51
|
Kohli S, Shahzad K, Jouppila A, Holthöfer H, Isermann B, Lassila R. Thrombosis and Inflammation—A Dynamic Interplay and the Role of Glycosaminoglycans and Activated Protein C. Front Cardiovasc Med 2022; 9:866751. [PMID: 35433860 PMCID: PMC9008778 DOI: 10.3389/fcvm.2022.866751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Hemostasis, thrombosis, and inflammation are tightly interconnected processes which may give rise to thrombo-inflammation, involved in infectious and non-infectious acute and chronic diseases, including cardiovascular diseases (CVD). Traditionally, due to its hemostatic role, blood coagulation is isolated from the inflammation, and its critical contribution in the progressing CVD is underrated, until the full occlusion of a critical vessel occurs. Underlying vascular injury exposes extracellular matrix to deposit platelets and inflammatory cells. Platelets being key effector cells, bridge all the three key processes (hemostasis, thrombosis, and inflammation) associated with thrombo-inflammation. Under physiological conditions, platelets remain in an inert state despite the proximity to the endothelium and other cells which are decorated with glycosaminoglycan (GAG)-rich glycocalyx (GAGs). A pathological insult to the endothelium results in an imbalanced blood coagulation system hallmarked by increased thrombin generation due to losses of anticoagulant and cytoprotective mechanisms, i.e., the endothelial GAGs enhancing antithrombin, tissue factor pathway-inhibitor (TFPI) and thrombomodulin-protein C system. Moreover, the loss of GAGs promotes the release of mediators, such as von Willebrand factor (VWF), platelet factor 4 (PF4), and P-selectin, both locally on vascular surfaces and to circulation, further enhancing the adhesion of platelets to the affected sites. Platelet-neutrophil interaction and formation of neutrophil extracellular traps foster thrombo-inflammatory mechanisms exacerbating the cardiovascular disease course. Therefore, therapies which not only target the clotting mechanisms but simultaneously or independently convey potent cytoprotective effects hemming the inflammatory mechanisms are expected to provide clinical benefits. In this regard, we review the cytoprotective protease activated protein C (aPC) and its strong anti-inflammatory effects thereby preventing the ensuing thrombotic complications in CVD. Furthermore, restoring GAG-like vasculo-protection, such as providing heparin-proteoglycan mimetics to improve regulation of platelet and coagulation activity and to suppress of endothelial perturbance and leukocyte-derived pro-inflammatory cytokines, may provide a path to alleviate thrombo-inflammatory disorders in the future. The vascular tissue-modeled heparin proteoglycan mimic, antiplatelet and anticoagulant compound (APAC), dual antiplatelet and anticoagulant, is an injury-targeting and locally acting arterial antithrombotic which downplays collagen- and thrombin-induced and complement-induced activation and protects from organ injury.
Collapse
Affiliation(s)
- Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- *Correspondence: Shrey Kohli,
| | - Khurrum Shahzad
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Annukka Jouppila
- Clinical Research Institute HUCH, Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Harry Holthöfer
- Zentrum für Innere Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Riitta Lassila
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Coagulation Disorders Unit, Department of Hematology, Comprehensive Cancer Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Aplagon Ltd., Helsinki, Finland
- Riitta Lassila,
| |
Collapse
|
52
|
Li S, Li L, Lin X, Chen C, Luo C, Huang Y. Targeted Inhibition of Tumor Inflammation and Tumor-Platelet Crosstalk by Nanoparticle-Mediated Drug Delivery Mitigates Cancer Metastasis. ACS NANO 2022; 16:50-67. [PMID: 34873906 DOI: 10.1021/acsnano.1c06022] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sowing malignant cells (the "seeds" of metastasis) to engraft secondary sites requires a conducive premetastatic niche (PMN, the "soil" of metastasis). Inflammation and tumor associated platelet (TAP) has been hijacked by primary tumors to induce PMN "soil" in distant organs, as well as facilitate the dissemination of "seeds". This study reports a combinatory strategy with activated platelet-targeting nanoparticles to aim at the dynamic process of entire cancer metastasis, which exerts robust antimetastasis efficacy by simultaneously inhibiting tumor inflammation and tumor-platelet crosstalk. Our results reveals that the PSN peptide (a P-selectin-targeting peptide) modification enriched the accumulation of nanoparticles in primary tumor, pulmonary PMN, and metastases via capturing activated platelet. Such characteristics contribute to the efficient inhibition on almost every crucial and consecutive step of the metastasis cascade by retarding epithelial-mesenchymal transition (EMT) progression within tumors, specifically blocking the tumor-platelet crosstalk to remove the platelets "protective shield" around disseminated "seeds", and reversing the inflammatory microenvironment to interfere with the "soil" formation. Consisting of inflammation inhibiting and TAP impeding nanoparticles, this approach prominently reduces various metastasis in abscopal lung, including spontaneous metastasis, disseminated tumor cells metastasis, and post-operative metastasis. This work provides a generalizable nanoplatform of parallel inflammation disturbance and tumor-TAP crosstalk blockade to resist metastatic tumors.
Collapse
Affiliation(s)
- Shujie Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Xi Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Cheng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Chaohui Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
53
|
Covarrubias G, Moon TJ, Loutrianakis G, Sims HM, Umapathy MP, Lorkowski ME, Bielecki PA, Wiese ML, Atukorale PU, Karathanasis E. Comparison of the uptake of untargeted and targeted immunostimulatory nanoparticles by immune cells in the microenvironment of metastatic breast cancer. J Mater Chem B 2022; 10:224-235. [PMID: 34846443 PMCID: PMC8732314 DOI: 10.1039/d1tb02256c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To alter the immunosuppressive tumor microenvironment (TME), we developed an immunostimulatory nanoparticle (NP) to reprogram a tumor's dysfunctional and inhibitory antigen-presenting cells (APCs) into properly activated APCs that stimulate tumor-reactive cytotoxic T cells. Importantly, systemic delivery allowed NPs to efficiently utilize the entire microvasculature and gain access into the majority of the perivascular TME, which coincided with the APC-rich tumor areas leading to uptake of the NPs predominantly by APCs. In this work, a 60 nm NP was loaded with a STING agonist, which triggered robust production of interferon β, resulting in activation of APCs. In addition to untargeted NPs, we employed 'mainstream' ligands targeting fibronectin, αvβ3 integrin and P-selectin that are commonly used to direct nanoparticles to tumors. Using the 4T1 mouse model, we assessed the microdistribution of the four NP variants in the tumor immune microenvironment in three different breast cancer landscapes, including primary tumor, early metastasis, and late metastasis. The different NP variants resulted in variable uptake by immune cell subsets depending on the organ and tumor stage. Among the NP variants, therapeutic studies indicated that the untargeted NPs and the integrin-targeting NPs exhibited a remarkable short- and long-term immune response and long-lasting antitumor effect.
Collapse
Affiliation(s)
- Gil Covarrubias
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Taylor J Moon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Georgia Loutrianakis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Haley M Sims
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Mayura P Umapathy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Morgan E Lorkowski
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Peter A Bielecki
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Michelle L Wiese
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Prabhani U Atukorale
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
54
|
Zhang L, Zhu Y, Wei X, Chen X, Li Y, Zhu Y, Xia J, Huang Y, Huang Y, Wang J, Pang Z. Nanoplateletsomes restrain metastatic tumor formation through decoy and active targeting in a preclinical mouse model. Acta Pharm Sin B 2022; 12:3427-3447. [PMID: 35967283 PMCID: PMC9366539 DOI: 10.1016/j.apsb.2022.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/16/2021] [Accepted: 12/30/2021] [Indexed: 11/28/2022] Open
Abstract
Platelets buoy up cancer metastasis via arresting cancer cells, enhancing their adhesion, and facilitating their extravasation through the vasculature. When deprived of intracellular and granular contents, platelet decoys could prevent metastatic tumor formation. Inspired by these, we developed nanoplatesomes by fusing platelet membranes with lipid membranes (P-Lipo) to restrain metastatic tumor formation more efficiently. It was shown nanoplateletsomes bound with circulating tumor cells (CTC) efficiently, interfered with CTC arrest by vessel endothelial cells, CTC extravasation through endothelial layers, and epithelial-mesenchymal transition of tumor cells as nanodecoys. More importantly, in the mouse breast tumor metastasis model, nanoplateletsomes could decrease CTC survival in the blood and counteract metastatic tumor growth efficiently by inhibiting the inflammation and suppressing CTC escape. Therefore, nanoplatelesomes might usher in a new avenue to suppress lung metastasis.
Collapse
Affiliation(s)
- Longlong Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuefei Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xunbin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xing Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Ying Zhu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jiaxuan Xia
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yiheng Huang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
- Corresponding authors.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Corresponding authors.
| |
Collapse
|
55
|
Jing Y, Zhang Y, Pan R, Ding K, Chen R, Meng Q. Effect of Inhalation Anesthetics on Tumor Metastasis. Technol Cancer Res Treat 2022; 21:15330338221121092. [PMID: 36131554 PMCID: PMC9502254 DOI: 10.1177/15330338221121092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Many factors affect the prognosis of patients undergoing tumor surgery, and anesthesia is one of the potential influencing factors. In general anesthesia, inhalation anesthesia is widely used in the clinic because of its strong curative effect and high controllability. However, the effect of inhalation anesthetics on the tumor is still controversial. More and more research has proved that inhalation anesthetics can intervene in local recurrence and distant metastasis of tumor by acting on tumor biological behavior, immune response, and gene regulation. In this paper, we reviewed the research progress of diverse inhalation anesthetics promoting or inhibiting cancer in the critical events of tumor recurrence and metastasis, and compared the effects of inhalation anesthetics on patients' prognosis in clinical studies, to provide theoretical reference for anesthesia management of patients undergoing tumor surgery.
