51
|
Arias Padilla LF, Castañeda-Cortés DC, Rosa IF, Moreno Acosta OD, Hattori RS, Nóbrega RH, Fernandino JI. Cystic proliferation of germline stem cells is necessary to reproductive success and normal mating behavior in medaka. eLife 2021; 10:62757. [PMID: 33646121 PMCID: PMC7946426 DOI: 10.7554/elife.62757] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/28/2021] [Indexed: 12/11/2022] Open
Abstract
The production of an adequate number of gametes is necessary for normal reproduction, for which the regulation of proliferation from early gonadal development to adulthood is key in both sexes. Cystic proliferation of germline stem cells is an especially important step prior to the beginning of meiosis; however, the molecular regulators of this proliferation remain elusive in vertebrates. Here, we report that ndrg1b is an important regulator of cystic proliferation in medaka. We generated mutants of ndrg1b that led to a disruption of cystic proliferation of germ cells. This loss of cystic proliferation was observed from embryogenic to adult stages, impacting the success of gamete production and reproductive parameters such as spawning and fertilization. Interestingly, the depletion of cystic proliferation also impacted male sexual behavior, with a decrease of mating vigor. These data illustrate why it is also necessary to consider gamete production capacity in order to analyze reproductive behavior.
Collapse
Affiliation(s)
| | - Diana C Castañeda-Cortés
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ivana F Rosa
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Omar D Moreno Acosta
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ, Sao Paulo Fisheries Institute (APTA/SAA), Campos do Jordao, Brazil
| | - Ricardo S Hattori
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | - Rafael H Nóbrega
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
52
|
Gao A, Li L, Yan F, Lei Y, Chen J, Wu L, Ye J. Nile tilapia CXCR4, the receptor of chemokine CXCL12, is involved in host defense against bacterial infection and chemotactic activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103836. [PMID: 32835835 DOI: 10.1016/j.dci.2020.103836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
CXC chemokine receptor 4 (CXCR4), a member of seven-transmembrane (7-TM) G-protein-coupled receptor superfamily, is the receptor of the CXC chemokine ligand 12 (CXCL12), and plays important roles in host defense and inflammation. In the current study, we cloned and identified a homolog of CXCR4 from Nile tilapia (Oreochromis niloticus), designated as OnCXCR4. The open reading frame of OnCXCR4 is 1149 bp encoding a peptide of 382 amino acids, and the predicted molecular weight is 42.65 kDa OnCXCR4 shares common features of CXCR4 family, including a 7-TM domain and a characteristic CXC motif (containing CYC). Expression analysis showed that OnCXCR4 constitutively expresses in various tested tissues of Nile tilapia, with the highest level in the anterior kidney. When stimulated with Streptococcus agalactiae, Aeromonas hydrophila, Poly(I:C), or LPS in vivo and in vitro, the expression of OnCXCR4 was significantly regulated. AMD3100, a CXCR4 antagonist, could not only inhibit the chemotactic activity of the recombinant OnCXCL12 protein on the leukocytes from anterior kidney, but also reduce the expression of OnCXCR4 significantly. Taken together, these results of our study above indicate that OnCXCR4 may play important roles in host defense against bacterial infectionin in Nile tilapia, and being a receptor of OnCXCL12 to exert functions.
Collapse
Affiliation(s)
- Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Lan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Fangfang Yan
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Yang Lei
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Jianlin Chen
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou, 510631, PR China.
| |
Collapse
|
53
|
Castañeda-Cortés DC, Zhang J, Boan AF, Langlois VS, Fernandino JI. High temperature stress response is not sexually dimorphic at the whole-body level and is dependent on androgens to induce sex reversal. Gen Comp Endocrinol 2020; 299:113605. [PMID: 32866474 DOI: 10.1016/j.ygcen.2020.113605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022]
Abstract
The understanding of the molecular and endocrine mechanisms behind environmentally-induced sex reversal in fish is of great importance in the context of predicting the potential effects of climate change, especially increasing temperature. Here, we demonstrate the global effects of high temperature on genome-wide transcription in medaka (Oryzias latipes) during early development. Interestingly, data analysis did not show sexual dimorphic changes, demonstrating that thermal stress is not dependent on genotypic sex. Additionally, our results revealed significant changes in several pathways under high temperature, such as stress response from brain, steroid biosynthesis, epigenetic mechanisms, and thyroid hormone biosynthesis, among others. These microarray data raised the question of what the exact molecular and hormonal mechanisms of action are for female-to-male sex reversal under high temperatures in fish. Complementary gene expression analysis revealed that androgen-related genes increase in females (XX) experiencing high water temperature. To test the involvement of androgens in thermal-induced sex reversal, an androgen antagonist was used to treat XX medaka under a high-temperature setup. Data clearly demonstrated failure of female-to-male sex reversal when androgen action is inhibited, corroborating the importance of androgens in environmentally-induced sex reversal.
Collapse
Affiliation(s)
- Diana C Castañeda-Cortés
- Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Argentina
| | - Jing Zhang
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada; Neurosciences & Mental Health, SickKids Research Institute, Toronto, ON, Canada
| | - Agustín F Boan
- Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Argentina
| | - Valerie S Langlois
- Institut National de la Recherche Scientifique (INRS) - Centre Eau Terre Environnement, Quebec, Canada.
| | - Juan I Fernandino
- Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús, INTECH (CONICET-UNSAM), Argentina.
| |
Collapse
|
54
|
Song X, Wang X, Bhandari RK. Developmental abnormalities and epigenetic alterations in medaka (Oryzias latipes) embryos induced by triclosan exposure. CHEMOSPHERE 2020; 261:127613. [PMID: 32738708 DOI: 10.1016/j.chemosphere.2020.127613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS), an antibacterial and antifungal agent present in some consumer products, has been detected in the environment at varying concentrations. TCS exposure has been found to cause developmental abnormalities and endocrine disruption in various species of fish. It is not clearly understood whether TCS exposure causes epigenetic alterations in developing embryos and their germ cells. In the present study, we examined the effects of TCS exposure (0, 50, 100 and, 200 μg/L) on embryonic development and primordial germ cells (PGCs), which are precursors of sperm and eggs, in medaka (Oyzias latipes). Developmental TCS exposure from 8 h post-fertilization through 15 days post-fertilization (dpf) resulted in several developmental abnormalities, including enlarged yolk sac, decreased head trunk angle (HTA), and severe edema in the pericardial region. The male ratio increased in the 100 μg/L TCS exposure group, which was negatively correlated with the expression of cyp19ala (a gene encoding aromatase) and arα (androgen receptor alpha). Developmental 50 μg/L TCS exposure resulted in global hypomethylation in the whole body but not in the isolated PGCs. Expression of the gene encoding DNA methyltransferases (dnmt1 and dnmt3aa) was decreased by 50 μg/L TCS exposure both in the whole body and PGCs. TCS altered the expression of genes encoding enzymes involved in DNA methylation and demethylation in PGCs, suggesting epigenetic effects on germ cells. The present results demonstrate that the embryos exposed to the tested concentrations of TCS develop deformities during the early life stages and that the TCS within this range possesses endocrine disrupting properties potential enough to alter sex ratios of developing embryos.
Collapse
Affiliation(s)
- Xiaohong Song
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA.
| |
Collapse
|
55
|
Xu D, Yoshino T, de Bello Cioffi M, Yoshikawa H, Ino Y, Yazawa R, Dos Santos Nassif Lacerda SM, Takeuchi Y. Production of donor-derived eggs after ovarian germ cell transplantation into the gonads of adult, germ cell-less, triploid hybrid fish†. Biol Reprod 2020; 103:1289-1299. [PMID: 32940693 DOI: 10.1093/biolre/ioaa168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/05/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
In animals, spermatogonial transplantation in sterile adult males is widely developed; however, despite its utility, ovarian germ cell transplantation is not well developed. We previously showed that the interspecific hybrid offspring of sciaenid was a suitable model for germ cell transplantation studies as they have germ cell-less gonads. However, all these gonads have testis-like characteristics. Here, we tested whether triploidization in hybrid embryos could result in germ cell-less ovary development. Gonadal structure dimorphism and sex-specific gene expression patterns were examined in 6-month-old triploid hybrids (3nHybs). Thirty-one percent of 3nHybs had germ cell-less gonads with an ovarian cavity. cyp19a1a and foxl2, ovarian differentiation-related genes, were expressed in these gonads, whereas dmrt1 and vasa were not expressed, suggesting ovary-like germ cell-less gonad development. Some (26%) 3nHybs had testis-like germ cell-less gonads. Ovarian germ cells collected from homozygous green fluorescent protein (GFP) transgenic blue drum (BD) (Nibea mitsukurii) were transplanted into 6-month-old 3nHybs gonads via the urogenital papilla or oviduct. After 9 months, the recipients were crossed with wild type BD. Among the six 3nHyb recipients that survived, one female and one male produced fertile eggs and motile sperm carrying gfp-specific DNA sequences. Progeny tests revealed that all F1 offspring possessed gfp-specific DNA sequences, suggesting that these recipients produced only donor-derived eggs or sperm. Histological observation confirmed donor-derived gametogenesis in the 3nHyb recipients' gonads. Overall, triploidization reduces male-biased sex differentiation in germ cell-less gonads. We report, for the first time, donor-derived egg production in an animal via direct ovarian germ cell transplantation into a germ cell-less ovary.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fisheries Institute of Zhejiang Province, Zhoushan, P.R. China.,Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tasuku Yoshino
- Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Yasuko Ino
- National Fisheries University, Shimonoseki, Japan
| | - Ryosuke Yazawa
- Department of Aquatic Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
56
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
57
|
Rescue of germ cells in dnd crispant embryos opens the possibility to produce inherited sterility in Atlantic salmon. Sci Rep 2020; 10:18042. [PMID: 33093479 PMCID: PMC7581530 DOI: 10.1038/s41598-020-74876-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/07/2020] [Indexed: 11/12/2022] Open
Abstract
Genetic introgression of escaped farmed Atlantic salmon (Salmo salar) into wild populations is a major environmental concern for the salmon aquaculture industry. Using sterile fish in commercial aquaculture operations is, therefore, a sustainable strategy for bio-containment. So far, the only commercially used methodology for producing sterile fish is triploidization. However, triploid fish are less robust. A novel approach in which to achieve sterility is to produce germ cell-free salmon, which can be accomplished by knocking out the dead-end (dnd) gene using CRISPR-Cas9. The lack of germ cells in the resulting dnd crispants, thus, prevents reproduction and inhibits subsequent large-scale production of sterile fish. Here, we report a rescue approach for producing germ cells in Atlantic salmon dnd crispants. To achieve this, we co-injected the wild-type (wt) variant of salmon dnd mRNA together with CRISPR-Cas9 constructs targeting dnd into 1-cell stage embryos. We found that rescued one-year-old fish contained germ cells, type A spermatogonia in males and previtellogenic primary oocytes in females. The method presented here opens a possibility for large-scale production of germ-cell free Atlantic salmon offspring through the genetically sterile broodstock which can pass the sterility trait on the next generation.
