa JP, Gómez-Acevedo S, Khasa DP, Bousquet J, Eguiarte LE. Phylogeny, diversification rates and species boundaries of Mesoamerican firs (Abies, Pinaceae) in a genus-wide context. Mol Phylogenet Evol 2012; 62:263-74. [DOI: 10.1016/j.ympev.2011.09.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/26/2011] [Accepted: 09/28/2011] [Indexed: 11/27/2022]
|
73
|
Gaut B, Yang L, Takuno S, Eguiarte LE. The Patterns and Causes of Variation in Plant Nucleotide Substitution Rates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2011. [DOI: 10.1146/annurev-ecolsys-102710-145119] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brandon Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Liang Yang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Shohei Takuno
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697; , ,
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, CP 04510 Mexico City, Mexico;
| |
Collapse
|
74
|
Carnicer J, Brotons L, Stefanescu C, Peñuelas J. Biogeography of species richness gradients: linking adaptive traits, demography and diversification. Biol Rev Camb Philos Soc 2011; 87:457-79. [PMID: 22129434 DOI: 10.1111/j.1469-185x.2011.00210.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here we review how adaptive traits contribute to the emergence and maintenance of species richness gradients through their influence on demographic and diversification processes. We start by reviewing how demographic dynamics change along species richness gradients. Empirical studies show that geographical clines in population parameters and measures of demographic variability are frequent along latitudinal and altitudinal gradients. Demographic variability often increases at the extremes of regional species richness gradients and contributes to shape these gradients. Available studies suggest that adaptive traits significantly influence demographic dynamics, and set the limits of species distributions. Traits related to thermal tolerance, resource use, phenology and dispersal seem to play a significant role. For many traits affecting demography and/or diversification processes, complex mechanistic approaches linking genotype, phenotype and fitness are becoming progressively available. In several taxa, species can be distributed along adaptive trait continuums, i.e. a main axis accounting for the bulk of inter-specific variation in some correlated adaptive traits. It is shown that adaptive trait continuums can provide useful mechanistic frameworks to explain demographic dynamics and diversification in species richness gradients. Finally, we review the existence of sequences of adaptive traits in phylogenies, the interactions of adaptive traits and community context, the clinal variation of traits across geographical gradients, and the role of adaptive traits in determining the history of dispersal and diversification of clades. Overall, we show that the study of demographic and evolutionary mechanisms that shape species richness gradients clearly requires the explicit consideration of adaptive traits. To conclude, future research lines and trends in the field are briefly outlined.
Collapse
Affiliation(s)
- Jofre Carnicer
- Community and Conservation Ecology Group, Centre for Life Sciences, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| | | | | | | |
Collapse
|
75
|
Rupprecht CE, Turmelle A, Kuzmin IV. A perspective on lyssavirus emergence and perpetuation. Curr Opin Virol 2011; 1:662-70. [PMID: 22440925 DOI: 10.1016/j.coviro.2011.10.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 10/14/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
Abstract
Rabies is propagated globally by viruses in the Family Rhabdoviridae, Genus Lyssavirus. These RNA viruses utilize the mammalian central nervous system as their ultimate niche, and exploit routine social mechanisms, as well as host behavioral alterations, to facilitate transmission by neural transport and innervations of the salivary glands, and ultimately excretion via the saliva, towards circulation thereafter in host populations. All mammals are susceptible to infection, but lyssavirus reservoirs are represented by several species of Carnivora, with viral global diversity and distribution in toto driven by a wide variety of the Chiroptera. Pathogen diversity is maintained by multiple faunas, and facilitated by pronounced host vagility, as exemplified by the ease of routine daily and seasonal movements by bats. Viral 'ensembles', or subpopulations associated with productive transmission events, emerge locally in vivo through a combination of naive host infections in some individuals versus acquired immunity by others, using complex metapopulation dynamics. Enhanced surveillance, improved diagnostics, increased pathogen detection, and an integrated One Health approach, targeting human, domestic animal and wildlife interfaces, provide modern insights to the ecology of bat lyssaviruses to augment future prevention and control.