Collapse
Affiliation(s)
- Yixin Jing
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiguo Zhang
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Pan
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Ding
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Rong Chen
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, 117921Renmin Hospital of Wuhan University, Wuhan, China.,Department of Anesthesiology, East Hospital, 117921Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
56
|
An indicator displacement assay-based optical chemosensor for heparin with a dual-readout and a reversible molecular logic gate operation based on the pyranine/methyl viologen. Biosens Bioelectron 2021; 194:113612. [PMID: 34507094 DOI: 10.1016/j.bios.2021.113612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 11/23/2022]
Abstract
We have reported an optical indicator displacement assay (IDA) for heparin with a UV-vis absorbance and fluorescence dual-readout based on pyranine/methyl viologen (MV2+). Upon introducing heparin, pyranine/MV2+ shows a clearly observable increase in UV-vis absorbance and a turn-on of the fluorescence signal. We have demonstrated that the ionic nature of buffers significantly affects the pyranine displacement and the zwitterionic HEPES was most suitable for heparin sensing. After careful screening of experimental conditions, the pyranine/MV2+-based optical chemosensor exhibits a fast, sensitive, and selective response toward heparin. It shows dynamic linear concentration of heparin in the ranges of 0.1-40 U·mL-1 and 0.01-20 U·mL-1 for the absorptive and fluorescent measurements, respectively, which both cover the clinically relevant levels of heparin. As with the animal experiments, the optical chemosensor has been demonstrated to be selective and effective for heparin level qualification in rat plasma. The chemosensor is readily accessible, cost-effective, and reliable, which holds a great promise for potential application on clinical and biological studies. Furthermore, this IDA system can serve as an IMPLICATION logic gate with a reversible and switchable logical manner.
Collapse
|
57
|
Castle J, Blower E, Kirwan CC. Update on the role of circulating tumour cells in cancer-associated thrombosis. THROMBOSIS UPDATE 2021. [DOI: 10.1016/j.tru.2021.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
58
|
Xie Z, Liu X, Huang X, Liu Q, Yang M, Huang D, Zhao P, Tian J, Wang X, Hou J. Remodelling of gut microbiota by Berberine attenuates trimethylamine N-oxide-induced platelet hyperreaction and thrombus formation. Eur J Pharmacol 2021; 911:174526. [PMID: 34599914 DOI: 10.1016/j.ejphar.2021.174526] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/05/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Berberine is an extract derived from Chinese herbs with pleiotropic cardiovascular protective effects. However, the underlying mechanism remains unclear because of its poor bioavailability. Herin, we aimed to investigate whether berberine affects choline diet-induced arterial thrombosis and explore the potential mechanism. Ultrasound and optical coherence tomography were used to assess the potential risk of artery thrombosis in vivo. The plasma concentrations of trimethylamine N-oxide (TMAO) and trimethylamine (TMA) were quantified with mass spectrometry. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) were utilized to detect the levels of microbial TMA-lyase choline utilization C (CutC) in faeces. Gut microbiota analysis was performed with 16S rRNA gene sequencing. For in vitro studies, platelet aggregometry, intracellular Ca2+ measurement, ATP release assay, flow cytometry and Western blot were applied to identify the effects of TMAO on platelets. Berberine treatment significantly decreased the CutC levels in the caecal contents, reduced choline diet-induced TMA and TMAO production, and subsequently, reduced the arterial thrombosis potential risk. Berberine administration remodelled the structure of gut microbiota in rats and increased the levels of the genus Lactobacillus. Finally, TMAO enhanced platelet reactivity to collagen by promoting the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and Jun N-terminal kinase (JNK) in platelets. These results demonstrate that berberine attenuates the risk of choline diet-induced arterial thrombosis by changing the gut microbial composition and reducing TMAO generation.
Collapse
Affiliation(s)
- Zulong Xie
- Department of Cardiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xinxin Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China
| | - Xingtao Huang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China
| | - Mengyue Yang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China
| | - Dan Huang
- Department of Cardiology, Zhongda Hospital Southeast University, Nanjing, 210000, China
| | - Peng Zhao
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jinwei Tian
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China
| | - Xuedong Wang
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China.
| | - Jingbo Hou
- Department of Cardiology, Second Affiliated Hospital of Harbin Medical University, and Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
59
|
Laner-Plamberger S, Oeller M, Rohde E, Schallmoser K, Strunk D. Heparin and Derivatives for Advanced Cell Therapies. Int J Mol Sci 2021; 22:12041. [PMID: 34769471 PMCID: PMC8584295 DOI: 10.3390/ijms222112041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/27/2022] Open
Abstract
Heparin and its derivatives are saving thousands of human lives annually, by successfully preventing and treating thromboembolic events. Although the mode of action during anticoagulation is well studied, their influence on cell behavior is not fully understood as is the risk of bleeding and other side effects. New applications in regenerative medicine have evolved supporting production of cell-based therapeutics or as a substrate for creating functionalized matrices in biotechnology. The currently resurgent interest in heparins is related to the expected combined anti-inflammatory, anti-thrombotic and anti-viral action against COVID-19. Based on a concise summary of key biochemical and clinical data, this review summarizes the impact for manufacturing and application of cell therapeutics and highlights the need for discriminating the different heparins.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Michaela Oeller
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Eva Rohde
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Katharina Schallmoser
- Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (S.L.-P.); (M.O.); (E.R.)
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria;
- Cell Therapy Institute, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
60
|
Market M, Tennakoon G, Auer RC. Postoperative Natural Killer Cell Dysfunction: The Prime Suspect in the Case of Metastasis Following Curative Cancer Surgery. Int J Mol Sci 2021; 22:ijms222111378. [PMID: 34768810 PMCID: PMC8583911 DOI: 10.3390/ijms222111378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
Surgical resection is the foundation for the curative treatment of solid tumors. However, metastatic recurrence due to the difficulty in eradicating micrometastases remain a feared outcome. Paradoxically, despite the beneficial effects of surgical removal of the primary tumor, the physiological stress resulting from surgical trauma serves to promote cancer recurrence and metastasis. The postoperative environment suppresses critical anti-tumor immune effector cells, including Natural Killer (NK) cells. The literature suggests that NK cells are critical mediators in the formation of metastases immediately following surgery. The following review will highlight the mechanisms that promote the formation of micrometastases by directly or indirectly inducing NK cell suppression following surgery. These include tissue hypoxia, neuroendocrine activation, hypercoagulation, the pro-inflammatory phase, and the anti-inflammatory phase. Perioperative therapeutic strategies designed to prevent or reverse NK cell dysfunction will also be examined for their potential to improve cancer outcomes by preventing surgery-induced metastases.
Collapse
Affiliation(s)
- Marisa Market
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 8M5, Canada; (M.M.); (G.T.)
- The Ottawa Hospital Research Institute, Ottawa, ON K1G 4E3, Canada
| | - Gayashan Tennakoon
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 8M5, Canada; (M.M.); (G.T.)
| | - Rebecca C. Auer
- The Ottawa Hospital Research Institute, Ottawa, ON K1G 4E3, Canada
- Department of General Surgery, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
- Correspondence: ; Tel.: +1-613-722-7000
| |
Collapse
|
61
|
Lu Z, Long Y, Li J, Li J, Ren K, Zhao W, Wang X, Xia C, Wang Y, Li M, Zhang Z, He Q. Simultaneous inhibition of breast cancer and its liver and lung metastasis by blocking inflammatory feed-forward loops. J Control Release 2021; 338:662-679. [PMID: 34478751 DOI: 10.1016/j.jconrel.2021.08.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 01/13/2023]
Abstract
Inflammatory feed-forward loops including the steps of "inflammatory cell recruitment", "inflammatory signaling pathway activation" and "inflammatory factor production" are essential in the development of breast cancer and its metastasis. Herein, a doxorubicin-loaded micellar low-molecular-weight-heparin-astaxanthin nanoparticle (LMWH-AST/DOX, LA/DOX NP) was developed. The hydrophilic LMWH could decrease the recruitment of neutrophils in liver and myeloid-derived suppressor cells (MDSCs) in lung and tumor through P-selectin blockage. The hydrophobic AST could inhibit nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) signaling pathways. Therefore, LA/DOX NPs could block these loops and suppress the liver metastasis by inhibiting the formation of neutrophil extracellular traps (NETs), inhibit the lung metastasis and alleviate the inflammatory and immunosuppressive microenvironment in tumor. This is the first functional nanoparticle reported to shut down inflammatory feed-forward loops and the formation of NETs, which provides a promising therapeutic strategy for breast cancer and its liver and lung metastasis.
