51
|
Ke J, Wu R, Chen Y, Abba ML. Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 2018; 10:3887-3910. [PMID: 30662638 PMCID: PMC6325517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are a class of helix-loop-helix (HLH) transcription regulatory factors that act as dominant-negative antagonists of other basic HLH proteins through the formation of non-functional heterodimers. These proteins have been shown to play critical roles in a wide range of tumor-associated processes, including cell differentiation, cell cycle progression, migration and invasion, epithelial-mesenchymal transition, angiogenesis, stemness, chemoresistance, tumorigenesis, and metastasis. The aberrant expression of ID proteins has not only been detected in many types of human cancers, but is also associated with advanced tumor stages and poor clinical outcome. In this review, we provide an overview of the key biological functions of ID proteins including affiliated signaling pathways. We also describe the regulation of ID proteins in cancer progression and metastasis, and elaborate on expression profiles in cancer and the implications for prognosis. Lastly, we outline strategies for the therapeutic targeting of ID proteins as a promising and effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of Liver Disease, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230022, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University218 Jixi Avenue, Hefei 230022, Anhui, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Yong Chen
- Department of Medical Oncology, Subei People’s HospitalYangzhou, Jiangsu 225000, China
| | - Mohammed L Abba
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
52
|
Biochemical and Anti-Triple Negative Metastatic Breast Tumor Cell Properties of Psammaplins. Mar Drugs 2018; 16:md16110442. [PMID: 30423844 PMCID: PMC6265740 DOI: 10.3390/md16110442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/26/2018] [Accepted: 11/09/2018] [Indexed: 12/23/2022] Open
Abstract
Breast tumors reprogram their cellular metabolism, nutrient uptake, and utilization-associated biochemical processes. These processes become further transformed as genetically predisposed metastatic breast tumor cells colonize specific organs. Breast tumor cells often metastasize to the brain, bone, lung and liver. Massagué and colleagues isolated organotropic subclones and established organ-specific gene signatures associated with lung-, bone-, and brain-specific metastatic triple-negative breast cancer (TNBC) MDA-MB-231 cells. Using these genetically characterized metastatic subclones specific to lung (LM4175), bone (BoM1833), and brain (BrM-2a), we evaluated marine natural products for the ability to differentially suppress metastatic breast cancer cells in a target organ-dependent manner. Psammaplin-based histone deacetylase (HDAC) inhibitors were found to differentially inhibit HDAC activity, induce activation of hypoxia-inducible factor-1 (HIF-1), and disrupt organotropic metastatic TNBC subclone growth. Further, psammaplins distinctly suppressed the outgrowth of BoM1833 tumor spheroids in 3D-culture systems. Similar results were observed with the prototypical HDAC inhibitor trichostatin A (TSA). These organotropic tumor cell-based studies suggest the potential application of HDAC inhibitors that may yield new directions for anti-metastatic breast tumor research and drug discovery.
Collapse
|
53
|
Wu RL, Sedlmeier G, Kyjacova L, Schmaus A, Philipp J, Thiele W, Garvalov BK, Sleeman JP. Hyaluronic acid-CD44 interactions promote BMP4/7-dependent Id1/3 expression in melanoma cells. Sci Rep 2018; 8:14913. [PMID: 30297743 PMCID: PMC6175841 DOI: 10.1038/s41598-018-33337-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
BMP4/7-dependent expression of inhibitor of differentiation/DNA binding (Id) proteins 1 and 3 has been implicated in tumor progression and poor prognosis of malignant melanoma patients. Hyaluronic acid (HA), a pericellular matrix component, supports BMP7 signalling in murine chondrocytes through its receptor CD44. However, its role in regulating BMP signalling in melanoma is not clear. In this study we found that depletion of endogenously-produced HA by hyaluronidase treatment or by inhibition of HA synthesis by 4-methylumbelliferone (4-MU) resulted in reduced BMP4/7-dependent Id1/3 protein expression in mouse melanoma B16-F10 and Ret cells. Conversely, exogenous HA treatment increased BMP4/7-dependent Id1/3 protein expression. Knockdown of CD44 reduced BMP4/7-dependent Id1/3 protein expression, and attenuated the ability of exogenous HA to stimulate Id1 and Id3 expression in response to BMP. Co-IP experiments demonstrated that CD44 can physically associate with the BMP type II receptor (BMPR) ACVR2B. Importantly, we found that coordinate expression of Id1 or Id3 with HA synthases HAS2, HAS3, and CD44 is associated with reduced overall survival of cutaneous melanoma patients. Our results suggest that HA-CD44 interactions with BMPR promote BMP4/7-dependent Id1/3 protein expression in melanoma, contributing to reduced survival in melanoma patients.
Collapse
Affiliation(s)
- Ruo-Lin Wu
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Georg Sedlmeier
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lenka Kyjacova
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany
| | - Julia Philipp
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany.,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty of Mannheim, Heidelberg University, 68167, Mannheim, Germany. .,KIT Campus Nord, Institute for Toxicology and Genetics, 76344, Karlsruhe, Germany.
| |
Collapse
|
54
|
Wang S, Li X, Zhang W, Gao Y, Zhang K, Hao Q, Li W, Wang Z, Li M, Zhang W, Zhang Y, Zhang C. Genome-Wide Investigation of Genes Regulated by ERα in Breast Cancer Cells. Molecules 2018; 23:molecules23102543. [PMID: 30301189 PMCID: PMC6222792 DOI: 10.3390/molecules23102543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 01/13/2023] Open
Abstract
Estrogen receptor alpha (ERα), which has been detected in over 70% of breast cancer cases, is a driving factor for breast cancer growth. For investigating the underlying genes and networks regulated by ERα in breast cancer, RNA-seq was performed between ERα transgenic MDA-MB-231 cells and wild type MDA-MB-231 cells. A total of 267 differentially expressed genes (DEGs) were identified. Then bioinformatics analyses were performed to illustrate the mechanism of ERα. Besides, by comparison of RNA-seq data obtained from MDA-MB-231 cells and microarray dataset obtained from estrogen (E2) stimulated MCF-7 cells, an overlap of 126 DEGs was screened. The expression level of ERα was negatively associated with metastasis and EMT in breast cancer. We further verified that ERα might inhibit metastasis by regulating of VCL and TNFRSF12A, and suppress EMT by the regulating of JUNB and ID3. And the relationship between ERα and these genes were validated by RT-PCR and correlation analysis based on TCGA database. By PPI network analysis, we identified TOP5 hub genes, FOS, SP1, CDKN1A, CALCR and JUNB, which were involved in cell proliferation and invasion. Taken together, the whole-genome insights carried in this work can help fully understanding biological roles of ERα in breast cancer.
Collapse
Affiliation(s)
- Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Xiaoju Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yuan Gao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Qiang Hao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Weina Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhaowei Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Wei Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| | - Cun Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
55
|
Gu S, Feng XH. TGF-β signaling in cancer. Acta Biochim Biophys Sin (Shanghai) 2018; 50:941-949. [PMID: 30165534 DOI: 10.1093/abbs/gmy092] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/16/2018] [Indexed: 12/19/2022] Open
Abstract
Signals from the transforming growth factor-β (TGF-β) superfamily mediate a broad spectrum of cellular processes and are deregulated in many diseases, including cancer. TGF-β signaling has dual roles in tumorigenesis. In the early phase of tumorigenesis, TGF-β has tumor suppressive functions, primarily through cell cycle arrest and apoptosis. However, in the late stage of cancer, TGF-β acts as a driver of tumor progression and metastasis by increasing tumor cell invasiveness and migration and promoting chemo-resistance. Here, we briefly review the mechanisms and functions of TGF-β signaling during tumor progression and discuss the therapeutic potentials of targeting the TGF-β pathway in cancer.
Collapse
Affiliation(s)
- Shuchen Gu
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
56
|
Zhou XL, Zeng D, Ye YH, Sun SM, Lu XF, Liang WQ, Chen CF, Lin HY. Prognostic values of the inhibitor of DNA‑binding family members in breast cancer. Oncol Rep 2018; 40:1897-1906. [PMID: 30066902 PMCID: PMC6111598 DOI: 10.3892/or.2018.6589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
The inhibitor of DNA‑binding (ID) proteins are dominant‑negative modulators of transcription factors with basic helix‑loop‑helix (bHLH) structures, which control a variety of genes in cell cycle regulation. An increasing volume of evidence has demonstrated that the deregulated expression of IDs in several types of malignancy, including breast carcinoma, has been proven to serve crucial regulatory functions in tumorigenesis and the development of breast cancer (BC). The present study evaluated the prognostic values of the ID family members by investigating a set of publicly accessible databases, including Oncomine, bc‑GenExMiner, Kaplan‑Meier plotter and the Human Protein Atlas. The results demonstrated that mRNA levels of distinct IDs exhibited diverse profiles between BC and normal counterparts. The mRNA expression level of ID2 was significantly higher in breast cancer than normal tissues, while the mRNA expression levels of ID1, ID3 and ID4 were significantly lower in breast cancer tissues than in normal tissues. Furthermore, higher mRNA expression levels of ID1 and ID4 were associated with subgroups with lower pathological grades and fewer lymph node metastases. Survival analysis revealed that elevated mRNA levels of ID1 and ID4 predicted an improved survival in all patients with BC. Increased ID1 mRNA levels were associated with higher relapse‑free survival rates in all patients with BC, particularly in those with ER positive and Luminal A subtype tumors. Increased ID4 mRNA expression predicted longer survival times in all patients with BC, particularly in those with hormone receptor‑positive tumors or those treated with endocrine therapy. These results indicated that IDs are essential prognostic indicators in BC. Future studies on the effect of IDs on the pathogenesis and development of BC are warranted.
