51
|
A Primary Cortical Input to Hippocampus Expresses a Pathway-Specific and Endocannabinoid-Dependent Form of Long-Term Potentiation. eNeuro 2016; 3:eN-NWR-0160-16. [PMID: 27517090 PMCID: PMC4976302 DOI: 10.1523/eneuro.0160-16.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 02/03/2023] Open
Abstract
The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), a key modulator of synaptic transmission in mammalian brain, is produced in dendritic spines and then crosses the synaptic junction to depress neurotransmitter release. Here we report that 2-AG-dependent retrograde signaling also mediates an enduring enhancement of glutamate release, as assessed with independent tests, in the lateral perforant path (LPP), one of two cortical inputs to the granule cells of the dentate gyrus. Induction of this form of long-term potentiation (LTP) involved two types of glutamate receptors, changes in postsynaptic calcium, and the postsynaptic enzyme that synthesizes 2-AG. Stochastic optical reconstruction microscopy confirmed that CB1 cannabinoid receptors are localized presynaptically to LPP terminals, while the inhibition or knockout of the receptors eliminated LPP-LTP. Suppressing the enzyme that degrades 2-AG dramatically enhanced LPP potentiation, while overexpressing it produced the opposite effect. Priming with a CB1 agonist markedly reduced the threshold for LTP. Latrunculin A, which prevents actin polymerization, blocked LPP-LTP when applied extracellularly but had no effect when infused postsynaptically into granule cells, indicating that critical actin remodeling resides in the presynaptic compartment. Importantly, there was no evidence for the LPP form of potentiation in the Schaffer-commissural innervation of field CA1 or in the medial perforant path. Peripheral injections of compounds that block or enhance LPP-LTP had corresponding effects on the formation of long-term memory for cues conveyed to the dentate gyrus by the LPP. Together, these results indicate that the encoding of information carried by a principal hippocampal afferent involves an unusual, regionally differentiated form of plasticity.
Collapse
|
52
|
Liu Y, Sun J, Wang Y, Lopez D, Tran J, Bi X, Baudry M. Deleting both PHLPP1 and CANP1 rescues impairments in long-term potentiation and learning in both single knockout mice. ACTA ACUST UNITED AC 2016; 23:399-404. [PMID: 27421891 PMCID: PMC4947237 DOI: 10.1101/lm.042721.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 11/25/2022]
Abstract
Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation- (TBS) induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression impairs hippocampus-dependent learning. We previously showed that TBS-induced LTP was associated with calpain-1 mediated truncation of PHLPP1.To better understand the roles of these 2 genes in synaptic plasticity and learning and memory, we generated a double knockout (DKO) mouse by crossing the parent strains. Surprisingly, DKO mice exhibit normal TBS-induced LTP, and the learning impairments in fear conditioning and novel object or novel location recognition were absent in the DKO mice. Moreover, TBS-induced ERK activation in field CA1 of hippocampal slices, which is impaired in both single deletion mice, was restored in the DKO mice. These results further strengthen the roles of both CANP1 and PHLPP1 in synaptic plasticity and learning and memory, and illustrate the complexities of the interactions between multiple pathways participating in synaptic plasticity.
Collapse
Affiliation(s)
- Yan Liu
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Jiandong Sun
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yubin Wang
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Dulce Lopez
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| | - Jennifer Tran
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Xiaoning Bi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
53
|
Korte M, Schmitz D. Cellular and System Biology of Memory: Timing, Molecules, and Beyond. Physiol Rev 2016; 96:647-93. [PMID: 26960344 DOI: 10.1152/physrev.00010.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The storage of information in the mammalian nervous systems is dependent on a delicate balance between change and stability of neuronal networks. The induction and maintenance of processes that lead to changes in synaptic strength to a multistep process which can lead to long-lasting changes, which starts and ends with a highly choreographed and perfectly timed dance of molecules in different cell types of the central nervous system. This is accompanied by synchronization of specific networks, resulting in the generation of characteristic "macroscopic" rhythmic electrical fields, whose characteristic frequencies correspond to certain activity and information-processing states of the brain. Molecular events and macroscopic fields influence each other reciprocally. We review here cellular processes of synaptic plasticity, particularly functional and structural changes, and focus on timing events that are important for the initial memory acquisition, as well as mechanisms of short- and long-term memory storage. Then, we cover the importance of epigenetic events on the long-time range. Furthermore, we consider how brain rhythms at the network level participate in processes of information storage and by what means they participating in it. Finally, we examine memory consolidation at the system level during processes of sleep.
Collapse
Affiliation(s)
- Martin Korte
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dietmar Schmitz
- Zoological Institute, Division of Cellular Neurobiology, Braunschweig, Germany; Helmholtz Centre for Infection Research, AG NIND, Braunschweig, Germany; and Neuroscience Research Centre, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
54
|
Abstract
Although calpain was proposed to participate in synaptic plasticity and learning and memory more than 30 years ago, the mechanisms underlying its activation and the roles of different substrates have remained elusive. Recent findings have provided evidence that the two major calpain isoforms in the brain, calpain-1 and calpain-2, play opposite functions in synaptic plasticity. In particular, while calpain-1 activation is the initial trigger for certain forms of synaptic plasticity, that is, long-term potentiation, calpain-2 activation restricts the extent of plasticity. Moreover, while calpain-1 rapidly cleaves regulatory and cytoskeletal proteins, calpain-2-mediated stimulation of local protein synthesis reestablishes protein homeostasis. These findings have important implications for our understanding of learning and memory and disorders associated with impairment in these processes.
Collapse
Affiliation(s)
- Victor Briz
- 1 KU Leuven, Center for Human Genetics and Leuven Institute for Neuroscience and Disease, Leuven, Belgium
- 2 VIB Center for the Biology of Disease, Leuven, Belgium
| | - Michel Baudry
- 3 Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
55
|
I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research. Neuropsychopharmacology 2016; 41:1439-46. [PMID: 26576740 PMCID: PMC4832023 DOI: 10.1038/npp.2015.322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/03/2023]
Abstract
Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.
Collapse
|
56
|
Activation of α7 nicotinic acetylcholine receptors protects potentiated synapses from depotentiation during theta pattern stimulation in the hippocampal CA1 region of rats. Neuropharmacology 2016; 105:378-387. [PMID: 26867505 DOI: 10.1016/j.neuropharm.2016.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/24/2016] [Accepted: 02/05/2016] [Indexed: 11/21/2022]
Abstract
Long-term potentiation (LTP) shows memory-like consolidation and thus becomes increasingly resistant to disruption by low-frequency stimulation (LFS). However, it is known that nicotine application during LFS uniquely depotentiates consolidated LTP. Here, we investigated how nicotine contributes to the disruption of stabilized LTP in the hippocampal CA1 region. We found that nicotine-induced depotentiation is not due to masking LTP by inducing long-term depression and requires the activation of GluN2A-containing NMDARs. We further examined whether nicotine-induced depotentiation involves the reversal of LTP mechanisms. LTP causes phosphorylation of Ser-831 on GluA1 subunits of AMPARs that increases the single-channel conductance of AMPARs. This phosphorylation remained unchanged after depotentiation. LTP involves the insertion of new AMPARs into the synapse and the internalization of AMPARs is associated with dephosphorylation of Ser-845 on GluA1 and caspase-3 activity. Nicotine-induced depotentiation occurred without dephosphorylation of the Ser-845 and in the presence of a caspase-3 inhibitor. LTP is also accompanied by increased filamentous actin (F-actin), which controls spine size. Nicotine-induced depotentiation was prevented by jasplakinolide, which stabilizes F-actin, suggesting that nicotine depotentiates consolidated LTP by destabilizing F-actin. α7 nicotinic acetylcholine receptor (nAChR) antagonists mimicked the effect of nicotine and selective removal of hippocampal cholinergic input caused depotentiation in the absence of nicotine, suggesting that nicotine depotentiates consolidated LTP by inducing α7 nAChR desensitization. Our results demonstrate a new role for nicotinic cholinergic systems in protecting potentiated synapses from depotentiation by preventing GluN2A-NMDAR-mediated signaling for actin destabilization.