Collapse
|
58
|
Xu D, Yoshino T, Konishi J, Yoshikawa H, Ino Y, Yazawa R, Dos Santos Nassif Lacerda SM, de França LR, Takeuchi Y. Germ cell-less hybrid fish: ideal recipient for spermatogonial transplantation for the rapid production of donor-derived sperm†. Biol Reprod 2020; 101:492-500. [PMID: 31132090 DOI: 10.1093/biolre/ioz045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/14/2022] Open
Abstract
An interspecific hybrid marine fish that developed a testis-like gonad without any germ cells, i.e., a germ cell-less gonad, was produced by hybridizing a female blue drum Nibea mitsukurii with a male white croaker Pennahia argentata. In this study, we evaluated the suitability of the germ cell-less fish as a recipient by transplanting donor testicular cells directly into the gonads through the urogenital papilla. The donor testicular cells were collected from hemizygous transgenic, green fluorescent protein (gfp) (+/-) blue drum, and transplanted into the germ cell-less gonads of the 6-month-old adult hybrid croakers. Fluorescent and histological observations showed the colonization, proliferation, and differentiation of transplanted spermatogonial cells in the gonads of hybrid croakers. The earliest production of spermatozoa in a hybrid recipient was observed at 7 weeks post-transplantation (pt), and 10% of the transplanted recipients produced donor-derived gfp-positive spermatozoa by 25 weeks pt. Sperm from the hybrid recipients were used to fertilize eggs from wild-type blue drums, and approximately 50% of the resulting offspring were gfp-positive, suggesting that all offspring originated from donor-derived sperm that were produced in the transplanted gfp (+/-) germ cells. To the best of our knowledge, this is the first report of successful spermatogonial transplantation using a germ cell-less adult fish as a recipient. This transplantation system has considerable advantages, such as the use of comparatively simple equipment and procedures, and rapid generation of donor-derived spermatogenesis and offspring, and presents numerous applications in commercial aquaculture.
Collapse
Affiliation(s)
- Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, PR China.,Division of Fisheries Resource Sciences, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, Japan
| | - Tasuku Yoshino
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | - Junpei Konishi
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | - Hiroyuki Yoshikawa
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Japan
| | - Yasuko Ino
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, 2-7-1 Nagata-Honmachi, Shimonoseki, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, Japan
| | | | - Luiz Renato de França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Yutaka Takeuchi
- Division of Fisheries Resource Sciences, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima City, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
59
|
Kawamura W, Tani R, Yahagi H, Kamio S, Morita T, Takeuchi Y, Yazawa R, Yoshizaki G. Suitability of hybrid mackerel (Scomber australasicus × S. japonicus) with germ cell-less sterile gonads as a recipient for transplantation of bluefin tuna germ cells. Gen Comp Endocrinol 2020; 295:113525. [PMID: 32502497 DOI: 10.1016/j.ygcen.2020.113525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 01/11/2023]
Abstract
We aim to establish a small-bodied surrogate broodstock, such as mackerel, which produces functional bluefin tuna gametes by spermatogonial transplantation. When reproductively fertile fish are used as recipients, endogenous gametogenesis outcompetes donor-derived gametogenesis, and recipient fish predominantly produce their gametes. In this study, we assessed fertility of hybrid mackerel, Scomber australasicus × S. japonicus, and its suitability as a recipient for transplantation of bluefin tuna germ cells. Hybrid mackerel were produced by artificially inseminating S. australasicus eggs with S. japonicus spermatozoa. Cellular DNA content and PCR analyses revealed that F1 offspring were diploid carrying both paternal and maternal genomes. Surprisingly, histological observations found no germ cells in hybrid mackerel gonads at 120 days post-hatch (dph), although they were present in the gonad of 30- and 60-dph hybrid mackerel. The frequency of germ cell-less fish was 100% at 120-dph, 63.1% at 1-year-old, and 81.8% at 2-year-old. We also confirmed a lack of expression of germ cell marker (DEAD-box helicase 4, ddx4) in the germ cell-less gonads of hybrid mackerel. By contrast, expression of Sertoli cell marker (gonadal soma-derived growth factor, gsdf) and of Leydig cell marker (steroid 11-beta-hydroxlase, cyp11b1) were clearly detected in hybrid mackerel gonads. Together these results showed that most of the hybrid gonads were germ cell-less sterile, but still possessed supporting cells and steroidogenic cells, both of which are indispensable for nursing donor-derived germ cells. To determine whether hybrid gonads could attract and incorporate donor bluefin tuna germ cells, testicular cells labeled with PKH26 fluorescent dye were intraperitoneally transplanted. Fluorescence observation of hybrid recipients at 14 days post-transplantation revealed that donor cells had been incorporated into the recipient's gonads. This suggests that hybrid mackerel show significant promise for use as a recipient to produce bluefin tuna gametes.
Collapse
Affiliation(s)
- Wataru Kawamura
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Reoto Tani
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Hana Yahagi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Shigeharu Kamio
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Tetsuro Morita
- Oita Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd., 508-8, Ariakrura Turumi, Saiki-shi, Oita 876-1204, Japan
| | - Yutaka Takeuchi
- Noto Center for Fisheries Science and Technology, Faculty of Biological Science and Technology, Kanazawa University, 11-4-1 Otsusaka, Noto-cho, Ishikawa 927-0552, Japan
| | - Ryosuke Yazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan.
| |
Collapse
|
60
|
Horie Y, Kanazawa N, Takahashi C, Tatarazako N, Iguchi T. Exposure to 4-nonylphenol induces a shift in the gene expression of gsdf and testis-ova formation and sex reversal in Japanese medaka (Oryzias latipes). J Appl Toxicol 2020; 41:399-409. [PMID: 32852118 DOI: 10.1002/jat.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 01/14/2023]
Abstract
The branched isomer mixture 4-nonylphenol (4-NP) has been used worldwide as a surfactant, and can have endocrine-disrupting effects on aquatic organisms. For instance, 4-NP induces the formation of testis-ova (i.e., testicular and ovarian tissue in the same gonad) or male to female sex reversal of various teleost fishes. Recently, our group revealed that altered gsdf gene expression is associated with disruption of gonadal differentiation in Japanese medaka (Oryzias latipes) embryos exposed to methyltestosterone or bisphenol A, suggesting that gsdf might be useful as a biomarker for predicting the impact of endocrine-disrupting chemicals (EDCs) on gonadal differentiation. Here, we used 4-NP to examine further whether gsdf expression at the embryo stage is useful for predicting EDC impact on gonadal sex differentiation. When fertilized medaka eggs were exposed to 32 or 100 μg/L 4-NP, testis-ova in genetic males and sex reversal from genetic male to phenotypic female were observed. At stage 38 (just before hatching), 4-NP exposure at 1-100 μg/L did not affect gsdf expression in XX embryos compared with the nontreated control; however, in XY embryos, the gsdf expression in the 100 μg/L-exposed group was significantly lower than that in the controls. The 4-NP concentration at which gsdf expression was suppressed was equal to that at which testis-ova and sex reversal were induced. These results indicate that expression of the gsdf gene at the embryonic stage in medaka is a useful biomarker for predicting the impact of EDCs on sexual differentiation.
Collapse
Affiliation(s)
- Yoshifumi Horie
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Nobuhiko Kanazawa
- Faculty of Systems Science and Technology, Akita Prefectural University, Akita, Japan
| | - Chiho Takahashi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Taisen Iguchi
- Nanobioscience, Yokohama City University, Yokohama, Japan
| |
Collapse
|
61
|
Ge S, Dan C, Xiong Y, Gong G, Mei J, Guo W, Li X. Identifying difference in primordial germ cells between XX female and XY male yellow catfish embryos. Gene 2020; 761:145037. [PMID: 32777526 DOI: 10.1016/j.gene.2020.145037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
Primordial germ cells (PGCs) are singled out from somatic cells very early during embryogenesis, then they migrate towards the genital ridge and differentiate into gametes through oogenesis or spermatogenesis. Labeling PGCs with Localized RNAexpression (LRE) technique by fluorescent proteins has been widely applied among teleost species to study the germ cell development and gonad differentiation. In this study, we first cloned and characterized the 3' untranslated regions (3'UTRs) of nanos homolog 1-like (nos1l), dead end (dnd), and vasa in yellow catfish (Pelteobagrus fulvidraco), and then synthesized the GFP-nos1l/dnd/vasa 3'UTR mRNAs. Each of these three 3'UTRs could label PGCs in yellow catfish embryos, of which, vasa 3'UTR exhibited the highest labeling efficiency. To identify the differences in PGCs at embryonic stage, XX all-female and XY all-male yellow catfish embryos were produced and injected with GFP-vasa 3'UTR mRNA. We observed the PGC migration route in these two monosex embryos from 24 hpf to 7 dpf, and found there was no difference between them. Besides, the PGC number was counted at 48 hpf, and the result showed that the average PGC number in XX females (11.3) was significantly larger than that in XY males (8.1).These findings provide an insight into the development of PGCs in yellow catfish embryos and the relationship between embryonicPGCnumberand thelatergonaddifferentiation.
Collapse
Affiliation(s)
- Si Ge
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430070, China
| | - Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaohui Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
62
|
Wang W, Liang S, Zou Y, Wu Z, Wang L, Liu Y, You F. Amh dominant expression in Sertoli cells during the testicular differentiation and development stages in the olive flounder Paralichthys olivaceus. Gene 2020; 755:144906. [PMID: 32554048 DOI: 10.1016/j.gene.2020.144906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17β-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.