Collapse
Affiliation(s)
- Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Kebai Ren
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Wei Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuhui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Chunyu Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China.
| |
Collapse
|
62
|
Oliveira FD, Castanho MARB, Neves V. Exosomes and Brain Metastases: A Review on Their Role and Potential Applications. Int J Mol Sci 2021; 22:10899. [PMID: 34639239 PMCID: PMC8509735 DOI: 10.3390/ijms221910899] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BM) are a frequent complication in patients with advanced stages of cancer, associated with impairment of the neurological function, quality of life, prognosis, and survival. BM treatment consists of a combination of the available cancer therapies, such as surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies. Even so, cancer patients with BM are still linked to poor prognosis, with overall survival being reported as 12 months or less. Intercellular communication has a pivotal role in the development of metastases, therefore, it has been extensively studied not only to better understand the metastization process, but also to further develop new therapeutic strategies. Exosomes have emerged as key players in intercellular communication being potential therapeutic targets, drug delivery systems (DDS) or biomarkers. In this Review, we focus on the role of these extracellular vesicles (EVs) in BM formation and their promising application in the development of new BM therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; (F.D.O.); (M.A.R.B.C.)
| |
Collapse
|
63
|
Chen LY, Apte G, Lindenbauer A, Frant M, Nguyen TH. Effect of HIT Components on the Development of Breast Cancer Cells. Life (Basel) 2021; 11:life11080832. [PMID: 34440575 PMCID: PMC8399975 DOI: 10.3390/life11080832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer cells circulating in blood vessels activate platelets, forming a cancer cell encircling platelet cloak which facilitates cancer metastasis. Heparin (H) is frequently used as an anticoagulant in cancer patients but up to 5% of patients have a side effect, heparin-induced thrombocytopenia (HIT) that can be life-threatening. HIT is developed due to a complex interaction among multiple components including heparin, platelet factor 4 (PF4), HIT antibodies, and platelets. However, available information regarding the effect of HIT components on cancers is limited. Here, we investigated the effect of these materials on the mechanical property of breast cancer cells using atomic force microscopy (AFM) while cell spreading was quantified by confocal laser scanning microscopy (CLSM), and cell proliferation rate was determined. Over time, we found a clear effect of each component on cell elasticity and cell spreading. In the absence of platelets, HIT antibodies inhibited cell proliferation but they promoted cell proliferation in the presence of platelets. Our results indicate that HIT complexes influenced the development of breast cancer cells.
Collapse
Affiliation(s)
- Li-Yu Chen
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (L.-Y.C.); (G.A.); (A.L.); (M.F.)
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, 07745 Jena, Germany
| | - Gurunath Apte
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (L.-Y.C.); (G.A.); (A.L.); (M.F.)
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Annerose Lindenbauer
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (L.-Y.C.); (G.A.); (A.L.); (M.F.)
| | - Marion Frant
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (L.-Y.C.); (G.A.); (A.L.); (M.F.)
| | - Thi-Huong Nguyen
- Institute for Bioprocessing and Analytical Measurement Techniques, 37308 Heiligenstadt, Germany; (L.-Y.C.); (G.A.); (A.L.); (M.F.)
- Faculty of Mathematics and Natural Sciences, Technische Universität Ilmenau, 98694 Ilmenau, Germany
- Correspondence:
| |
Collapse
|
64
|
Anvari S, Osei E, Maftoon N. Interactions of platelets with circulating tumor cells contribute to cancer metastasis. Sci Rep 2021; 11:15477. [PMID: 34326373 PMCID: PMC8322323 DOI: 10.1038/s41598-021-94735-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023] Open
Abstract
Recent studies have suggested that platelets have a crucial role in enhancing the survival of circulating tumor cells in the bloodstream and aggravating cancer metastasis. The main function of platelets is to bind to the sites of the damaged vessels to stop bleeding. However, in cancer patients, activated platelets adhere to circulating tumor cells and exacerbate metastatic spreading. Several hypotheses have been proposed about the platelet-cancer cell interactions, but the underlying mechanisms of these interactions are not completely understood yet. In this work, we quantitatively investigated the interactions between circulating tumor cells, red blood cells, platelets, plasma flow and microvessel walls via computational modelling at the cellular scale. Our highly detailed computational model allowed us to understand and quantitatively explain the role of platelets in deformation, adhesion and survival of tumor cells in their active arrest to the endothelium.
Collapse
Affiliation(s)
- Sina Anvari
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Ernest Osei
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- Department of Medical Physics, Grand River Regional Cancer Centre, Kitchener, ON, Canada
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Nima Maftoon
- Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
65
|
Menyailo ME, Bokova UA, Ivanyuk EE, Khozyainova AA, Denisov EV. Metastasis Prevention: Focus on Metastatic Circulating Tumor Cells. Mol Diagn Ther 2021; 25:549-562. [PMID: 34287797 DOI: 10.1007/s40291-021-00543-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 12/13/2022]
Abstract
Metastasis is the main cause of cancer death. Metastatic foci are derived from tumor cells that detach from the primary tumor and then enter the circulation. Circulating tumor cells (CTCs) are generally associated with a high probability of distant metastasis and a negative prognosis. Most CTCs die in the bloodstream, and only a few cells form metastases. Such metastatic CTCs have a stem-like and hybrid epithelial-mesenchymal phenotype, can avoid immune surveillance, and show increased therapy resistance. Targeting metastatic CTCs and their progenitors in primary tumors and their descendants, particularly disseminated tumor cells, represents an attractive strategy for metastasis prevention. However, current therapeutic strategies mainly target the primary tumor and only indirectly affect metastasis-initiating cells. Here, we consider potential methods for preventing metastasis based on targeting molecular and cellular features of metastatic CTCs, including CTC clusters. Also, we emphasize current knowledge gaps in CTC biology that should be addressed to develop highly effective therapeutics and strategies for metastasis suppression.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Ustinia A Bokova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Elena E Ivanyuk
- Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Kooperativny Str. 5, Tomsk, 634009, Russia.
| |
Collapse
|
66
|
Santoro C, Capone V, Canonico ME, Gargiulo G, Esposito R, Sanna GD, Parodi G, Esposito G. Single, Dual, and Triple Antithrombotic Therapy in Cancer Patients with Coronary Artery Disease: Searching for Evidence and Personalized Approaches. Semin Thromb Hemost 2021; 47:950-961. [PMID: 34261150 DOI: 10.1055/s-0041-1726298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improvement in life expectancy of patients suffering from oncohematologic disorders has turned cancer from an acute into a chronic condition, making the management of comorbidities problematic, especially when it comes to both acute and chronic cardiovascular diseases. Treatment-related adverse events and drug-drug interactions often influence the therapeutic approach of patients with active malignancies and cardiovascular disease. Furthermore, tumor cells and platelets maintain a complex crosstalk that on one hand enhances tumor dissemination and on the other hand induces hemostasis abnormalities. Hence, clinicians should move carefully in the intricate land mines established by patients with active cancer under antithrombotic therapy. To date, there is no consensus on the antithrombotic treatment of patients with cardiovascular diseases and concomitant malignancies. The aim of this review is to collect the available scientific evidence, including the latest clinical trials and guidelines, in order to provide guidance on the management of antithrombotic treatment (both antiplatelet and anticoagulant therapy) in cancer patients with either pre-existent or new-onset coronary artery disease. Randomized-controlled trials on antithrombotic treatment in oncologic populations, which by far have thus far been excluded, have to be promoted to supply recommendations in the oncohematologic setting.
Collapse
Affiliation(s)
- Ciro Santoro
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| | - Valentina Capone
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| | - Mario Enrico Canonico
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy.,Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | - Giuseppe Gargiulo
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| | - Roberta Esposito
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| | | | - Guido Parodi
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, Federico II University Hospital, Naples, Italy
| |
Collapse
|
67
|
Rehman FU, Rauf MA, Ullah S, Shaikh S, Qambrani A, Muhammad P, Hanif S. Ultrasound-activated nano-TiO2 loaded with temozolomide paves the way for resection of chemoresistant glioblastoma multiforme. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glioblastoma multiforme (GBM) is one of the most daunting issues to modern therapeutics, with a higher mortality rate post-diagnosis. Temozolomide (TMZ) is the only available treatment; however, the frequent resistance leaves the oncologists at a dead end. Therefore, new approaches to circumvent the GBM are highly desired. We have employed TiO2 nanosticks loaded with TMZ as nanomedicine for TMZ-resistant GBM resection in this contribution.
Results
The ultrasonication triple-action effect could greatly facilitate tumor ablation by enhancing the TiO2 nanosticks traversing across BBB, releasing the TMZ payload from TiO2 nanosticks and reactive oxygen species (ROS) generation from TiO2 nanosticks within the GBM milieu. The tumor ablation was confirmed by MTT and Annexin(v)-PI assays, apoptotic proteins expression via western blot and ROS level detection in vitro, whereas tumor volume, weight, survival rate, and relative photon flux in the xenograft and orthoptic TMZ-resistant GBM murine models as in vivo.
Conclusion
We found this nanomedicine-based ultrasound modality highly efficient in GBM treatment and is of future clinical application value due to the employment of already FDA-approved techniques and nanomedicine.
Collapse
|
68
|
Peng C, Wang Q, Jiao R, Xu Y, Han N, Wang W, Zhu C, Li F. A novel chondroitin sulfate E from Dosidicus gigas cartilage and its antitumor metastatic activity. Carbohydr Polym 2021; 262:117971. [PMID: 33838835 DOI: 10.1016/j.carbpol.2021.117971] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/20/2021] [Accepted: 03/17/2021] [Indexed: 01/11/2023]
Abstract
Chondroitin sulfate (CS) chains containing GlcUAβ1-3GalNAc(4S,6S) (E unit) have been shown to be involved in various physiological and pathological processes. However, commercial E unit-rich CS (CS-E) is difficult to produce on a large scale due to expensive and limited squid cartilage resources. In this study, a novel CS-E (CS-nE) was isolated from the cheap and abundant cartilage of the giant squid Dosidicus gigas. The CS-nE has a surprisingly large molecular mass of 696 kDa and a relatively high E unit proportion (44.5 %). It can interact with various growth factors, including HGF, bFGF, pleiotrophin, and HB-EGF, with high affinity, and exhibits dose-dependent anti-metastatic activity. Furthermore, the E unit-rich decasaccharide selectively prepared from CS-nE has been shown to be the minimal functional domain with the strongest antitumor metastatic activity. Taken together, CS-nE will be a very promising candidate for the development of CS-E-based pharmaceutical products.