Collapse
|
57
|
Guo D, Zeng L, Zou J, Chen L, Rensing N, Wong M. Rapamycin prevents acute dendritic injury following seizures. Ann Clin Transl Neurol 2016; 3:180-90. [PMID: 27042678 PMCID: PMC4774262 DOI: 10.1002/acn3.284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/18/2015] [Indexed: 12/29/2022] Open
Abstract
Objective Seizures cause acute structural changes in dendrites, which may contribute to cognitive deficits that occur in epilepsy patients. Disruption of the actin cytoskeleton of dendrites likely mediates the structural changes following seizures, but the upstream signaling mechanisms activated by synchronized physiological activity to cause seizure‐induced dendritic injury are not known. In this study, we test the hypothesis that the mechanistic target of rapamycin complex 1 (mTORC1) pathway triggers structural changes in dendrites in response to seizures. Methods In vivo multiphoton imaging was performed in transgenic mice expressing green fluorescent protein in cortical neurons. The effect of rapamycin pre‐ and posttreatment was tested on kainate‐induced dendritic injury and cofilin‐mediated actin depolymerization. Results Kainate‐induced seizures caused acute activation of mTORC1 activity, which was prevented by the mTORC1 inhibitor, rapamycin. Rapamycin pretreatment, and to a lesser degree, posttreatment attenuated acute seizure‐induced dendritic injury and correspondingly decreased LIM kinase and cofilin‐mediated depolymerization of actin. Interpretation The mTORC1 pathway mediates seizure‐induced dendritic injury via depolymerization of actin. These findings have important mechanistic and translational applications for management of seizure‐induced brain injury.
Collapse
Affiliation(s)
- Dongjun Guo
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| | - Linghui Zeng
- Department of Pharmacy School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Jia Zou
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| | - Linglin Chen
- Department of Pharmacy School of Medicine Zhejiang University City College Hangzhou Zhejiang 310015 China
| | - Nicholas Rensing
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| | - Michael Wong
- Department of Neurology and the Hope Center for Neurological Disorders Washington University School of Medicine St. Louis Missouri 63110
| |
Collapse
|
58
|
Abstract
INTRODUCTION Angelman syndrome (AS) is a neurodevelopmental disorder caused by deficiency of maternally inherited UBE3A, an ubiquitin E3 ligase. Despite recent progress in understanding the mechanism underlying UBE3A imprinting, there is no effective treatment. Further investigation of the roles played by UBE3A in the central nervous system (CNS) is needed for developing effective therapies. AREA COVERED This review covers the literature related to genetic classifications of AS, recent discoveries regarding the regulation of UBE3A imprinting, alterations in cell signaling in various brain regions and potential therapeutic approaches. Since a large proportion of AS patients exhibit comorbid autism spectrum disorder (ASD), potential common molecular bases are discussed. EXPERT OPINION Advances in understanding UBE3A imprinting provide a unique opportunity to induce paternal UBE3A expression, thus targeting the syndrome at its 'root.' However, such efforts have yielded less-than-expected rescue effects in AS mouse models, raising the concern that activation of paternal UBE3A after a critical period cannot correct all the CNS defects that developed in a UBE3A-deficient environment. On the other hand, targeting abnormal downstream cell signaling pathways has provided promising rescue effects in preclinical research. Thus, combined reinstatement of paternal UBE3A expression with targeting abnormal signaling pathways should provide better therapeutic effects.
Collapse
Affiliation(s)
- Xiaoning Bi
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Jiandong Sun
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Angela X Ji
- a Department of Basic Medical Sciences, COMP , Western University of Health Sciences , Pomona , CA , USA
| | - Michel Baudry
- b Graduate College of Biomedical Sciences , Western University of Health Sciences , Pomona , CA , USA
| |
Collapse
|
59
|
Frick KM, Kim J, Tuscher JJ, Fortress AM. Sex steroid hormones matter for learning and memory: estrogenic regulation of hippocampal function in male and female rodents. Learn Mem 2015; 22:472-93. [PMID: 26286657 PMCID: PMC4561402 DOI: 10.1101/lm.037267.114] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 01/24/2023]
Abstract
Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17β-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.
Collapse
Affiliation(s)
- Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jaekyoon Kim
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| |
Collapse
|
60
|
Abstract
Alcohol abuse is highly prevalent, but little is understood about the molecular causes. Here, we report that Ras suppressor 1 (Rsu1) affects ethanol consumption in flies and humans. Drosophila lacking Rsu1 show reduced sensitivity to ethanol-induced sedation. We show that Rsu1 is required in the adult nervous system for normal sensitivity and that it acts downstream of the integrin cell adhesion molecule and upstream of the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase to regulate the actin cytoskeleton. In an ethanol preference assay, global loss of Rsu1 causes high naïve preference. In contrast, flies lacking Rsu1 only in the mushroom bodies of the brain show normal naïve preference but then fail to acquire ethanol preference like normal flies. Rsu1 is, thus, required in distinct neurons to modulate naïve and acquired ethanol preference. In humans, we find that polymorphisms in RSU1 are associated with brain activation in the ventral striatum during reward anticipation in adolescents and alcohol consumption in both adolescents and adults. Together, these data suggest a conserved role for integrin/Rsu1/Rac1/actin signaling in modulating reward-related phenotypes, including ethanol consumption, across phyla.
Collapse
|
61
|
Abstract
Dendritic protein synthesis and actin cytoskeleton reorganization are important events required for the consolidation of hippocampal LTP and memory. However, the temporal and spatial relationships between these two processes remain unclear. Here, we report that treatment of adult rat hippocampal slices with BDNF or with tetraethylammonium (TEA), which induces a chemical form of LTP, produces a rapid and transient increase in RhoA protein levels. Changes in RhoA were restricted to dendritic spines of CA3 and CA1 and require de novo protein synthesis regulated by mammalian target of rapamycin (mTOR). BDNF-mediated stimulation of RhoA activity, cofilin phosphorylation, and actin polymerization were completely suppressed by protein synthesis inhibitors. Furthermore, intrahippocampal injections of RhoA antisense oligodeoxynucleotides inhibited theta burst stimulation (TBS)-induced RhoA upregulation in dendritic spines and prevented LTP consolidation. Addition of calpain inhibitors after BDNF or TEA treatment maintained RhoA levels elevated and prolonged the effects of BDNF and TEA on actin polymerization. Finally, the use of isoform-selective calpain inhibitors revealed that calpain-2 was involved in RhoA synthesis, whereas calpain-1 mediated RhoA degradation. Overall, this mechanism provides a novel link between dendritic protein synthesis and reorganization of the actin cytoskeleton in hippocampal dendritic spines during LTP consolidation.
Collapse
|
62
|
Different patterns of electrical activity lead to long-term potentiation by activating different intracellular pathways. J Neurosci 2015; 35:621-33. [PMID: 25589756 DOI: 10.1523/jneurosci.2193-14.2015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deciphering and storing information coded in different firing patterns are important properties of neuronal networks, as they allow organisms to respond and adapt to external and internal events. Here we report that hippocampal CA1 pyramidal neurons respond to brief bursts of high-frequency stimulation (HFS) and θ burst stimulation (TBS) with long-lasting enhanced responses (long-term potentiation [LTP]), albeit by engaging different signaling pathways. TBS induces LTP through calpain-1-mediated suprachiasmatic nucleus circadian oscillatory protein degradation, ERK activation, and actin polymerization, whereas HFS requires adenosine A2 receptors, PKA, and actin polymerization. TBS- but not HFS-induced LTP is impaired in calpain-1 knock-out mice. However, TBS-induced LTP and learning impairment in knock-out mice are restored by activating the HFS pathway. Thus, different patterns of rhythmic activities trigger potentiation by activating different pathways, and cross talks between these can be used to restore LTP and learning when elements of the pathways are impaired.
