51
|
Patel SH, George TL, Wang TF, Vogt SM, Folefac E, Xu M, Yang Y, Parikh AB, Verschraegen CF, Clinton SK, Yin M. Increased bleeding risk associated with concurrent vascular endothelial growth factor receptor tyrosine kinase inhibitors and low-molecular-weight heparin. Cancer 2020; 127:938-945. [PMID: 33216354 DOI: 10.1002/cncr.33337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND Some cancer patients who are diagnosed with thromboembolism may require dual treatment with vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKIs) and factor Xa inhibitors (low-molecular-weight heparin [LMWH] or direct oral anticoagulants [DOACs]). However, to the authors' knowledge, the safety of such combinations has not been well characterized. METHODS Patients with advanced cancer who were treated with concurrent VEGFR TKIs and factor Xa inhibitors between 2010 and 2018 at The Ohio State University Comprehensive Cancer Center were included. Charts were reviewed retrospectively for clinically significant bleeding events occurring during concurrent treatment compared with those occurring during factor Xa inhibitor therapy alone, using each patient as their own control. The Fisher exact test was used to compare distribution of bleeding severities. The Cox proportional hazards model was used to compare bleeding risk between groups. RESULTS Among 86 patients, there were 29 clinically significant bleeding events (including 8 major bleeding events) reported during concurrent treatment and 17 events (including 4 major bleeding events) reported during factor Xa inhibitor therapy alone over a median follow-up of 63 days. Concurrent treatment was associated with significantly higher risks of overall bleeding (hazard ratio, 2.45; 95% confidence interval, 1.28-4.69 [P = .007]) and first-onset bleeding (hazard ratio, 2.23; 95% confidence interval, 1.13-4.42 [P = .02]). Analysis of 6-month bleeding risk and the subgroups of patients treated with concurrent TKIs and LMWH versus LMWH alone demonstrated a similar trend. The sample size was inadequate for comparisons between treatment with concurrent TKIs and DOACs versus DOACs alone. CONCLUSIONS Concurrent treatment with VEGFR TKIs and LMWH was found to be associated with a significantly increased risk of bleeding events when compared with LMWH therapy alone.
Collapse
Affiliation(s)
- Sandip H Patel
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Tiffany L George
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Tzu-Fei Wang
- Division of Hematology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
- Department of Medicine, University of Ottawa at The Ottawa Hospital and Ottawa Hospital Research Institute, Ottawa, Canada
| | - Sherry M Vogt
- Department of Pharmacy, The Ohio State University James Cancer Hospital and Richard J. Solove Research Institute, Columbus, Ohio
| | - Edmund Folefac
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Menglin Xu
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Yuanquan Yang
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Anish B Parikh
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Claire F Verschraegen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| | - Ming Yin
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
52
|
Chen X, He Y, Fu W, Sahebkar A, Tan Y, Xu S, Li H. Histone Deacetylases (HDACs) and Atherosclerosis: A Mechanistic and Pharmacological Review. Front Cell Dev Biol 2020; 8:581015. [PMID: 33282862 PMCID: PMC7688915 DOI: 10.3389/fcell.2020.581015] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis (AS), the most common underlying pathology for coronary artery disease, is a chronic inflammatory, proliferative disease in large- and medium-sized arteries. The vascular endothelium is important for maintaining vascular health. Endothelial dysfunction is a critical early event leading to AS, which is a major risk factor for stroke and myocardial infarction. Accumulating evidence has suggested the critical roles of histone deacetylases (HDACs) in regulating vascular cell homeostasis and AS. The purpose of this review is to present an updated view on the roles of HDACs (Class I, Class II, Class IV) and HDAC inhibitors in vascular dysfunction and AS. We also elaborate on the novel therapeutic targets and agents in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaona Chen