Collapse
Affiliation(s)
- Xiao-Ling Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - De Zeng
- Department of Medical Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Yan-Hong Ye
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Shu-Ming Sun
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Xiao-Feng Lu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Wei-Quan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Chun-Fa Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Hao-Yu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
- Correspondence to: Dr Hao-Yu Lin, Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou, Guangdong 515000, P.R. China, E-mail:
| |
Collapse
|
57
|
Bertulli C, Gerigk M, Piano N, Liu Y, Zhang D, Müller T, Knowles TJ, Huang YYS. Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics. Sci Rep 2018; 8:12480. [PMID: 30127372 PMCID: PMC6102203 DOI: 10.1038/s41598-018-30776-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/05/2018] [Indexed: 01/09/2023] Open
Abstract
With the push to reduce in vivo approaches, the demand for microphysiological models that recapitulate the in vivo settings in vitro is dramatically increasing. Here, we present an extracellular matrix-integrated microfluidic chip with a rounded microvessel of ~100 µm in diameter. Our system displays favorable characteristics for broad user adaptation: simplified procedure for vessel creation, minimised use of reagents and cells, and the ability to couple live-cell imaging and image analysis to study dynamics of cell-microenvironment interactions in 3D. Using this platform, the dynamic process of single breast cancer cells (LM2-4175) exiting the vessel lumen into the surrounding extracellular matrix was tracked. Here, we show that the presence of endothelial lining significantly reduced the cancer exit events over the 15-hour imaging period: there were either no cancer cells exiting, or the fraction of spontaneous exits was positively correlated with the number of cancer cells in proximity to the endothelial barrier. The capability to map the z-position of individual cancer cells within a 3D vessel lumen enabled us to observe cancer cell transmigration 'hot spot' dynamically. We also suggest the variations in the microvessel qualities may lead to the two distinct types of cancer transmigration behaviour. Our findings provide a tractable in vitro model applicable to other areas of microvascular research.
Collapse
Affiliation(s)
- Cristina Bertulli
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Magda Gerigk
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Nicholas Piano
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Ye Liu
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Thomas Müller
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,Fluidic Analytics Ltd., Cambridge, CB4 3NP, UK
| | - Tuomas J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
58
|
Contribution of Inhibitor of Differentiation and Estrogenic Endocrine Disruptors to Neurocognitive Disorders. Med Sci (Basel) 2018; 6:medsci6030061. [PMID: 30081481 PMCID: PMC6165108 DOI: 10.3390/medsci6030061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023] Open
Abstract
The devastating growth in the worldwide frequency of neurocognitive disorders and its allied difficulties, such as decline in memory, spatial competency, and ability to focus, poses a significant psychological public health problem. Inhibitor of differentiation (ID) proteins are members of a family of helix-loop-helix (HLH) transcription factors. ID proteins have been demonstrated to be involved in neurodevelopmental and depressive diseases and, thus, may influence neurocognitive deficiencies due to environmental exposure. Previously, it has been demonstrated that environmental factors, such as estrogenic endocrine disruptors (EEDs), have played an essential role in the influence of various neurocognitive disorders such as Alzheimer’s, dementia, and Parkinson’s disease. Based on this increasing number of reports, we consider the impact of these environmental pollutants on ID proteins. Better understanding of how these ID proteins by which EED exposure can affect neurocognitive disorders in populations will prospectively deliver valuable information in the impediment and regulation of these diseases linked with environmental factor exposure.
Collapse
|
59
|
Doke M, Das J, Felty Q. Letter to the Editor: Is Id3 proliferative or antiproliferative? Am J Physiol Lung Cell Mol Physiol 2018; 315:L334-L335. [PMID: 30088801 DOI: 10.1152/ajplung.00205.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mayur Doke
- Department of Environmental Health Sciences, Florida International University , Miami, Florida
| | - Jayanta Das
- Department of Environmental Health Sciences, Florida International University , Miami, Florida
| | - Quentin Felty
- Department of Environmental Health Sciences, Florida International University , Miami, Florida
| |
Collapse
|
60
|
Al-Thawadi H, Ghabreau L, Aboulkassim T, Yasmeen A, Vranic S, Batist G, Al Moustafa AE. Co-Incidence of Epstein-Barr Virus and High-Risk Human Papillomaviruses in Cervical Cancer of Syrian Women. Front Oncol 2018; 8:250. [PMID: 30035100 PMCID: PMC6043788 DOI: 10.3389/fonc.2018.00250] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/19/2018] [Indexed: 12/23/2022] Open
Abstract
Epstein-Barr virus (EBV) has been recently shown to be co-present with high-risk human papillomaviruses (HPVs) in human cervical cancer; thus, these oncoviruses play an important role in the initiation and/or progression of this cancer. Accordingly, our group has recently viewed the presence and genotyping distribution of high-risk HPVs in cervical cancer in Syrian women; our data pointed out that HPVs are present in 42/44 samples (95%). Herein, we aim to explore the co-prevalence of EBV and high-risk HPVs in 44 cervical cancer tissues from Syrian women using polymerase chain reaction, immunohistochemistry, and tissue microarray analyses. We found that EBV and high-risk HPVs are co-present in 15/44 (34%) of the samples. However, none of the samples was exclusively EBV-positive. Additionally, we report that the co-expression of LMP1 and E6 genes of EBV and high-risk HPVs, respectively, is associated with poorly differentiated squamous cell carcinomas phenotype; this is accompanied by a strong and diffuse overexpression of Id-1 (93% positivity), which is an important regulator of cell invasion and metastasis. These data imply that EBV and HPVs are co-present in cervical cancer samples in the Middle East area including Syria and their co-presence is associated with a more aggressive cancer phenotype. Future investigations are needed to elucidate the exact role of EBV and HPVs cooperation in cervical carcinogenesis.
Collapse
Affiliation(s)
| | - Lina Ghabreau
- Faculty of Medicine, Pathology Department, University of Aleppo, Aleppo, Syria.,Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria
| | - Tahar Aboulkassim
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Amber Yasmeen
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada
| | - Semir Vranic
- College of Medicine, Qatar University, Doha, Qatar
| | - Gerald Batist
- Segal Cancer Centre, Lady Davis Institute for Medical Research of the Sir Mortimer B. Davis-Jewish General Hospital, Montreal, QC, Canada.,Oncology Department, McGill University, Montreal, QC, Canada
| | - Ala-Eddin Al Moustafa
- College of Medicine, Qatar University, Doha, Qatar.,Syrian Research Cancer Centre of the Syrian Society against Cancer, Aleppo, Syria.,Oncology Department, McGill University, Montreal, QC, Canada.,College of Medicine and Biomedical Research Centre of Qatar University, Doha, Qatar
| |
Collapse
|
61
|
Ullmann P, Rodriguez F, Schmitz M, Meurer SK, Qureshi-Baig K, Felten P, Ginolhac A, Antunes L, Frasquilho S, Zügel N, Weiskirchen R, Haan S, Letellier E. The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis. Cancer Res 2018; 78:3793-3808. [PMID: 29748374 DOI: 10.1158/0008-5472.can-17-3003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/09/2018] [Accepted: 05/07/2018] [Indexed: 11/16/2022]
Abstract
The vast majority of colorectal cancer-related deaths can be attributed to metastatic spreading of the disease. Therefore, deciphering molecular mechanisms of metastatic dissemination is a key prerequisite to improve future treatment options. With this aim, we took advantage of different colorectal cancer cell lines and recently established primary cultures enriched in colon cancer stem cells, also known as tumor-initiating cells (TIC), to identify genes and miRNAs with regulatory functions in colorectal cancer progression. We show here that metastasis-derived TICs display increased capacity for self-renewal, TGFβ signaling activity, and reduced expression of the miR-371∼373 cluster compared with nonmetastatic cultures. TGFβ receptor 2 (TGFBR2) and aldehyde dehydrogenase A1 (ALDH1A1) were identified as important target genes of the miR-371∼373 cluster. In addition, TGFBR2 repression, either by direct knockdown or indirectly via overexpression of the entire miR-371∼373 cluster, decreased tumor-initiating potential of TICs. We observed significantly reduced in vitro self-renewal activity as well as lowered tumor initiation and metastatic outgrowth capacity in vivo following stable overexpression of the miR-371∼373 cluster in different colon TIC cultures. Inhibitor of DNA binding 1 (ID1) was affected by both TGFBR2 and miR-371∼373 cluster alterations. Functional sphere and tumor formation as well as metastatic dissemination assays validated the link between miR-371∼373 and ID1. Altogether, our results establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel regulatory mechanism of TIC self-renewal and metastatic colonization.Significance: These findings establish the miR-371∼373/TGFBR2/ID1 signaling axis as a novel mechanism regulating self-renewal of tumor-initiating cell and metastatic colonization, potentially opening new concepts for therapeutic targeting of cancer metastasis.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/14/3793/F1.large.jpg Cancer Res; 78(14); 3793-808. ©2018 AACR.