Collapse
|
63
|
Rudy JW. Variation in the persistence of memory: An interplay between actin dynamics and AMPA receptors. Brain Res 2014; 1621:29-37. [PMID: 25511990 DOI: 10.1016/j.brainres.2014.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
William James noted that memories could persist from minutes to weeks. This essay attempts to explain this variation by situating the explanation in the biochemistry of dendritic spines. Two outcomes are critical to generate the synaptic basis of memory: (1) the actin cytoskeleton in the spine must be degraded to permit (2) additional AMPA receptors (GluA1s) to enter new "hot spots" in the postsynaptic density. These initial outcomes can support short-lasting memories. The threshold for these events is low but the underlying synaptic changes cannot resist the endocytic processes that remove the added AMPA receptors. For the memory to persist the degraded actin cytoskeleton must be rebuilt and the vacated "hot spots" refilled with GluA2 receptors. A primary claim is that it is the stabilization of an enlarged actin cytoskeleton that is the target outcome that consolidates the synaptic basis of memory (see Lynch et al., 2007). The stabilized actin cytoskeleton has properties that enable it to garner the synaptic proteins it needs to self sustain the potentiated state and to benefit from activation of memory modulation systems. This article is part of a Special Issue entitled Brain and Memory.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology and Neuroscience University of Colorado, Boulder, CO 80309, United States.
| |
Collapse
|
64
|
Rudy JW. Actin dynamics and the evolution of the memory trace. Brain Res 2014; 1621:17-28. [PMID: 25498985 DOI: 10.1016/j.brainres.2014.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/24/2022]
Abstract
The goal of this essay is to link the regulation of actin dynamics to the idea that the synaptic changes that support long-term potentiation and memory evolve in temporally overlapping stages-generation, stabilization, and consolidation. Different cellular/molecular processes operate at each stage to change the spine cytoarchitecture and, in doing so, alter its function. Calcium-dependent processes that degrade the actin cytoskeleton network promote a rapid insertion of AMPA receptors into the post synaptic density, which increases a spine's capacity to express a potentiated response to glutamate. Other post-translation events then begin to stabilize and expand the actin cytoskeleton by increasing the filament actin content of the spine and reorganizing it to be resistant to depolymerizing events. Disrupting actin polymerization during this stabilization period is a terminal event-the actin cytoskeleton shrinks and potentiated synapses de-potentiate and memories are lost. Late-arriving, new proteins may consolidate changes in the actin cytoskeleton. However, to do so requires a stabilized actin cytoskeleton. The now enlarged spine has properties that enable it to capture other newly transcribed mRNAs or their protein products and thus enable the synaptic changes that support LTP and memory to be consolidated and maintained. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Jerry W Rudy
- Department of Psychology and Neuroscience, University of Colorado, 345 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
65
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
66
|
De Filippis B, Nativio P, Fabbri A, Ricceri L, Adriani W, Lacivita E, Leopoldo M, Passarelli F, Fuso A, Laviola G. Pharmacological stimulation of the brain serotonin receptor 7 as a novel therapeutic approach for Rett syndrome. Neuropsychopharmacology 2014; 39:2506-18. [PMID: 24809912 PMCID: PMC4207333 DOI: 10.1038/npp.2014.105] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/29/2014] [Accepted: 04/30/2014] [Indexed: 01/01/2023]
Abstract
Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability.
Collapse
Affiliation(s)
- Bianca De Filippis
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Nativio
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessia Fabbri
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Ricceri
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Adriani
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Enza Lacivita
- Department of Pharmacy, University of Bari ‘A Moro', Bari, Italy
| | | | | | - Andrea Fuso
- Department of Psychology, Section of Neuroscience, Sapienza University of Rome, Rome, Italy
- European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giovanni Laviola
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
67
|
Chang PKY, Prenosil GA, Verbich D, Gill R, McKinney RA. Prolonged ampakine exposure prunes dendritic spines and increases presynaptic release probability for enhanced long-term potentiation in the hippocampus. Eur J Neurosci 2014; 40:2766-76. [PMID: 24925283 DOI: 10.1111/ejn.12638] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 01/19/2023]
Abstract
CX 546, an allosteric positive modulator of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic glutamate receptors (AMPARs), belongs to a drug class called ampakines. These compounds have been shown to enhance long-term potentiation (LTP), a cellular model of learning and memory, and improve animal learning task performance, and have augmented cognition in neurodegenerative patients. However, the chronic effect of CX546 on synaptic structures has not been examined. The structure and integrity of dendritic spines are thought to play a role in learning and memory, and their abnormalities have been implicated in cognitive disorders. In addition, their structural plasticity has been shown to be important for cognitive function, such that dendritic spine remodeling has been proposed as the morphological correlate for LTP. Here, we tested the effect of CX546 on dendritic spine remodeling following long-term treatment. We found that, with prolonged CX546 treatment, organotypic hippocampal slice cultures showed a significant reduction in CA3-CA1 excitatory synapse and spine density. Electrophysiological approaches revealed that the CA3-CA1 circuitry compensates for this synapse loss by increasing synaptic efficacy through enhancement of presynaptic release probability. CX546-treated slices showed prolonged and enhanced potentiation upon LTP induction. Furthermore, structural plasticity, namely spine head enlargement, was also more pronounced after CX546 treatment. Our results suggest a concordance of functional and structural changes that is enhanced with prolonged CX546 exposure. Thus, the improved cognitive ability of patients receiving ampakine treatment may result from the priming of synapses through increases in the structural plasticity and functional reliability of hippocampal synapses.
Collapse
Affiliation(s)
- Philip K-Y Chang
- Department of Pharmacology & Therapeutics, McGill University, Bellini Life Science Complex, Room 167, 3649 Promenade Sir-William-Osler, Montreal, QC, H3G 0B1, Canada
| | | | | | | | | |
Collapse
|
68
|
Lynch G, Cox CD, Gall CM. Pharmacological enhancement of memory or cognition in normal subjects. Front Syst Neurosci 2014; 8:90. [PMID: 24904313 PMCID: PMC4033242 DOI: 10.3389/fnsys.2014.00090] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
The possibility of expanding memory or cognitive capabilities above the levels in high functioning individuals is a topic of intense discussion among scientists and in society at large. The majority of animal studies use behavioral endpoint measures; this has produced valuable information but limited predictability for human outcomes. Accordingly, several groups are pursuing a complementary strategy with treatments targeting synaptic events associated with memory encoding or forebrain network operations. Transcription and translation figure prominently in substrate work directed at enhancement. Notably, the question of why new proteins would be needed for a now-forming memory given that learning-driven synthesis presumably occurred throughout the immediate past has been largely ignored. Despite this conceptual problem, and some controversy, recent studies have reinvigorated the idea that selective gene manipulation is a plausible route to enhancement. Efforts to improve memory by facilitating synaptic encoding of information have also progressed, in part due of breakthroughs on mechanisms that stabilize learning-related, long-term potentiation (LTP). These advances point to a reductionistic hypothesis for a diversity of experimental results on enhancement, and identify under-explored possibilities. Cognitive enhancement remains an elusive goal, in part due to the difficulty of defining the target. The popular view of cognition as a collection of definable computations seems to miss the fluid, integrative process experienced by high functioning individuals. The neurobiological approach obviates these psychological issues to directly test the consequences of improving throughput in networks underlying higher order behaviors. The few relevant studies testing drugs that selectively promote excitatory transmission indicate that it is possible to expand cortical networks engaged by complex tasks and that this is accompanied by capabilities not found in normal animals.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| |
Collapse
|
69
|
Meyer D, Bonhoeffer T, Scheuss V. Balance and Stability of Synaptic Structures during Synaptic Plasticity. Neuron 2014; 82:430-43. [DOI: 10.1016/j.neuron.2014.02.031] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/27/2022]
|
70
|
Ojelade SA, Acevedo SF, Rothenfluh A. The role of the actin cytoskeleton in regulating Drosophila behavior. Rev Neurosci 2014; 24:471-84. [PMID: 24077615 DOI: 10.1515/revneuro-2013-0017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
Abstract
Over the past decade, the function of the cytoskeleton has been studied extensively in developing and mature neurons. Actin, a major cytoskeletal protein, is indispensable for the structural integrity and plasticity of neurons and their synapses. Disruption of actin dynamics has significant consequence for neurons, neuronal circuits, and the functions they govern. In particular, cell adhesion molecules, members of the Rho family of GTPases, and actin-binding proteins are important modulators of actin dynamics and neuronal as well as behavioral plasticity. In this review, we discuss recent advances in Drosophila that highlight the importance of actin regulatory proteins in mediating fly behaviors such as circadian rhythm, courtship behavior, learning and memory, and the development of drug addiction.