Collapse
Affiliation(s)
- Chune Peng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Qingbin Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Runmiao Jiao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Naihan Han
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China; Shandong Police College, Jinan, 250200, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Rd, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
69
|
Tao DL, Tassi Yunga S, Williams CD, McCarty OJT. Aspirin and antiplatelet treatments in cancer. Blood 2021; 137:3201-3211. [PMID: 33940597 PMCID: PMC8351882 DOI: 10.1182/blood.2019003977] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Platelets have been hypothesized to promote certain neoplastic malignancies; however, antiplatelet drugs are still not part of routine pharmacological cancer prevention and treatment protocols. Paracrine interactions between platelets and cancer cells have been implicated in potentiating the dissemination, survival within the circulation, and extravasation of cancer cells at distant sites of metastasis. Signals from platelets have also been suggested to confer epigenetic alterations, including upregulating oncoproteins in circulating tumor cells, and secretion of potent growth factors may play roles in promoting mitogenesis, angiogenesis, and metastatic outgrowth. Thrombocytosis remains a marker of poor prognosis in patients with solid tumors. Experimental data suggest that lowering of platelet count may reduce tumor growth and metastasis. On the basis of the mechanisms by which platelets could contribute to cancer growth and metastasis, it is conceivable that drugs reducing platelet count or platelet activation might attenuate cancer progression and improve outcomes. We will review select pharmacological approaches that inhibit platelets and may affect cancer development and propagation. We begin by presenting an overview of clinical cancer prevention and outcome studies with low-dose aspirin. We then review current nonclinical development of drugs targeted to platelet binding, activation, and count as potential mitigating agents in cancer.
Collapse
Affiliation(s)
- Derrick L Tao
- Division of Hematology & Medical Oncology
- Department of Biomedical Engineering, and
| | - Samuel Tassi Yunga
- Department of Biomedical Engineering, and
- Cancer Early Detection & Advanced Research Center, Oregon Health & Science University, Portland, OR; and
| | - Craig D Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR
| | - Owen J T McCarty
- Division of Hematology & Medical Oncology
- Department of Biomedical Engineering, and
| |
Collapse
|
70
|
Zhao W, Li T, Long Y, Guo R, Sheng Q, Lu Z, Li M, Li J, Zang S, Zhang Z, He Q. Self-promoted Albumin-Based Nanoparticles for Combination Therapy against Metastatic Breast Cancer via a Hyperthermia-Induced "Platelet Bridge". ACS APPLIED MATERIALS & INTERFACES 2021; 13:25701-25714. [PMID: 34041901 DOI: 10.1021/acsami.1c04442] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It has been a great challenge to simultaneously inhibit the outgrowth of both the primary tumor and metastasis in metastatic cancer treatment. Substantial studies have evidenced that the interaction of platelets and cancer cells supports tumor metastasis, and platelets are considered to have metastasis-targeting property. Inspired by injury-targeting and metastasis-targeting properties of platelets, we constructed a photothermal therapy strategy with activated platelet-targeting albumin-based nanoparticles, PSN-HSA-PTX-IR780, to amplify drug delivery in the primary tumor at mild temperatures and simultaneously inhibit metastasis via a "platelet bridge". Human serum albumin (HSA) was premodified with a P-selectin-targeting peptide (PSN peptide) or IR780 serving as a photosensitizer. Hybrid albumin nanoparticles were assembled via the disulfide reprogramming method and encapsulated paclitaxel (PTX) to formulate PSN-HSA-PTX-IR780. The PSN-modified albumin nanoparticles could bind with upregulated P-selectin on activated platelets and subsequently target cancer cells by using platelets as a "bridge". In addition, nanoparticle-generated hyperthermia induced tissue injury and increased tumor-infiltrating platelets, thereby recruiting more nanoparticles into the tumor in a self-promoted way. In vivo studies showed that the drug accumulation of PSN-HSA-PTX-IR780 was 2.86-fold higher than that of HSA-PTX-IR780 at the optimal temperature (45 °C), which consequently improved the therapeutic outcome. Moreover, PSN-HSA-PTX-IR780 also effectively targets and inhibits lung metastasis by binding with metastasis-infiltrating platelets. Altogether, the self-promoted nanoplatform provides a unique and promising strategy for metastatic cancer treatment with enhanced drug delivery efficacy.
Collapse
Affiliation(s)
- Wei Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Ting Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Yang Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Rong Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qinglin Sheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Zhengze Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
71
|
Ma SN, Mao ZX, Wu Y, Liang MX, Wang DD, Chen X, Chang PA, Zhang W, Tang JH. The anti-cancer properties of heparin and its derivatives: a review and prospect. Cell Adh Migr 2021; 14:118-128. [PMID: 32538273 PMCID: PMC7513850 DOI: 10.1080/19336918.2020.1767489] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heparin, including unfractionated heparin (UFH), low-molecular-weight heparin (LMWH) and heparin derivatives, are commonly used in venous thromboembolism treatment and reportedly have beneficial effects on cancer survival. Heparin can affect the proliferation, adhesion, angiogenesis, migration and invasion of cancer cells via multiple mechanisms. The main mechanisms involve inhibition of heparanase, P-/L-selectin, angiogenesis, and interference with the CXCL12-CXCR4 axis. Here we summarize the current experimental evidence regarding the anti-cancer role of heparin and its derivatives, and conclude that there is evidence to support heparin’s role in inhibiting cancer progression, making it a promising anti-cancer agent.
Collapse
Affiliation(s)
- Sai-Nan Ma
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China.,Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University , Suqian, P.R.China
| | - Zhi-Xiang Mao
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University , Xuzhou, P.R. China
| | - Yang Wu
- Core Facility, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Ping-An Chang
- Urinary Surgery, Dongtai People's Hospital , Dongtai, P.R. China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University , Nanjing, P.R. China
| |
Collapse
|
72
|
Systematic review of observational studies reporting antiphospholipid antibodies in patients with solid tumors. Blood Adv 2021; 4:1746-1755. [PMID: 32337583 DOI: 10.1182/bloodadvances.2020001557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
This review summarizes the evidence on antiphospholipid (aPL) antibodies and related thromboembolic events in patients with solid tumors. Data sources included Medline, EMBASE, Web of Science, PubMed ePubs, and the Cochrane Central Register of Controlled Trials through August 2019 without restrictions. Observational studies that evaluated patients with solid tumors for the presence of aPL antibodies were included. Data were extracted and quality was assessed by one reviewer and cross-checked by another. Thirty-three studies were identified. Gastrointestinal (GI) and genitourinary (GU) cancers were the most frequently reported. Compared with healthy patients, patients with GI cancer were more likely to develop anticardiolipin antibodies (risk ratio [RR], 5.1; 95% confidence interval [CI], 2.6-9.95), as were those with GU (RR, 7.3; 95% CI, 3.3-16.2) and lung cancer (RR, 5.2; 95% CI, 1.3-20.6). The increased risk for anti-β2-glycoprotein I or lupus anticoagulant was not statistically significant. Patients with lung cancer who had positive aPL antibodies had higher risk of developing thromboembolic events than those who had negative antibodies (RR, 3.8%; 95% CI, 1.2-12.2), while the increased risk in patients with GU cancer was not statistically significant. Deaths due to thromboembolic events were more common among patients with lung cancer who had elevated aPL antibodies. A limitation of this review is that the results are contingent on the reported information. We found an increased risk of developing aPL antibodies in patients with GI, GU, and lung cancers resulting in thromboembolic events and death. Further studies are needed to better understand the pathogenesis and development of aPL antibodies in cancer.
Collapse
|
73
|
Haschemi R, Gockel LM, Bendas G, Schlesinger M. A Combined Activity of Thrombin and P-Selectin Is Essential for Platelet Activation by Pancreatic Cancer Cells. Int J Mol Sci 2021; 22:3323. [PMID: 33805059 PMCID: PMC8037188 DOI: 10.3390/ijms22073323] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer patients have an elevated risk of suffering from venous thrombosis. Among several risk factors that contribute to hypercoagulability of this malignancy, platelets possess a key role in the initiation of clot formation. Although single mechanisms of platelet activation are well-known in principle, combinations thereof and their potential synergy to mediate platelet activation is, in the case of pancreatic cancer, far from being clear. Applying an inhibitor screening approach using light transmission aggregometry, dense granule release, and thrombin formation assays, we provide evidence that a combination of tissue factor-induced thrombin formation by cancer cells and their platelet P-selectin binding is responsible for AsPC-1 and Capan-2 pancreatic cancer cell-mediated platelet activation. While the blockade of one of these pathways leads to a pronounced inhibition of platelet aggregation and dense granule release, the simultaneous blockade of both pathways is inevitable to prevent platelet aggregation completely and minimize ATP release. In contrast, MIA PaCa-2 pancreatic cancer cells express reduced levels of tissue factor and P-selectin ligands and thus turn out to be poor platelet activators. Consequently, a simultaneous blockade of thrombin and P-selectin binding seems to be a powerful approach, as mediated by heparin to crucially reduce the hypercoagulable state of pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (R.H.); (L.M.G.); (G.B.)
| |
Collapse
|
74
|
Fabricius HÅ, Starzonek S, Lange T. The Role of Platelet Cell Surface P-Selectin for the Direct Platelet-Tumor Cell Contact During Metastasis Formation in Human Tumors. Front Oncol 2021; 11:642761. [PMID: 33791226 PMCID: PMC8006306 DOI: 10.3389/fonc.2021.642761] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Mammalian platelets, devoid of nuclei, are the smallest cells in the blood stream. They are essential for hemostasis, but also transmit cell signals that are necessary for regenerative and generative processes such as inflammation, immunity and tissue repair. In particular, in malignancies they are also associated with cell proliferation, angiogenesis, and epithelial-mesenchymal transition. Platelets promote metastasis and resistance to anti-tumor treatment. However, fundamental principles of the interaction between them and target cells within tumors are complex and still quite obscure. When injected into animals or circulating in the blood of cancer patients, cancer cells ligate platelets in a timely manner closely related to platelet activation either by direct contact or by cell-derived substances or microvesicles. In this context, a large number of different surface molecules and transduction mechanisms have been identified, although the results are sometimes species-specific and not always valid to humans. In this mini-review, we briefly summarize the current knowledge on the role of the direct and indirect platelet-tumor interaction for single steps of the metastatic cascade and specifically focus on the functional role of P-selectin.