Collapse
Affiliation(s)
- Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
63
|
Chakraborty T, Mohapatra S, Zhou LY, Ohta K, Matsubara T, Iguchi T, Nagahama Y. Estrogen Receptor β2 Oversees Germ Cell Maintenance and Gonadal Sex Differentiation in Medaka, Oryzias latipes. Stem Cell Reports 2020; 13:419-433. [PMID: 31412286 PMCID: PMC6700524 DOI: 10.1016/j.stemcr.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
In vertebrates, estrogen receptors are essential for estrogen-associated early gonadal sex development. Our previous studies revealed sexual dimorphic expression of estrogen receptor β2 (ERβ2) during embryogenesis of medaka, and here we investigated the functional importance of ERβ2 in female gonad development and maintenance using a transgenerational ERβ2-knockdown (ERβ2-KD) line and ERβ2-null mutants. We found that ERβ2 reduction favored male-biased gene transcription, suppressed female-responsive gene expression, and affected SDF1a and CXCR4b co-assisted chemotactic primordial germ cell (PGC) migration. Co-overexpression of SDF1a and CXXR4b restored the ERβ2-KD/KO associated PGC mismigration. Further analysis confirmed that curtailment of ERβ2 increased intracellular Ca2+ concentration, disrupted intra- and extracellular calcium homeostasis, and instigated autophagic germ cell degradation and germ cell loss, which in some cases ultimately affected the XX female sexual development. This study is expected improve our understanding of germ cell maintenance and sex spectrum, and hence open new avenues for reproductive disorder management. ERβ2 has a multifaceted role in early gonadal sex differentiation ERβ2 directly influences SDF1a/CXCR4b PGC chemotaxis and germ cell migration ERβ2-KD impairs intra- and extracellular calcium homeostasis and triggers cell death In some cases, ERβ2-KD and KO alters sexual development in female gonad
Collapse
Affiliation(s)
- Tapas Chakraborty
- South Ehime Fisheries Research Center, Ehime University, Ainan 798-4206, Japan; Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Laboratory of Molecular Environmental Endocrinology, Okazaki Institute for Integrative Bioscience, National Institute of Natural Sciences, Okazaki 444-8787, Japan.
| | - Sipra Mohapatra
- South Ehime Fisheries Research Center, Ehime University, Ainan 798-4206, Japan
| | - Lin Yan Zhou
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Kohei Ohta
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; Laboratory of Marine Biology, Kyushu University, Fukuoka 812-8581, Japan
| | - Takahiro Matsubara
- South Ehime Fisheries Research Center, Ehime University, Ainan 798-4206, Japan
| | - Taisen Iguchi
- Laboratory of Molecular Environmental Endocrinology, Okazaki Institute for Integrative Bioscience, National Institute of Natural Sciences, Okazaki 444-8787, Japan; Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Yoshitaka Nagahama
- South Ehime Fisheries Research Center, Ehime University, Ainan 798-4206, Japan; Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan
| |
Collapse
|
64
|
Cbx2, a PcG Family Gene, Plays a Regulatory Role in Medaka Gonadal Development. Int J Mol Sci 2020; 21:ijms21041288. [PMID: 32075028 PMCID: PMC7072964 DOI: 10.3390/ijms21041288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Chromobox homolog 2 (CBX2), a key member of the polycomb group (PcG) family, is essential for gonadal development in mammals. A functional deficiency or genetic mutation in cbx2 can lead to sex reversal in mice and humans. However, little is known about the function of cbx2 in gonadal development in fish. In this study, the cbx2 gene was identified in medaka, which is a model species for the study of gonadal development in fish. Transcription of cbx2 was abundant in the gonads, with testicular levels relatively higher than ovarian levels. In situ hybridization (ISH) revealed that cbx2 mRNA was predominately localized in spermatogonia and spermatocytes, and was also observed in oocytes at stages I, II, and III. Furthermore, cbx2 and vasa (a marker gene) were co-localized in germ cells by fluorescent in situ hybridization (FISH). After cbx2 knockdown in the gonads by RNA interference (RNAi), the sex-related genes, including sox9 and foxl2, were influenced. These results suggest that cbx2 not only plays a positive role in spermatogenesis and oogenesis but is also involved in gonadal differentiation through regulating the expression levels of sex-related genes in fish.
Collapse
|
65
|
Feng K, Cui X, Song Y, Tao B, Chen J, Wang J, Liu S, Sun Y, Zhu Z, Trudeau VL, Hu W. Gnrh3 Regulates PGC Proliferation and Sex Differentiation in Developing Zebrafish. Endocrinology 2020; 161:5638064. [PMID: 31758175 DOI: 10.1210/endocr/bqz024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023]
Abstract
Gonadotropin-releasing hormone (Gnrh) plays important roles in reproduction by stimulating luteinizing hormone release, and subsequently ovulation and sperm release, ultimately controlling reproduction in many species. Here we report on a new role for this decapeptide. Surprisingly, Gnrh3-null zebrafish generated by CRISPR/Cas9 exhibited a male-biased sex ratio. After the dome stage, the number of primordial germ cells (PGCs) in gnrh3-/- fish was lower than that in wild-type, an effect that was partially rescued by gnrh3 overexpression. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) analysis revealed no detectable apoptosis of PGCs in gnrh3-/- embryos. Proliferating PGCs could be detected in wild-type embryos, while there was no detectable signal in gnrh3-/- embryos. Compared with wild type, the phosphorylation of AKT was not significantly different in gnrh3-/- embryos, but the phosphorylation of ERK1/2 decreased significantly. Treatment with a Gnrh analog (Alarelin) induced ERK1/2 phosphorylation and increased PGC numbers in both wild-type and gnrh3-/- embryos, and this was blocked by the MEK inhibitor PD0325901. The relative expression of sox9a, amh, and cyp11b were significantly upregulated, while cyp19a1a was significantly downregulated at 18 days post-fertilization in gnrh3-/- zebrafish. Taken together, these results indicate that Gnrh3 plays an important role in early sex differentiation by regulating the proliferation of PGCs through a MAPK-dependent path.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Xuefan Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
66
|
Function of leukaemia inhibitory factor in spermatogenesis of a teleost fish, the medaka Oryzias latipes. ZYGOTE 2019; 27:423-431. [PMID: 31617472 DOI: 10.1017/s0967199419000558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In response to gonadotropins and androgens, testicular cells produce various molecules that control proper proliferation and differentiation of spermatogenic cells through their paracrine and autocrine actions. However, molecules functioning downstream of the hormonal stimulation are poorly understood. Leukaemia inhibitory factor (Lif) is known to maintain the pluripotency of stem cells including embryonic stem cells and primordial germ cells at least in vitro, but its actual roles in vivo remain to be elucidated. To clarify the function of Lif in teleost (medaka) testes, we examined the effects of Lif on spermatogenesis in a newly established cell culture system using a cell line (named Mtp1) derived from medaka testicular somatic cells as feeder cells. We found that addition of baculovirus-produced recombinant medaka Lif to the culture medium or co-culture with Lif-overexpressing Mtp1 cells increased the number of spermatogonia. In situ hybridization and immunohistochemical analyses of the medaka testes showed that mRNAs and proteins of Lif are expressed in spermatogonia and the surrounding Sertoli cells, with higher expression levels in type A (undifferentiated) spermatogonia than in type B (differentiated) spermatogonia. Our findings suggest that Lif regulates spermatogonial cell proliferation in the medaka.
Collapse
|
67
|
Saito T, Güralp H, Iegorova V, Rodina M, Pšenicka M. Elimination of primordial germ cells in sturgeon embryos by ultraviolet irradiation. Biol Reprod 2019; 99:556-564. [PMID: 29635315 PMCID: PMC6134207 DOI: 10.1093/biolre/ioy076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 04/06/2018] [Indexed: 11/14/2022] Open
Abstract
A technique for rescuing and propagating endangered species involves implanting germ line stem cells into surrogates of a host species whose primordial germ cells (PGCs) have been destroyed. We induced sterilization in sterlet (Acipenser ruthenus) embryos by means of ultraviolet (UV) irradiation at the vegetal pole, the source of early-stage PGCs of sturgeon eggs. The optimal cell stage and length of UV irradiation for the effective repression of the developing PGCs were determined by exposing embryos at the one- to four-cell stage to different doses of irradiation at a wavelength of 254 nm (the optimal absorbance spectrum for germplasm destruction). The vegetal pole region of the embryos was labeled immediately upon irradiation with GFP bucky ball mRNA to monitor the amount of germ plasm and FITC-dextran (M.W. 500,000) to obtain the number of PGCs in the embryos. The size of the germ plasm and number of surrounding mitochondria in the irradiated embryos and controls were observed using transmission electron microscopy, which revealed a drastic reduction in both on the surface of the vegetal pole in the treated embryos. Furthermore, the reduction in the number of PGCs was proportional to the dose of UV irradiation. Under the conditions tested, optimum irradiation for PGCs removal was seen at 360 mJ/cm2 at the one-cell stage. Although some PGCs were observed after the UV irradiation, they significantly reduced in number as the embryos grew. We conclude that UV irradiation is a useful and efficient technique to induce sterility in surrogate sturgeons.
Collapse
Affiliation(s)
- Taiju Saito
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Hilal Güralp
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Viktoriia Iegorova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Marek Rodina
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| | - Martin Pšenicka
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Vodnany, Czech Republic
| |
Collapse
|
68
|
Jeng SR, Wu GC, Yueh WS, Kuo SF, Dufour S, Chang CF. Dmrt1 (doublesex and mab-3-related transcription factor 1) expression during gonadal development and spermatogenesis in the Japanese eel. Gen Comp Endocrinol 2019; 279:154-163. [PMID: 30902612 DOI: 10.1016/j.ygcen.2019.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022]
Abstract
Dmrt1, doublesex- and mab-3-related transcription factor-1, has been suggested to play critical roles in male gonadogenesis, testicular differentiation and development, including spermatogenesis, among different vertebrates. Vasa is a putative molecular marker of germ cells in vertebrates. In this study, we cloned the full-length dmrt1 cDNA from Japanese eel, and the protein comprised 290 amino acids and presented an extremely conserved Doublesex and Mab-3 (DM) domain. Vasa proteins were expressed in gonadal germ cells in a stage-specific manner, and were expressed at high levels in PGC and spermatogonia, low levels in spermatocytes, and were absent in spermatids and spermatozoa of Japanese eels. Dmrt1 proteins were abundantly expressed in spermatogonia B cells, spermatocytes, spermatids, but not in spermatozoa, spermatogonia A and Sertoli cells. To our knowledge, this study is the first to show a restricted expression pattern for the Dmrt1 protein in spermatogonia B cells, but not spermatogonia A cells, of teleosts. Therefore, Dmrt1 might play vital roles at the specific stages during spermatogenesis from spermatogonia B cells to spermatids in the Japanese eel. Moreover, the Dmrt1 protein exhibited a restricted localization in differentiating oogonia in the early differentiating gonad (ovary-like structure) of male Japanese eels and in E2-induced feminized Japanese eels. We proposed that dmrt1 may be not only required for spermatogenesis but might also play a role in oogenesis in the Japanese eel.