Collapse
|
71
|
Wehrle-Haller B, Bastmeyer M. Intracellular signaling and perception of neuronal scaffold through integrins and their adapter proteins. PROGRESS IN BRAIN RESEARCH 2014; 214:443-60. [DOI: 10.1016/b978-0-444-63486-3.00018-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
72
|
|
73
|
Form follows function: BDNF and its involvement in sculpting the function and structure of synapses. Neuropharmacology 2014; 76 Pt C:628-38. [DOI: 10.1016/j.neuropharm.2013.05.029] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 12/31/2022]
|
74
|
Profiling of the soluble proteome in rat hippocampus post propofol anesthesia. Neurochem Res 2013; 38:2661-7. [PMID: 24214022 DOI: 10.1007/s11064-013-1184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/22/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
The current study was designed to initially observe the changes in soluble proteome in rat hippocampus post anesthesia, trying to explore possible clues for elucidating the effects of propofol. Soluble proteins were separated by 2-dimensional electrophoresis (2-DE). Their expressions were observed at 1, 6, 24 h and 7 days after 3 h of propofol anesthesia. Spots exhibiting significant changes among different time-points were submitted to matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-TOF MS) assay and peptide mass fingerprinting identification. The expression changes of selected proteins were further assayed using Western blot and RT-PCR. Twenty-six differentially expressed proteins were found and 19 were successfully identified with MALDI-TOF MS. Gene ontology analysis revealed these identified proteins were mainly cytosol (5) and/or cytoskeleton fractions (5). According to biological processes category, 9 proteins take part in development process, 12 are involved in metabolic process and 6 in regulatory function. Functionally, 17 proteins were involved in binding activities among which 12 possessed catalytic activities. Most changes took place within 24 h. Change patterns of selected proteins were identical in 2-DE and Western blot. Three mRNA of 5 selected proteins exhibited similar change patterns with those of their protein expressions. Soluble proteome in rat hippocampus are dynamically affected by propofol, with multiple processes being involved. They are possible explanations for propofol effects but further investigations are required.
Collapse
|
75
|
Babayan AH, Kramár EA. Rapid effects of oestrogen on synaptic plasticity: interactions with actin and its signalling proteins. J Neuroendocrinol 2013; 25:1163-72. [PMID: 24112361 PMCID: PMC3989941 DOI: 10.1111/jne.12108] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 01/02/2023]
Abstract
Oestrogen rapidly enhances fast excitatory postsynaptic potentials, facilitates long-term potentiation (LTP) and increases spine numbers. Each effect likely contributes to the influence of the steroid on cognition and memory. In the present review, we first describe a model for the substrates of LTP that includes an outline of the synaptic events occurring during induction, expression and consolidation. Briefly, critical signalling pathways involving the small GTPases RhoA and Rac/Cdc42 are activated by theta burst-induced calcium influx and initiate actin filament assembly via phosphorylation (inactivation) of cofilin. Reorganisation of the actin cytoskeleton changes spine and synapse morphology, resulting in increased concentrations of AMPA receptors at stimulated contacts. We then use the synaptic model to develop a specific hypothesis about how oestrogen affects both baseline transmission and plasticity. Brief infusions of 17β-oestradiol (E2 ) reversibly stimulate the RhoA, cofilin phosphorylation and actin polymerisation cascade of the LTP machinery; blocking this eliminates the effects of the steroid on transmission. We accordingly propose that E2 induces a weak form of LTP and thereby increases synaptic responses, a hypothesis that also accounts for how it markedly enhances theta burst induced potentiation. Although the effects of E2 on the cytoskeleton could be a result of the direct activation of small GTPases by oestrogen receptors on the synaptic membrane, the hormone also activates tropomyosin-related kinase B receptors for brain-derived neurotrophic factor, a neurotrophin that engages the RhoA-cofilin sequence and promotes LTP. The latter observations raise the possibility that E2 produces its effects on synaptic physiology via transactivation of neighbouring receptors that have prominent roles in the management of spine actin, synaptic physiology and plasticity.
Collapse
Affiliation(s)
- A H Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | | |
Collapse
|
76
|
Kudryashova IV. Analysis of conditions that are important for the beginning of consolidation in a model of long-term synaptic potentiation. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
77
|
Lynch G, Gall CM. Mechanism based approaches for rescuing and enhancing cognition. Front Neurosci 2013; 7:143. [PMID: 23966908 PMCID: PMC3744010 DOI: 10.3389/fnins.2013.00143] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/23/2013] [Indexed: 01/24/2023] Open
Abstract
Progress toward pharmacological means for enhancing memory and cognition has been retarded by the widely discussed failure of behavioral studies in animals to predict human outcomes. As a result, a number of groups have targeted cognition-related neurobiological mechanisms in animal models, with the assumption that these basic processes are highly conserved across mammals. Here we survey one such approach that begins with a form of synaptic plasticity intimately related to memory encoding in animals and likely operative in humans. An initial section will describe a detailed hypothesis concerning the signaling and structural events (a “substrate map”) that convert learning associated patterns of afferent activity into extremely stable increases in fast, excitatory transmission. We next describe results suggesting that all instances of intellectual impairment so far tested in rodent models involve a common endpoint failure in the substrate map. This will be followed by a clinically plausible proposal for obviating the ultimate defect in these models. We then take up the question of whether it is reasonable to expect, from either general principles or a very limited set of experimental results, that enhancing memory will expand the cognitive capabilities of high functioning brains. The final section makes several suggestions about how to improve translation of behavioral results from animals to humans. Collectively, the material covered here points to the following: (1) enhancement, in the sense of rescue, is not an unrealistic possibility for a broad array of neuropsychiatric disorders; (2) serendipity aside, developing means for improving memory in normals will likely require integration of information about mechanisms with new behavioral testing strategies; (3) a shift in emphasis from synapses to networks is a next, logical step in the evolution of the cognition enhancement field.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California Irvine, CA, USA ; Department of Anatomy and Neurobiology, University of California Irvine, CA, USA
| | | |
Collapse
|
78
|
Lonskaya I, Partridge J, Lalchandani RR, Chung A, Lee T, Vicini S, Hoe HS, Lim ST, Conant K. Soluble ICAM-5, a product of activity dependent proteolysis, increases mEPSC frequency and dendritic expression of GluA1. PLoS One 2013; 8:e69136. [PMID: 23844251 PMCID: PMC3699500 DOI: 10.1371/journal.pone.0069136] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/12/2013] [Indexed: 11/23/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc dependent endopeptidases that can be released from neurons in an activity dependent manner to play a role in varied forms of learning and memory. MMP inhibitors impair hippocampal long term potentiation (LTP), spatial memory, and behavioral correlates of drug addiction. Since MMPs are thought to influence LTP through a β1 integrin dependent mechanism, it has been suggested that these enzymes cleave specific substrates to generate integrin binding ligands. In previously published work, we have shown that neuronal activity stimulates rapid MMP dependent shedding of intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule expressed on dendrites of the telencephalon. We have also shown that the ICAM-5 ectodomain can interact with β1 integrins to stimulate integrin dependent phosphorylation of cofilin, an event that occurs with dendritic spine maturation and LTP. In the current study, we investigate the potential for the ICAM-5 ectodomain to stimulate changes in α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate receptor (AMPAR) dependent glutamatergic transmission. Single cell recordings show that the ICAM-5 ectodomain stimulates an increase in the frequency, but not the amplitude, of AMPA mini excitatory post synaptic currents (mEPSCs). With biotinylation and precipitation assays, we also show that the ICAM-5 ectodomain stimulates an increase in membrane levels of GluA1, but not GluA2, AMPAR subunits. In addition, we observe an ICAM-5 associated increase in GluA1 phosphorylation at serine 845. Concomitantly, ICAM-5 affects an increase in GluA1 surface staining along dendrites without affecting an increase in dendritic spine number. Together these data are consistent with the possibility that soluble ICAM-5 increases glutamatergic transmission and that post-synaptic changes, including increased phosphorylation and dendritic insertion of GluA1, could contribute. We suggest that future studies are warranted to determine whether ICAM-5 is one of a select group of synaptic CAMs whose shedding contributes to MMP dependent effects on learning and memory.