Collapse
Affiliation(s)
- Hans-Åke Fabricius
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Starzonek
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
75
|
Habli Z, Deen NNA, Malaeb W, Mahfouz N, Mermerian A, Talhouk R, Mhanna R. Biomimetic sulfated glycosaminoglycans maintain differentiation markers of breast epithelial cells and preferentially inhibit proliferation of cancer cells. Acta Biomater 2021; 122:186-198. [PMID: 33444795 DOI: 10.1016/j.actbio.2020.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Glycosaminoglycans (GAG) are key elements involved in various physiological and pathological processes including cancer. Several GAG-based drugs have been developed showing significant results and potential use as cancer therapeutics. We previously reported that alginate sulfate (AlgSulf), a GAG-mimetic, reduces the proliferation of lung adenocarcinoma cells. In this study, we evaluated the preferential effect of AlgSulf on tumorigenic and nontumorigenic mammary epithelial cells in 2D, 3D, and coculture conditions. AlgSulf were synthesized with different degrees of sulfation (DSs) varying from 0 to 2.7 and used at 100 µg/mL on HMT-3522 S1 (S1) nontumorigenic mammary epithelial cells and their tumorigenic counterparts HMT-3522 T4-2 (T4-2) cells. The anti-tumor properties of AlgSulf were assessed using trypan blue and bromodeoxyuridine proliferation (BrdU) assays, immunofluorescence staining and transwell invasion assay. Binding of insulin and epidermal growth factor (EGF) to sulfated substrates was measured using QCM-D and ELISA. In 2D, the cell growth rate of cells treated with AlgSulf was consistently lower compared to untreated controls (p<0.001) and surpassed the effect of the native GAG heparin (positive control). In 3D, AlgSulf preferentially hindered the growth rate and the invasion potential of tumorigenic T4-2 nodules while maintaining the formation of differentiated polarized nontumorigenic S1 acini. The preferential growth inhibition of tumorigenic cells by AlgSulf was confirmed in a coculture system (p<0.001). In the ELISA assay, a trend of EGF binding was detected for sulfated polysaccharides while QCM-D analysis showed negligible binding of insulin and EGF to sulfated substrates. The preferential effect mediated by the mimetic sulfated GAGs on cancer cells may in part be growth factor dependent. Our findings suggest a potential anticancer therapeutic role of AlgSulf for the development of anticancer drugs.
Collapse
|
76
|
Cai Z, Yan Y, Zhou J, Yang Y, Zhang Y, Chen J. Multifunctionalized Brush-Like Glycopolymers with High Affinity to P-Selectin and Antitumor Metastasis Activity. Biomacromolecules 2021; 22:1177-1185. [PMID: 33586430 DOI: 10.1021/acs.biomac.0c01689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycopolymers that can mimic natural glycosaminoglycan, such as heparin, have shown great potentials in inhibition of cancer metastasis. In the current work, a novel series of brush-like glycopolymers (BGPs) with simultaneous functionalization of various monosaccharide or disaccharide compositions have been synthesized through a new grafting-polymerization strategy, in order to mimic the activities of both heparin and P-selectin ligand PSGL-1. In the subsequent in vitro assays of antiadhesion, platelets activation, heparanase inhibition, and so on, BGP-SFH, as one of the BGPs with the composition of the combined three sugar units, sialic acids, fucoses, and heparin disaccharides, showed the highest antimetastasis ability, similar to its prototype heparin. Moreover, in a mouse metastatic melanoma model, the BGP-SFH also inhibited B16 cell metastasis effectively. Thus, the current work not only demonstrated a type of promising antimetastasis glycopolymer BGPs, but also illustrated an easy synthetic approach to multifunctionalized glycopolymers, leading to potential applications for broader biomedical research.
Collapse
Affiliation(s)
- Zhi Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yishu Yan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Juan Zhou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People's Republic of China
| |
Collapse
|
77
|
Fang L, Xu Q, Qian J, Zhou JY. Aberrant Factors of Fibrinolysis and Coagulation in Pancreatic Cancer. Onco Targets Ther 2021; 14:53-65. [PMID: 33442266 PMCID: PMC7797325 DOI: 10.2147/ott.s281251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant factors associated with fibrinolysis and thrombosis are found in many cancer patients, which can promote metastasis and are associated with poor prognosis. The relationship between tumor-associated fibrinolysis and thrombosis is poorly understood in pancreatic cancer. This review provides a brief highlight of existing studies that the fibrinolysis and coagulation systems were activated in pancreatic cancer patients, along with aberrant high concentrations of tissue plasminogen activator (t-PA), urine plasminogen activator (u-PA), D-dimer, fibrinogen, or platelets. These factors cooperate with each other, propelling tumor cell shedding, localization, adhesion to distant metastasis. The relationship between thrombosis or fibrinolysis and cancer immune escape is also investigated. In addition, the potential prevention and therapy strategies of pancreatic cancer targeting factors in fibrinolysis and coagulation systems are also been discussed, in which we highlight two effective agents aspirin and low-molecular weight heparin (LMWH). Summarily, this review provides new directions for the research and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lianghua Fang
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Qing Xu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210029, People's Republic of China
| | - Jun Qian
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| | - Jin-Yong Zhou
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
78
|
Fisher BM, Tang KD, Warkiani ME, Punyadeera C, Batstone MD. A pilot study for presence of circulating tumour cells in adenoid cystic carcinoma. Int J Oral Maxillofac Surg 2020; 50:994-998. [PMID: 33358588 DOI: 10.1016/j.ijom.2020.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
Adenoid cystic carcinoma (ACC) is a rare salivary gland neoplasm with a poor long-term prognosis due to multiple recurrences and distant metastatic spread. Circulating tumour cells (CTCs) are tumour cells shed from a primary, recurrent, or metastatic cancer that are detectable in the blood or lymphatics. There is no literature to date confirming the presence of CTCs in ACC. The aim of this study was to determine whether CTCs are detectable in ACC. Blood samples were collected from eight patients with histologically confirmed ACC. The TNM stage of the tumour was recorded, as well as any prior treatment. CTCs were isolated by spiral microfluidics and detected by immunofluorescence staining. Three of the eight patients recruited (32.5%) had staining consistent with the presence of CTCs. Of these three patients with detectable CTCs, one had confirmed pulmonary metastasis, one had suspected pulmonary metastasis and was awaiting confirmation, and one had local recurrence confirmed on re-resection. One patient with known isolated pulmonary metastasis had previously undergone a lung metastasectomy and did not have CTCs detected. CTCs are detectable in ACC. In this small patient sample, CTCs were found to be present in those patients with recurrent local disease and known distant metastatic disease. CTCs in ACC should be investigated further for their potential use as an adjunct in staging, prognosis, and the detection of recurrence.
Collapse
Affiliation(s)
- B M Fisher
- Oral and Maxillofacial Surgery Department, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| | - K D Tang
- Saliva and Liquid Biopsy Translational Research Team, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - M E Warkiani
- The School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia; Department of Biomedical Engineering, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - C Punyadeera
- Saliva and Liquid Biopsy Translational Research Team, Institute of Health and Biomedical Innovation, School of Biomedical Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - M D Batstone
- Oral and Maxillofacial Surgery Department, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.
| |
Collapse
|
79
|
Surgical Stress Promotes Tumor Progression: A Focus on the Impact of the Immune Response. J Clin Med 2020; 9:jcm9124096. [PMID: 33353113 PMCID: PMC7766515 DOI: 10.3390/jcm9124096] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Despite advances in systemic therapies, surgery is crucial for the management of solid malignancy. There is increasing evidence suggesting that the body's response to surgical stress resulting from tumor resection has direct effects on tumor cells or can alter the tumor microenvironment. Surgery can lead to the activation of early and key components of the innate and adaptative immune systems. Platelet activation and the subsequent pro-coagulation state can accelerate the growth of micrometastases. Neutrophil extracellular traps (NETs), an extracellular network of DNA released by neutrophils in response to inflammation, promote the adhesion of circulating tumor cells and the growth of existing micrometastatic disease. In addition, the immune response following cancer surgery can modulate the tumor immune microenvironment by promoting an immunosuppressive state leading to impaired recruitment of natural killer (NK) cells and regulatory T cells (Tregs). In this review, we will summarize the current understanding of mechanisms of tumor progression secondary to surgical stress. Furthermore, we will describe emerging and novel peri-operative solutions to decrease pro-tumorigenic effects from surgery.