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanhong He
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Fu
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute, Łódź, Poland
| | - Yuhui Tan
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Li
- Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
53
|
Huang X, Liang P, Jiang B, Zhang P, Yu W, Duan M, Guo L, Cui X, Huang M, Huang X. Hyperbaric oxygen potentiates diabetic wound healing by promoting fibroblast cell proliferation and endothelial cell angiogenesis. Life Sci 2020; 259:118246. [DOI: 10.1016/j.lfs.2020.118246] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
|
54
|
Li X, He S, Zhao M. An Updated Review of the Epigenetic Mechanism Underlying the Pathogenesis of Age-related Macular Degeneration. Aging Dis 2020; 11:1219-1234. [PMID: 33014534 PMCID: PMC7505275 DOI: 10.14336/ad.2019.1126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Epigenetics has been recognized to play an important role in physiological and pathological processes of the human body. Accumulating evidence has indicated that epigenetic mechanisms contribute to the pathogenesis of age-related macular degeneration (AMD). Although the susceptibility related to genetic variants has been revealed by genome-wide association studies, those genetic variants may predict AMD risk only in certain human populations. Other mechanisms, particularly those involving epigenetic factors, may play an important role in the pathogenesis of AMD. Therefore, we briefly summarize the most recent reports related to such epigenetic mechanisms, including DNA methylation, histone modification, and non-coding RNA, and the interplay of genetic and epigenetic factors in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Xiaohua Li
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China
| | - Shikun He
- 1Henan Provincial People's Hospital, Zhengzhou, China.,2Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, China.,3People's Hospital of Zhengzhou University, Zhengzhou, China.,4People's Hospital of Henan University, Zhengzhou, China.,5Departments of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.,6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| | - Mingwei Zhao
- 6Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
| |
Collapse
|
55
|
Liang Y, Su Y, Xu C, Zhang N, Liu D, Li G, Tong T, Chen J. Protein kinase D1 phosphorylation of KAT7 enhances its protein stability and promotes replication licensing and cell proliferation. Cell Death Discov 2020; 6:89. [PMID: 33014433 PMCID: PMC7501302 DOI: 10.1038/s41420-020-00323-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 01/24/2023] Open
Abstract
The histone acetyltransferase (HAT) KAT7/HBO1/MYST2 plays a crucial role in the pre-replication complex (pre-RC) formation, DNA replication and cell proliferation via acetylation of histone H4 and H3. In a search for protein kinase D1 (PKD1)-interacting proteins, we have identified KAT7 as a potential PKD1 substrate. We show that PKD1 directly interacts and phosphorylates KAT7 at Thr97 and Thr331 in vitro and in vivo. PKD1-mediated phosphorylation of KAT7 enhances its expression levels and stability by reducing its ubiquitination-mediated degradation. Significantly, the phospho-defective mutant KAT7-Thr97/331A attenuates histone H4 acetylation levels, MCM2/6 loading on the chromatin, DNA replication and cell proliferation. Similarly, PKD1 knockdown decreases, whereas the constitutive active mutant PKD1-CA increases histone H4 acetylation levels and MCM2/6 loading on the chromatin. Overall, these results suggest that PKD1-mediated phosphorylation of KAT7 may be required for pre-RC formation and DNA replication.