Collapse
Affiliation(s)
- Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Shu-Fen Kuo
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Museum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des Antilles, 75231 Paris Cedex 05, France
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
69
|
A state-of-the-art review of surrogate propagation in fish. Theriogenology 2019; 133:216-227. [DOI: 10.1016/j.theriogenology.2019.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022]
|
70
|
Xiao Q, Sun Y, Liang X, Zhang L, Onxayvieng K, Li Z, Li D. Visualizing primordial germ cell migration in embryos of rice field eel (Monopterus albus) using fluorescent protein tagged 3' untranslated regions of nanos3, dead end and vasa. Comp Biochem Physiol B Biochem Mol Biol 2019; 235:62-69. [PMID: 31176867 DOI: 10.1016/j.cbpb.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/25/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
In rice field eel (Monopterus albus), germ cell development in the developing gonad has been revealed in detail. However, it is unclear how primordial germ cells (PGCs) migrate to the somatic part of the gonad (genital ridge). This study visualized PGC migration by injecting a chimeric mRNA containing a fluorescent protein fused to the 3' untranslated region (3'UTR) of three different genes, nanos3 of zebrafish (Danio rerio) and dead end (dnd) and vasa of rice field eel. The mRNAs were injected either alone or in pairs into embryos at the one-cell stage. The results showed that mRNAs containing nanos3 and dnd 3'UTRs labeled PGCs over a wider time frame than those containing vasa 3'UTR, suggesting that nanos3 and dnd 3'UTRs are suitable for visualizing PGCs in rice field eel. Using this direct visualization method, the normal migration route of PGCs was observed from the 50%-epiboly stage to hatching stage for the first time, and the ectopic PGCs were also visualized during this period in rice field eel. These findings extend our knowledge of germ cell development, and lay a foundation for further research on the relationship between PGCs and sex differentiation, and on incubation conditions for embryos in rice field eel.
Collapse
Affiliation(s)
- Qing Xiao
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiqing Sun
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Liang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lihan Zhang
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kommaly Onxayvieng
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| | - Dapeng Li
- Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
71
|
Wu GC, Jeng SR, Pan YT, Li HW, Ku WL, Lin CJ, Chang CF. The germline-specific expression of Foxl3a and its paralogous Foxl3b are associated with male gonadal differentiation in the Japanese eel, Anguilla japonica. Gen Comp Endocrinol 2019; 277:56-65. [PMID: 30878349 DOI: 10.1016/j.ygcen.2019.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
Abstract
Unlike its paralog Foxl2, which is well known for its role in ovarian development in vertebrates, the function of Foxl3 is still unclear. Foxl3 is an ancient duplicated copy of Foxl2. It is present as a single copy in ray-finned fish. But, due to repeated losses, it is absent in most tetrapods. Our transcriptomic data, however, show that two Foxl3s (Foxl3a and its paralog Foxl3b) are present in Japanese eel. Foxl3a is predominantly expressed in the pituitary, and Foxl3b is predominantly expressed in the gills. Both Foxl3s show a sex-dimorphic expression, being higher expression in testes than in ovaries. Moreover, Foxl3a and Foxl3b were exclusively expressed during gonadal differentiation in control eels (100% male). Conversely, Foxl3a and Foxl3b significantly decreased after gonadal differentiation in E2-treated eels (100% female). Furthermore, in accordance the difference in adhesive ability between somatic cells and germline cells in testes, Foxl3s showed a high expression in suspension cells (putative germline cells) and low expression in adhesive cells (putative somatic cells). In situ hybridization further showed that Foxl3a and Foxl3b were expressed in the testicular germline cells. In addition, Foxl3s expression was not changed by sex steroids in in vitro testes culture. Taken together, our results suggest that the teleost-specific Foxl3 paralog was repeatedly lost in most fish after the third round of whole genome duplication. The two germline-expressed Foxl3s had higher expression levels in males than in females during gonadal differentiation in Japanese eel. These results demonstrated that Foxl3s might play an important role in germline sexual fate determination from ancient fish to modern fish.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Yi-Tin Pan
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Wei-Lun Ku
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan.
| |
Collapse
|
72
|
Chukwuka A, Ogbeide O, Uhunamure G. Gonad pathology and intersex severity in pelagic (Tilapia zilli) and benthic (Neochanna diversus and Clarias gariepinus) species from a pesticide-impacted agrarian catchment, south-south Nigeria. CHEMOSPHERE 2019; 225:535-547. [PMID: 30901648 DOI: 10.1016/j.chemosphere.2019.03.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 05/21/2023]
Abstract
Pesticides are distributed to different degrees in surface water and sediment, thus, risks of toxicity and adverse impacts to physiology of resident species could be determined by their microhabitat (sub-habitat) associations, either water column or sediment. River Owan receives pesticide input from diffuse sources from adjacent farmlands. Surface water, sediment and fish samples [(Pelagic: Tilapia zilli (n = 92) and benthic: Neochanna diversus (n = 59), Clarias gariepinus (n = 68) were collected within the catchment area across seasons for 18-months (August 2016-January 2018) and measured for pesticide levels. Testicular and Ovarian tissue samples across the three species were also examined for pathological alterations. Individual pesticide concentrations in surface water and sediment exceeded international allowable limits, while concentration of pesticide residues in tissues of benthic species was higher compared to pelagic fish. Histopathological assessment revealed a higher incidence of ovarian disruption including atretic follicles, intersex and disorganization of ovarian structure in benthic (bottom-dwelling) fish (C. gariepinus and N. diversus) compared to pelagic (water-column) fish (T. zilli). Males benthic fish species also recorded more severe anomalies, compared to pelagic fish. The damages and anomalies observed in ovarian and testicular tissue indicate chronic responses to pollutant exposure, and implicates the elevation of pesticide concentrations in surface water and sediment above permissible limits. The higher incidence of anomalies recorded for benthic species compared to pelagic species, indicates greater risks of reproductive disruption and could be associated with the microhabitat preferences (water-column or sediment).
Collapse
Affiliation(s)
- Azubuike Chukwuka
- Department of Environmental Quality Control (EQC), Conservation Unit, National Environmental Standards and Regulations Enforcement Agency (NESREA), Nigeria.
| | - Ozekeke Ogbeide
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria; Ecotoxicology Unit, Department of Entomology and Zoology, University of the Free State, Qwa Qwa, Free State, South Africa
| | - Grace Uhunamure
- Department of Environmental Management and Toxicology, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| |
Collapse
|
73
|
Adolfi MC, Fischer P, Herpin A, Regensburger M, Kikuchi M, Tanaka M, Schartl M. Increase of cortisol levels after temperature stress activates dmrt1a causing female-to-male sex reversal and reduced germ cell number in medaka. Mol Reprod Dev 2019; 86:1405-1417. [PMID: 31140678 DOI: 10.1002/mrd.23177] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
In vertebrates, there is accumulating evidence that environmental factors as triggers for sex determination and genetic sex determination are not two opposing alternatives but that a continuum of mechanisms bridge those extremes. One prominent example is the model fish species Oryzias latipes which has a stable XX/XY genetic sex determination system, but still responds to environmental cues, where high temperatures lead to female-to-male sex reversal. However, the mechanisms behind are still unknown. We show that high temperatures increase primordial germ cells (PGC) numbers before they reach the genital ridge, which, in turn, regulates the germ cell proliferation. Complete ablation of PGCs led to XX males with germ cell less testis, whereas experimentally increased PGC numbers did not reverse XY genotypes to female. For the underlying molecular mechanism, we provide support for the explanation that activation of the dmrt1a gene by cortisol during early development of XX embryos enables this autosomal gene to take over the role of the male determining Y-chromosomal dmrt1bY.
Collapse
Affiliation(s)
| | - Peter Fischer
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Mariko Kikuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Germany and Hagler Institute for Advanced Study and Department of Biology, Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Texas A&M University, College Station, Texas
| |
Collapse
|
74
|
Yan N, Hu J, Li J, Dong J, Sun C, Ye X. Genomic organization and sexually dimorphic expression of the Dmrt1 gene in largemouth bass (Micropterus salmoides). Comp Biochem Physiol B Biochem Mol Biol 2019; 234:68-77. [PMID: 31078703 DOI: 10.1016/j.cbpb.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Doublesex and Mab-3 related transcription factor (Dmrt) genes play important roles in the process of sex determination and differentiation. In this study, a Dmrt1 gene open reading frame sequence was obtained from the gonadal transcriptome data of largemouth bass (Micropterus salmoides), and identified by cloning and sequencing. The ORF of Dmrt1 is 900 bp long, encodes 298 amino acids, and contains the DM region which is characteristic of Dmrt1. Full gDNA sequence of Dmrt1 was composed of five exons and four introns. RT-PCR and Q-PCR analysis of Dmrt1 were conducted in eight tissues and three developmental stages of mature male and female individuals. In situ hybridization was used to locate the expression of Dmrt1 in the testis and ovary of largemouth bass. The results showed that Dmrt1 was highly expressed in the testis of mature fish, but only weakly expressed in other tissues such as heart, liver, and brain, and exhibited gender dimorphism in the gonads of male and female fish at different stages. Furthermore, the expression level in female fish was very low and decreased gradually with ovary maturation. In situ hybridization indicated positive signals were found in early oocytes, but not in mature oocytes, while strong positive signals were found in all types of mature testis cells. The study showed that the sequence and structure of Dmrt1 were highly conserved and exhibited significant gender dimorphism in largemouth bass, as in other fish species. It is suggested that Dmrt1 plays an important role in sex determination and differentiation in largemouth bass.
Collapse
Affiliation(s)
- Ningning Yan
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI-Shenzhen, Shenzhen 518083, China
| | - Junjian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
75
|
Dnd1 Knockout in Sturgeons By CRISPR/Cas9 Generates Germ Cell Free Host for Surrogate Production. Animals (Basel) 2019; 9:ani9040174. [PMID: 30999629 PMCID: PMC6523263 DOI: 10.3390/ani9040174] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/01/2022] Open
Abstract
Simple Summary Sturgeons, also called archaic giants, are critically endangered fish species due to overfishing for caviar and interference in their natural habitats. Some sturgeon species have life spans of over 100 years and sexual maturity is attained between 20 to 25 years. Sterlet (Acipenser ruthenus) has fastest reproductive cycle; thus, this species can be used for surrogate production in sturgeons. Primordial germ cells are the origin of all germ cells in developing embryos. Dnd1 is essential for formation and migration of primordial germ cells and its inactivation results in sterility in fish. In our study, we have used a cutting-edge genome editing technology known as CRISPR/Cas9 to knockout dnd1 and to prepare a sterile sterlet host. CRISPR/Cas9 knocked-out embryos lacked primordial germ cells and can be used as a sterile host for surrogate production in sturgeons. Abstract Sturgeons also known as living fossils are facing threats to their survival due to overfishing and interference in natural habitats. Sterlet (Acipenser ruthenus) due to its rapid reproductive cycle and small body size can be used as a sterile host for surrogate production for late maturing and large sturgeon species. Dead end protein (dnd1) is essential for migration of Primordial Germ Cells (PGCs), the origin of all germ cells in developing embryos. Knockout or knockdown of dnd1 can be done in order to mismigrate PGCs. Previously we have used MO and UV for the aforementioned purpose, and in our present study we have used CRISPR/Cas9 technology to knockout dnd1. No or a smaller number of PGCs were detected in crispants, and we also observed malformations in some CRISPR/Cas9 injected embryos. Furthermore, we compared three established methods to achieve sterility in sterlet, and we found higher embryo survival and hatching rates in CRISPR/Cas9, UV and MO, respectively.