Collapse
Affiliation(s)
- Pit Ullmann
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Fabien Rodriguez
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Martine Schmitz
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Steffen K Meurer
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Komal Qureshi-Baig
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Paul Felten
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Aurélien Ginolhac
- Bioinformatics Core Facility, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | | | | | - Nikolaus Zügel
- Centre Hospitalier Emile Mayrisch, Rue Emile Mayrisch, Esch-sur-Alzette, Luxembourg
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | - Serge Haan
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg
| | - Elisabeth Letellier
- Molecular Disease Mechanisms Group, Life Sciences Research Unit, University of Luxembourg, Belvaux, Luxembourg.
| |
Collapse
|
62
|
Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A. Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr) 2018; 41:123-140. [PMID: 29568985 DOI: 10.1007/s13402-018-0376-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is the most common type of cancer in women and the second cause of cancer-related mortality world-wide. The majority of BC-related deaths is due to metastasis. Bone, lung, brain and liver are the primary target sites of BC metastasis. The clinical implications and mechanisms underlying bone metastasis have been reviewed before. Given the fact that BC lung metastasis (BCLM) usually produces symptoms only after the lungs have been vastly occupied with metastatic tumor masses, it is of paramount importance for diagnostic and prognostic, as well as therapeutic purposes to comprehend the molecular and cellular mechanisms underlying BCLM. Here, we review current insights into the organ-specificity of BC metastasis, including the role of cancer stem cells in triggering BC spread, the traveling of tumor cells in the blood stream and their migration across endothelial barriers, their adaptation to the lung microenvironment and the initiation of metastatic colonization within the lung. CONCLUSIONS Detailed understanding of the mechanisms underlying BCLM will shed a new light on the identification of novel molecular targets to impede daunting pulmonary metastases in patients with breast cancer.
Collapse
Affiliation(s)
- Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadegh Dehghani
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Shahryari
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alihossein Saberi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
63
|
Neophytou C, Boutsikos P, Papageorgis P. Molecular Mechanisms and Emerging Therapeutic Targets of Triple-Negative Breast Cancer Metastasis. Front Oncol 2018. [PMID: 29520340 PMCID: PMC5827095 DOI: 10.3389/fonc.2018.00031] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Breast cancer represents a highly heterogeneous disease comprised by several subtypes with distinct histological features, underlying molecular etiology and clinical behaviors. It is widely accepted that triple-negative breast cancer (TNBC) is one of the most aggressive subtypes, often associated with poor patient outcome due to the development of metastases in secondary organs, such as the lungs, brain, and bone. The molecular complexity of the metastatic process in combination with the lack of effective targeted therapies for TNBC metastasis have fostered significant research efforts during the past few years to identify molecular “drivers” of this lethal cascade. In this review, the most current and important findings on TNBC metastasis, as well as its closely associated basal-like subtype, including metastasis-promoting or suppressor genes and aberrantly regulated signaling pathways at specific stages of the metastatic cascade are being discussed. Finally, the most promising therapeutic approaches and novel strategies emerging from these molecular targets that could potentially be clinically applied in the near future are being highlighted.
Collapse
Affiliation(s)
- Christiana Neophytou
- Department of Biological Sciences, School of Pure and Applied Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
64
|
Liu J, Ye L, Li Q, Wu X, Wang B, Ouyang Y, Yuan Z, Li J, Lin C. Synaptopodin-2 suppresses metastasis of triple-negative breast cancer via inhibition of YAP/TAZ activity. J Pathol 2018; 244:71-83. [PMID: 28991374 DOI: 10.1002/path.4995] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/27/2017] [Accepted: 10/04/2017] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, with a high incidence of distant metastasis; however, the underlying mechanism for this frequent recurrence remains unclear. Herein, we show that synaptopodin-2 (SYNPO2), a putative tumour suppressor in aggressive cancer, is frequently downregulated in TNBC by methylation of the promoter of SYNPO2. Low expression levels of SYNPO2 correlated significantly with 5-year metastatic relapse, and predicted poorer prognosis in breast cancer patients. Reintroduction of SYNPO2 inhibited the invasion and spontaneous metastasis of TNBC cells in vivo. Strikingly, downregulation of SYNPO2 is essential for the maintenance of stem cell-like properties in TNBC cells, leading to efficient distant colonization and metastasis outgrowth. Moreover, we demonstrate that SYNPO2 inhibits the activities of YAP and TAZ by stabilizing LATS2 protein, and transduction of YAP-S127A abrogates the repressive role of SYNPO2 in metastasis. Finally, immunohistochemical (IHC) analysis of breast cancer patient specimens indicated that the SYNPO2-LATS2-YAP axis is clinically relevant. These findings uncover a suppressive role of SYNPO2 in TNBC metastasis via inhibition of YAP/TAZ, and suggest that SYNPO2 might provide a potential prognosis marker and novel therapeutic strategy. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Junling Liu
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| | - Liping Ye
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| | - Qingyuan Li
- Guangdong Country Garden School, Shunde, Foshan, Guangdong, PR China
| | - Xianqiu Wu
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| | - Bin Wang
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| | - Ying Ouyang
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| | - Zhongyu Yuan
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, PR China
| | - Chuyong Lin
- Sun Yat-sen University Cancer Centre, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, PR China
| |
Collapse
|
65
|
Bajikar SS, Wang CC, Borten MA, Pereira EJ, Atkins KA, Janes KA. Tumor-Suppressor Inactivation of GDF11 Occurs by Precursor Sequestration in Triple-Negative Breast Cancer. Dev Cell 2017; 43:418-435.e13. [PMID: 29161592 DOI: 10.1016/j.devcel.2017.10.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/18/2017] [Accepted: 10/25/2017] [Indexed: 12/18/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous carcinoma in which various tumor-suppressor genes are lost by mutation, deletion, or silencing. Here we report a tumor-suppressive mode of action for growth-differentiation factor 11 (GDF11) and an unusual mechanism of its inactivation in TNBC. GDF11 promotes an epithelial, anti-invasive phenotype in 3D triple-negative cultures and intraductal xenografts by sustaining expression of E-cadherin and inhibitor of differentiation 2 (ID2). Surprisingly, clinical TNBCs retain the GDF11 locus and expression of the protein itself. GDF11 bioactivity is instead lost because of deficiencies in its convertase, proprotein convertase subtilisin/kexin type 5 (PCSK5), causing inactive GDF11 precursor to accumulate intracellularly. PCSK5 reconstitution mobilizes the latent TNBC reservoir of GDF11 in vitro and suppresses triple-negative mammary cancer metastasis to the lung of syngeneic hosts. Intracellular GDF11 retention adds to the concept of tumor-suppressor inactivation and reveals a cell-biological vulnerability for TNBCs lacking therapeutically actionable mutations.
Collapse
Affiliation(s)
- Sameer S Bajikar
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Chun-Chao Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Institute of Molecular Medicine & Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Michael A Borten
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Elizabeth J Pereira
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Kristen A Atkins
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
66
|
Seoane J, Gomis RR. TGF-β Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022277. [PMID: 28246180 DOI: 10.1101/cshperspect.a022277] [Citation(s) in RCA: 342] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-β (TGF-β) induces a pleiotropic pathway that is modulated by the cellular context and its integration with other signaling pathways. In cancer, the pleiotropic reaction to TGF-β leads to a diverse and varied set of gene responses that range from cytostatic and apoptotic tumor-suppressive ones in early stage tumors, to proliferative, invasive, angiogenic, and oncogenic ones in advanced cancer. Here, we review the knowledge accumulated about the molecular mechanisms involved in the dual response to TGF-β in cancer, and how tumor cells evolve to evade the tumor-suppressive responses of this signaling pathway and then hijack the signal, converting it into an oncogenic factor. Only through the detailed study of this complexity can the suitability of the TGF-β pathway as a therapeutic target against cancer be evaluated.