Collapse
|
76
|
Stegen JC, Ferriere R, Enquist BJ. Evolving ecological networks and the emergence of biodiversity patterns across temperature gradients. Proc Biol Sci 2011; 279:1051-60. [PMID: 21937497 DOI: 10.1098/rspb.2011.1733] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In ectothermic organisms, it is hypothesized that metabolic rates mediate influences of temperature on the ecological and evolutionary processes governing biodiversity. However, it is unclear how and to what extent the influence of temperature on metabolism scales up to shape large-scale diversity patterns. In order to clarify the roles of temperature and metabolism, new theory is needed. Here, we establish such theory and model eco-evolutionary dynamics of trophic networks along a broad temperature gradient. In the model temperature can influence, via metabolism, resource supply, consumers' vital rates and mutation rate. Mutation causes heritable variation in consumer body size, which diversifies and governs consumer function in the ecological network. The model predicts diversity to increase with temperature if resource supply is temperature-dependent, whereas temperature-dependent consumer vital rates cause diversity to decrease with increasing temperature. When combining both thermal dependencies, a unimodal temperature-diversity pattern evolves, which is reinforced by temperature-dependent mutation rate. Studying coexistence criteria for two consumers showed that these outcomes are owing to temperature effects on mutual invasibility and facilitation. Our theory shows how and why metabolism can influence diversity, generates predictions useful for understanding biodiversity gradients and represents an extendable framework that could include factors such as colonization history and niche conservatism.
Collapse
Affiliation(s)
- James C Stegen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | | | |
Collapse
|
77
|
Popovkin AV, Mathews KG, Santos JCM, Molina MC, Struwe L. Spigelia genuflexa (Loganiaceae), a new geocarpic species from the Atlantic forest of northeastern Bahia, Brazil. PHYTOKEYS 2011; 6:47-56. [PMID: 22287919 PMCID: PMC3261033 DOI: 10.3897/phytokeys.6.1654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 09/12/2011] [Indexed: 05/24/2023]
Abstract
A new species of Spigelia L. (Loganiaceae), Spigelia genuflexa Popovkin & Struwe, sp. n., from the Atlantic forest of northeastern Bahia, Brazil, is described, being the first reported geocarpic species in the family. During fruit maturation, the basal infructescences bend down towards the ground, depositing the fruit on the surface (and burying it in soft kinds of ground cover, e.g., moss), whereas the upper ones do so slightly but noticeably. The species is a short-lived annual apparently restricted to sandy-soil habitat of the Atlantic forest of northeastern Bahia, with variable and heterogeneous microenvironment and is known from only two restricted localities. A short review of amphi- and geocarpic species is provided. A discussion of comparative morphology within Spigelia with regards to dwarfism, indumentum, and annual habit is included. A phylogenetic parsimony and Bayesian analysis of ITS sequences from 15 Spigelia species plus 17 outgroups in Loganiaceae confirms its independent taxonomic status: on the basis of sequence similarity and phylogenetic topology it is phylogenetically distinct from all Spigelia species sequenced so far.
Collapse
Affiliation(s)
| | - Katherine G. Mathews
- Department of Biology, 132 Natural Science Building, Western Carolina University, Cullowhee, NC 28723, USA
| | | | - M. Carmen Molina
- Área de Biodiversidad y Conservación, Departamento de Biología y Geología, ESCET, URJC Móstoles, 28939 Madrid, Spain
| | - Lena Struwe
- Dept. of Ecology, Evolution, & Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
- Dept. of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
78
|
Costello MJ, Wilson S, Houlding B. Predicting Total Global Species Richness Using Rates of Species Description and Estimates of Taxonomic Effort. Syst Biol 2011; 61:871-83. [PMID: 21856630 DOI: 10.1093/sysbio/syr080] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mark J. Costello
- Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth, New Zealand; and 2Discipline of Statistics, Trinity College Dublin, Dublin 2, Ireland; E-mail: ;
| | - Simon Wilson
- Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth, New Zealand; and 2Discipline of Statistics, Trinity College Dublin, Dublin 2, Ireland; E-mail: ;
| | - Brett Houlding
- Leigh Marine Laboratory, University of Auckland, PO Box 349, Warkworth, New Zealand; and 2Discipline of Statistics, Trinity College Dublin, Dublin 2, Ireland; E-mail: ;
| |
Collapse
|
79
|
Amado MV, Farias IP, Hrbek T. A molecular perspective on systematics, taxonomy and classification amazonian discus fishes of the genus symphysodon. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2011; 2011:360654. [PMID: 21811676 PMCID: PMC3147135 DOI: 10.4061/2011/360654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/02/2011] [Indexed: 11/20/2022]
Abstract
With the goal of contributing to the taxonomy and systematics of the Neotropical cichlid fishes of the genus Symphysodon, we analyzed 336 individuals from 24 localities throughout the entire distributional range of the genus. We analyzed variation at 13 nuclear microsatellite markers, and subjected the data to Bayesian analysis of genetic structure. The results indicate that Symphysodon is composed of four genetic groups: group PURPLE—phenotype Heckel and abacaxi; group GREEN—phenotype green; group RED—phenotype blue and brown; and group PINK—populations of Xingú and Cametá. Although the phenotypes blue and brown are predominantly biological group RED, they also have substantial contributions from other biological groups, and the patterns of admixture of the two phenotypes are different. The two phenotypes are further characterized by distinct and divergent mtDNA haplotype groups, and show differences in mean habitat use measured as pH and conductivity. Differences in mean habitat use is also observed between most other biological groups. We therefore conclude that Symphysodon comprises five evolutionary significant units: Symphysodon discus (Heckel and abacaxi phenotypes), S. aequifasciatus (brown phenotype), S. tarzoo (green phenotype), Symphysodon sp. 1 (blue phenotype) and Symphysodon sp. 2 (Xingú group).