Collapse
Affiliation(s)
- Yao Liang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Yuanyuan Su
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Chenzhong Xu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Na Zhang
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Doudou Liu
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Guodong Li
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Tanjun Tong
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191 China
| |
Collapse
|
56
|
Grottkau BE, Hui Z, Ye C, Pang Y. 3D-printed insert-array and 3D-coculture-array for high-throughput screening of cell migration and application to study molecular and cellular influences. ACTA ACUST UNITED AC 2020; 15:055028. [PMID: 32485682 DOI: 10.1088/1748-605x/ab98e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Collective cell migration refers to the movement of groups of cells and collective cell behavior and relies on cell-cell communication and cell-environment interactions. Collective cell migration plays a fundamental role in many aspects of cell biology and pathology. Current protocols for studying collective cell migration either use destructive methods or are not convenient for liquid handling. Here we present a novel 3D-printed insert-array and a 3D-coculture-array for collective cell migration study in high-throughput. The fabricated insert-array is comprised of 96 cylinder shaped inserts which can be placed in each well of a 96-well plate generating watertight contact with the bottom of each well. The insert-array has high manufacturing tolerance, and the coefficient of variations of the insert diameter and circularity are 0.67% and 0.03%, respectively. Each insert generates a circular cell-free area within the well without cell damage and provides convenient access for both manual and robotic liquid handling. Using the 3D-printed insert-array, we studied the migration of human umbilical vein endothelial cells (HUVECs) under the molecular influences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) and under the cellular influences of human mesenchymal stem cells (hMSCs) using the 3D-coculture-array. Our results show that the migration of HUVECs was dose-dependent on the VEGF and bFGF with different correlation patterns. They also generated a synergic pro-migration effect. When cocultured with hMSCs, the migration rate increased significantly while dependent on the number of hMSCs. The effects were partially blocked by VEGF inhibitor which suggests that VEGF secreted from hMSCs plays an important role in cell-to-cell communication during cell migration. The 3D-coculture-array can be manufactured at very low cost and shows higher biomolecule transport efficiency than the commercially available transwell. The calculated Z-factor is 0.66, which classifies our system as a perfect high-throughput assay. In summary, our newly developed insert-array and 3D-coculture-array provide a versatile platform to study collective cell migration in high-throughput as well as the molecular and cellular influences upon it.
Collapse
Affiliation(s)
- Brian E Grottkau
- The Laboratory for Therapeutic 3D Bioprinting, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States of America
| | | | | | | |
Collapse
|
57
|
Dikici S, Claeyssens F, MacNeil S. Pre-Seeding of Simple Electrospun Scaffolds with a Combination of Endothelial Cells and Fibroblasts Strongly Promotes Angiogenesis. Tissue Eng Regen Med 2020; 17:445-458. [PMID: 32447555 PMCID: PMC7392995 DOI: 10.1007/s13770-020-00263-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/14/2020] [Accepted: 04/08/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Introduction of pro-angiogenic cells into tissue-engineered (TE) constructs (prevascularisation) is a promising approach to overcome delayed neovascularisation of such constructs post-implantation. Accordingly, in this study, we examined the contribution of human dermal microvascular endothelial cells (HDMECs) and human dermal fibroblasts (HDFs) alone and in combination on the formation of new blood vessels in ex-ovo chick chorioallantoic membrane (CAM) assay. METHODS Poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV) and polycaprolactone (PCL) were first examined in terms of their physical, mechanical, and biological performances. The effect of gelatin coating and co-culture conditions on enhancing endothelial cell viability and growth was then investigated. Finally, the angiogenic potential of HDMECs and HDFs were assessed macroscopically and histologically after seeding on simple electrospun PHBV scaffolds either in isolation or in indirect co-culture using an ex-ovo CAM assay. RESULTS The results demonstrated that PHBV was slightly more favourable than PCL for HDMECs in terms of cell metabolic activity. The gelatin coating of PHBV scaffolds and co-culture of HDMECs with HDFs both showed a positive impact on HDMECs viability and growth. Both cell types induced angiogenesis over 7 days in the CAM assay either in isolation or in co-culture. The introduction of HDMECs to the scaffolds resulted in the production of more blood vessels in the area of implantation than the introduction of HDFs, but the co-culture of HDMECs and HDFs gave the most significant angiogenic activity. CONCLUSION Our findings showed that the in vitro prevascularisation of TE constructs with HDMECs and HDFs alone or in co-culture promotes angiogenesis in implantable TE constructs.