Collapse
Affiliation(s)
- Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.,Oncology Program, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
67
|
He M, Zhou Z, Wu G, Chen Q, Wan Y. Emerging role of DUBs in tumor metastasis and apoptosis: Therapeutic implication. Pharmacol Ther 2017; 177:96-107. [PMID: 28279784 PMCID: PMC5565705 DOI: 10.1016/j.pharmthera.2017.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malfunction of ubiquitin-proteasome system is tightly linked to tumor formation and tumor metastasis. Targeting the ubiquitin-pathway provides a new strategy for anti-cancer therapy. Despite the parts played by ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in governing the multiple steps of the metastatic cascade, including local invasion, dissemination, and eventual colonization of the tumor to distant organs. Both deregulated ubiquitination and deubiquitination could lead to dysregulation of various critical events and pathways such as apoptosis and epithelial-mesenchymal transition (EMT). Recent TCGA study has further revealed the connection between mutations of DUBs and various types of tumors. In addition, emerging drug design targeting DUBs provides a new strategy for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and highlight the recent discoveries of DUBs with regards to multiple metastatic events including anti-apoptosis pathway and EMT. We will further discuss the regulation of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - George Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
68
|
Qiu L, Tan X, Lin J, Liu RY, Chen S, Geng R, Wu J, Huang W. CDC27 Induces Metastasis and Invasion in Colorectal Cancer via the Promotion of Epithelial-To-Mesenchymal Transition. J Cancer 2017; 8:2626-2635. [PMID: 28900500 PMCID: PMC5595092 DOI: 10.7150/jca.19381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Distant metastasis is the primary cause of cancer-related death among patients with colorectal cancer (CRC), and the discovery of novel therapeutic targets by further exploring the molecular mechanisms of CRC metastasis is therefore urgently needed. We previously illustrated that CDC27 overexpression promoted proliferation in CRC, but no studies have emphasized the role of CDC27 in cancer metastasis thus far. Our previous data indicated that the expression of CDC27 was significantly associated with distant metastasis in patient tissues, and therefore, in this study, we focused on the investigation of the potential mechanisms of CDC27 in CRC metastasis. The results revealed that CDC27 promoted the metastasis, invasion and sphere-formation capacity of DLD1 cells, but that the inhibition of CDC27 in HCT116 cells suppressed metastasis both in vitro and in vivo. Mechanistic analyses revealed that CDC27 promoted epithelial-to-mesenchymal transition (EMT), as demonstrated by the reduced expression of the epithelial markers ZO-1 and E-cadherin and the enhanced expression of the mesenchymal markers ZEB1 and Snail in HCT116 and DLD1 cells. Further mechanistic investigation indicated that CDC27 promoted metastasis and sphere-formation capacity in an ID1-dependent manner. In conclusion, we first demonstrated the role of CDC27 in cancer metastasis and showed that CDC27 may serve as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Lin Qiu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xin Tan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Jiaxin Lin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou.,Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou
| | - Ran-Yi Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Shuai Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Rong Geng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| |
Collapse
|
69
|
Klimov S, Rida PC, Aleskandarany MA, Green AR, Ellis IO, Janssen EA, Rakha EA, Aneja R. Novel immunohistochemistry-based signatures to predict metastatic site of triple-negative breast cancers. Br J Cancer 2017; 117:826-834. [PMID: 28720841 PMCID: PMC5589983 DOI: 10.1038/bjc.2017.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Although distant metastasis (DM) in breast cancer (BC) is the most lethal form of recurrence and the most common underlying cause of cancer related deaths, the outcome following the development of DM is related to the site of metastasis. Triple negative BC (TNBC) is an aggressive form of BC characterised by early recurrences and high mortality. Athough multiple variables can be used to predict the risk of metastasis, few markers can predict the specific site of metastasis. This study aimed at identifying a biomarker signature to predict particular sites of DM in TNBC. METHODS A clinically annotated series of 322 TNBC were immunohistochemically stained with 133 biomarkers relevant to BC, to develop multibiomarker models for predicting metastasis to the bone, liver, lung and brain. Patients who experienced metastasis to each site were compared with those who did not, by gradually filtering the biomarker set via a two-tailed t-test and Cox univariate analyses. Biomarker combinations were finally ranked based on statistical significance, and evaluated in multivariable analyses. RESULTS Our final models were able to stratify TNBC patients into high risk groups that showed over 5, 6, 7 and 8 times higher risk of developing metastasis to the bone, liver, lung and brain, respectively, than low-risk subgroups. These models for predicting site-specific metastasis retained significance following adjustment for tumour size, patient age and chemotherapy status. CONCLUSIONS Our novel IHC-based biomarkers signatures, when assessed in primary TNBC tumours, enable prediction of specific sites of metastasis, and potentially unravel biomarkers previously unknown in site tropism.
Collapse
Affiliation(s)
- Sergey Klimov
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | | | - Mohammed A Aleskandarany
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Andrew R Green
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Ian O Ellis
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Emiel Am Janssen
- Department of Pathology, Stavanger University Hospital, Stavanger N-4011, Norway
| | - Emad A Rakha
- Department of Cellular Pathology, University of Nottingham and Nottingham University Hospitals NHS Trust, City Hospital Campus, Nottingham NG5 1PB, UK
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
70
|
Castañón E, Soltermann A, López I, Román M, Ecay M, Collantes M, Redrado M, Baraibar I, López-Picazo JM, Rolfo C, Vidal-Vanaclocha F, Raez L, Weder W, Calvo A, Gil-Bazo I. The inhibitor of differentiation-1 (Id1) enables lung cancer liver colonization through activation of an EMT program in tumor cells and establishment of the pre-metastatic niche. Cancer Lett 2017; 402:43-51. [PMID: 28549790 DOI: 10.1016/j.canlet.2017.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 01/29/2023]
Abstract
Id1 promotes carcinogenesis and metastasis, and predicts prognosis of non-small cell lung cancer (NSCLC)-adenocarcionoma patients. We hypothesized that Id1 may play a critical role in lung cancer colonization of the liver by affecting both tumor cells and the microenvironment. Depleted levels of Id1 in LLC (Lewis lung carcinoma cells, LLC shId1) significantly reduced cell proliferation and migration in vitro. Genetic loss of Id1 in the host tissue (Id1-/- mice) impaired liver colonization and increased survival of Id1-/- animals. Histologically, the presence of Id1 in tumor cells of liver metastasis was responsible for liver colonization. Microarray analysis comparing liver tumor nodules from Id1+/+ mice and Id1-/- mice injected with LLC control cells revealed that Id1 loss reduces the levels of EMT-related proteins, such as vimentin. In tissue microarrays containing 532 NSCLC patients' samples, we found that Id1 significantly correlated with vimentin and other EMT-related proteins. Id1 loss decreased the levels of vimentin, integrinβ1, TGFβ1 and snail, both in vitro and in vivo. Therefore, Id1 enables both LLC and the host microenvironment for an effective liver colonization, and may represent a novel therapeutic target to avoid NSCLC liver metastasis.
Collapse
Affiliation(s)
- Eduardo Castañón
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Alex Soltermann
- Institut für Klinische Pathologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Inés López
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Marta Román
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Margarita Ecay
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - María Collantes
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Miriam Redrado
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Iosune Baraibar
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | | | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital, Edegem, Belgium
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Luis Raez
- Memorial Cancer Institute, Memorial Health Care System, Florida International University, Miami, FL, USA
| | - Walter Weder
- Klinik für Thoraxchirurgie, Universitätsspital Zürich, Zürich, Switzerland
| | - Alfonso Calvo
- Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain
| | - Ignacio Gil-Bazo
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain; Program of Solid Tumors and Biomarkers, Center for Applied Medical Research, Pamplona, Spain; Health Research Institute of Navarra (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
71
|
Di Giacomo V, Tian TV, Mas A, Pecoraro M, Batlle-Morera L, Noya L, Martín-Caballero J, Ruberte J, Keyes WM. ΔNp63α promotes adhesion of metastatic prostate cancer cells to the bone through regulation of CD82. Oncogene 2017; 36:4381-4392. [PMID: 28368419 PMCID: PMC5543260 DOI: 10.1038/onc.2017.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/01/2017] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
ΔNp63α is a critical mediator of epithelial development and stem cell function in a variety of tissues including the skin and breast, while overexpression of ΔNp63α acts as an oncogene to drive tumor formation and cancer stem cell properties in squamous cell carcinoma. However, with regards to the prostate, while ΔNp63α is expressed in the basal stem cells of the mature gland, during adenocarcinoma development, its expression is lost and its absence is used to clinically diagnose the malignant state. Surprisingly, here we identify a sub-population of bone metastatic prostate cancer cells in the PC3 cell line that express ΔNp63α. Interestingly, we discovered that ΔNp63α favors adhesion and stem-like growth of these cells in the bone microenvironment. In addition, we show that these properties require expression of the target gene CD82. Together, this work uncovers a population of bone metastatic prostate cancer cells that express ΔNp63α, and provides important information about the mechanisms of bone metastatic colonization. Finally, we identify metastasis-promoting properties for the tetraspanin family member CD82.
Collapse
Affiliation(s)
- V Di Giacomo
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - T V Tian
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A Mas
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - M Pecoraro
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Batlle-Morera
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Noya
- Department of Animal Health and Anatomy and Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - J Ruberte
- Department of Animal Health and Anatomy and Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - W M Keyes
- Gene Regulation, Stem Cells and Cancer Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Development and Stem Cells program, Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U964, Université de Strasbourg, Illkirch, France
| |
Collapse
|
72
|
Jin K, Li T, van Dam H, Zhou F, Zhang L. Molecular insights into tumour metastasis: tracing the dominant events. J Pathol 2017; 241:567-577. [PMID: 28035672 DOI: 10.1002/path.4871] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/05/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Metastasis of malignant cells to vital organs remains the major cause of mortality in many types of cancers. The tumour invasion-metastasis cascade is a stepwise and multistage process whereby tumour cells disseminate from primary sites and spread to colonize distant sites through the systemic haematogenous or lymphatic circulations. The general steps of metastasis may be similar in almost all tumour types, but metastasis to different tissues seems to require distinct sets of regulators and/or an 'educated' microenvironment which may facilitate the infiltration and colonization of tumour cells to specific tissues. Moreover, interactions of tumour cells with stromal cells, endothelial cells, and immune cells that they encounter will also aid them to gain survival advantages, evade immune surveillance, and adapt to the new host microenvironment. Due to the high correlation between tumour metastasis and survival rate of patients, a deeper understanding of the molecular participants and processes involved in metastasis could pave the way towards novel, more effective and targeted approaches to prevent and treat tumour metastasis. In this review, we provide an update on the regulation networks orchestrated by the dominant regulators of different stages throughout the metastatic process including, but not limited to, epithelial-mesenchymal transition in local invasion, resistance to anoikis during migration, and colonization of different distant sites. We also put forward some suggestions and problems concerning the treatment of tumour metastasis that should be solved and/or improved for better therapies in the near future. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ke Jin
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Tong Li
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300, RC, Leiden, The Netherlands
| | - Fangfang Zhou
- Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300, RC, Leiden, The Netherlands.,Institutes of Biology and Medical Science, Soochow University, Suzhou 215123, PR China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.,Department of Molecular Cell Biology, Cancer Genomics Centre and Centre for Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300, RC, Leiden, The Netherlands
| |
Collapse
|
73
|
Xu WW, Li B, Guan XY, Chung SK, Wang Y, Yip YL, Law SYK, Chan KT, Lee NPY, Chan KW, Xu LY, Li EM, Tsao SW, He QY, Cheung ALM. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun 2017; 8:14399. [PMID: 28186102 PMCID: PMC5309924 DOI: 10.1038/ncomms14399] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023] Open
Abstract
Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.