Collapse
Affiliation(s)
- Manuella Villar Amado
- Laboratório de Evolução e Genética Animal, Departamento de Biologia, Universidade Federal do Amazonas, Avenida Rodrigo Octávio Jordão Ramos, 3000, 69077-000 Manaus, AM, Brazil
| | | | | |
Collapse
|
80
|
References. COMMUNITY ECOL 2011. [DOI: 10.1002/9781444341966.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
81
|
Cooper N, Purvis A. What factors shape rates of phenotypic evolution? A comparative study of cranial morphology of four mammalian clades. J Evol Biol 2011; 22:1024-35. [PMID: 21462402 DOI: 10.1111/j.1420-9101.2009.01714.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Understanding why rates of morphological evolution vary is a major goal in evolutionary biology. Classical work suggests that body size, interspecific competition, geographic range size and specialization may all be important, and each may increase or decrease rates of evolution. Here, we investigate correlates of proportional evolutionary rates in phalangeriform possums, phyllostomid bats, platyrrhine monkeys and marmotine squirrels, using phylogenetic comparative methods. We find that the most important correlate is body size. Large species evolve the fastest in all four clades, and there is a nonlinear relationship in platyrrhines and phalangeriformes, with the slowest evolution in species of intermediate size. We also find significant increases in rate with high environmental temperature in phyllostomids, and low mass-specific metabolic rate in marmotine squirrels. The mechanisms underlying these correlations are uncertain and appear to be size specific. We conclude that there is significant variation in rates of evolution, but that its meaning is not yet clear.
Collapse
Affiliation(s)
- N Cooper
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, UK.
| | | |
Collapse
|
82
|
Weir JT, Price TD. Limits to Speciation Inferred from Times to Secondary Sympatry and Ages of Hybridizing Species along a Latitudinal Gradient. Am Nat 2011; 177:462-9. [DOI: 10.1086/658910] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
83
|
Abstract
How does genome evolution affect the rate of diversification of biological lineages? Recent studies have suggested that the overall rate of genome evolution is correlated with the rate of diversification. If true, this claim has important consequences for understanding the process of diversification, and implications for the use of DNA sequence data to reconstruct evolutionary history. However, the generality and cause of this relationship have not been established. Here, we test the relationship between the rate of molecular evolution and net diversification with a 19-gene, 17-kb DNA sequence dataset from 64 families of birds. We show that rates of molecular evolution are positively correlated to net diversification in birds. Using a 7.6-kb dataset of protein-coding DNA, we show that the synonymous substitution rate, and therefore the mutation rate, is correlated to net diversification. Further analysis shows that the link between mutation rates and net diversification is unlikely to be the indirect result of correlations with life-history variables that may influence both quantities, suggesting that there might be a causal link between mutation rates and net diversification.