Collapse
|
80
|
Review: Inhibitory potential of low molecular weight Heparin in cell adhesion; emphasis on tumor metastasis. Eur J Pharmacol 2020; 892:173778. [PMID: 33271153 DOI: 10.1016/j.ejphar.2020.173778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Low molecular weight heparin is a Heparin derivative, produced from commercial-grade Heparin through Chemical or enzymatic depolymerization. LMWH has remained a favored regimen for anticoagulation in cancer patients. Evidence from several studies has suggested that LMWHs possess antitumor and antimetastatic activity aside from their anticoagulant activity. Cancer metastasis is the foremost reason for cancer-related motility rate. Studies have pointed out that adhesion molecules play a decisive role in enhancing recurrent, invasive, and distant metastasis. Therefore, it is hypothesized that Cell adhesion molecules can be determined as a potential therapeutic target group, as antibodies or small-molecule inhibitors could easily access their extracellular domains. Furthermore, data from several investigations have reported LWMH potential effects as antimetastatic agents through influencing cell adhesion molecules. This review's objective is to emphasize the evidence available for the effects of the LMWHs in cell adhesion to inhibit tumor metastasis.
Collapse
|
81
|
Rudzinski JK, Govindasamy NP, Lewis JD, Jurasz P. The role of the androgen receptor in prostate cancer-induced platelet aggregation and platelet-induced invasion. J Thromb Haemost 2020; 18:2976-2986. [PMID: 32692888 DOI: 10.1111/jth.15020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Metastatic prostate cancer progresses from a hormone sensitive androgen receptor expressing phenotype to a hormone insensitive androgen receptor-independent subtype with low overall survival. Human platelets contribute to metastasis via tumor cell-induced platelet aggregation, which in part enhances cancer cell invasion. Given the more aggressive nature of hormone insensitive prostate cancer, we hypothesized that androgen receptor-negative prostate cancer cells exhibit higher platelet aggregation potency and invasive response compared to cells with androgen receptor. OBJECTIVE To characterize the role of androgen receptors in prostate cancer-induced platelet aggregation and platelet-induced invasion. METHODS Tumor cell-induced platelet aggregation experiments were performed with platelets from healthy human donors and benign prostate (RWPE-1) and prostate cancer cell lines positive (LNCaP) and negative for androgen receptor (DU145 and PC3). Immunoblot measured prostate cancer prothrombin. Modified Boyden chamber invasion assays and zymography were performed to assess the effects of platelets on prostate cancer cell invasion and matrix metalloproteinase (MMP) expression, respectively. RESULTS Androgen receptor-positive prostate cancer cell lines failed to induce platelet aggregation. However, androgen receptor-inhibited and -negative cell lines all induced platelet aggregation, which was abolished by dabigatran. Androgen receptor-inhibited and -negative cell lines demonstrated greater expression of prothrombin than androgen receptor-positive cells. Platelets enhanced invasion and MMP-2 and -9 expression by androgen receptor-inhibited and negative prostate cancer cells, but not that of the androgen receptor-positive cells. CONCLUSIONS Androgen receptor loss within prostate cancer results in increased thrombogenicity due to upregulation of prothrombin expression. Reciprocally, platelets enhance invasion of androgen receptor-negative prostate cancer cells via increased MMP expression.
Collapse
Affiliation(s)
- Jan K Rudzinski
- Division of Urology, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Natasha P Govindasamy
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - John D Lewis
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Paul Jurasz
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
82
|
The relationship between IL-6 and thrombocytosis accompanying gastrointestinal tumours. GASTROENTEROLOGY REVIEW 2020; 15:215-219. [PMID: 33005266 PMCID: PMC7509901 DOI: 10.5114/pg.2020.98538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023]
Abstract
Introduction Several reports have stated that thrombocytosis is associated with worse survival and higher rate of metastasis in solid tumours. A study in ovarian tumours implicated IL-6 produced by tumour cells as a key mechanistic factor. Aim To evaluate the relevance of this paraneoplastic pathway in gastrointestinal cancer. Material and methods After excluding thromboembolic and inflammatory disorders, 161 patients were enrolled who had been operated due to various gastrointestinal cancer at the 1st Department of Surgery at the Semmelweis University between 2015 and 2017. Platelet counts and serum IL-6 levels were determined from preoperative blood samples. Thrombocytosis was defined as the upper limit of normal platelet count, e.g. 400 × 103/µl. Results A weak but significantly positive correlation was found between elevated platelet counts and serum IL-6 (correlation coefficient: R = 0.214, p = 0.006), which became more pronounced in colon and oesophageal cancer if evaluated in the different tumour types (R = 0.292 and R = 0.419, respectively). However, using a multivariant linear regression model (R 2 = 0.47) corrected with haemoglobin, white blood cell count, and advanced disease stage, the analysis showed no significant correlation between serum IL-6 and platelet counts. Conclusions In gastrointestinal cancer our study did not support the paracrine-mediated paraneoplastic pathway described in ovarian tumors. Thrombocytosis showed significant correlation with white blood cells instead of serum IL-6, which implies that the inflammatory process may influence both parameters. Further studies are needed on larger patient cohorts.
Collapse
|
83
|
Hassanpour S, Kim HJ, Saadati A, Tebon P, Xue C, van den Dolder FW, Thakor J, Baradaran B, Mosafer J, Baghbanzadeh A, de Barros NR, Hashemzaei M, Lee KJ, Lee J, Zhang S, Sun W, Cho HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Mokhtarzadeh A, Khademhosseini A. Thrombolytic Agents: Nanocarriers in Controlled Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001647. [PMID: 32790000 PMCID: PMC7702193 DOI: 10.1002/smll.202001647] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Thrombosis is a life-threatening pathological condition in which blood clots form in blood vessels, obstructing or interfering with blood flow. Thrombolytic agents (TAs) are enzymes that can catalyze the conversion of plasminogen to plasmin to dissolve blood clots. The plasmin formed by TAs breaks down fibrin clots into soluble fibrin that finally dissolves thrombi. Several TAs have been developed to treat various thromboembolic diseases, such as pulmonary embolisms, acute myocardial infarction, deep vein thrombosis, and extensive coronary emboli. However, systemic TA administration can trigger non-specific activation that can increase the incidence of bleeding. Moreover, protein-based TAs are rapidly inactivated upon injection resulting in the need for large doses. To overcome these limitations, various types of nanocarriers have been introduced that enhance the pharmacokinetic effects by protecting the TA from the biological environment and targeting the release into coagulation. The nanocarriers show increasing half-life, reducing side effects, and improving overall TA efficacy. In this work, the recent advances in various types of TAs and nanocarriers are thoroughly reviewed. Various types of nanocarriers, including lipid-based, polymer-based, and metal-based nanoparticles are described, for the targeted delivery of TAs. This work also provides insights into issues related to the future of TA development and successful clinical translation.
Collapse
Affiliation(s)
- Soodabeh Hassanpour
- Department of Analytical Chemistry, Faculty of Science, Palacky University Olomouc, 17. Listopadu 12, Olomouc, 77146, Czech Republic
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Arezoo Saadati
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Peyton Tebon
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Chengbin Xue
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Floor W van den Dolder
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Division Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, GA, 3508, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, CT, 3584, The Netherlands
| | - Jai Thakor
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, 9519633787, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Natan Roberto de Barros
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, 9861618335, Iran
| | - Kang Ju Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Hyun-Jong Cho
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Samad Ahadian
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 516614731, Iran
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT) and California NanoSystems Institute University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
- Jonsson Comprehensive Cancer Center, Department of Radiology and Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California - Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
84
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
85
|
The Antitumor Effect of Heparin is not Mediated by Direct NK Cell Activation. J Clin Med 2020; 9:jcm9082666. [PMID: 32824699 PMCID: PMC7463539 DOI: 10.3390/jcm9082666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 01/04/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes responsible for the elimination of infected or transformed cells. The activation or inhibition of NK cells is determined by the balance of target cell ligand recognition by stimulatory and inhibitory receptors on their surface. Previous reports have suggested that the glycosaminoglycan heparin is a ligand for the natural cytotoxicity receptors NKp30, NKp44 (human), and NKp46 (both human and mouse). However, the effects of heparin on NK cell homeostasis and function remain unclear. Here, we show that heparin does not enhance NK cell proliferation or killing through NK cell activation. Alternatively, in mice models, heparin promoted NK cell survival in vitro and controlled B16-F10 melanoma metastasis development in vivo. In human NK cells, heparin promisingly increased interferon (IFN)-γ production in synergy with IL-12, although the mechanism remains elusive. Our data showed that heparin is not able to increase NK cell cytotoxicity.