Collapse
Affiliation(s)
- Irina Lonskaya
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - John Partridge
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rupa R. Lalchandani
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Andrew Chung
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Taehee Lee
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Hyang-Sook Hoe
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Seung T. Lim
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
79
|
Baudry M, Bi X. Learning and memory: an emergent property of cell motility. Neurobiol Learn Mem 2013; 104:64-72. [PMID: 23707799 DOI: 10.1016/j.nlm.2013.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/24/2023]
Abstract
In this review, we develop the argument that the molecular/cellular mechanisms underlying learning and memory are an adaptation of the mechanisms used by all cells to regulate cell motility. Neuronal plasticity and more specifically synaptic plasticity are widely recognized as the processes by which information is stored in neuronal networks engaged during the acquisition of information. Evidence accumulated over the last 25 years regarding the molecular events underlying synaptic plasticity at excitatory synapses has shown the remarkable convergence between those events and those taking place in cells undergoing migration in response to extracellular signals. We further develop the thesis that the calcium-dependent protease, calpain, which we postulated over 25 years ago to play a critical role in learning and memory, plays a central role in the regulation of both cell motility and synaptic plasticity. The findings discussed in this review illustrate the general principle that fundamental cell biological processes are used for a wide range of functions at the level of organisms.
Collapse
Affiliation(s)
- Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA.
| | | |
Collapse
|
80
|
Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci 2013; 32:17714-24. [PMID: 23223292 DOI: 10.1523/jneurosci.1253-12.2012] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evolving evidence suggests that brain inflammation and the buildup of proinflammatory cytokine increases the risk for cognitive decline and cognitive dysfunction. Interleukin-1β (IL-1β), acting via poorly understood mechanisms, appears to be a key cytokine in causing these deleterious effects along with a presumably related loss of long-term potentiation (LTP)-type synaptic plasticity. We hypothesized that IL-1β disrupts brain-derived neurotrophic factor (BDNF) signaling cascades and thereby impairs the formation of filamentous actin (F-actin) in dendritic spines, an event that is essential for the stabilization of LTP. Actin polymerization in spines requires phosphorylation of the filament severing protein cofilin and is modulated by expression of the immediate early gene product Arc. Using rat organotypic hippocampal cultures, we found that IL-1β suppressed BDNF-dependent regulation of Arc and phosphorylation of cofilin and cAMP response element-binding protein (CREB), a transcription factor regulating Arc expression. IL-1β appears to act on BDNF signal transduction by impairing the phosphorylation of insulin receptor substrate 1, a protein that couples activation of the BDNF receptor TrkB to downstream signaling pathways regulating CREB, Arc, and cofilin. IL-1β upregulated p38 mitogen-activated protein kinase (MAPK), and inhibiting p38 MAPK prevented IL-1β from disrupting BDNF signaling. IL-1β also prevented the formation of F-actin in spines and impaired the consolidation, but not the induction, of BDNF-dependent LTP in acute hippocampal slices. The suppressive effect of IL-1β on F-actin and LTP was prevented by inhibiting p38 MAPK. These findings define a new mechanism for the action of IL-1β on LTP and point to a potential therapeutic target to restore synaptic plasticity.
Collapse
|
81
|
Verslegers M, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 2013; 105:60-78. [PMID: 23567503 DOI: 10.1016/j.pneurobio.2013.03.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimer's disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.
Collapse
Affiliation(s)
- Mieke Verslegers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
82
|
mTORC2 controls actin polymerization required for consolidation of long-term memory. Nat Neurosci 2013; 16:441-8. [PMID: 23455608 PMCID: PMC3615448 DOI: 10.1038/nn.3351] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/29/2013] [Indexed: 02/07/2023]
Abstract
A major goal of biomedical research has been the identification of molecular mechanisms that can enhance memory. Here we report a novel signaling pathway that regulates the conversion from short- to long-term memory. The mTOR complex 2 (mTORC2), which contains the key regulatory protein Rictor (Rapamycin-Insensitive Companion of mTOR), was discovered only recently, and little is known about its physiological role. We show that conditional deletion of rictor in the postnatal murine forebrain greatly reduces mTORC2 activity and selectively impairs both long-term memory (LTM) and the late (but not the early) phase of hippocampal long-term potentiation (LTP). Actin polymerization is reduced in the hippocampus of mTORC2-deficient mice and its restoration rescues both L-LTP and LTM. More importantly, a compound that selectively promotes mTORC2 activity converts early-LTP into late-LTP and enhances LTM. These findings indicate that mTORC2 could be a novel therapeutic target for the treatment of cognitive dysfunction.
Collapse
|
83
|
Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci 2013; 32:18009-17, 18017a. [PMID: 23238717 DOI: 10.1523/jneurosci.2406-12.2012] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During early postnatal development of the CNS, neuronal networks are configured through the formation, elimination, and remodeling of dendritic spines, the sites of most excitatory synaptic connections. The closure of this critical period for plasticity correlates with the maturation of the extracellular matrix (ECM) and results in reduced dendritic spine dynamics. Chondroitin sulfate proteoglycans (CSPGs) are thought to be the active components of the mature ECM that inhibit functional plasticity in the adult CNS. These molecules are diffusely expressed in the extracellular space or aggregated as perineuronal nets around specific classes of neurons. We used organotypic hippocampal slices prepared from 6-d-old Thy1-YFP mice and maintained in culture for 4 weeks to allow ECM maturation. We performed live imaging of CA1 pyramidal cells to assess the effect of chondroitinase ABC (ChABC)-mediated digestion of CSPGs on dendritic spine dynamics. We found that CSPG digestion enhanced the motility of dendritic spines and induced the appearance of spine head protrusions in a glutamate receptor-independent manner. These changes were paralleled by the activation of β1-integrins and phosphorylation of focal adhesion kinase at synaptic sites, and were prevented by preincubation with a β1-integrin blocking antibody. Interestingly, microinjection of ChABC close to dendritic segments was sufficient to induce spine remodeling, demonstrating that CSPGs located around dendritic spines modulate their dynamics independently of perineuronal nets. This restrictive action of perisynaptic CSPGs in mature neural tissue may account for the therapeutic effects of ChABC in promoting functional recovery in impaired neural circuits.