Collapse
Affiliation(s)
- Wen Wen Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong 2nd Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong 2nd Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xin Yuan Guan
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sookja K. Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yang Wang
- College of Life Science and Technology, Jinan University, 601 West Huangpu Blvd., Guangzhou 510632, China
| | - Yim Ling Yip
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Y. K. Law
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kin Tak Chan
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nikki P. Y. Lee
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok Wah Chan
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - En Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qing-Yu He
- College of Life Science and Technology, Jinan University, 601 West Huangpu Blvd., Guangzhou 510632, China
| | - Annie L. M. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong 2nd Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
74
|
Wahdan-Alaswad R, Harrell JC, Fan Z, Edgerton SM, Liu B, Thor AD. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. Cell Cycle 2017; 15:1046-59. [PMID: 26919310 DOI: 10.1080/15384101.2016.1152432] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis.
Collapse
Affiliation(s)
- Reema Wahdan-Alaswad
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - J Chuck Harrell
- b Department of Pathology , Virginia Commonwealth University , 1101 E Marshall St., PO Box 980662, Richmond VA , USA
| | - Zeying Fan
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Susan M Edgerton
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Bolin Liu
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| | - Ann D Thor
- a Department of Pathology , University of Colorado , Anschutz Medical Campus Mail Stop B216, 12631 East 17th Ave, Room 2215A, Aurora , CO , USA
| |
Collapse
|
75
|
Song KH, Park MS, Nandu TS, Gadad S, Kim SC, Kim MY. GALNT14 promotes lung-specific breast cancer metastasis by modulating self-renewal and interaction with the lung microenvironment. Nat Commun 2016; 7:13796. [PMID: 27982029 PMCID: PMC5171903 DOI: 10.1038/ncomms13796] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/02/2016] [Indexed: 12/23/2022] Open
Abstract
Some polypeptide N-acetyl-galactosaminyltransferases (GALNTs) are associated with cancer, but their function in organ-specific metastasis remains unclear. Here, we report that GALNT14 promotes breast cancer metastasis to the lung by enhancing the initiation of metastatic colonies as well as their subsequent growth into overt metastases. Our results suggest that GALNT14 augments the self-renewal properties of breast cancer cells (BCCs). Furthermore, GALNT14 overcomes the inhibitory effect of lung-derived bone morphogenetic proteins (BMPs) on self-renewal and therefore facilitates metastasis initiation within the lung microenvironment. In addition, GALNT14 supports continuous growth of BCCs in the lung by not only inducing macrophage infiltration but also exploiting macrophage-derived fibroblast growth factors (FGFs). Finally, we identify KRAS-PI3K-c-JUN signalling as an upstream pathway that accounts for the elevated expression of GALNT14 in lung-metastatic BCCs. Collectively, our findings uncover an unprecedented role for GALNT14 in the pulmonary metastasis of breast cancer and elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Ki-Hoon Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea
| | - Mi So Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea
| | - Tulip S. Nandu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shrikanth Gadad
- Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sang-Cheol Kim
- Department of Biomedical Informatics, Center for Genome Science, National Institute of Health, KCDC, Choongchung-Buk-do 363-951, Korea
| | - Mi-Young Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejon 305-701, Korea
- KAIST Institute for the BioCentury, Cancer Metastasis Control Center, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Korea
| |
Collapse
|
76
|
DNA Methylation Patterns in Rat Mammary Carcinomas Induced by Pre- and Post-Pubertal Irradiation. PLoS One 2016; 11:e0164194. [PMID: 27711132 PMCID: PMC5053445 DOI: 10.1371/journal.pone.0164194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/21/2016] [Indexed: 01/18/2023] Open
Abstract
Several lines of evidence indicate one’s age at exposure to radiation strongly modifies the risk of radiation-induced breast cancer. We previously reported that rat mammary carcinomas induced by pre- and post-pubertal irradiation have distinct gene expression patterns, but the changes underlying these differences have not yet been characterized. The aim of this investigation was to see if differences in CpG DNA methylation were responsible for the differences in gene expression between age at exposure groups observed in our previous study. DNA was obtained from the mammary carcinomas arising in female Sprague-Dawley rats that were either untreated or irradiated (γ-rays, 2 Gy) during the pre- or post-pubertal period (3 or 7 weeks old). The DNA methylation was analyzed using CpG island microarrays and the results compared to the gene expression data from the original study. Global DNA hypomethylation in tumors was accompanied by gene-specific hypermethylation, and occasionally, by unique tumor-specific patterns. We identified methylation-regulated gene expression candidates that distinguished the pre- and post-pubertal irradiation tumors, but these represented only 2 percent of the differentially expressed genes, suggesting that methylation is not a major or primary mechanism underlying the phenotypes. Functional analysis revealed that the candidate methylation-regulated genes were enriched for stem cell differentiation roles, which may be important in mammary cancer development and worth further investigation. However, the heterogeneity of human breast cancer means that the interpretation of molecular and phenotypic differences should be cautious, and take into account the co-variates such as hormone receptor status and cell-of-origin that may influence the associations.
Collapse
|
77
|
Ikeda JI, Wada N, Nojima S, Tahara S, Tsuruta Y, Oya K, Morii E. ID1 upregulation and FoxO3a downregulation by Epstein-Barr virus-encoded LMP1 in Hodgkin's lymphoma. Mol Clin Oncol 2016; 5:562-566. [PMID: 27900085 DOI: 10.3892/mco.2016.1012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/25/2016] [Indexed: 11/06/2022] Open
Abstract
Cancer-initiating cells (CICs) are specialized cells that have the ability to self-renew and are multipotent. We recently demonstrated that Forkhead box O3a (FoxO3a)-expressing cells exhibited a CIC-like potential in Hodgkin's lymphoma (HL). A proportion of HL patients are infected with Epstein-Barr virus (EBV). EBV-encoded latent membrane protein (LMP) 1 downregulates FoxO3a, suggesting that FoxO3a expression may be abolished in EBV-positive HL. Inhibitors of DNA-binding (ID) proteins are highly conserved transcription factors mediating stem cell functions. To the best of our knowledge, no study has investigated possible associations among ID1, FoxO3a and LMP1 expression in HL to date. We immunohistochemically evaluated the expression of the three abovementioned factors in HL patients. The ID1 expression level was inversely correlated with that of FoxO3a (P=0.00035). LMP1-positive HL cells abundantly expressed ID1 (P=0.029), but not FoxO3a (P=0.00085). Thus, our previous observation that FoxO3a may serve as a marker of CICs may not be applicable in EBV-positive HL patients, but rather ID1 may be a candidate CIC marker in this type of HL.
Collapse
Affiliation(s)
- Jun-Ichiro Ikeda
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Naoki Wada
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoko Tsuruta
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Kaori Oya
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
78
|
Martín-Martín N, Piva M, Urosevic J, Aldaz P, Sutherland JD, Fernández-Ruiz S, Arreal L, Torrano V, Cortazar AR, Planet E, Guiu M, Radosevic-Robin N, Garcia S, Macías I, Salvador F, Domenici G, Rueda OM, Zabala-Letona A, Arruabarrena-Aristorena A, Zúñiga-García P, Caro-Maldonado A, Valcárcel-Jiménez L, Sánchez-Mosquera P, Varela-Rey M, Martínez-Chantar ML, Anguita J, Ibrahim YH, Scaltriti M, Lawrie CH, Aransay AM, Iovanna JL, Baselga J, Caldas C, Barrio R, Serra V, dM Vivanco M, Matheu A, Gomis RR, Carracedo A. Stratification and therapeutic potential of PML in metastatic breast cancer. Nat Commun 2016; 7:12595. [PMID: 27553708 PMCID: PMC4999521 DOI: 10.1038/ncomms12595] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 07/12/2016] [Indexed: 01/15/2023] Open
Abstract
Patient stratification has been instrumental for the success of targeted therapies in breast cancer. However, the molecular basis of metastatic breast cancer and its therapeutic vulnerabilities remain poorly understood. Here we show that PML is a novel target in aggressive breast cancer. The acquisition of aggressiveness and metastatic features in breast tumours is accompanied by the elevated PML expression and enhanced sensitivity to its inhibition. Interestingly, we find that STAT3 is responsible, at least in part, for the transcriptional upregulation of PML in breast cancer. Moreover, PML targeting hampers breast cancer initiation and metastatic seeding. Mechanistically, this biological activity relies on the regulation of the stem cell gene SOX9 through interaction of PML with its promoter region. Altogether, we identify a novel pathway sustaining breast cancer aggressiveness that can be therapeutically exploited in combination with PML-based stratification.