Collapse
|
86
|
Huayu Wan Prevents Lewis Lung Cancer Metastasis in Mice via the Platelet Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1306207. [PMID: 32802112 PMCID: PMC7403898 DOI: 10.1155/2020/1306207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/20/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Objective To study the mechanism of Huayu Wan on the metastasis of Lewis lung cancer in mice via the platelet pathway. Method Construction of the lung metastasis model by injection of Lewis cells through the tail vein. The next day, 72 mice were randomly divided into the Huayu Wan group (HYW), the aspirin group, the control group, and the normal group . Treatment was given for 5 days per week for a total of 16 days. The size and distribution of lung metastases were observed. Thromboelastography was used to detect platelet function, flow cytometry was used to analyze platelet activation, and ELISA was used to detect platelet tumor metastasis-related factor expression. Result Lung weight in the control group was significantly higher than that in the HYW group (P < 0.05). The distribution of lung metastases in the control group was obviously more than that in the HYW group. The thromboelastogram showed that the R value of the control group was significantly lower than the normal group, while the R values of the HYW and aspirin groups were higher than the control group (P < 0.05). Flow cytometry analysis showed that the expression of CD62P in platelet-rich plasma in the control group was significantly higher than that in the normal group, while the expression of CD62P in the HYW and aspirin groups was lower than that in the control group (P < 0.05). In addition, ELISA showed that the expression of VEGF, bFGF, and CD62P in serum of the HYW group was significantly decreased than the control group (P < 0.05), and the expression of VEGF and bFGF in serum of the aspirin group was significantly decreased than the control group (P < 0.05). Conclusion The mechanism of Huayu Wan inhibiting the metastasis of lung cancer in mice may be related to the improvement of blood hypercoagulability, the inhibition of platelet activation, and the expression of VEGF, bFGF, and CD62P.
Collapse
|
87
|
Wang H, Liu Y, He R, Xu D, Zang J, Weeranoppanant N, Dong H, Li Y. Cell membrane biomimetic nanoparticles for inflammation and cancer targeting in drug delivery. Biomater Sci 2020; 8:552-568. [PMID: 31769765 DOI: 10.1039/c9bm01392j] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticle capture and elimination by the immune system are great obstacles for drug delivery. Camouflaging nanoparticles with cell membrane represents a promising strategy to communicate and negotiate with the immune system. As a novel class of nanotherapeutics, such biomimetic nanoparticles inherit specific biological functionalities of the source cells (e.g., erythrocytes, immune cells, cancer cells and platelets) in order to evade immune elimination, prolong circulation time, and even target a disease region by virtue of the homing tendency of the cell membrane protein. In this review, we begin with an overview of different cell membranes that can be utilized to create a biointerface on nanoparticles. Subsequently, we elaborate on the state-of-the-art of cell membrane biomimetic nanoparticles for drug delivery. In particular, a summary of data on circulation capacity and targeting efficiency by camouflaged nanoparticles is presented. In addition to cancer therapy, inflammation treatment, as an emerging application of biomimetic nanoparticles, is specifically included. The challenges and outlook of this technology are discussed.
Collapse
Affiliation(s)
- Huaiji Wang
- Shanghai Tenth People's Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai 200092, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Alifano M. Systemic immune-inflammation index and prognosis of advanced non-small cell lung cancer. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:667. [PMID: 32617287 PMCID: PMC7327370 DOI: 10.21037/atm.2020.03.174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Marco Alifano
- Department of Thoracic Surgery, Cochin Hospital, AP-HP Centre - University of Paris, Paris, France.,Team Cancer, Immune Control and Escape, INSERM U1138, Cordeliers Research Center, Paris, France
| |
Collapse
|
89
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
90
|
Silva CFS, Motta JM, Teixeira FCOB, Gomes AM, Vilanova E, Kozlowski EO, Borsig L, Pavão MSG. Non-Anticoagulant Heparan Sulfate from the Ascidian Phallusia nigra Prevents Colon Carcinoma Metastasis in Mice by Disrupting Platelet-Tumor Cell Interaction. Cancers (Basel) 2020; 12:E1353. [PMID: 32466418 PMCID: PMC7352385 DOI: 10.3390/cancers12061353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Although metastasis is the primary cause of death in patients with malignant solid tumors, efficient anti-metastatic therapies are not clinically available currently. Sulfated glycosaminoglycans from marine sources have shown promising pharmacological effects, acting on different steps of the metastatic process. Oversulfated dermatan sulfates from ascidians are effective in preventing metastasis by inhibition of P-selectin, a platelet surface protein involved in the platelet-tumor cell emboli formation. We report in this work that the heparan sulfate isolated from the viscera of the ascidian Phallusia nigra drastically attenuates metastases of colon carcinoma cells in mice. Our in vitro and in vivo assessments demonstrate that the P. nigra glycan has very low anticoagulant and antithrombotic activities and a reduced hypotension potential, although it efficiently prevented metastasis. Therefore, it may be a promising candidate for the development of a novel anti-metastatic drug.
Collapse
Affiliation(s)
- Christiane F. S. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Juliana M. Motta
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Felipe C. O. B. Teixeira
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Angélica M. Gomes
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA;
| | - Eduardo Vilanova
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Eliene O. Kozlowski
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| | - Lubor Borsig
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Mauro S. G. Pavão
- Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 21941-913, Brazil; (C.F.S.S.); (J.M.M.); (F.C.O.B.T.); (E.V.); (E.O.K.)
| |
Collapse
|
91
|
Liebsch AG, Schillers H. Quantification of heparin's antimetastatic effect by single-cell force spectroscopy. J Mol Recognit 2020; 34:e2854. [PMID: 32452079 DOI: 10.1002/jmr.2854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
Abstract
In circulation, cancer cells induce platelet activation, leading to the formation of a cancer cell-encircling platelet cloak which facilitates each step of the metastatic cascade. Since cancer patients treated with the anticoagulant heparin showed reduced metastasis rates and improved survival, it is supposed that heparin suppresses the cloak's formation by inhibiting the interaction between platelet's adhesion molecule P-selectin with its ligands on cancer cells. To quantify this heparin effect, we developed a single-cell force spectroscopy approach and quantified the adhesion (maximum adhesion force [FA ] and detachment work [WD ]) between platelets and human non-small cell lung cancer cells (A549). A configuration was used in which A549 cells were glued to tipless cantilevers and force-distance (F-D) curves were recorded on a layer of activated platelets. The concentration-response relationship was determined for heparin at concentrations between 1 and 100 U/mL. Sigmoid dose-response fit revealed half-maximal inhibitory concentration (IC50 ) values of 8.01 U/mL (FA ) and 6.46 U/mL (WD ) and a maximum decrease of the adhesion by 37.5% (FA ) and 38.42% (WD ). The effect of heparin on P-selectin was tested using anti-P-selectin antibodies alone and in combination with heparin. Adding heparin after antibody treatment resulted in an additional reduction of 9.52% (FA ) and 7.12% (WD ). Together, we quantified heparin's antimetastatic effect and proved that it predominantly is related to the blockage of P-selectin. Our approach represents a valuable method to investigate the adhesion of platelets to cancer cells and the efficiency of substances to block this interaction.
Collapse
Affiliation(s)
- Aaron G Liebsch
- Institute of Physiology II, University Münster, Münster, Germany
| | | |
Collapse
|
92
|
Shang Y, Wang Q, Li J, Zhao Q, Huang X, Dong H, Liu H, Gui R, Nie X. Platelet-Membrane-Camouflaged Zirconia Nanoparticles Inhibit the Invasion and Metastasis of Hela Cells. Front Chem 2020; 8:377. [PMID: 32457875 PMCID: PMC7221201 DOI: 10.3389/fchem.2020.00377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Zirconia nanoparticles (ZrO2 NPs) are widely applied in the field of biomedicine. In this study, we constructed a nanoplatform of ZrO2 NPs coated with a platelet membrane (PLTm), named PLT@ZrO2. PLTm nanovesicles camouflage ZrO2 NPs, prevent nanoparticles from being cleared by macrophage, and target tumor sites. Compared to ZrO2 alone, PLT@ZrO2 is better at inhibiting the invasion and metastasis of Hela cells in vitro and in vivo. In vitro, PLT@ZrO2 inhibited the growth and proliferation of Hela cells. Scratch-wound healing recovery assay demonstrated that PLT@ZrO2 inhibited Hela cells migration. Transwell migration and invasion assays showed that PLT@ZrO2 inhibited Hela cells migration and invasion. In vivo, PLT@ZrO2 inhibited the tumor growth of Xenograft mice and inhibited the lung and liver metastasis of Hela cells. Immunofluorescence and Western blotting results showed that anti-metastasis protein (E-cadherin) was upregulated and pro-metastasis proteins (N-cadherin, Smad4, Vimentin, E-cadherin,β-catenin, Fibronectin, Snail, Slug, MMP2, Smad2) were down-regulated. Our study indicated that PLT@ZrO2 significantly inhibits tumor growth, invasion, and metastasis.
Collapse
Affiliation(s)
- Yinghui Shang
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qinghai Wang
- Department of Cardiology, the Second Hospital of Shandong University, Jinan, China
| | - Jian Li
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueyuan Huang
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Hang Dong
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Haiting Liu
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Clinical Laboratory of the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
93
|
O'Reilly EM, Barone D, Mahalingam D, Bekaii-Saab T, Shao SH, Wolf J, Rosano M, Krause S, Richards DA, Yu KH, Roach JM, Flaherty KT, Ryan DP. Randomised phase II trial of gemcitabine and nab-paclitaxel with necuparanib or placebo in untreated metastatic pancreas ductal adenocarcinoma. Eur J Cancer 2020; 132:112-121. [PMID: 32361265 DOI: 10.1016/j.ejca.2020.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Necuparanib, a rationally engineered low-molecular-weight heparin, combined with gemcitabine/nab-paclitaxel showed an encouraging safety and oncologic signal in a phase Ib trial. This randomised multicentre phase II trial evaluates the addition of necuparanib or placebo to gemcitabine/nab-paclitaxel in untreated metastatic pancreatic ductal adenocarcinoma (PDAC). PATIENTS AND METHODS Eligibility included 18 years, histologically or cytologically confirmed metastatic PDAC, measurable disease and Eastern Co-Operative Oncology Group performance status of 0-1. Patients were randomly assigned to necuparanib (5 mg/kg subcutaneous injection once daily) or placebo (subcutaneous injection once daily) and gemcitabine/nab-paclitaxel on days 1, 8 and 15 of 28-day cycles. The primary end-point was median overall survival (OS), and secondary end-points included median progression-free survival, response rates and safety. RESULTS One-hundred ten patients were randomised, 62 to necuparanib arm and 58 to placebo arm. The futility boundary was crossed at a planned interim analysis, and the study was terminated by the Data Safety Monitoring Board. The median OS was 10.71 months (95% confidence interval [CI]: 7.95-11.96) for necuparanib arm and 9.99 months (95% CI: 7.85-12.85) for placebo arm (hazard ratio: 1.12, 95% CI: 0.66-1.89, P-value: 0.671). The necuparanib arm had a higher incidence of haematologic toxicity relative to placebo patients (83% and 70%). CONCLUSION The addition of necuparanib to standard of care treatment for advanced PDAC did not improve OS. Safety was acceptable. No further development of necuparanib is planned although targeting the coagulation cascade pathway remains relevant in PDAC. NCT01621243.