Collapse
|
84
|
Semaphorin7A and its receptors: pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Semin Cell Dev Biol 2013; 24:129-38. [PMID: 23333497 DOI: 10.1016/j.semcdb.2013.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
Abstract
Semaphorins form a large, evolutionary conserved family of cellular guidance signals. The semaphorin family contains several secreted and transmembrane proteins, but only one GPI-anchored member, Semaphorin7A (Sema7A). Although originally identified in immune cells, as CDw108, Sema7A displays widespread expression outside the immune system. It is therefore not surprising that accumulating evidence supports roles for this protein in a wide variety of biological processes in different organ systems and in disease. Well-characterized biological effects of Sema7A include those during bone and immune cell regulation, neuron migration and neurite growth. These effects are mediated by two receptors, plexinC1 and integrins. However, most of what is known today about Sema7A signaling concerns Sema7A-integrin interactions. Here, we review our current knowledge of Sema7A function and signaling in different organ systems, highlighting commonalities between the cellular effects and signaling pathways activated by Sema7A in different cell types. Furthermore, we discuss a potential role for Sema7A in disease and provide directions for further research.
Collapse
|
85
|
Dias RB, Rombo DM, Ribeiro JA, Henley JM, Sebastião AM. Adenosine: setting the stage for plasticity. Trends Neurosci 2013; 36:248-57. [PMID: 23332692 DOI: 10.1016/j.tins.2012.12.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/09/2012] [Accepted: 12/14/2012] [Indexed: 12/19/2022]
Abstract
It is widely accepted that Hebbian forms of plasticity mediate selective modifications in synaptic strength underlying information encoding in response to experience and circuit formation or refinement throughout development. Several complementary forms of homeostatic plasticity coordinate to keep Hebbian plasticity in check, frequently through the actions of conserved regulatory molecules. Recent evidence suggests that this may be the case for adenosine, which is ubiquitous in the brain and is released by both neurons and glial cells via constitutive and activity-dependent mechanisms. Through A1 and A2A receptor activation, adenosine modulates neuronal homeostasis and tunes the ability of synapses to undergo and/or sustain plasticity. Here, we review how adenosine equilibrates neuronal activity and sets the stage for synaptic plasticity.
Collapse
Affiliation(s)
- Raquel B Dias
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
86
|
Lynch G, Kramár EA, Babayan AH, Rumbaugh G, Gall CM. Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 2013; 64:27-36. [PMID: 22820276 PMCID: PMC3445784 DOI: 10.1016/j.neuropharm.2012.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/28/2012] [Accepted: 07/01/2012] [Indexed: 01/25/2023]
Abstract
The fundamental observation that the temporal spacing of learning episodes plays a critical role in the efficiency of memory encoding has had little effect on either research on long-term potentiation (LTP) or efforts to develop cognitive enhancers. Here we review recent findings describing a spaced trials phenomenon for LTP that appears to be related to recent evidence that plasticity thresholds differ between synapses in the adult hippocampus. Results of tests with one memory enhancing drug suggest that the compound potently facilitates LTP via effects on 'high threshold' synapses and thus alters the temporally extended timing rules. Possible implications of these results for our understanding of LTP substrates, neurobiological contributors to the distributed practice effect, and the consequences of memory enhancement are discussed. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697-4260 USA
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Enikö A. Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Alex H. Babayan
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter FL 33458 USA
| | - Christine M. Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1275 USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4450 USA
| |
Collapse
|
87
|
Integrin dynamics produce a delayed stage of long-term potentiation and memory consolidation. J Neurosci 2012; 32:12854-61. [PMID: 22973009 DOI: 10.1523/jneurosci.2024-12.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Memory consolidation theory posits that newly acquired information passes through a series of stabilization steps before being firmly encoded. We report here that in rat and mouse, hippocampus cell adhesion receptors belonging to the β1-integrin family exhibit dynamic properties in adult synapses and that these contribute importantly to a previously unidentified stage of consolidation. Quantitative dual immunofluorescence microscopy showed that induction of long-term potentiation (LTP) by theta burst stimulation (TBS) activates β1 integrins, and integrin-signaling kinases, at spine synapses in adult hippocampal slices. Neutralizing antisera selective for β1 integrins blocked these effects. TBS-induced integrin activation was brief (<7 min) and followed by an ∼45 min period during which the adhesion receptors did not respond to a second application of TBS. Brefeldin A, which blocks integrin trafficking to the plasma membrane, prevented the delayed recovery of integrin responses to TBS. β1 integrin-neutralizing antisera erased LTP when applied during, but not after, the return of integrin responsivity. Similarly, infusions of anti-β1 into rostral mouse hippocampus blocked formation of long-term, object location memory when started 20 min after learning but not 40 min later. The finding that β1 integrin neutralization was effective in the same time window for slice and behavioral experiments strongly suggests that integrin recovery triggers a temporally discrete, previously undetected second stage of consolidation for both LTP and memory.
Collapse
|
88
|
Huntley GW. Synaptic circuit remodelling by matrix metalloproteinases in health and disease. Nat Rev Neurosci 2012; 13:743-57. [PMID: 23047773 PMCID: PMC4900464 DOI: 10.1038/nrn3320] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Matrix metalloproteinases (MMPs) are extracellularly acting enzymes that have long been known to have deleterious roles in brain injury and disease. In particular, widespread and protracted MMP activity can contribute to neuronal loss and synaptic dysfunction. However, recent studies show that rapid and focal MMP-mediated proteolysis proactively drives synaptic structural and functional remodelling that is crucial for ongoing cognitive processes. Deficits in synaptic remodelling are associated with psychiatric and neurological disorders, and aberrant MMP expression or function may contribute to the molecular mechanisms underlying these deficits. This Review explores the paradigm shift in our understanding of the contribution of MMPs to normal and abnormal synaptic plasticity and function.
Collapse
Affiliation(s)
- George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biological Sciences, The Mount Sinai School of Medicine, New York, New York 10029, USA.
| |
Collapse
|
89
|
Kramár EA, Babayan AH, Gall CM, Lynch G. Estrogen promotes learning-related plasticity by modifying the synaptic cytoskeleton. Neuroscience 2012; 239:3-16. [PMID: 23103216 DOI: 10.1016/j.neuroscience.2012.10.038] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/11/2012] [Accepted: 10/18/2012] [Indexed: 01/04/2023]
Abstract
Estrogen's acute, facilitatory effects on glutamatergic transmission and long-term potentiation (LTP) provide a potential explanation for the steroid's considerable influence on behavior. Recent work has identified mechanisms underlying these synaptic actions. Brief infusion of 17ß-estradiol (E2) into adult male rat hippocampal slices triggers actin polymerization within dendritic spines via a signaling cascade beginning with the GTPase RhoA and ending with inactivation of the filament-severing protein cofilin. Blocking this sequence, or actin polymerization itself, eliminates E2's effects on synaptic physiology. Notably, the theta burst stimulation used to induce LTP activates the same signaling pathway as E2 plus events that stabilize the reorganization of the sub-synaptic cytoskeleton. These observations suggest that E2 elicits a partial form of LTP, resulting in an increase of fast excitatory postsynaptic potentials (EPSPs) and a reduction in the threshold for lasting synaptic changes. While E2's effects on the cytoskeleton could be direct, results described here indicate that the hormone activates synaptic tropomyosin-related kinase B (TrkB) receptors for brain-derived neurotrophic factor (BDNF), a releasable neurotrophin that stimulates the RhoA to cofilin pathway. It is therefore possible that E2 acts via transactivation of neighboring receptors to modify the composition and structure of excitatory contacts. Finally, there is the question of whether a loss of acute synaptic actions contributes to the memory problems associated with estrogen depletion. Initial tests found that ovariectomy in middle-aged rats disrupts RhoA signaling, actin polymerization, and LTP consolidation. Acute applications of E2 reversed these defects, a result consistent with the idea that disturbances to actin management are one cause of behavioral effects that emerge with reductions in steroid levels.