Collapse
Affiliation(s)
| | - Marco Piva
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Jelena Urosevic
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
| | - Paula Aldaz
- Oncology Area, Biodonostia Institute, 20014 San Sebastian, Spain
| | | | | | - Leire Arreal
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Verónica Torrano
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Ana R. Cortazar
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Evarist Planet
- Biostatistics and Bioinformatics Unit, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Marc Guiu
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
| | - Nina Radosevic-Robin
- ERTICa Research Group, University of Auvergne EA4677, Clermont-Ferrand, France
- Biodiagnostics Laboratory OncoGenAuvergne, Pathology Unit, Jean Perrin Comprehensive Cancer Center, 63000 Clermont-Ferrand, France
| | - Stephane Garcia
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| | - Iratxe Macías
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Fernando Salvador
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
| | - Giacomo Domenici
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | | | | | | | | | | | | | - Marta Varela-Rey
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Maria Luz Martínez-Chantar
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Juan Anguita
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
| | - Yasir H. Ibrahim
- Experimental Therapeutics Group, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
- Weill Cornell Medicine, New York 10021, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Department of Pathology, Memorial Sloan-Kettering Cancer Center, 10065 New York, USA
| | - Charles H. Lawrie
- Oncology Area, Biodonostia Institute, 20014 San Sebastian, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
| | - Ana M. Aransay
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| | - Jose Baselga
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan-Kettering Cancer Center, 10065 New York, USA
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Maria dM Vivanco
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
| | - Ander Matheu
- Oncology Area, Biodonostia Institute, 20014 San Sebastian, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
| | - Roger R. Gomis
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Bulding 801a, 48160 Derio, Spain
- IKERBASQUE, Basque foundation for science, 48013 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), 48949 Leioa, Spain
| |
Collapse
|
79
|
Vázquez-Arreguín K, Tantin D. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:792-804. [PMID: 26877236 PMCID: PMC4880489 DOI: 10.1016/j.bbagrm.2016.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/29/2023]
Abstract
The metazoan-specific POU domain transcription factor family comprises activities underpinning developmental processes such as embryonic pluripotency and neuronal specification. Some POU family proteins efficiently bind an 8-bp DNA element known as the octamer motif. These proteins are known as Oct transcription factors. Oct1/POU2F1 is the only widely expressed POU factor. Unlike other POU factors it controls no specific developmental or organ system. Oct1 was originally described to operate at target genes associated with proliferation and immune modulation, but more recent results additionally identify targets associated with oxidative and cytotoxic stress resistance, metabolic regulation, stem cell function and other unexpected processes. Oct1 is pro-oncogenic in multiple contexts, and several recent reports provide broad evidence that Oct1 has prognostic and therapeutic value in multiple epithelial tumor settings. This review focuses on established and emerging roles of Oct1 in epithelial tumors, with an emphasis on mechanisms of transcription regulation by Oct1 that may underpin these findings. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
80
|
Mondal SK, Jinka S, Pal K, Nelli S, Dutta SK, Wang E, Ahmad A, AlKharfy KM, Mukhopadhyay D, Banerjee R. Glucocorticoid Receptor-Targeted Liposomal Codelivery of Lipophilic Drug and Anti-Hsp90 Gene: Strategy to Induce Drug-Sensitivity, EMT-Reversal, and Reduced Malignancy in Aggressive Tumors. Mol Pharm 2016; 13:2507-23. [PMID: 27184196 DOI: 10.1021/acs.molpharmaceut.6b00230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many cancers including the late stage ones become drug-resistant and undergo epithelial-to-mesenchymal transition (EMT). These lead to enhanced invasion, migration, and metastasis toward manifesting its aggressiveness and malignancy. One of the key hallmarks of cancer is its overdependence on glycolysis as its preferred energy metabolism pathway. The strict avoidance of alternate energy pathway gluconeogenesis by cancer cells points to a yet-to-be hoisted role of glucocorticoid receptor (GR) especially in tumor microenvironment, where cells are known to become drug-sensitive through induction of gluconeogenesis. However, since GR is involved in metabolism, anti-inflammatory reactions, immunity besides inducing gluconeogenesis, a greater role of GR in tumor microenvironment is envisaged. We have shown previously that GR, although ubiquitously expressed in all cells; afford to be an effective cytoplasmic target for killing cancer cells selectively. Herein, we report the therapeutic use of a newly developed GR-targeted liposomal concoction (DXE) coformulating a lipophilic drug (ESC8) and an anti-Hsp90 anticancer gene against aggressive tumor models. This induced drug-sensitivity and apoptosis while reversing EMT in tumor cells toward effective retardation of aggressive growth in pancreas and skin tumor models. Additionally, the ESC8-free lipid formulation upon cotreatment with hydrophilic drugs, gemcitabine and doxorubicin, could effectively sensitize and kill pancreatic cancer and melanoma cells, respectively. The formulation-triggered EMT-reversal was GR-dependent. Overall, we found a new strategy for drug sensitization that led to the advent of new GR-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Sujan Kumar Mondal
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi 110001, India
| | - Sudhakar Jinka
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi 110001, India
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Swetha Nelli
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | - Khalid M AlKharfy
- Department of Clinical Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic , Jacksonville, Florida 32224, United States
| | - Rajkumar Banerjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007, India.,Academy of Scientific & Innovative Research (AcSIR) , 2 Rafi Marg, New Delhi 110001, India
| |
Collapse
|
81
|
Shin DH, Park JH, Lee JY, Won HY, Jang KS, Min KW, Jang SH, Woo JK, Oh SH, Kong G. Overexpression of Id1 in transgenic mice promotes mammary basal stem cell activity and breast tumorigenesis. Oncotarget 2016; 6:17276-90. [PMID: 25938540 PMCID: PMC4627307 DOI: 10.18632/oncotarget.3640] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/06/2015] [Indexed: 11/25/2022] Open
Abstract
Inhibitor of differentiation/DNA binding (Id)1 is a crucial regulator of mammary development and breast cancer progression. However, its effect on stemness and tumorigenesis in mammary epithelial cells remains undefined. Herein, we demonstrate that Id1 induces mammary tumorigenesis by increasing normal and malignant mammary stem cell (MaSC) activities in transgenic mice. MaSC-enriched basal cell expansion and increased self-renewal and in vivo regenerative capacity of MaSCs are observed in the mammary glands of MMTV-Id1 transgenic mice. Furthermore, MMTV-Id1 mice develop ductal hyperplasia and mammary tumors with highly expressed basal markers. Id1 also increases breast cancer stem cell (CSC) population and activity in human breast cancer lines. Moreover, the effects of Id1 on normal and malignant stem cell activities are mediated by the Wnt/c-Myc pathway. Collectively, these findings provide in vivo genetic evidence of Id1 functions as an oncogene in breast cancer and indicate that Id1 regulates mammary basal stem cells by activating the Wnt/c-Myc pathway, thereby contributing to breast tumor development.
Collapse
Affiliation(s)
- Dong-Hui Shin
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ji-Hye Park
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Hee-Young Won
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ki-Seok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Si-Hyong Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Jong-Kyu Woo
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, Seoul, Republic of Korea.,Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
82
|
Abstract
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
83
|
Murase R, Sumida T, Kawamura R, Onishi-Ishikawa A, Hamakawa H, McAllister SD, Desprez PY. Suppression of invasion and metastasis in aggressive salivary cancer cells through targeted inhibition of ID1 gene expression. Cancer Lett 2016; 377:11-6. [PMID: 27087608 DOI: 10.1016/j.canlet.2016.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/11/2016] [Accepted: 04/12/2016] [Indexed: 10/22/2022]
Abstract
Salivary gland cancer (SGC) represents the most common malignancy in the head and neck region, and often metastasizes to the lungs. The helix-loop-helix ID1 protein has been shown to control metastatic progression in many types of cancers. Using two different approaches to target the expression of ID1 (genetic knockdown and progesterone receptor introduction combined with progesterone treatment), we previously determined that the aggressiveness of salivary gland tumor ACCM cells in culture was suppressed. Here, using the same approaches to target ID1 expression, we investigated the ability of ACCM cells to generate lung metastatic foci in nude mice. Moreover, since both approaches would be challenging for applications in humans, we added a third approach, i.e., treatment of mice with a non-toxic cannabinoid compound known to down-regulate ID1 gene expression. All approaches aimed at targeting the pro-metastatic ID1 gene led to a significant reduction in the formation of lung metastatic foci. Therefore, targeting a key transcriptional regulator using different means results in the same reduction of the metastatic spread of SGC cells in animal models, suggesting a novel approach for the treatment of patients with aggressive SGC.