Collapse
|
84
|
Lanfear R. THE LOCAL-CLOCK PERMUTATION TEST: A SIMPLE TEST TO COMPARE RATES OF MOLECULAR EVOLUTION ON PHYLOGENETIC TREES. Evolution 2010; 65:606-11. [DOI: 10.1111/j.1558-5646.2010.01160.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
85
|
Ley AC, Hardy OJ. Species delimitation in the Central African herbs Haumania (Marantaceae) using georeferenced nuclear and chloroplastic DNA sequences. Mol Phylogenet Evol 2010; 57:859-67. [PMID: 20813193 DOI: 10.1016/j.ympev.2010.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/19/2010] [Accepted: 08/24/2010] [Indexed: 11/29/2022]
Abstract
Species delimitation is a fundamental biological concept which is frequently discussed and altered to integrate new insights. These revealed that speciation is not a one step phenomenon but an ongoing process and morphological characters alone are not sufficient anymore to properly describe the results of this process. Here we want to assess the degree of speciation in two closely related lianescent taxa from the tropical African genus Haumania which display distinct vegetative traits despite a high similarity in reproductive traits and a partial overlap in distribution area which might facilitate gene flow. To this end, we combined phylogenetic and phylogeographic analyses using nuclear (nr) and chloroplast (cp) DNA sequences in comparison to morphological species descriptions. The nuclear dataset unambiguously supports the morphological species concept in Haumania. However, the main chloroplastic haplotypes are shared between species and, although a geographic analysis of cpDNA diversity confirms that individuals from the same taxon are more related than individuals from distinct taxa, cp-haplotypes display correlated geographic distributions between species. Hybridization is the most plausible reason for this pattern. A scenario involving speciation in geographic isolation followed by range expansion is outlined. The study highlights the gain of information on the speciation process in Haumania by adding georeferenced molecular data to the morphological characteristics. It also shows that nr and cp sequence data might provide different but complementary information, questioning the reliability of the unique use of chloroplast data for species recognition by DNA barcoding.
Collapse
Affiliation(s)
- A C Ley
- Evolutionary Biology and Ecology, CP160/12, Faculté des Sciences, Université Libre de Bruxelles, 50 Av. F. Roosevelt, 1050 Bruxelles, Belgium.
| | | |
Collapse
|
86
|
Lanfear R, Welch JJ, Bromham L. Watching the clock: Studying variation in rates of molecular evolution between species. Trends Ecol Evol 2010; 25:495-503. [DOI: 10.1016/j.tree.2010.06.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
|
87
|
Wright SD, Ross HA, Jeanette Keeling D, McBride P, Gillman LN. Thermal energy and the rate of genetic evolution in marine fishes. Evol Ecol 2010. [DOI: 10.1007/s10682-010-9416-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
88
|
Abstract
Body size correlates with virtually every aspect of species biology, so understanding the tempo and mode of its evolution is of key importance in macroecology and macroevolution. Here we use body mass data from 3,473 of 4,510 extant mammalian species and an almost complete species-level phylogeny to determine the best model of log(body mass) evolution across all mammals, split taxonomically and spatially. An early-burst model fits better across all mammals than do models based on either Brownian motion or an Ornstein-Uhlenbeck process, suggesting that mammals experienced a burst of morphological evolution relatively early in their history that was followed by slower change. We also use spatial models to investigate rates of body mass evolution within ecoregions. These models show that around 50% of the variation in rate can be explained by just a few predictors. High estimated rates are associated with cold, low-lying, species-poor, high-energy, mainland ecoregions. We conclude that the evolution of mammalian body size has been influenced by a complex interplay among geography, climate, and history.
Collapse
Affiliation(s)
- Natalie Cooper
- Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, United Kingdom.
| | | |
Collapse
|
89
|
Evolvability and Speed of Evolutionary Algorithms in Light of Recent Developments in Biology. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/568375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological and artificial evolutionary systems exhibit varying degrees of evolvability and different rates of evolution. Such quantities can be affected by various factors. Here, we review some evolutionary mechanisms and discuss new developments in biology that can potentially improve evolvability or accelerate evolution in artificial systems. Biological notions are discussed to the degree they correspond to notions in Evolutionary Computation. We hope that the findings put forward here can be used to design computational models of evolution that produce significant gains in evolvability and evolutionary speed.
Collapse
|
90
|
Lancaster LT. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol Biol 2010; 10:162. [PMID: 20515493 PMCID: PMC2901258 DOI: 10.1186/1471-2148-10-162] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A positive relationship between diversification (i.e., speciation) and nucleotide substitution rates is commonly reported for angiosperm clades. However, the underlying cause of this relationship is often unknown because multiple intrinsic and extrinsic factors can affect the relationship, and these have confounded previous attempts infer causation. Determining which factor drives this oft-reported correlation can lend insight into the macroevolutionary process. RESULTS Using a new database of 13 time-calibrated angiosperm phylogenies based on internal transcribed spacer (ITS) sequences, and controlling for extrinsic variables of life history and habitat, I evaluated several potential intrinsic causes of this correlation. Speciation rates (lambda) and relative extinction rates (epsilon) were positively correlated with mean substitution rates, but were uncorrelated with substitution rate heterogeneity. It is unlikely that the positive diversification-substitution correlation is due to accelerated molecular evolution during speciation (e.g., via enhanced selection or drift), because punctuated increases in ITS rate (i.e., greater mean and variation in ITS rate for rapidly speciating clades) were not observed. Instead, fast molecular evolution likely increases speciation rate (via increased mutational variation as a substrate for selection and reproductive isolation) but also increases extinction (via mutational genetic load). CONCLUSIONS In general, these results predict that clades with higher background substitution rates may undergo successful diversification under new conditions while clades with lower substitution rates may experience decreased extinction during environmental stasis.