Collapse
|
76
|
Herpin A, Schmidt C, Kneitz S, Gobé C, Regensburger M, Le Cam A, Montfort J, Adolfi MC, Lillesaar C, Wilhelm D, Kraeussling M, Mourot B, Porcon B, Pannetier M, Pailhoux E, Ettwiller L, Dolle D, Guiguen Y, Schartl M. A novel evolutionary conserved mechanism of RNA stability regulates synexpression of primordial germ cell-specific genes prior to the sex-determination stage in medaka. PLoS Biol 2019; 17:e3000185. [PMID: 30947255 PMCID: PMC6448818 DOI: 10.1371/journal.pbio.3000185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1-acting as master sex-determining gene-has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3' UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans-together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells-suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates.
Collapse
Affiliation(s)
- Amaury Herpin
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
- * E-mail:
| | - Cornelia Schmidt
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Susanne Kneitz
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Clara Gobé
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | - Aurélie Le Cam
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Mateus C. Adolfi
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Christina Lillesaar
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | - Dagmar Wilhelm
- University of Melbourne, Department of Anatomy & Neuroscience, Parkville, Victoria, Australia
| | - Michael Kraeussling
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
| | | | | | - Maëlle Pannetier
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Eric Pailhoux
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Laurence Ettwiller
- University of Heidelberg, Centre for Organismal Studies (COS), Department of Developmental Biology, Heidelberg, Germany
| | - Dirk Dolle
- University of Heidelberg, Centre for Organismal Studies (COS), Department of Developmental Biology, Heidelberg, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Manfred Schartl
- University of Wuerzburg, Physiological Chemistry, Biocenter, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital, Wuerzburg, Germany
- Hagler Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
77
|
Ye D, Zhu L, Zhang Q, Xiong F, Wang H, Wang X, He M, Zhu Z, Sun Y. Abundance of Early Embryonic Primordial Germ Cells Promotes Zebrafish Female Differentiation as Revealed by Lifetime Labeling of Germline. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:217-228. [PMID: 30671659 PMCID: PMC6441407 DOI: 10.1007/s10126-019-09874-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/07/2019] [Indexed: 05/30/2023]
Abstract
Teleost sex differentiation largely depends on the number of undifferentiated germ cells. Here, we describe the generation and characterization of a novel transgenic zebrafish line, Tg(piwil1:egfp-UTRnanos3)ihb327Tg, which specifically labels the whole lifetime of germ cells, i.e., from primordial germ cells (PGCs) at shield stage to the oogonia and early stage of oocytes in the ovary and to the early stage of spermatogonia, spermatocyte, and spermatid in the testis. By using this transgenic line, we carefully observed the numbers of PGCs from early embryonic stage to juvenile stage and the differentiation process of ovary and testis. The numbers of PGCs became variable at as early as 1 day post-fertilization (dpf). Interestingly, the embryos with a high amount of PGCs mainly developed into females and the ones with a low amount of PGCs mainly developed into males. By using transient overexpression and transgenic induction of PGC-specific bucky ball (buc), we further proved that induction of abundant PGCs at embryonic stage promoted later ovary differentiation and female development. Taken together, we generate an ideal transgenic line Tg(piwil1:egfp-UTRnanos3)ihb327Tg which can visualize zebrafish germline for a lifetime, and we have utilized this line to study germ cell development and gonad differentiation of teleost and to demonstrate that the increase of PGC number at embryonic stage promotes female differentiation.
Collapse
Affiliation(s)
- Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qifeng Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
78
|
Green light irradiation during sex differentiation induces female-to-male sex reversal in the medaka Oryzias latipes. Sci Rep 2019; 9:2383. [PMID: 30787482 PMCID: PMC6382872 DOI: 10.1038/s41598-019-38908-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
This study investigated whether irradiation of a specific light wavelength could affect the sex differentiation of fish. We first found that the photoreceptor genes responsible for receiving red, green, and ultraviolet light were expressed in the eyes of medaka during the sex differentiation period. Second, we revealed that testes developed in 15.9% of genotypic females reared under green light irradiation. These female-to-male sex-reversed fish (i.e. neo-males) showed male-specific secondary sexual characteristics and produced motile sperm. Finally, progeny tests using the sperm of neo-males (XX) and eggs of normal females (XX) revealed that all F1 offspring were female, indicating for the first time in animals that irradiation with light of a specific wavelength can trigger sex reversal.
Collapse
|
79
|
Krishnakumar S, Paul V, Ariyath A, Anoop PD, Sreekumar S, Menon D, Paul-Prasanth B. Graphene Quantum Dots Alter Proliferation and Meiosis of Germ Cells Only in Genetic Females of Japanese Medaka during Early Embryonic Development. ACS APPLIED BIO MATERIALS 2019; 2:737-746. [DOI: 10.1021/acsabm.8b00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sreelakshmi Krishnakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Vinod Paul
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ajish Ariyath
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | | | - Sajini Sreekumar
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Deepthy Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Bindhu Paul-Prasanth
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
80
|
Abstract
Germline stem cells are sexually indifferent or flexible even in the mature ovary and testis. Acquiring sex identity consistent with the sex of the body is a critical issue in germline stem cells for producing eggs or sperm. However, the molecular mechanism of the sexual fate decision in germ cells is unclear. Medaka is the first vertebrate in which germline stem cells were found in the mature ovary (Nakamura, Kobayashi, Nishimura, Higashijima, & Tanaka, 2010), and a germ cell autonomous switch gene involved in the sexual fate decision, foxl3, was identified (Nishimura et al., 2015) in vertebrates. Here, the mechanism underlying the sex identity of germ cells is described based on the current understanding of germ cell behavior during the sexual fate decision. The control of foxl3 expression in germ cells and components acting downstream of foxl3 are also described.
Collapse
Affiliation(s)
- Minoru Tanaka
- Division of Biological Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
81
|
Castañeda Cortés DC, Arias Padilla LF, Langlois VS, Somoza GM, Fernandino JI. The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development 2019; 146:dev.172866. [DOI: 10.1242/dev.172866] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/21/2019] [Indexed: 01/02/2023]
Abstract
Exposure to environmental stressors, like high temperature (HT), during early development of fish induces sex reversal of genotypic females. Nevertheless, the involvement of the brain in this process is not well clarified. In the present work, we investigated the mRNA levels of corticotropin-releasing hormone b (crhb) and its receptors (crhr1 and crhr2), and found out that they were up-regulated at HT during the critical period of gonadal sex determination in medaka. In order to clarify their roles in sex reversal, biallelic mutants for crhr1 and crhr2 were produced by CRISPR/Cas9 technology. Remarkably, biallelic mutant of both loci (crhr1 and crhr2) did not undergo female-to-male sex reversal upon HT exposition. Inhibition of this process in double crhrs mutants could be successfully rescued through the administration of the downstream effector of the hypothalamic-pituitary interrenal axis, the cortisol. Taken together, these results revealed for the first time the participation of the CNS acting as a transducer of masculinization induced by thermal stress.
Collapse
Affiliation(s)
- D. C. Castañeda Cortés
- Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina
| | - L. F. Arias Padilla
- Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina
| | - V. S. Langlois
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, Quebec, Canada
| | - G. M. Somoza
- Laboratorio de Ictiofisiología y Acuicultura - INTECH (CONICET-UNSAM), Argentina
| | - J. I. Fernandino
- Laboratorio de Biología del Desarrollo - Instituto Tecnológico de Chascomús. INTECH (CONICET-UNSAM), Argentina
- Institut national de la recherche scientifique (INRS) - Centre Eau Terre Environnement, Quebec, Canada
| |
Collapse
|
82
|
Octavera A, Yoshizaki G. Production of donor-derived offspring by allogeneic transplantation of spermatogonia in Chinese rosy bitterling†. Biol Reprod 2018; 100:1108-1117. [DOI: 10.1093/biolre/ioy236] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/08/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Anna Octavera
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
83
|
Vizziano-Cantonnet D, Lasalle A, Di Landro S, Klopp C, Genthon C. De novo transcriptome analysis to search for sex-differentiation genes in the Siberian sturgeon. Gen Comp Endocrinol 2018; 268:96-109. [PMID: 30081002 DOI: 10.1016/j.ygcen.2018.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/08/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023]
Abstract
The sturgeon family includes many species that are lucrative for commercial caviar production, some of which face critical conservation problems. The purpose of this study was to identify genes involved in gonadal sex differentiation in sturgeons, contributing to our understanding of the biological cycle of this valuable species. A high-quality de novo Siberian sturgeon gonadal transcriptome was built for this study using gonadal samples from undifferentiated fish at 3, 5, and 6 months of age; recently sex-differentiated fish at 9 months of age; and immature males and females at 14-17 months of age. Undifferentiated fish were sexed after validation of forkhead box L2 (foxl2) and cytochrome P450, family 19, subfamily A, and polypeptide 1a (cyp19a1a) as sex markers, and the transcriptomes of the 3-month-old undifferentiated fish, 5-6-month-old future females, and 5-6-month-old putative males were compared. The ovarian program was associated with strong activation of genes involved in estrogen synthesis (cyp19a1, foxl2, and estradiol 17-beta-dehydrogenase 1), stem-cell niche building and regulation, and sex-specific nerve cell development. The genes related to the stem-cell niche were: (1) the family of iroquois-class homeodomain proteins 3, 4, and 5 (irx3, irx4, irx5-1, irx5-2, and irx5-3), which are essential for somatic-germ cell interaction; (2) extracellular matrix remodeling genes, such as collagen type XXVIII alpha 1 chain and collagen type II alpha 1 chain, matrix metalloproteinases 24-1 and 24-2, and NADPH oxidase organizer 1, which, along with the somatic cells, provide architectural support for the stem-cell niche; and (3) mitogenic factors, such as lim homeobox 2, amphiregulin, G2/M phase-specific E3 ubiquitin-protein ligase, and connector enhancer of kinase suppressor of ras 2, which are up regulated in conjunction with the anti-apoptotic gene G2/M phase-specific E3 ubiquitin-protein ligase suggesting a potential involvement in regulating the number of germ cells. Genes related to sex-specific nerve cell developments were: the neurofilament medium polypeptides, the gene coding for serotonin receptor 7, 5-hydroxytryptamine receptor 7; neurotensin, isoform CRA-a, the neuron-specific transmembrane protein Delta/Notch-like epidermal growth factor-related receptor; and insulinoma-associated protein 1. The putative testicular program was poorly characterized by elements of the immune response. The classic markers of maleness were not specifically activated, indicating that testicular differentiation occurs at a later stage. In sum, the ovarian program, but not the testicular program, is in place by 5-6 months of age in the Siberian sturgeon. The female program is characterized by estrogen-related genes with well-established roles in gonadal differentiation, but also by several genes with no previously-described function in the ovarian development of fish. These newly-reported genes are involved in stem-cell niche building and regulation as well as sex-specific nerve development.