Collapse
Affiliation(s)
- Ryuichi Murase
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Tomoki Sumida
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Rumi Kawamura
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Akiko Onishi-Ishikawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hiroyuki Hamakawa
- Department of Oral & Maxillofacial Surgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sean D McAllister
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA
| | - Pierre-Yves Desprez
- California Pacific Medical Center, Cancer Research Institute, 475 Brannan Street, Suite 220, San Francisco, CA 94107, USA.
| |
Collapse
|
84
|
Hsieh CL, Ma HP, Su CM, Chang YJ, Hung WY, Ho YS, Huang WJ, Lin RK. Alterations in histone deacetylase 8 lead to cell migration and poor prognosis in breast cancer. Life Sci 2016; 151:7-14. [DOI: 10.1016/j.lfs.2016.02.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/16/2016] [Accepted: 02/25/2016] [Indexed: 10/22/2022]
|
85
|
Abstract
Tumour metastasis, the movement of tumour cells from a primary site to progressively colonize distant organs, is a major contributor to the deaths of cancer patients. Therapeutic goals are the prevention of an initial metastasis in high-risk patients, shrinkage of established lesions and prevention of additional metastases in patients with limited disease. Instead of being autonomous, tumour cells engage in bidirectional interactions with metastatic microenvironments to alter antitumour immunity, the extracellular milieu, genomic stability, survival signalling, chemotherapeutic resistance and proliferative cycles. Can targeting of these interactions significantly improve patient outcomes? In this Review preclinical research, combination therapies and clinical trial designs are re-examined.
Collapse
Affiliation(s)
- Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
86
|
Burnett RM, Craven KE, Krishnamurthy P, Goswami CP, Badve S, Crooks P, Mathews WP, Bhat-Nakshatri P, Nakshatri H. Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells. Oncotarget 2016; 6:12682-96. [PMID: 25926557 PMCID: PMC4494966 DOI: 10.18632/oncotarget.3707] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/10/2015] [Indexed: 01/18/2023] Open
Abstract
Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically.
Collapse
Affiliation(s)
- Riesa M Burnett
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelly E Craven
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Purna Krishnamurthy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chirayu P Goswami
- Department of Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sunil Badve
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
87
|
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2016; 16:225-38. [PMID: 25748930 DOI: 10.1016/j.stem.2015.02.015] [Citation(s) in RCA: 1076] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are tumor cells that have the principal properties of self-renewal, clonal tumor initiation capacity, and clonal long-term repopulation potential. CSCs reside in niches, which are anatomically distinct regions within the tumor microenvironment. These niches maintain the principle properties of CSCs, preserve their phenotypic plasticity, protect them from the immune system, and facilitate their metastatic potential. In this perspective, we focus on the CSC niche and discuss its contribution to tumor initiation and progression. Since CSCs survive many commonly employed cancer therapies, we examine the prospects of targeting the niche components as preferable therapeutic targets.
Collapse
Affiliation(s)
- Vicki Plaks
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Niwen Kong
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143-0452, USA.
| |
Collapse
|
88
|
ERKAN EP, VURGUN U, ERBAYRAKTAR RS, ERBAYRAKTAR Z. Glioblastoma stem cells: a therapeutic challenge. Turk J Biol 2016. [DOI: 10.3906/biy-1508-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
89
|
Del Pozo Martin Y, Park D, Ramachandran A, Ombrato L, Calvo F, Chakravarty P, Spencer-Dene B, Derzsi S, Hill CS, Sahai E, Malanchi I. Mesenchymal Cancer Cell-Stroma Crosstalk Promotes Niche Activation, Epithelial Reversion, and Metastatic Colonization. Cell Rep 2015; 13:2456-2469. [PMID: 26670048 PMCID: PMC4695340 DOI: 10.1016/j.celrep.2015.11.025] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 10/05/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023] Open
Abstract
During metastatic colonization, tumor cells must establish a favorable microenvironment or niche that will sustain their growth. However, both the temporal and molecular details of this process remain poorly understood. Here, we found that metastatic initiating cells (MICs) exhibit a high capacity for lung fibroblast activation as a result of Thrombospondin 2 (THBS2) expression. Importantly, inhibiting the mesenchymal phenotype of MICs by blocking the epithelial-to-mesenchymal transition (EMT)-associated kinase AXL reduces THBS2 secretion, niche-activating ability, and, consequently, metastatic competence. Subsequently, disseminated metastatic cells revert to an AXL-negative, more epithelial phenotype to proliferate and decrease the phosphorylation levels of TGF-β-dependent SMAD2-3 in favor of BMP/SMAD1-5 signaling. Remarkably, newly activated fibroblasts promote this transition. In summary, our data reveal a crosstalk between cancer cells and their microenvironment whereby the EMT status initially triggers and then is regulated by niche activation during metastatic colonization.
Collapse
Affiliation(s)
- Yaiza Del Pozo Martin
- Tumor-Stroma Interactions in Cancer Development, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Danielle Park
- Cell Biology of the Tumor Microenvironment, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Anassuya Ramachandran
- TGF-β Superfamily Signalling in Development and Cancer, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Luigi Ombrato
- Tumor-Stroma Interactions in Cancer Development, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Fernando Calvo
- Tumor Microenvironment Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, SW3 6JB London, UK
| | - Probir Chakravarty
- Bioinformatics and BioStatistics Team, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology Unit, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Stefanie Derzsi
- Cell Biology of the Tumor Microenvironment, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Caroline S Hill
- TGF-β Superfamily Signalling in Development and Cancer, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Erik Sahai
- Cell Biology of the Tumor Microenvironment, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK
| | - Ilaria Malanchi
- Tumor-Stroma Interactions in Cancer Development, The Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, WC2A 3LY London, UK.
| |
Collapse
|
90
|
|
91
|
Kievit FM, Wang K, Erickson AE, Lan Levengood SK, Ellenbogen RG, Zhang M. Modeling the tumor microenvironment using chitosan-alginate scaffolds to control the stem-like state of glioblastoma cells. Biomater Sci 2015; 4:610-3. [PMID: 26688867 DOI: 10.1039/c5bm00514k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Better prediction of in vivo drug efficacy using in vitro models should greatly improve in vivo success. Here we utilize 3D highly porous chitosan-alginate complex scaffolds to probe how various components of the glioblastoma microenvironment including extracellular matrix and stromal cells affect tumor cell stem-like state.
Collapse
Affiliation(s)
- Forrest M Kievit
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|
92
|
McCleskey BC, Penedo TL, Zhang K, Hameed O, Siegal GP, Wei S. GATA3 expression in advanced breast cancer: prognostic value and organ-specific relapse. Am J Clin Pathol 2015; 144:756-63. [PMID: 26486740 DOI: 10.1309/ajcp5mmr1fjvvtpk] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES GATA3 is a transcription factor regulating luminal cell differentiation in the mammary glands and has been implicated in the luminal types of breast carcinoma. The prognostic significance of GATA3 in breast cancer remains controversial. METHODS In this study, we assessed the prognostic value of the molecule in a subset of 62 advanced breast cancers and 10 control breast cancers (no metastasis after follow-up). RESULTS GATA3 expression levels in luminal tumors of advanced stage were significantly higher than that of the human epidermal growth factor receptor 2 (HER2) subtype and triple-negative carcinomas, as expected, but were similar to those of the luminal controls. Furthermore, 88% of nonluminal tumors showed variable GATA3 expression, for which the HER2 subtype had significantly higher GATA3 expression than that of the triple-negative carcinomas. Interestingly, GATA3 levels were significantly lower in carcinomas with lung relapse compared to those with metastatic recurrence to other organs, thus reflecting the findings in animal models. No significant difference was observed between tumors with bone relapse and those metastasized to nonskeletal sites. Moreover, high GATA3 expression was significantly associated with favorable relapse-free survival and overall survival. CONCLUSIONS These findings suggest that GATA3 may not act solely as a luminal differentiation marker, and further uncovering the molecular pathways by which GATA3 regulates the downstream targets will be crucial to our understanding of breast cancer dissemination.
Collapse
|
93
|
Garcia-Cao M, Al-Ahmadie HA, Chin Y, Bochner BH, Benezra R. Id Proteins Contribute to Tumor Development and Metastatic Colonization in a Model of Bladder Carcinogenesis. Bladder Cancer 2015; 1:159-170. [PMID: 27376116 PMCID: PMC4927902 DOI: 10.3233/blc-150023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Bladder cancer is one of the most common malignant genitourinary diseases worldwide. Despite advances in surgical technique, medical oncology and radiation therapy, cure of invasive tumors remains elusive for patients with late stage disease. Therefore, new therapeutic strategies are needed to improve the response rates with regard to recurrence, invasion and metastasis. Objective: Inhibitor of DNA binding (Id) proteins have been proposed as therapeutic targets due to the key regulatory role they exert in multiple steps of cancer. We aimed to explore the role of Id proteins in bladder cancer development and the pattern of expression of Id proteins in bladder carcinomas. Methods: We used a well-established chemically induced model of bladder carcinogenesis. Wild type and Id-deficient mice were given N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in the drinking water and urinary bladder lesions were analyzed histopathologically and stained for Id1. We assessed the effects of Id1 inactivation in cultured bladder cancer cells and in a model of metastatic lung colonization. We also performed Id1 staining of human urothelial carcinoma samples and matched lymph node metastases. Results: Id1 protein was overexpressed in the BBN-induced model of bladder cancer. Id1 deficiency resulted in the development of urinary bladder tumors with areas of extensive hemorrhage and decreased invasiveness when compared to wild type mice. Id1 inactivation led to decreased cell growth in vitro and lung colonization in vivo of human bladder cancer cells. Immunohistochemistry performed on human urothelial carcinoma samples showed Id1 positive staining in both primary tumors and lymph node metastases. Conclusions: In summary, our studies reveal the physiological relevance of Id1 in bladder cancer progression and suggest that targeting Id1 may be important in the development of novel therapies for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Marta Garcia-Cao
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yvette Chin
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bernard H Bochner
- Department of Surgery, Urology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
94
|
Surviving at a Distance: Organ-Specific Metastasis. Trends Cancer 2015; 1:76-91. [PMID: 28741564 DOI: 10.1016/j.trecan.2015.07.009] [Citation(s) in RCA: 342] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/17/2022]
Abstract
The clinical manifestation of metastasis in a vital organ is the final stage of cancer progression and the main culprit of cancer-related mortality. Once established, metastasis is devastating, but only a small proportion of the cancer cells that leave a tumor succeed at infiltrating, surviving, and ultimately overtaking a distant organ. The bottlenecks that challenge cancer cells in newly invaded microenvironments are organ-specific and consequently demand distinct mechanisms for metastatic colonization. We review the metastatic traits that allow cancer cells to colonize distinct organ sites.