Collapse
Affiliation(s)
- E A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
90
|
Ganeshina O, Erdmann J, Tiberi S, Vorobyev M, Menzel R. Depolymerization of actin facilitates memory formation in an insect. Biol Lett 2012; 8:1023-7. [PMID: 23075524 DOI: 10.1098/rsbl.2012.0784] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In mammals, memory formation and stabilization requires polymerization of actin. Here, we show that, in the honeybee, inhibition of actin polymerization within the brain centres involved in memory formation, the mushroom bodies (MBs), enhances associative olfactory memory. Local application of inhibitors of actin polymerization (Cytochalasin D or Latrunculin A) to the MBs 1 h before induction of long-term memory increased memory retention 2 and 24 h after the onset of training. Post-training application of Cytochalasin D also enhanced retention, indicating that memory consolidation is facilitated by actin depolymerization. We conclude that certain aspects of memory mechanisms could have been established independently in mammals and insects.
Collapse
Affiliation(s)
- Olga Ganeshina
- Institute of Neurobiology, Free University of Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
91
|
Jafari M, Seese RR, Babayan AH, Gall CM, Lauterborn JC. Glucocorticoid receptors are localized to dendritic spines and influence local actin signaling. Mol Neurobiol 2012; 46:304-15. [PMID: 22717988 PMCID: PMC3973133 DOI: 10.1007/s12035-012-8288-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
Abstract
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13 % of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GRα mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15-30 min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.
Collapse
Affiliation(s)
- Matiar Jafari
- Department of Anatomy and Neurobiology, 3226 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-1275, USA
| | | | | | | | | |
Collapse
|
92
|
Mortillo S, Elste A, Ge Y, Patil SB, Hsiao K, Huntley GW, Davis RL, Benson DL. Compensatory redistribution of neuroligins and N-cadherin following deletion of synaptic β1-integrin. J Comp Neurol 2012; 520:2041-52. [PMID: 22488504 DOI: 10.1002/cne.23027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
β1-containing integrins are required for persistent synaptic potentiation in hippocampus and regulate hippocampal-dependent learning. Based largely on indirect evidence, there is a prevailing assumption that β1-integrins are localized at synapses, where they contribute to synapse adhesion and signaling, but this has not been examined directly. Here we investigate the fine localization of β1-integrin in adult mouse hippocampus using high-resolution immunogold labeling, with a particular emphasis on synaptic labeling patterns. We find that β1-integrins localize to synapses in CA1 and are concentrated postsynaptically. At the postsynaptic membrane, β1-integrins are found more commonly clustered near active zone centers rather than at the peripheral edges. In mice harboring a conditional deletion of β1-integrins, labeling for N-cadherin and neuroligins increases. Western blots show increased levels of N-cadherin in total lysates and neuroligins increase selectively in synaptosomes. These data suggest there is a dynamic, compensatory adjustment of synaptic adhesion. Such adjustment is specific only for certain cell adhesion molecules (CAMs), because labeling for SynCAM is unchanged. Together, our findings demonstrate unequivocally that β1-integrin is an integral synaptic adhesion protein, and suggest that adhesive function at the synapse reflects a cooperative and dynamic network of multiple CAM families.
Collapse
Affiliation(s)
- Steven Mortillo
- Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Niedringhaus M, Chen X, Dzakpasu R, Conant K. MMPs and soluble ICAM-5 increase neuronal excitability within in vitro networks of hippocampal neurons. PLoS One 2012; 7:e42631. [PMID: 22912716 PMCID: PMC3418258 DOI: 10.1371/journal.pone.0042631] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that are released from neurons in an activity dependent manner. Published studies suggest their activity is important to varied forms of learning and memory. At least one MMP can stimulate an increase in the size of dendritic spines, structures which represent the post synaptic component for a large number of glutamatergic synapses. This change may be associated with increased synaptic glutamate receptor incorporation, and an increased amplitude and/or frequency of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) mini excitatory post-synaptic currents (EPSCs). An associated increase in the probability of action potential occurrence would be expected. While the mechanism(s) by which MMPs may influence synaptic structure and function are not completely understood, MMP dependent shedding of specific cell adhesion molecules (CAMs) could play an important role. CAMs are ideally positioned to be cleaved by synaptically released MMPs, and shed N terminal domains could potentially interact with previously unengaged integrins to stimulate dendritic actin polymerization with spine expansion. In the present study, we have used multielectrode arrays (MEAs) to investigate MMP and soluble CAM dependent changes in neuronal activity recorded from hippocampal cultures. We have focused on intercellular adhesion molecule-5 (ICAM-5) in particular, as this CAM is expressed on glutamatergic dendrites and shed in an MMP dependent manner. We show that chemical long-term potentiation (cLTP) evoked changes in recorded activity, and the dynamics of action potential bursts in particular, are altered by MMP inhibition. A blocking antibody to β1 integrins has a similar effect. We also show that the ectodomain of ICAM-5 can stimulate β1 integrin dependent increases in spike counts and burst number. These results support a growing body of literature suggesting that MMPs have important effects on neuronal excitability. They also support the possibility that MMP dependent shedding of specific synaptic CAMs can contribute to these effects.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
| | - Xin Chen
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
| | - Rhonda Dzakpasu
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Physics, Georgetown University, Washington, District of Columbia, United States of America
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| | - Katherine Conant
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, United States of America
- * E-mail: (KC); (RD)
| |
Collapse
|
94
|
Wlodarczyk J, Mukhina I, Kaczmarek L, Dityatev A. Extracellular matrix molecules, their receptors, and secreted proteases in synaptic plasticity. Dev Neurobiol 2012; 71:1040-53. [PMID: 21793226 DOI: 10.1002/dneu.20958] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural cells secrete diverse molecules, which accumulate in the extracellular space and form the extracellular matrix (ECM). Interactions between cells and the ECM are well recognized to play the crucial role in cell migration and guidance of growing axons, whereas formation of mature neural ECM in the form of perineuronal nets is believed to restrict certain forms of developmental plasticity. On the other hand, major components of perineuronal nets and other ECM molecules support induction of functional plasticity, the most studied form of which is long-term potentiation. Here, we review the underlying mechanisms by which ECM molecules, their receptors and remodeling proteases regulate the induction and maintenance of synaptic modifications. In particular, we highlight that activity-dependent secretion and activation of proteases leads to a local cleavage of the ECM and release of signaling proteolytic fragments. These molecules regulate transmitter receptor trafficking, actin cytoskeleton, growth of dendritic spines, and formation of dendritic filopodia.