Collapse
Affiliation(s)
- Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay.
| | - André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay
| | - Santiago Di Landro
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Iguá 4225, Montevideo 11400, Uruguay
| | - Christophe Klopp
- INRA, SIGENAE, MIAT UR875, Chemin de Borde-Rouge - Auzeville, BP 52627, 31326 Castanet-Tolosan Cedex, France
| | - Clémence Genthon
- Plateforme Génomique, INRA Auzeville, Chemin de Borde Rouge-CS 52627, 31326 Castanet-Tolosan Cédex, France
| |
Collapse
|
84
|
Shen ZG, Eissa N, Yao H, Xie ZG, Wang HP. Effects of Temperature on the Expression of Two Ovarian Differentiation-Related Genes foxl2 and cyp19a1a. Front Physiol 2018; 9:1208. [PMID: 30356866 PMCID: PMC6190877 DOI: 10.3389/fphys.2018.01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 08/13/2018] [Indexed: 01/24/2023] Open
Abstract
Exposure to stress induces a series of responses and influences a wide range of biological processes including sex differentiation in fish. The present work investigated the molecular and physiological response to thermal stress throughout the early development stage covering the whole period of sex differentiation of bluegill, Lepomis macrochirus. Larvae were treated using three temperatures, 17, 24, and 32°C from 6 to 90 days posthatching (dph) in 30-L round tanks. There is no significant difference of the sex ratio and survival among the three temperature groups in the geographic population used in this study. Two ovarian differentiation-related genes foxl2 and cyp19a1a were detected at 7 dph suggesting that these genes have already played a role prior to sex differentiation. The expression of foxl2 reached the peak and was thermosensitive just prior to the onset of ovarian differentiation at 27 dph. Histological examination displayed that the proliferation of germ cells and ovarian differentiation were delayed at the low-temperature treatment (17°C) at 97 dph compared with higher temperatures. In conclusion, the water temperature regulates the sex differentiation of bluegill through modulation of the expression of foxl2 and cyp19a1a. A comparative study of the expression profile of sex differentiation-related genes in species will shed light on the evolution of sex-determination mechanisms and the impact of stress on sex differentiation.
Collapse
Affiliation(s)
- Zhi-Gang Shen
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Nour Eissa
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,Department of Immunology, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Hong Yao
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States
| | - Zhi-Gang Xie
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States.,College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, China
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, The Ohio State University South Centers, Piketon, OH, United States
| |
Collapse
|
85
|
Divergent Expression Patterns and Function of Two cxcr4 Paralogs in Hermaphroditic Epinephelus coioides. Int J Mol Sci 2018; 19:ijms19102943. [PMID: 30262794 PMCID: PMC6213054 DOI: 10.3390/ijms19102943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemokine receptor Cxcr4 evolved two paralogs in the teleost lineage. However, cxcr4a and cxcr4b have been characterized only in a few species. In this study, we identified two cxcr4 paralogs from the orange-spotted grouper, Epinephelus coioides. The phylogenetic relationship and gene structure and synteny suggest that the duplicated cxcr4a/b should result from the teleost-specific genome duplication (Ts3R). The teleost cxcr4 gene clusters in two paralogous chromosomes exhibit a complementary gene loss/retention pattern. Ec_cxcr4a and Ec_cxcr4b show differential and biased expression patterns in grouper adult tissue, gonads, and embryos at different stages. During embryogenesis, Ec_cxcr4a/b are abundantly transcribed from the neurula stage and mainly expressed in the neural plate and sensory organs, indicating their roles in neurogenesis. Ec_Cxcr4a and Ec_Cxcr4b possess different chemotactic migratory abilities from the human SDF-1α, Ec_Cxcl12a, and Ec_Cxcl12b. Moreover, we uncovered the N-terminus and TM5 domain as the key elements for specific ligand⁻receptor recognition of Ec_Cxcr4a-Ec_Cxcl12b and Ec_Cxcr4b-Ec_Cxcl12a. Based on the biased and divergent expression patterns of Eccxcr4a/b, and specific ligand⁻receptor recognition of Ec_Cxcl12a/b⁻Ec_Cxcr4b/a, the current study provides a paradigm of sub-functionalization of two teleost paralogs after Ts3R.
Collapse
|
86
|
Pradhan A, Olsson PE. Germ cell depletion in zebrafish leads to incomplete masculinization of the brain. Gen Comp Endocrinol 2018; 265:15-21. [PMID: 29408375 DOI: 10.1016/j.ygcen.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/15/2022]
Abstract
Zebrafish sex differentiation is under the control of multiple genes, but also relies on germ cell number for gonadal development. Morpholino and chemical mediated germ cell depletion leads to sterile male development in zebrafish. In this study we produced sterile males, using a dead end gene morpholino, to determine gonadal-brain interactions. Germ cell depletion following dnd inhibition downregulated the germ cell markers, vasa and ziwi, and later the larvae developed as sterile males. Despite lacking proper testis, the gonadal 11-ketotestosterone (11-KT) and estradiol (E2) levels of sterile males were similar to wild type males. Qualitative analysis of sexual behavior of sterile males demonstrated that they behaved like wild type males. Furthermore, we observed that brain 11-KT and E2 levels in sterile males remained the same as in the wild type males. In female brain, 11-KT was lower in comparison to wild type males and sterile males, while E2 was higher when compared to wild type males. qRT-PCR analysis revealed that the liver transcript profile of sterile adult males was similar to wild type males while the brain transcript profile was similar to wild type females. The results demonstrate that proper testis development may not be a prerequisite for male brain development in zebrafish but that it may be needed to fully masculinize the brain.
Collapse
Affiliation(s)
- Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, SE-701 82 Örebro, Sweden.
| |
Collapse
|
87
|
Yu L, Xu D, Ye H, Yue H, Ooka S, Kondo H, Yazawa R, Takeuchi Y. Gonadal Transcriptome Analysis of Pacific Abalone Haliotis discus discus: Identification of Genes Involved in Germ Cell Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:467-480. [PMID: 29616430 DOI: 10.1007/s10126-018-9809-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the molecular mechanisms governing gonadal developmental processes in abalones. Here, we conducted transcriptome analysis of Pacific abalone Haliotis discus discus for gene discovery in the brain, ovary, testis, and unfertilized eggs. Among the annotated unigenes, 48.6% of unigenes were identified by Venn diagram analysis as having universal or tissue-specific expression. Twenty-three genes with gonad-biased gene ontology (GO) terms were first obtained. Secondly, 36 genes were found by screening known gene names related to germ cell development. Finally, 17 genes were obtained by querying the annotated unigene database for zygotically expressed gonadal genes (ovary and testis) and maternally expressed gonadal genes (ovary, testis, and unfertilized eggs) using keywords related to reproduction. To further verify tissue distribution pattern and subcellular localization of these genes, RT-PCR and in situ hybridization were performed using a unigene encoding a germ cell marker, vasa, as control. The results showed that vasa was expressed mainly in the early developmental stages of germ cells in both sexes. One of the candidate genes, vitelline envelope zona pellucida domain protein 12 (ZP12), was expressed in the primordial germ cells of immature gonad and early developmental stages of germ cells of the adult female. The results obtained from the present study suggest that vasa and ZP12 are involved in germ cell development of Pacific abalone and that ZP12 is an especially useful germ cell-specific marker in immature adults. The current gonadal transcriptome profile is an extensive resource for future reproductive molecular biology studies of this species.
Collapse
Affiliation(s)
- Lingyun Yu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
| | - Dongdong Xu
- Research Center for Advanced Science and Technology, Tokyo University of Marine Science and Technology, 670 Banda, Tateyama, Chiba, 294-0308, Japan
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, Zhejiang Province, 316100, China
| | - Huan Ye
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Huamei Yue
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Shioh Ooka
- Japan Ocean Resources Development and Engineering Co., Ltd., 7-1 Jizohamacho, Kishiwada, Osaka, 596-0015, Japan
| | - Hidehiro Kondo
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Ryosuke Yazawa
- Department of Marine Bioscience, Tokyo University of Marine Science and Technology, Minato, Konan 4-5-7, Tokyo, 108-8477, Japan
| | - Yutaka Takeuchi
- Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima, 890-0056, Japan.
| |
Collapse
|
88
|
Chen W, Liu L, Ge W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio. Biol Reprod 2018; 96:401-413. [PMID: 28203731 DOI: 10.1095/biolreprod.116.144964] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 11/01/2022] Open
Abstract
In the zebrafish, no sex-determining gene has been identified, while some sex-related genes, such as cyp19a1a and amh, show sexually dimorphic expression. Interestingly, most of these genes are expressed in the somatic cells. With increasing evidence suggesting roles of germ cells in gonadal differentiation, there is an increasing interest in the factors released by the germ cells for the bidirectional communication between the two compartments. We have reported that Gdf9/gdf9 is an oocyte-specific factor in the zebrafish, similar to that of mammals. Whether and how Gdf9 is involved in gonadal differentiation is unknown. In this study, we compared the expression levels of gdf9, cyp19a1a, and amh among several other sex-related genes in the gonads before, during, and after sex differentiation. The expression of gdf9 started in the gonads before sex differentiation, and its level surged in the differentiated ovary. Its expression pattern was similar to that of cyp19a1a, but reciprocal to amh expression. Using recombinant zebrafish Gdf9 (rzfGdf9), we further showed that Gdf9 significantly suppressed the expression of amh while increased that of activin beta subunits (inhbaa and inhbb) in vitro. Although gdf9 and cyp19a1a showed co-expression during gonadal differentiation, we only observed a slight but not significant response of cyp19a1a to rzfGdf9. Knocking down the expression of gdf9 and cyp19a1a with vivo-morpholinos caused a male-skewed sex ratio. Our data suggested that Gdf9 is likely involved in promoting oocyte/ovary differentiation in the zebrafish and it may act by suppressing amh expression, at least partly, in the somatic cells.