Collapse
Affiliation(s)
| | - Diletta Barone
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Devalingam Mahalingam
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Tanios Bekaii-Saab
- Mayo Clinic Cancer Center, Scottsdale, AZ, USA; ACCRU Research Consortium, Rochester, MN, USA
| | - Spencer H Shao
- Compass Oncology, Rose Quarter Cancer Center, Portland, OR, USA
| | - Julie Wolf
- Momenta Pharmaceuticals, Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Molly Rosano
- Momenta Pharmaceuticals, Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Silva Krause
- Momenta Pharmaceuticals, Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Donald A Richards
- Texas Oncology, US Oncology Research, 910 East Houston Street, Tyler, TX 71702, USA
| | - Kenneth H Yu
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James M Roach
- Momenta Pharmaceuticals, Inc., 301 Binney Street, Cambridge, MA 02142, USA
| | - Keith T Flaherty
- Massachussetts General Hospital, 55 Fruit Street, Boston, MA 02114-2696, USA
| | - David P Ryan
- Massachussetts General Hospital, 55 Fruit Street, Boston, MA 02114-2696, USA
| |
Collapse
|
94
|
Heparanase in Cancer Metastasis – Heparin as a Potential Inhibitor of Cell Adhesion Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:309-329. [DOI: 10.1007/978-3-030-34521-1_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
95
|
Fucosylated chondroitin sulfate from the sea cucumber Hemioedema spectabilis: Structure and influence on cell adhesion and tubulogenesis. Carbohydr Polym 2020; 234:115895. [DOI: 10.1016/j.carbpol.2020.115895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 01/19/2020] [Indexed: 02/06/2023]
|
96
|
Ye H, Wang K, Lu Q, Zhao J, Wang M, Kan Q, Zhang H, Wang Y, He Z, Sun J. Nanosponges of circulating tumor-derived exosomes for breast cancer metastasis inhibition. Biomaterials 2020; 242:119932. [PMID: 32169772 DOI: 10.1016/j.biomaterials.2020.119932] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/26/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer contributes to high mortality rates as a result of metastasis. Tumor-derived exosomes facilitate the development of the premetastatic environment, interacting and inhibiting the normal function of immune cells, thereby forming an immunosuppressive microenvironment for tumor metastasis. Herein, the platelet and neutrophil hybrid cell membrane (PNM) was embellished on a gold nanocage (AuNC) surface called nanosponges and nanokillers (NSKs). NSKs can simultaneously capture and clear the circulating tumor cells (CTCs) and tumor-derived exosomes via high-affinity membrane adhesion receptors, effectively cutting off the connection between exosomes and immune cells. Bionic NSK is loaded with doxorubicin (DOX) and indocyanine green (ICG) for synergic chemo-photothermal therapy. NSKs show greater cellular uptake, deeper tumor penetration, and higher cytotoxicity to tumor cells in comparison to non-coated AuNCs or single-coated AuNCs in vitro. In vivo, the multipurpose NSKs could not only completely ablate the primary tumor but also inhibit breast cancer metastasis with high efficiency in xenograft and orthotopic breast tumor-bearing models. Thus, NSKs could be a promising nanomedicine for the future clinical intervention of breast cancer metastasis.
Collapse
Affiliation(s)
- Hao Ye
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jian Zhao
- College of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Menglin Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Qiming Kan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Haotian Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
97
|
Schwarz S, Gockel LM, Naggi A, Barash U, Gobec M, Bendas G, Schlesinger M. Glycosaminoglycans as Tools to Decipher the Platelet Tumor Cell Interaction: A Focus on P-Selectin. Molecules 2020; 25:molecules25051039. [PMID: 32110917 PMCID: PMC7179249 DOI: 10.3390/molecules25051039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor cell–platelet interactions are regarded as an initial crucial step in hematogenous metastasis. Platelets protect tumor cells from immune surveillance in the blood, mediate vascular arrest, facilitate tumor extravasation, growth, and finally angiogenesis in the metastatic foci. Tumor cells aggregate platelets in the bloodstream by activation of the plasmatic coagulation cascade and by direct contact formation. Antimetastatic activities of unfractionated or low molecular weight heparin (UFH/LMWH) can undoubtedly be related to attenuated platelet activation, but molecular mechanisms and contribution of contact formation vs. coagulation remain to be elucidated. Using a set of non-anticoagulant heparin derivatives varying in size or degree of sulfation as compared with UFH, we provide insight into the relevance of contact formation for platelet activation. Light transmission aggregometry and ATP release assays confirmed that only those heparin derivatives with P-selectin blocking capacities were able to attenuate breast cancer cell-induced platelet activation, while pentasaccharide fondaparinux was without effects. Furthermore, a role of P-selectin in platelet activation and signaling could be confirmed by proteome profiler arrays detecting platelet kinases. In this study, we demonstrate that heparin blocks tumor cell-induced coagulation. Moreover, we identify platelet P-selectin, which obviously acts as molecular switch and controls aggregation and secretion of procoagulant platelets.
Collapse
Affiliation(s)
- Svenja Schwarz
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
| | - Lukas Maria Gockel
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
| | - Annamaria Naggi
- G. Ronzoni Institute for Chemical and Biochemical Research, Via G. Colombo 81, 20133 Milan, Italy;
| | - Uri Barash
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, PO Box 9649, Haifa 31096, Israel;
| | - Martina Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia;
| | - Gerd Bendas
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
| | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany (L.M.G.); (G.B.)
- Correspondence: ; Tel.: +49-228-735225
| |
Collapse
|
98
|
Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, Hirvonen J, Santos HA. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev 2020; 49:1253-1321. [PMID: 31998912 DOI: 10.1039/c9cs00283a] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.
Collapse
Affiliation(s)
- Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, FI-00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Zhang H, Dong S, Li Z, Feng X, Xu W, Tulinao CMS, Jiang Y, Ding J. Biointerface engineering nanoplatforms for cancer-targeted drug delivery. Asian J Pharm Sci 2019; 15:397-415. [PMID: 32952666 PMCID: PMC7486517 DOI: 10.1016/j.ajps.2019.11.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/22/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Over the past decade, nanoparticle-based therapeutic modalities have become promising strategies in cancer therapy. Selective delivery of anticancer drugs to the lesion sites is critical for elimination of the tumor and an improved prognosis. Innovative design and advanced biointerface engineering have promoted the development of various nanocarriers for optimized drug delivery. Keeping in mind the biological framework of the tumor microenvironment, biomembrane-camouflaged nanoplatforms have been a research focus, reflecting their superiority in cancer targeting. In this review, we summarize the development of various biomimetic cell membrane-camouflaged nanoplatforms for cancer-targeted drug delivery, which are classified according to the membranes from different cells. The challenges and opportunities of the advanced biointerface engineering drug delivery nanosystems in cancer therapy are discussed.
Collapse
Affiliation(s)
- Huaiyu Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.,Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiangru Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Catrina Mae S Tulinao
- Far Eastern University-Nicanor Reyes Medical Foundation, Quezon City 1118, Philippines
| | - Yang Jiang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
100
|
Läubli H, Borsig L. Altered Cell Adhesion and Glycosylation Promote Cancer Immune Suppression and Metastasis. Front Immunol 2019; 10:2120. [PMID: 31552050 PMCID: PMC6743365 DOI: 10.3389/fimmu.2019.02120] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cell-cell interactions and cell adhesion are key mediators of cancer progression and facilitate hallmarks of cancer including immune evasion and metastatic dissemination. Many cell adhesion molecules within the tumor microenvironment are changed and significant alterations of glycosylation are observed. These changes in cell adhesion molecules alter the ability of tumor cells to interact with other cells and extracellular matrix proteins. Three families of cell-cell interaction molecules selectins, Siglecs, and integrins have been associated with cancer progression in many pre-clinical studies, yet inhibition of cell adhesion as a therapeutic target is just beginning to be explored. We review how cell-cell interactions mediated by integrins and the glycan-binding receptors selectins and Siglec receptors support cancer progression. The discussion focuses on mechanisms during immune evasion and metastasis that can be therapeutically targeted by blocking these cell-cell interactions.
Collapse
Affiliation(s)
- Heinz Läubli
- Laboratory for Cancer Immunotherapy, Department of Biomedicine and Medical Oncology, Department of Internal Medicine, University Hospital, Basel, Switzerland
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland.,Comprehensive Cancer Center, Zurich, Switzerland
| |
Collapse
|