Collapse
Affiliation(s)
- Lesley T Lancaster
- National Center for Ecological Analysis and Synthesis, 735 State St,, Suite 300, Santa Barbara, CA 93101, USA.
| |
Collapse
|
91
|
Gillman LN, Keeling DJ, Gardner RC, Wright SD. Faster evolution of highly conserved DNA in tropical plants. J Evol Biol 2010; 23:1327-30. [PMID: 20456565 DOI: 10.1111/j.1420-9101.2010.01992.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A faster rate of nuclear DNA evolution has recently been found for plants occupying warmer low latitudes relative to those in cooler high latitudes. That earlier study by our research group compared substitution rates within the variable internal transcribed spacer (ITS) region of the ribosomal gene complex amongst 45 congeneric species pairs, each member of which differed in their latitudinal distributions. To determine whether this rate differential might also occur within highly conserved DNA, we sequenced the 18S ribosomal gene in the same 45 pairs of plants. We found that the rate of evolution in 18S was 51% faster in the tropical plant species relative to their temperate sisters and that the substitution rate in 18S correlated positively with that in the more variable ITS. This result, with a gene coding for ribosomal structure, suggests that climatic influences on evolution extend to functionally important regions of the genome.
Collapse
Affiliation(s)
- Len N Gillman
- School of Applied Science, Auckland University of Technology, Auckland, New Zealand.
| | | | | | | |
Collapse
|
92
|
Goldie X, Gillman L, Crisp M, Wright S. Evolutionary speed limited by water in arid Australia. Proc Biol Sci 2010; 277:2645-53. [PMID: 20410038 DOI: 10.1098/rspb.2010.0439] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The covariation of biodiversity with climate is a fundamental pattern in nature. However, despite the ubiquity of this relationship, a consensus on the ultimate cause remains elusive. The evolutionary speed hypothesis posits direct mechanistic links between ambient temperature, the tempo of micro-evolution and, ultimately, species richness. Previous research has demonstrated faster rates of molecular evolution in warmer climates for a broad range of poikilothermic and homeothermic organisms, in both terrestrial and aquatic environments. In terrestrial systems, species richness increases with both temperature and water availability and the interaction of those terms: productivity. However, the influence of water availability as an independent variable on micro-evolutionary processes has not been examined previously. Here, using methodology that limits the potentially confounding role of cladogenetic and demographic processes, we report, to our knowledge, the first evidence that woody plants living in the arid Australian Outback are evolving more slowly than related species growing at similar latitudes in moist habitats on the mesic continental margins. These results support a modified evolutionary speed explanation for the relationship between the water-energy balance and plant diversity patterns.
Collapse
Affiliation(s)
- Xavier Goldie
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland 1020, New Zealand.
| | | | | | | |
Collapse
|
93
|
McGaughran A, Holland BR. Testing the effect of metabolic rate on DNA variability at the intra-specific level. PLoS One 2010; 5:e9686. [PMID: 20300626 PMCID: PMC2837744 DOI: 10.1371/journal.pone.0009686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/23/2010] [Indexed: 11/19/2022] Open
Abstract
We tested the metabolic rate hypothesis (whereby rates of mtDNA evolution are postulated to be mediated primarily by mutagenic by-products of respiration) by examining whether mass-specific metabolic rate was correlated with root-to-tip distance on a set of mtDNA trees for the springtail Cryptopygus antarcticus travei from sub-Antarctic Marion Island.Using Bayesian analyses and a novel application of the comparative phylogenetic method, we did not find significant evidence that contemporary metabolic rates directly correlate with mutation rate (i.e., root-to-tip distance) once the underlying phylogeny is taken into account. However, we did find significant evidence that metabolic rate is dependent on the underlying mtDNA tree, or in other words, lineages with related mtDNA also have similar metabolic rates.We anticipate that future analyses which apply this methodology to datasets with longer sequences, more taxa, or greater variability will have more power to detect a significant direct correlation between metabolic rate and mutation rate. We conclude with suggestions for future analyses that would extend the preliminary approach applied here, in particular highlighting ways to tease apart oxidative stress effects from the effects of population size and/or selection coefficients operating on the molecular evolutionary rate.