Collapse
Affiliation(s)
- Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lin Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
89
|
Yoshizaki G, Lee S. Production of live fish derived from frozen germ cells via germ cell transplantation. Stem Cell Res 2018; 29:103-110. [DOI: 10.1016/j.scr.2018.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/17/2018] [Accepted: 03/28/2018] [Indexed: 10/25/2022] Open
|
90
|
Nagao Y, Takada H, Miyadai M, Adachi T, Seki R, Kamei Y, Hara I, Taniguchi Y, Naruse K, Hibi M, Kelsh RN, Hashimoto H. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish. PLoS Genet 2018; 14:e1007260. [PMID: 29621239 PMCID: PMC5886393 DOI: 10.1371/journal.pgen.1007260] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
Abstract
Mechanisms generating diverse cell types from multipotent progenitors are fundamental for normal development. Pigment cells are derived from multipotent neural crest cells and their diversity in teleosts provides an excellent model for studying mechanisms controlling fate specification of distinct cell types. Zebrafish have three types of pigment cells (melanocytes, iridophores and xanthophores) while medaka have four (three shared with zebrafish, plus leucophores), raising questions about how conserved mechanisms of fate specification of each pigment cell type are in these fish. We have previously shown that the Sry-related transcription factor Sox10 is crucial for fate specification of pigment cells in zebrafish, and that Sox5 promotes xanthophores and represses leucophores in a shared xanthophore/leucophore progenitor in medaka. Employing TILLING, TALEN and CRISPR/Cas9 technologies, we generated medaka and zebrafish sox5 and sox10 mutants and conducted comparative analyses of their compound mutant phenotypes. We show that specification of all pigment cells, except leucophores, is dependent on Sox10. Loss of Sox5 in Sox10-defective fish partially rescued the formation of all pigment cells in zebrafish, and melanocytes and iridophores in medaka, suggesting that Sox5 represses Sox10-dependent formation of these pigment cells, similar to their interaction in mammalian melanocyte specification. In contrast, in medaka, loss of Sox10 acts cooperatively with Sox5, enhancing both xanthophore reduction and leucophore increase in sox5 mutants. Misexpression of Sox5 in the xanthophore/leucophore progenitors increased xanthophores and reduced leucophores in medaka. Thus, the mode of Sox5 function in xanthophore specification differs between medaka (promoting) and zebrafish (repressing), which is also the case in adult fish. Our findings reveal surprising diversity in even the mode of the interactions between Sox5 and Sox10 governing specification of pigment cell types in medaka and zebrafish, and suggest that this is related to the evolution of a fourth pigment cell type. How individual cell fates become specified from multipotent progenitors is a fundamental question in developmental and stem cell biology. Body pigment cells derive from a multipotent progenitor, but while in zebrafish there are three types of pigment cells (melanocytes, iridophores and xanthophores), in medaka these progenitors form four (as zebrafish, plus leucophores). Here, we address whether mechanisms generating each cell-type are conserved between the two species. We focus on two key regulatory proteins, Sox5 and Sox10, which we previously showed were involved in pigment cell development in medaka and zebrafish, respectively. We compare experimentally how the two proteins interact in regulating development of each of the pigment cell lineages in these fish. We show that development of all pigment cells, except leucophores, is dependent on Sox10, and that Sox5 modulates Sox10 activity antagonistically in all pigment cells in zebrafish, and melanocytes and iridophores in medaka. Surprisingly, in medaka, Sox5 acts co-operatively with Sox10 to promote xanthophore fate and to repress leucophore fate. Our findings reveal surprising diversity how Sox5 and Sox10 interact to govern pigment cell development in medaka and zebrafish, and suggest that this likely relates to the evolution of the novel leucophore pigment cell type in medaka.
Collapse
Affiliation(s)
- Yusuke Nagao
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Hiroyuki Takada
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Motohiro Miyadai
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoko Adachi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Ryoko Seki
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Kamei
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Ikuyo Hara
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Yoshihito Taniguchi
- Department of Public Health and Preventive Medicine, Kyorin University, School of Medicine, Mitaka, Tokyo, Japan
| | - Kiyoshi Naruse
- Department of Basic Biology, School of Life Science, Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi, Japan
- Laboratory of Bioresources, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi, Japan
| | - Masahiko Hibi
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Robert N. Kelsh
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail: (HH); (RNK)
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center and Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail: (HH); (RNK)
| |
Collapse
|
91
|
Nishimura T, Yamada K, Fujimori C, Kikuchi M, Kawasaki T, Siegfried KR, Sakai N, Tanaka M. Germ cells in the teleost fish medaka have an inherent feminizing effect. PLoS Genet 2018; 14:e1007259. [PMID: 29596424 PMCID: PMC5875746 DOI: 10.1371/journal.pgen.1007259] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
AUTHOR SUMMARY Germ cells are the only cells that can transfer genetic materials to the next generation via the sperm or egg. However, recent analyses in teleosts revealed another essential role of germ cells: feminizing the gonads. In our study, medaka mutants in which gametogenesis was blocked at specific stages provides the novel view that the feminizing effect of germ cells occurs in parallel with other reproductive elements, such as meiosis, the sexual fate decision of germ cells, and gametogenesis. Germ cells in medaka may have a potential to feminize gonads at the moment they have developed.
Collapse
Affiliation(s)
- Toshiya Nishimura
- Division of Biological Science, Nagoya University, Nagoya, Aichi, Japan
| | - Kazuki Yamada
- Division of Biological Science, Nagoya University, Nagoya, Aichi, Japan
| | - Chika Fujimori
- Division of Biological Science, Nagoya University, Nagoya, Aichi, Japan
| | - Mariko Kikuchi
- Division of Biological Science, Nagoya University, Nagoya, Aichi, Japan
| | - Toshihiro Kawasaki
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Kellee R. Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, Japan
| | - Minoru Tanaka
- Division of Biological Science, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
92
|
Zhu B, Ge W. Genome editing in fishes and their applications. Gen Comp Endocrinol 2018; 257:3-12. [PMID: 28919449 DOI: 10.1016/j.ygcen.2017.09.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
There have been revolutionary progresses in genome engineering in the past few years. The newly-emerged genome editing technologies including zinc-finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats associated with Cas9 (CRISPR/Cas9) have enabled biological scientists to perform efficient and precise targeted genome editing in different species. Fish represent the largest group of vertebrates with many species having values for both scientific research and aquaculture industry. Genome editing technologies have found extensive applications in different fish species for basic functional studies as well asapplied research in such fields as disease modeling and aquaculture. This mini-review focuses on recent advancements and applications of the new generation of genome editing technologies in fish species, with particular emphasis on their applications in understanding reproductive functions because the reproductive axis has been most systematically and best studied among others and its function has been difficult to address with reverse genetics approach.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| |
Collapse
|
93
|
Zhou L, Feng Y, Wang F, Dong X, Jiang L, Liu C, Zhao Q, Li K. Generation of all-male-like sterile zebrafish by eliminating primordial germ cells at early development. Sci Rep 2018; 8:1834. [PMID: 29382876 PMCID: PMC5789895 DOI: 10.1038/s41598-018-20039-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/12/2018] [Indexed: 01/05/2023] Open
Abstract
Production of all-male and sterile fish may not only substantially improve yield but also be crucial for the application of genome modified species in aquaculture. Previously, it was reported that the fish lacking primordial germ cells (PGCs) becomes infertile, and nitroreductase, an enzyme converting non-toxic metronidazole (MTZ) into toxic metabolites, induces targeted toxicity to kill the cells expressing it. In this study, we generated a transgenic zebrafish line of Tg(nanos3:nfsB-mCherry-nanos3 3'UTR) in which the NfsB nitroreductase is solely expressed in PGCs. Treating the embryos derived from the female transgenic zebrafish with MTZ from 0 through 2 dpf (days post fertilization), we found that the germ cells were completely eliminated in the ones older than 2.5 dpf. At 20 dpf, the MTZ-treated juvenile had no germ cells in their gonads. At 100 dpf, the MTZ-treated adult exhibited male-like morphology and showed normal mating behaviors although they had no germ cells but only supporting cells in their gonads. Taken together, our results demonstrated that conditional elimination of PGCs during early development make the zebrafish male-like and infertile. It may provide an alternative strategy to make sterile and all-male farmed fish that is good for increasing aquaculture yield and preventing the genome modified species from potential ecological risks.
Collapse
Affiliation(s)
- Li Zhou
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Yongyong Feng
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Fang Wang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Xiaohua Dong
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, Jiangsu, 210061, China
| | - Lan Jiang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Chun Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China
| | - Qinshun Zhao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, 12 Xuefu Road, Pukou High-tech Development Zone, Nanjing, Jiangsu, 210061, China.
| | - Kaibin Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, No. 1 Xingyu Road, Xilang, Liwan District, Guangzhou, Guangdong, 510380, China.
| |
Collapse
|
94
|
Schartl M, Schories S, Wakamatsu Y, Nagao Y, Hashimoto H, Bertin C, Mourot B, Schmidt C, Wilhelm D, Centanin L, Guiguen Y, Herpin A. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol 2018; 16:16. [PMID: 29378592 PMCID: PMC5789577 DOI: 10.1186/s12915-018-0485-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022] Open
Abstract
Background Sex determination relies on a hierarchically structured network of genes, and is one of the most plastic processes in evolution. The evolution of sex-determining genes within a network, by neo- or sub-functionalization, also requires the regulatory landscape to be rewired to accommodate these novel gene functions. We previously showed that in medaka fish, the regulatory landscape of the master male-determining gene dmrt1bY underwent a profound rearrangement, concomitantly with acquiring a dominant position within the sex-determining network. This rewiring was brought about by the exaptation of a transposable element (TE) called Izanagi, which is co-opted to act as a silencer to turn off the dmrt1bY gene after it performed its function in sex determination. Results We now show that a second TE, Rex1, has been incorporated into Izanagi. The insertion of Rex1 brought in a preformed regulatory element for the transcription factor Sox5, which here functions in establishing the temporal and cell-type-specific expression pattern of dmrt1bY. Mutant analysis demonstrates the importance of Sox5 in the gonadal development of medaka, and possibly in mice, in a dmrt1bY-independent manner. Moreover, Sox5 medaka mutants have complete female-to-male sex reversal. Conclusions Our work reveals an unexpected complexity in TE-mediated transcriptional rewiring, with the exaptation of a second TE into a network already rewired by a TE. We also show a dual role for Sox5 during sex determination: first, as an evolutionarily conserved regulator of germ-cell number in medaka, and second, by de novo regulation of dmrt1 transcriptional activity during primary sex determination due to exaptation of the Rex1 transposable element. Electronic supplementary material The online version of this article (10.1186/s12915-018-0485-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Hospital, 97080, Würzburg, Germany.,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Susanne Schories
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yuko Wakamatsu
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Yusuke Nagao
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Hisashi Hashimoto
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Chloé Bertin
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Brigitte Mourot
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Cornelia Schmidt
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dagmar Wilhelm
- Department of Anatomy & Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lazaro Centanin
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Yann Guiguen
- INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France
| | - Amaury Herpin
- Physiological Chemistry, Biocenter, University of Würzburg, 97074, Würzburg, Germany. .,INRA, UR1037 Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
95
|
Han K, Chen S, Cai M, Jiang Y, Zhang Z, Wang Y. Nanos3 not nanos1 and nanos2 is a germ cell marker gene in large yellow croaker during embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 218:13-22. [PMID: 29331522 DOI: 10.1016/j.cbpb.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022]
Abstract
In this study, three nanos gene subtypes (Lcnanos1, Lcnanos2 and Lcnanos3) from Larimichthys crocea, were cloned and characterized. We determined the spatio-temporal expression patterns of each subtype in tissues as well as the cellular localization of mRNA in embryos. Results showed that deduced Nanos proteins have two main homology domains: N-terminal CCR4/NOT1 deadenylase interaction domain and highly conserved carboxy-terminal region bearing two conserved CCHC zinc-finger motifs. The expression levels of Lcnanos1 in testis were significantly higher than other tissues, followed by heart, brain, eye, and ovary. Nevertheless, both Lcnanos2 and Lcnanos3 were restrictedly expressed in testis and ovary, respectively. No signals of Lcnanos1 and Lcnanos2 expression were detected at any developmental stages during embryogenesis. On the contrary, the signals of Lcnanos3 were detected in all stages examined. Lcnanos3 transcripts were firstly localized to the distal end of cleavage furrow at the 2-cell stage. Subsequently, mounting positive signals started to appear in a small number of cells as the embryo developed to blastula stage and early-gastrula stage. As development proceeded, positive signals were found in the primitive gonadal ridge. These cells of Lcnanos3 positive signals implied the specification of the future PGCs at this stage. It also suggested that PGCs of croaker originate from four clusters of cells which inherit maternal germ plasm at blastula stage. Furthermore, we preliminarily analyzed the migration route of PGCs in embryos of L. crocea. In short, this study laid the foundation for studies on specification and development of germ cell from L. crocea during embryogenesis.