Collapse
Affiliation(s)
- Serkan Dikici
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK
| | - Sheila MacNeil
- Tissue Engineering Group, Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, North Campus Broad Lane, Sheffield, S3 7HQ, UK.
| |
Collapse
|
58
|
de Oliveira PGFP, Bonfante EA, Bergamo ETP, de Souza SLS, Riella L, Torroni A, Benalcazar Jalkh EB, Witek L, Lopez CD, Zambuzzi WF, Coelho PG. Obesity/Metabolic Syndrome and Diabetes Mellitus on Peri-implantitis. Trends Endocrinol Metab 2020; 31:596-610. [PMID: 32591106 DOI: 10.1016/j.tem.2020.05.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/08/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022]
Abstract
Literature has reported that up to 50% of dental implants may be affected by peri-implantitis, a bacteria-induced chronic inflammatory process, which promotes osteoclast-mediated bone resorption and inhibits bone formation, leading to progressive bone loss around implants. Current evidence points toward an increased risk for the development of peri-implantitis in both obesity/metabolic syndrome (MetS) and diabetes mellitus (DM) conditions relative to the healthy population. Currently, there is no effective treatment for peri-implantitis and the 50% prevalence in MetS and DM, along with its predicted increase in the worldwide population, presents a major concern in implant dentistry as hyperglycemic conditions are associated with bone-healing impairment; this may be through dysfunction of osteocalcin-induced glucose metabolism. The MetS/DM proinflammatory systemic condition and altered immune/microbiome response affect both catabolic and anabolic events of bone-healing that include increased osteoclastogenesis and compromised osteoblast activity, which could be explained by the dysfunction of insulin receptor that led to activation of signals related with osteoblast differentiation. Furthermore, chronic hyperglycemia along with associated micro- and macro-vascular ailments leads to delayed/impaired wound healing due to activation of pathways that are particularly important in initiating events linked to inflammation, oxidative stress, and cell apoptosis; this may be through deactivation of AKT/PKB protein, which possesses a pivotal role in drive survival and eNOS signaling. This review presents an overview of the local and systemic mechanisms synergistically affecting bone-healing impairment in MetS/DM individuals, as well as a rationale for hierarchical animal model selection, in an effort to characterize peri-implantitis disease and treatment.
Collapse
Affiliation(s)
- Paula Gabriela Faciola Pessôa de Oliveira
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil; Department of Periodontology, School of Dentistry, University Center of State of Para, Belem, PA, Brazil
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Edmara T P Bergamo
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Sérgio Luis Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leonardo Riella
- Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA
| | - Ernesto B Benalcazar Jalkh
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of Sao Paulo, Bauru, SP, Brazil
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Department of Biomedical Engineering, NYU Tandon School of Engineering, New York University, Brooklyn, NY, USA
| | - Christopher D Lopez
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine Baltimore, MD, USA
| | - Willian Fernando Zambuzzi
- Department of Chemical and Biological Sciences, Bioscience Institute (IBB), UNESP - São Paulo State University, Botucatu, São Paulo, Brazil
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, NY, USA; Hansjörg Wyss Department of Plastic Surgery, NYU Langone Health School of Medicine, New York, NY, USA; Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
59
|
Zhuang Y, Liu Q, Jia G, Li H, Yuan G, Yu H. A Biomimetic Zinc Alloy Scaffold Coated with Brushite for Enhanced Cranial Bone Regeneration. ACS Biomater Sci Eng 2020; 7:893-903. [PMID: 33715369 DOI: 10.1021/acsbiomaterials.9b01895] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone tissue engineering is considered as a promising pathway for bone regeneration and defect reconstruction, in which scaffolds play an important role. Zn alloy, which is a biodegradable metal material that has advantages of metallic and biodegradable characteristics, has its special features, especially the ideal degradation rate and acceptable biocompatibility, which make it worthy to be further investigated for medical applications. In this study, new biodegradable porous Zn alloy scaffolds with Ca-P coating were attempted to repair cranial bone defect, and in vitro and in vivo assays were conducted to evaluate its biocompatibility, osteo-inductivity, and osteo-conductivity. The results indicated that coated Zn alloy possessed good biocompatibility, with no cytotoxicity. It could also promote osteogenic differentiation and calcium deposition of rabbit BMSCs in vitro, and new bone formation around the scaffold in vivo. The biodegradable porous Zn alloy scaffold with Ca-P coating is considered to be promising in cranial bone defect repair.