Collapse
|
95
|
McGeachie AB, Skrzypiec AE, Cingolani LA, Letellier M, Pawlak R, Goda Y. β3 integrin is dispensable for conditioned fear and hebbian forms of plasticity in the hippocampus. Eur J Neurosci 2012; 36:2461-9. [PMID: 22748100 DOI: 10.1111/j.1460-9568.2012.08163.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Integrins play key roles in the developing and mature nervous system, from promoting neuronal process outgrowth to facilitating synaptic plasticity. Recently, in hippocampal pyramidal neurons, β3 integrin (ITGβ3) was shown to stabilise synaptic AMPA receptors (AMPARs) and to be required for homeostatic scaling of AMPARs elicited by chronic activity suppression. To probe the physiological function for ITGβ3-dependent processes in the brain, we examined whether the loss of ITGβ3 affected fear-related behaviours in mice. ITGβ3-knockout (KO) mice showed normal conditioned fear responses that were similar to those of control wild-type mice. However, anxiety-like behaviour appeared substantially compromised and could be reversed to control levels by lentivirus-mediated re-expression of ITGβ3 bilaterally in the ventral hippocampus. In hippocampal slices, the loss of ITGβ3 activity did not compromise hebbian forms of plasticity--neither acute pharmacological disruption of ITGβ3 ligand interactions nor genetic deletion of ITGβ3 altered long-term potentiation (LTP) or long-term depression (LTD). Moreover, we did not detect any changes in short-term synaptic plasticity upon loss of ITGβ3 activity. In contrast, acutely disrupting ITGβ1-ligand interactions or genetic deletion of ITGβ1 selectively interfered with LTP stabilisation whereas LTD remained unaltered. These findings indicate a lack of requirement for ITGβ3 in the two robust forms of hippocampal long-term synaptic plasticity, LTP and LTD, and suggest differential roles for ITGβ1 and ITGβ3 in supporting hippocampal circuit functions.
Collapse
Affiliation(s)
- A B McGeachie
- Medical Research Council Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, London, UK
| | | | | | | | | | | |
Collapse
|
96
|
Mukhina IV, Korotchenko SA, Dityatev AE. Extracellular matrix molecules, their receptors, and extracellular proteases as synaptic plasticity modulators. NEUROCHEM J+ 2012. [DOI: 10.1134/s1819712412020055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
97
|
Baudry M, Kramar E, Xu X, Zadran H, Moreno S, Lynch G, Gall C, Bi X. Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome. Neurobiol Dis 2012; 47:210-5. [PMID: 22525571 DOI: 10.1016/j.nbd.2012.04.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/29/2012] [Accepted: 04/06/2012] [Indexed: 12/20/2022] Open
Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder largely due to abnormal maternal expression of the UBE3A gene leading to the deletion of E6-associated protein. AS subjects have severe cognitive impairments for which there are no therapeutic interventions. Mouse models (knockouts of the maternal Ube3a gene: 'AS mice') of the disorder have substantial deficits in long-term potentiation (LTP) and learning. Here we report a clinically plausible pharmacological treatment that ameliorates both deficits. AS mice were injected ip twice daily for 5 days with vehicle or the ampakine CX929; drugs of this type enhance fast EPSCs by positively modulating AMPA receptors. Theta burst stimulation (TBS) produced a normal enhancement of field EPSPs in hippocampal slices prepared from vehicle-treated AS mice but LTP decreased steadily to baseline; however, LTP in slices from ampakine-treated AS mice stabilized at levels found in wild-type controls. TBS-induced actin polymerization within dendritic spines, an essential event for stabilizing LTP, was severely impaired in slices from vehicle-treated AS mice but not in those from ampakine-treated AS mice. Long-term memory scores in a fear conditioning paradigm were reduced by 50% in vehicle-treated AS mice but were comparable to values for littermate controls in the ampakine-treated AS mice. We propose that AS is associated with a profound defect in activity-driven spine cytoskeletal reorganization, resulting in a loss of the synaptic plasticity required for the encoding of long-term memory. Notably, the spine abnormality along with the LTP and learning impairments can be reduced by a minimally invasive drug treatment.
Collapse
Affiliation(s)
- Michel Baudry
- Department of Biological Science, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Abstract
The superiority of spaced vs. massed training is a fundamental feature of learning. Here, we describe unanticipated timing rules for the production of long-term potentiation (LTP) in adult rat hippocampal slices that can account for one temporal segment of the spaced trials phenomenon. Successive bouts of naturalistic theta burst stimulation of field CA1 afferents markedly enhanced previously saturated LTP if spaced apart by 1 h or longer, but were without effect when shorter intervals were used. Analyses of F-actin-enriched spines to identify potentiated synapses indicated that the added LTP obtained with delayed theta trains involved recruitment of synapses that were "missed" by the first stimulation bout. Single spine glutamate-uncaging experiments confirmed that less than half of the spines in adult hippocampus are primed to undergo plasticity under baseline conditions, suggesting that intrinsic variability among individual synapses imposes a repetitive presentation requirement for maximizing the percentage of potentiated connections. We propose that a combination of local diffusion from initially modified spines coupled with much later membrane insertion events dictate that the repetitions be widely spaced. Thus, the synaptic mechanisms described here provide a neurobiological explanation for one component of a poorly understood, ubiquitous aspect of learning.
Collapse
|
99
|
Wosiski-Kuhn M, Stranahan AM. Transient increases in dendritic spine density contribute to dentate gyrus long-term potentiation. Synapse 2012; 66:661-4. [PMID: 22314918 DOI: 10.1002/syn.21545] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/26/2011] [Indexed: 11/11/2022]
Abstract
Dendritic spines are the primary sites for excitatory neurotransmission in the adult brain and exhibit changes in their number and morphology with experience. The relationship between spine formation and synaptic activity has been best characterized along the apical dendrites of pyramidal neurons in the hippocampal CA1 subfield. However, less is known about the structural mechanisms at the spine that mediate plasticity in other hippocampal subfields. The dentate gyrus is the predominant point of entry for synaptic input to the hippocampus, and dentate granule cells differ from CA1 pyramidal neurons in terms of their morphology and biophysical properties. In order to understand the structural mechanisms for plasticity in the dentate gyrus, we measured dendritic spine density in hippocampal slice preparations at different intervals following synaptic stimulation. We observed that transient increases in dendritic spine density are detectable 30 min after induction of long-term potentiation (LTP). By 60 min poststimulation, dendritic spine density has returned to basal levels. Both early LTP and enhancements in dendritic spine density could be blocked by destabilizing actin filaments, but not by inhibitors of transcription or protein synthesis. These results indicate that spine formation is a transient event that is required for dentate gyrus LTP.
Collapse
Affiliation(s)
- Marlena Wosiski-Kuhn
- Physiology Department, Georgia Health Sciences University, Augusta, Georgia, USA
| | | |
Collapse
|
100
|
β3 integrin interacts directly with GluA2 AMPA receptor subunit and regulates AMPA receptor expression in hippocampal neurons. Proc Natl Acad Sci U S A 2012; 109:1323-8. [PMID: 22232691 DOI: 10.1073/pnas.1113736109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The integrins are transmembrane receptors for ECM proteins, and they regulate various cellular functions in the central nervous system. In hippocampal neurons, the β3 integrin subtype is required for homeostatic synaptic scaling of AMPA receptors (AMPARs) induced by chronic activity deprivation. The surface level of β3 integrin in postsynaptic neurons directly correlates with synaptic strength and the abundance of synaptic GluA2 AMPAR subunit. Although these observations suggest a functional link between β3 integrin and AMPAR, little is known about the mechanistic basis for the connection. Here we investigate the nature of β3 integrin and AMPAR interaction underlying the β3 integrin-dependent control of synaptic AMPAR expression and thus synaptic strength. We show that β3 integrin and GluA2 subunit form a complex in mouse brain that involves the direct binding between their cytoplasmic domains. In contrast, β3 integrin associates with GluA1 AMPAR subunit only weakly, and, in a heterologous expression system, the interaction requires the coexpression of GluA2. Surprisingly, in hippocampal pyramidal neurons, expressing β3 integrin mutants with either increased or decreased affinity for extracellular ligands has no differential effects in elevating excitatory synaptic currents and surface GluA2 levels compared with WT β3 integrin. Our findings identify an integrin family member, β3, as a direct interactor of an AMPAR subunit and provide molecular insights into how this cell-adhesion protein regulates the composition of cell-surface AMPARs.
Collapse
|