Collapse
Affiliation(s)
- Kunhuang Han
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shihai Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Mingyi Cai
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde 352103, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
96
|
Yan YL, Desvignes T, Bremiller R, Wilson C, Dillon D, High S, Draper B, Buck CL, Postlethwait J. Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev Dyn 2017; 246:925-945. [PMID: 28856758 PMCID: PMC5761338 DOI: 10.1002/dvdy.24579] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aberrant signaling between germ cells and somatic cells can lead to reproductive disease and depends on diffusible signals, including transforming growth factor-beta (TGFB) -family proteins. The TGFB-family protein Gsdf (gonadal soma derived factor) controls sex determination in some fish and is a candidate for mediating germ cell/soma signaling. RESULTS Zebrafish expressed gsdf in somatic cells of bipotential gonads and expression continued in ovarian granulosa cells and testicular Sertoli cells. Homozygous gsdf knockout mutants delayed leaving the bipotential gonad state, but then became a male or a female. Mutant females ovulated a few oocytes, then became sterile, accumulating immature follicles. Female mutants stored excess lipid and down-regulated aromatase, gata4, insulin receptor, estrogen receptor, and genes for lipid metabolism, vitellogenin, and steroid biosynthesis. Mutant females contained less estrogen and more androgen than wild-types. Mutant males were fertile. Genomic analysis suggests that Gsdf, Bmp15, and Gdf9, originated as paralogs in vertebrate genome duplication events. CONCLUSIONS In zebrafish, gsdf regulates ovarian follicle maturation and expression of genes for steroid biosynthesis, obesity, diabetes, and female fertility, leading to ovarian and extra-ovarian phenotypes that mimic human polycystic ovarian syndrome (PCOS), suggesting a role for a related TGFB signaling molecule in the etiology of PCOS. Developmental Dynamics 246:925-945, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Ruth Bremiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Danielle Dillon
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Samantha High
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | - Bruce Draper
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California
| | - Charles Loren Buck
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | | |
Collapse
|
97
|
Robust gdf9 and bmp15 expression in the oocytes of ovotestes through the Figla-independent pathway in the hermaphroditic black porgy, Acanthopagrus schlegelii. PLoS One 2017; 12:e0186991. [PMID: 29073214 PMCID: PMC5658113 DOI: 10.1371/journal.pone.0186991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
More than 1,500 fish species are hermaphroditic, but no hermaphroditic lineage appears to be evolutionarily ancient in fishes. Thus, whether more than one sex at a time was present during the evolutionary shift from gonochorism to hermaphroditism in fishes is an intriguing question. Ectopic oocytes were created in the ovotestes of protandrous black porgy via the withdrawal of estradiol (E2) administration. These ectopic oocytes reprogrammed the surrounding cells, which changed from Sertoli cells to follicle-like cells. We observed that gdf9 and bmp15 expression was localized in the primary oocytes and gradually decreased after oocytes entered a secondary oocyte stage. Robust expression of gdf9 and bmp15 in ectopic oocytes was associated with the surrounding Sertoli cells. However, blocking Cyp19a1a activity and increasing androgen levels did not stimulate the expression of gdf9 and bmp15. Thus, the robust gdf9 and bmp15 expression was not related to the inappropriate male microenvironment. Furthermore, in vitro data demonstrated that gdf9 and bmp15 were not downstream genes of Figla signaling. Therefore, our results suggest that there are two independent mechanisms, a Figla-dependent pathway and a Figla-independent pathway, by which oocyte-surrounding cells are altered from a male somatic fate to a female somatic fate. This functional switch might clarify how oocytes created an appropriate microenvironment during the transition from the ancient gonochorism to the present hermaphroditism.
Collapse
|
98
|
Wu GC, Li HW, Tey WG, Lin CJ, Chang CF. Expression profile of amh/Amh during bi-directional sex change in the protogynous orange-spotted grouper Epinephelus coioides. PLoS One 2017; 12:e0185864. [PMID: 29016690 PMCID: PMC5634590 DOI: 10.1371/journal.pone.0185864] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/20/2017] [Indexed: 01/13/2023] Open
Abstract
Gonadal differentiation is tightly regulated by the initial sex determining gene and the downstream sex-related genes in vertebrates. However, sex change in fish can alter the sexual fate from one sex to the other. Chemical-induced maleness in the protogynous orange-spotted grouper is transient, and a reversible sex change occurs after the chemical treatment is withdrawn. We used these characteristics to study Amh signaling during bi-directional sex change in the grouper. We successfully induced the female-to-male sex change by chemical (aromatase inhibitor, AI, or methyltestosterone, MT) treatment. A dormant gonad (a low proliferation rate of early germ cells and no characteristics of both sexes) was found during the transient phase of reversible male-to-female sex change after the withdrawal of chemical administration. Our results showed that amh (anti-mullerian hormone) and its receptor amhr2 (anti-mullerian hormone receptor type 2) were significantly increased in the gonads during the process of female-to-male sex change. Amh is expressed in the Sertoli cells surrounding the type A spermatogonia in the female-to-male grouper. Male-related gene (dmrt1 and sox9) expression was immediately decreased in MT-terminated males during the reversible male-to-female sex change. However, Amh expression was found in the surrounding cells of type A spermatogonia-like cells during the transient phase of reversible male-to-female sex change. This phenomenon is correlated with the dormancy of type A spermatogonia-like cells. Thus, Amh signaling is suggested to play roles in regulating male differentiation during the female-to-male sex change and in inhibiting type-A spermatogonia-like cell proliferation/differentiation during the reversible male-to-female sex change. We suggest that Amh signaling might play dual roles during bi-directional sex change in grouper.
Collapse
Affiliation(s)
- Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| | - Hau-Wen Li
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Guan Tey
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chien-Ju Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail: (GCW); (CFC)
| |
Collapse
|
99
|
Kobayashi T, Chiba A, Sato T, Myosho T, Yamamoto J, Okamura T, Onishi Y, Sakaizumi M, Hamaguchi S, Iguchi T, Horie Y. Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:209-218. [PMID: 28866280 DOI: 10.1016/j.aquatox.2017.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Testis-ova differentiation in sexually mature male medaka (Oryzias latipes) is easily induced by estrogenic chemicals, indicating that spermatogonia persist in sexual bipotentiality, even in mature testes in medaka. By contrast, the effects of estrogen on testicular somatic cells associated with testis-ova differentiation in medaka remain unclear. In this study, we focused on the dynamics of sex-related genes (Gsdf, Dmrt1, and Foxl2) expressed in Sertoli cells in the mature testes of adult medaka during estrogen-induced testis-ova differentiation. When mature male medaka were exposed to estradiol benzoate (EB; 800ng/L), testis-ova first appeared after EB treatment for 14days (observed as the first oocytes of the leptotene-zygotene stage). However, the testis remained structurally unchanged, even after EB treatment for 28days. Although Foxl2 is a female-specific sex gene, EB treatment for 7days induced Foxl2/FOXL2 expression in all Sertoli cell-enclosed spermatogonia before testis-ova first appeared; however, Foxl2 was not detected in somatic cells in control testes. Conversely, Sertoli-cell-specific Gsdf mRNA expression levels significantly decreased after EB treatment for 14days, and no changes were observed in DMRT1 localization following EB treatment, whereas Dmrt1 mRNA levels increased significantly. Furthermore, after EB exposure, FOXl2 and DMRT1 were co-localized in Sertoli cells during testis-ova differentiation, although FOXL2 localization was undetectable in Sertoli-cell-enclosed apoptotic testis-ova, whereas DMRT1 remained localized in Sertoli cells. These results indicated for the first time that based on the expression of female-specific sex genes, feminization of Sertoli cells precedes testis-ova differentiation induced by estrogen in mature testes in medaka; however, complete feminization of Sertoli cells was not induced in this study. Additionally, it is suggested strongly that Foxl2 and Gsdf expression constitute potential molecular markers for evaluating the effects of estrogenic chemicals on testicular somatic cells associated with estrogen-induced testis-ova differentiation in mature male medaka.
Collapse
Affiliation(s)
- Tohru Kobayashi
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Ayaka Chiba
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Tadashi Sato
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Taijun Myosho
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan.
| | - Jun Yamamoto
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Tetsuro Okamura
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Yuta Onishi
- Institute of Environmental Ecology, IDEA Consultants Inc., 1334-5, Riemon, Yaizu, Shizuoka 421-0212, Japan.
| | - Mitsuru Sakaizumi
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Satoshi Hamaguchi
- Institute for Science and Technology, Niigata University, Niigata, Niigata 950-2181, Japan.
| | - Taisen Iguchi
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institute of Natural Sciences, Okazaki, Aichi 444-8787, Japan.
| | - Yoshifumi Horie
- Laboratory of Molecular Reproductive Biology, Institute for Environmental Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan; National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| |
Collapse
|
100
|
Vertebrate sex determination: evolutionary plasticity of a fundamental switch. Nat Rev Genet 2017; 18:675-689. [DOI: 10.1038/nrg.2017.60] [Citation(s) in RCA: 253] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|