Collapse
Affiliation(s)
- Yu Zhuang
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| | - Qingcheng Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| | - Gaozhi Jia
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongliang Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Yu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; National Clinical Research Center for Oral Diseases, Shanghai 200011, China
| |
Collapse
|
60
|
Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2020; 78:427-445. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.
Collapse
|
61
|
Periyannan V, Annamalai V, Veerasamy V. Syringic acid modulates molecular marker-involved cell proliferation, survival, apoptosis, inflammation, and angiogenesis in DMBA-induced oral squamous cell carcinoma in Syrian hamsters. J Biochem Mol Toxicol 2020; 34:e22574. [PMID: 32640096 DOI: 10.1002/jbt.22574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Despite, different medicinal phyto compounds giving an inexhaustible variety of anticancer drugs, potent signalling mechanism of leads the key successes of anticancer agent, anti-inflammatory, induction of apoptosis, and antiangiogenic. The current study was conducted to estimate the effect of syringic acid (SA) on tumor necrosis factor-α (TNF-α)-mediated nuclear factor-κB (NF-κB) signaling pathways, inducing apoptosis and angiogenic signaling pathways in a hamster model by preneoplastic stages, histological, immunohistochemistry and immunoblots analysis. Hamsters were given oral cancer by painting 0.5% 7,12-dimethylbenz[a]anthracene (DMBA) for 10 weeks. The DMBA-painted hamsters were treated with an effective dose (50 mg/kg body weight) of SA for 14 weeks. The results revealed that oral preadministration of SA to DMBA-treated hamster oral tumorigenesis significantly increased Bcl-2-associated X protein, caspases-3 and -9, and reduced B-cell lymphoma protein 2 and inflammatory cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, and TNF-α expression through NF-κB, and angiogenic vascular endothelial growth factor markers. Taken together, the current study suggests that SA prevents the DMBA-induced hamster buccal pouch carcinogenesis by triggering intrinsic apoptotic pathway via abrogation of the downstream signaling molecules such as COX-2, NF-κB, and TNF-α. This type of preventive strategy based on animal study will offer a means to design chemoprevention trials for humans.
Collapse
Affiliation(s)
- Velu Periyannan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Vijayalakshmi Annamalai
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| | - Vinothkumar Veerasamy
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, India
| |
Collapse
|
62
|
Dikici S, Bullock AJ, Yar M, Claeyssens F, MacNeil S. 2-deoxy-d-ribose (2dDR) upregulates vascular endothelial growth factor (VEGF) and stimulates angiogenesis. Microvasc Res 2020; 131:104035. [PMID: 32593538 DOI: 10.1016/j.mvr.2020.104035] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Delayed neovascularisation of tissue-engineered (TE) complex constructs is a major challenge that causes their failure post-implantation. Although significant progress has been made in the field of angiogenesis, ensuring rapid neovascularisation still remains a challenge. The use of pro-angiogenic agents is an effective approach to promote angiogenesis, and vascular endothelial growth factor (VEGF) has been widely studied both at the biological and molecular levels and is recognised as a key stimulator of angiogenesis. However, the exogenous use of VEGF in an uncontrolled manner has been shown to result in leaky, permeable and haemorrhagic vessels. Thus, researchers have been actively seeking alternative agents to upregulate VEGF production rather than exogenous use of VEGF in TE systems. We have previously revealed the potential of 2-deoxy-d-ribose (2dDR) as an alternative pro-angiogenic agent to induce angiogenesis and accelerates wound healing. However, to date, there is not any clear evidence on whether 2dDR influences the angiogenic cascade that involves VEGF. METHODS In this study, we explored the angiogenic properties of 2dDR either by its direct application to human aortic endothelial cells (HAECs) or when released from commercially available alginate dressings and demonstrated that when 2dDR promotes angiogenesis, it also increases the VEGF production of HAECs. RESULTS The VEGF quantification results suggested that VEGF production by HAECs was increased with 2dDR treatment but not with other sugars, including 2-deoxy-l-ribose (2dLR) and d-glucose (DG). The stability studies demonstrated that approximately 40-50% of the 2dDR had disappeared in the media over 14 days, either in the presence or absence of HAECs, and the reduction was higher when cells were present. The concentration of VEGF in the media also fell after day 4 associated with the reduction in 2dDR. CONCLUSION This study suggests that 2dDR (but not other sugars tested in this study) stimulates angiogenesis by increasing the production of VEGF. We conclude 2dDR appears to be a practical and effective indirect route to upregulating VEGF for several days, leading to increased angiogenesis.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Anthony J Bullock