Collapse
|
95
|
Effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity. Cancer Gene Ther 2015; 22:431-7. [PMID: 26384138 DOI: 10.1038/cgt.2015.38] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 01/05/2023]
Abstract
The inhibitor of DNA-binding/differentiation 3 (Id3) protein is a helix-loop-helix transcription factor and may have an important role in cell proliferation and differentiation. This study was to evaluate the effects of upregulation of Id3 in human lung adenocarcinoma cells on proliferation, apoptosis, mobility and tumorigenicity. Short interference RNA suppression of Id3 (miRId3) in A549 cells was used to investigate the functional role(s) of Id3. Next, we used in vitro wound-healing assay and trans-well assay to study the effects of overexpressed Id3 on migration and invasion of A549 cells. Furthermore, to explore the influence of overexpressed Id3 on in vivo tumorigenesis, adenoviruses containing Id3 gene (Ad-Id3) and empty vector (Ad-LacZ) were generated. Co-transfection of pcDNA/miRId3 and pEGFP/Id3 into A549 cells reversed the Id3-induced cell proliferation inhibition and apoptosis. Upon Id3 transfection, A549 cells displayed decreased migratory and invasive capabilities, however, co-transfection of miRId3 and Id3 into A549 cells reversed the Id3-induced inhibitions of migratory and invasive capabilities. Three groups of nude mice were inoculated with Ad-LacZ, Ad-Id3 transfectants and untransfected A549 cells, respectively. Twenty-eight days after inoculation, tumors induced by Ad-Id3 transfectants grew much more slowly compared with Ad-LacZ transfectants and control group. This study provides for the first time both in vitro and in vivo proofs that forced expression of Id3 in lung adenocarcinoma cells reduces tumor growth rate and may be a potential target for tumor suppression.
Collapse
|
96
|
Jin X, Mu P. Targeting Breast Cancer Metastasis. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2015; 9:23-34. [PMID: 26380552 PMCID: PMC4559199 DOI: 10.4137/bcbcr.s25460] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/06/2015] [Accepted: 08/10/2015] [Indexed: 12/31/2022]
Abstract
Metastasis is the leading cause of breast cancer-associated deaths. Despite the significant improvement in current therapies in extending patient life, 30–40% of patients may eventually suffer from distant relapse and succumb to the disease. Consequently, a deeper understanding of the metastasis biology is key to developing better treatment strategies and achieving long-lasting therapeutic efficacies against breast cancer. This review covers recent breakthroughs in the discovery of various metastatic traits that contribute to the metastasis cascade of breast cancer, which may provide novel avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Xin Jin
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ; Institute for Medical Engineering & Science (IMES), Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ping Mu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
97
|
Kimbung S, Loman N, Hedenfalk I. Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol 2015; 35:85-95. [PMID: 26319607 DOI: 10.1016/j.semcancer.2015.08.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022]
Abstract
Clinical oncology is advancing toward a more personalized treatment orientation, making the need to understand the biology of metastasis increasingly acute. Dissecting the complex molecular, genetic and clinical phenotypes underlying the processes involved in the development of metastatic disease, which remains the principal cause of cancer-related deaths, could lead to the identification of more effective prognostication and targeted approaches to prevent and treat metastases. The past decade has witnessed significant progress in the field of cancer metastasis research. Clinical and technological milestones have been reached which have tremendously enriched our understanding of the complex pathways undertaken by primary tumors to progress into lethal metastases and how some of these processes might be amenable to therapy. The aim of this review article is to highlight the recent advances toward unraveling the clinical and molecular complexity of breast cancer metastases. We focus on genes mediating breast cancer metastases and organ-specific tropism, and discuss gene signatures for prediction of metastatic disease. The challenges of translating this information into clinically applicable tools for improving the prognostication of the metastatic potential of a primary breast tumor, as well as for therapeutic interventions against latent and active metastatic disease are addressed.
Collapse
Affiliation(s)
- Siker Kimbung
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Oncology, Skåne University Hospital, Lund/Malmö, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden.
| |
Collapse
|
98
|
McBryan J, Fagan A, McCartan D, Bane FT, Varešlija D, Cocchiglia S, Byrne C, Bolger J, McIlroy M, Hudson L, Tibbitts P, Ó Gaora P, Hill AD, Young LS. Transcriptomic Profiling of Sequential Tumors from Breast Cancer Patients Provides a Global View of Metastatic Expression Changes Following Endocrine Therapy. Clin Cancer Res 2015; 21:5371-9. [DOI: 10.1158/1078-0432.ccr-14-2155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 07/21/2015] [Indexed: 11/16/2022]
|
99
|
Abstract
The identification of cancer stem cells (CSCs) represents an important milestone in the understanding of chemodrug resistance and cancer recurrence. More specifically, some studies have suggested that potential metastasis-initiating cells (MICs) might be present within small CSC populations. The targeting and eradication of these cells represents a potential strategy for significantly improving clinical outcomes. A number of studies have suggested that dysregulation of Wnt/β-catenin signaling occurs in human breast cancer. Consistent with these findings, our previous data have shown that the relative level of Wnt/β-catenin signaling activity in breast cancer stem cells (BCSCs) is significantly higher than that in bulk cancer cells. These results suggest that BCSCs could be sensitive to therapeutic approaches targeting Wnt/β-catenin signaling pathway. In this context, abnormal Wnt/β-catenin signaling activity may be an important clinical feature of breast cancer and a predictor of poor survival. We therefore hypothesized that Wnt/β-catenin signaling might regulate self-renewal and CSC migration, thereby enabling metastasis and systemic tumor dissemination in breast cancer. Here, we investigated the effects of inhibiting Wnt/β-catenin signaling on cancer cell migratory potential by examining the expression of CSC-related genes, and we examined how this pathway links metastatic potential with tumor formation in vitro and in vivo.
Collapse
|
100
|
Chen KY, Chen CC, Tseng YL, Chang YC, Chang MC. GCIP functions as a tumor suppressor in non-small cell lung cancer by suppressing Id1-mediated tumor promotion. Oncotarget 2015; 5:5017-28. [PMID: 24970809 PMCID: PMC4148118 DOI: 10.18632/oncotarget.2075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Grap2 and cyclin D1 interacting protein (GCIP) has been recognized as a putative tumor suppressor, but the molecular mechanisms underlying its anti-tumor properties remain undefined. Here, we report that GCIP is frequently downregulated in non-small cell lung cancer (NSCLC) tissues. Binding assays indicated that inhibitor of DNA binding/differentiation 1 (Id1) interacts with GCIP in the nucleus. Ectopic GCIP expression in the highly invasive NSCLC cell line, H1299, inhibited proliferation, colony formation, invasion and migration, and increased susceptibility to anticancer drugs. Conversely, silencing GCIP expression in the minimally invasive NSCLS cell line, A549, increased proliferation, colony formation, invasion, and migration in vitro, and increased survival and resistance to anticancer drugs. GCIP also suppresses tumorigenicity of NSCLC cells in vivo and GCIP suppresses NSCLC progression is mediated in part by interfering with Id1 signaling, which was confirmed in conditionally induced stable cell lines. In addition, GCIP downregulates the expression of Id1, and GCIP and Id1 are inversely expressed in NSCLC cell lines and specimens. Taken together, these results suggest that GCIP is a potential tumor suppressor in NSCLC and that suppression of Id1-mediated oncogenic properties may be a key mechanism by which GCIP can potently suppress NSCLC tumor progression.
Collapse
Affiliation(s)
- Kuan-yu Chen
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chao-chung Chen
- Department of Biotechnology, College of Medicine and Nursing, Hung Kuang University, Taichung, Tainan
| | - Yau-lin Tseng
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Yi-chien Chang
- Department of Surgery, National Cheng Kung University Medical College and Hospital, Tainan, Taiwan
| | - Ming-chung Chang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan. Department of Nutrition, College of Medicine and Nursing, Hung Kuang University, Taichung, Tainan
| |
Collapse
|