Collapse
Affiliation(s)
- Angela McGaughran
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | |
Collapse
|
94
|
Martin PR, Montgomerie R, Lougheed SC. RAPID SYMPATRY EXPLAINS GREATER COLOR PATTERN DIVERGENCE IN HIGH LATITUDE BIRDS. Evolution 2010; 64:336-47. [DOI: 10.1111/j.1558-5646.2009.00831.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
95
|
The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Antonie van Leeuwenhoek 2009; 97:155-70. [DOI: 10.1007/s10482-009-9399-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
96
|
Wright SD, Gillman LN, Ross HA, Keeling DJ. SLOWER TEMPO OF MICROEVOLUTION IN ISLAND BIRDS: IMPLICATIONS FOR CONSERVATION BIOLOGY. Evolution 2009; 63:2275-87. [DOI: 10.1111/j.1558-5646.2009.00717.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
97
|
Abstract
In general, rapid morphological change in mammals has been infrequently documented. Examples that do exist are almost exclusively of rodents on islands. Such changes are usually attributed to selective release or founder events related to restricted gene flow in island settings. Here we document rapid morphological changes in rodents in 20 of 28 museum series collected on four continents, including 15 of 23 mainland sites. Approximately 17,000 measurements were taken of 1302 rodents. Trends included both increases and decreases in the 15 morphological traits measured, but slightly more trends were towards larger size. Generalized linear models indicated that changes in several of the individual morphological traits were associated with changes in human population density, current temperature gradients, and/or trends in temperature and precipitation. When we restricted these analyses to samples taken in the US (where data on human population trends were presumed to be more accurate), we found changes in two additional traits to be positively correlated with changes in human population density. Principle component analysis revealed general trends in cranial and external size, but these general trends were uncorrelated with climate or human population density. Our results indicate that over the last 100+ years, rapid morphological change in rodents has occurred quite frequently, and that these changes have taken place on the mainland as well as on islands. Our results also suggest that these changes may be driven, at least in part, by human population growth and climate change.
Collapse
|
98
|
|
99
|
Gillman LN, Keeling DJ, Ross HA, Wright SD. Latitude, elevation and the tempo of molecular evolution in mammals. Proc Biol Sci 2009; 276:3353-9. [PMID: 19556254 DOI: 10.1098/rspb.2009.0674] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Faster rates of microevolution have been recorded for plants and marine foraminifera occupying warmer low latitude environments relative to those occurring at higher latitudes. By contrast, because this rate heterogeneity has been attributed to a relationship between thermal habit and mutagenesis via a body temperature linkage, it has been assumed that microevolution in mammals should not also vary systematically with environmental temperature. However, this assumption has not previously been empirically examined. In this study, we tested for a thermally mediated influence on the tempo of microevolution among mammals using a comprehensive global dataset that included 260 mammal species, from 10 orders and 29 families. In contrast to theoretical predictions, we found that substitution rates in the cytochrome b gene have been substantially faster for species living in warmer latitudes and elevations relative to sister species living in cooler habitats. These results could not be attributed to factors otherwise thought to influence rates of microevolution, such as body mass differentials or genetic drift. Instead, the results indicate that the tempo of microevolution among mammals is either responding directly to the thermal environment or indirectly via an ecological mechanism such as the 'Red Queen' effect.
Collapse
Affiliation(s)
- Len N Gillman
- School of Applied Science, Auckland University of Technology, Auckland 1020, New Zealand.
| | | | | | | |
Collapse
|
100
|
Abstract
Despite hopes that the processes of molecular evolution would be simple, clock-like and essentially universal, variation in the rate of molecular evolution is manifest at all levels of biological organization. Furthermore, it has become clear that rate variation has a systematic component: rate of molecular evolution can vary consistently with species body size, population dynamics, lifestyle and location. This suggests that the rate of molecular evolution should be considered part of life-history variation between species, which must be taken into account when interpreting DNA sequence differences between lineages. Uncovering the causes and correlates of rate variation may allow the development of new biologically motivated models of molecular evolution that may improve bioinformatic and phylogenetic analyses.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Botony and Zoology, School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| |
Collapse
|