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Frederik Claeyssens
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
63
|
Gangadaran P, Rajendran RL, Oh JM, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Extracellular vesicles derived from macrophage promote angiogenesis In vitro and accelerate new vasculature formation In vivo. Exp Cell Res 2020; 394:112146. [PMID: 32561287 DOI: 10.1016/j.yexcr.2020.112146] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ischemia is the partial or complete blockage of blood supply to tissues. Extracellular vesicles (EVs) are emerging as a therapeutic tool for ischemic diseases. Most EV-based ischemia therapies are based on various stem cells. Here, we propose an alternative cell source for the isolation of pro-angiogenic EVs. METHODS EVs were isolated from a mouse macrophage cell line (Raw 264.7). The characteristic features of the macrophage-derived EVs (MAC-EVs) were assessed using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting (WB) analysis. WB and qRT-PCR were performed to identify the pro-angiogenic VEGF and Wnt3a proteins and microRNAs (miR-210, miR-126, and miR-130a) in the MAC-EVs. In vitro and in vivo Matrigel plug assays were performed to investigate the capacity of the MAC-EVs for tube (blood vessel-like) formation and new blood vessel formation and assessed by histology. RESULTS The MAC-EVs was positive for ALIX and negative for calnexin, with a round shape and an average size of 189 ± 65.1 nm. WB and qRT-PCR results revealed that VEGF, Wnt3a and miR-130a were more abundant in the MAC-EVs than cells. MAC-EVs treatment resulted in increased endothelial cellular proliferation, migration, and tube formation in vitro. In vivo assay results revealed that MAC-EVs increased the formation of new and larger blood vessels in the Matrigel plug of mice compared to the formation in the control group. CONCLUSION Our results suggest that MAC-EVs have the potential to induce angiogenesis in vitro and in vivo, could serve as a pro-angiogenic alternative for ischemic diseases.
Collapse
Affiliation(s)
- Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea.
| |
Collapse
|
64
|
Andleeb A, Dikici S, Waris TS, Bashir MM, Akhter S, Chaudhry AA, MacNeil S, Yar M. Developing affordable and accessible pro-angiogenic wound dressings; incorporation of 2 deoxy D-ribose (2dDR) into cotton fibres and wax-coated cotton fibres. J Tissue Eng Regen Med 2020; 14:973-988. [PMID: 32473079 DOI: 10.1002/term.3072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022]
Abstract
The absorption capacity of cotton dressings is a critical factor in their widespread use where they help absorb wound exudate. Cotton wax dressings, in contrast, are used for wounds where care is taken to avoid adhesion of dressings to sensitive wounds such as burn injuries. Accordingly, we explored the loading of 2-deoxy-D-ribose (2dDR), a small sugar, which stimulates angiogenesis and wound healing in normal and diabetic rats, into both types of dressings and measured the release of it over several days. The results showed that approximately 90% of 2dDR was released between 3 and 5 days when loaded into cotton dressings. For wax-coated cotton dressings, several methods of loading of 2dDR were explored. A strategy similar to the commercial wax coating methodology was found the best protocol which provided a sustained release over 5 days. Cytotoxicity analysis of 2dDR loaded cotton dressing showed that the dressing stimulated metabolic activity of fibroblasts over 7 days confirming the non-toxic nature of this sugar-loaded dressings. The results of the chick chorioallantoic membrane (CAM) assay demonstrated a strong angiogenic response to both 2dDR loaded cotton dressing and to 2dDR loaded cotton wax dressings. Both dressings were found to increase the number of newly formed blood vessels significantly when observed macroscopically and histologically. We conclude this study offers a simple approach to developing affordable wound dressings as both have the potential to be evaluated as pro-active dressings to stimulate wound healing in wounds where management of exudate or prevention of adherence to the wounds are clinical requirements.
Collapse
Affiliation(s)
- Anisa Andleeb
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Serkan Dikici
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Tayyaba Sher Waris
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Muhammad Mustehsan Bashir
- Department of Plastic, Reconstructive surgery and Burn Unit, King Edward Medical University Lahore, Pakistan
| | - Shahid Akhter
- Cotton Craft Pvt Ltd Plot 407, 408 Sunder Industrial Estate, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| | - Sheila MacNeil
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Muhammad Yar
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore, Pakistan
| |
Collapse
|
65
|
Dikici S, Claeyssens F, MacNeil S. Bioengineering Vascular Networks to Study Angiogenesis and Vascularization of Physiologically Relevant Tissue Models in Vitro. ACS Biomater Sci Eng 2020; 6:3513-3528. [PMID: 32582840 PMCID: PMC7304666 DOI: 10.1021/acsbiomaterials.0c00191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
Angiogenesis assays are essential for studying aspects of neovascularization and angiogenesis and investigating drugs that stimulate or inhibit angiogenesis. To date, there are several in vitro and in vivo angiogenesis assays that are used for studying different aspects of angiogenesis. Although in vivo assays are the most representative of native angiogenesis, they raise ethical questions, require considerable technical skills, and are expensive. In vitro assays are inexpensive and easier to perform, but the majority of them are only two-dimensional cell monolayers which lack the physiological relevance of three-dimensional structures. Thus, it is important to look for alternative platforms to study angiogenesis under more physiologically relevant conditions in vitro. Accordingly, in this study, we developed polymeric vascular networks to be used to study angiogenesis and vascularization of a 3D human skin model in vitro. Our results showed that this platform allowed the study of more than one aspect of angiogenesis, endothelial migration and tube formation, in vitro when combined with Matrigel. We successfully reconstructed a human skin model, as a representative of a physiologically relevant and complex structure, and assessed the suitability of the developed in vitro platform for studying endothelialization of the tissue-engineered skin model.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Frederik Claeyssens
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Sheila MacNeil
- Department of Materials
Science
and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
66
|
Basmaeil YS, Bahattab E, Alshabibi MA, Abomaray FM, Abumaree M, Khatlani T. Human Decidua Basalis mesenchymal stem/stromal cells reverse the damaging effects of high level of glucose on endothelial cells in vitro. J Cell Mol Med 2020; 25:1838-1850. [PMID: 32500631 PMCID: PMC7882938 DOI: 10.1111/jcmm.15248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported the therapeutic potential of mesenchymal stem/stromal cells (MSCs) from the maternal decidua basalis tissue of human term placenta (DBMSCs) to treat inflammatory diseases, such as atherosclerosis and cancer. DMSCs protect endothelial cell functions from the negative effects of oxidative stress mediators including hydrogen peroxide (H2O2) and monocytes. In addition, DBMSCs induce the generation of anti‐cancer immune cells known as M1 macrophages. Diabetes is another inflammatory disease where endothelial cells are injured by H2O2 produced by high level of glucose (hyperglycaemia), which is associated with development of thrombosis. Here, we investigated the ability of DBMSCs to reverse the damaging effects of high levels of glucose on endothelial cells. DBMSCs and endothelial cells were isolated from human placental and umbilical cord tissues, respectively. Endothelial cells were incubated with glucose in presence of DBMSCs, and their functions were evaluated. The effect of DBMSCs on glucose‐ treated endothelial cell expression of genes was also determined. DBMSCs reversed the effects of glucose on endothelial cell functions including proliferation, migration, angiogenesis and permeability. In addition, DBMSCs modified the expression of several genes mediating essential endothelial cell functions including survival, apoptosis, permeability and angiogenesis. We report the first evidence that DBMSCs protect the functions of endothelial cells from the damaging effects of glucose. Based on these results, we establish that DBMSCs are promising therapeutic agents to repair glucose‐induced endothelial cell injury in diabetes. However, these finding must be investigated further to determine the pathways underlying the protective role of DBMSCs on glucose‐stimulated endothelial cell Injury.
Collapse
Affiliation(s)
- Yasser S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Eman Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manal A Alshabibi
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fawaz M Abomaray
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Mohamed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
67
|
Figueiredo A, Leal EC, Carvalho E. Protein tyrosine phosphatase 1B inhibition as a potential therapeutic target for chronic wounds in diabetes. Pharmacol Res 2020; 159:104977. [PMID: 32504834 DOI: 10.1016/j.phrs.2020.104977] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Non-healing diabetic foot ulcers (DFUs) are a serious complication in diabetic patients. Their incidence has increased in recent years. Although there are several treatments for DFUs, they are often not effective enough to avoid amputation. Protein tyrosine phosphatase 1B (PTP1B) is expressed in most tissues and is a negative regulator of important metabolic pathways. PTP1B is overexpressed in tissues under diabetic conditions. Recently, PTP1B inhibition has been found to enhance wound healing. PTP1B inhibition decreases inflammation and bacterial infection at the wound site and promotes angiogenesis and tissue regeneration, thereby facilitating diabetic wound healing. In summary, the pharmacological modulation of PTP1B activity may help treat DFUs, suggesting that PTP1B inhibition is an outstanding therapeutic target.
Collapse
Affiliation(s)
- Ana Figueiredo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal
| | - Ermelindo C Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal.
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, Portugal; Department of Geriatrics, and Arkansas Children's Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| |
Collapse
|
68
|
HDAC7 promotes the oncogenicity of nasopharyngeal carcinoma cells by miR-4465-EphA2 signaling axis. Cell Death Dis 2020; 11:322. [PMID: 32376822 PMCID: PMC7203158 DOI: 10.1038/s41419-020-2521-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/29/2022]
Abstract
HDAC7 plays a crucial role in cancers, and is the main drug target of several HDAC inhibitors. However, the role and mechanism of HDAC7 in nasopharyngeal carcinoma (NPC) are still unclear. In this study, we observed that HDAC7 was significantly upregulated in the NPC tissues relative to normal nasopharyngeal mucosa (NNM) tissues, HDAC7 expression levels were positively correlated with NPC progression and negatively correlated with patient prognosis, and HDAC7 knockdown dramatically inhibited the in vitro proliferation, migration, and invasion of NPC cells, and the growth of NPC xenografts in mice, indicating the HDAC7 promotes the oncogenicity of NPC. Mechanistically, HDAC7 promoted the in vitro proliferation, migration, and invasion of NPC cells by upregulating EphA2, in which miR-4465 mediated HDAC7-regulating EphA2, a direct target gene of miR-4465. We further showed that miR-4465 was significantly downregulated in the NPC tissues relative to NNM tissues, and inhibited the in vitro proliferation, migration, and invasion of NPC cells by targeting EphA2 expression. Moreover, we observed that the expressions of HDAC7, miR-4465, and EphA2 in NPC tissues were correlated. The results suggest that HDAC7 promotes the oncogenicity of NPC by downregulating miR-4465 and subsequently upregulating EphA2, highlighting HDAC7 as a potential therapeutic target for NPC.
Collapse
|
69
|
Xie T, Li N, Mao S, Zhang Q, Lin JM. Cell Heterogeneity Revealed by On-Chip Angiogenic Endothelial Cell Migration. ACS OMEGA 2020; 5:3857-3862. [PMID: 32149212 PMCID: PMC7057352 DOI: 10.1021/acsomega.9b03074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
In sprouting angiogenesis, a key process involved in the development and the intravasation of tumor tissues, the growth of vessel sprouts, is determined by migration of single endothelial cells (ECs). This paper presents an on-chip assaying method to investigate the migration of individual ECs by simulating vessel sprouts with microchannels. When chemical stimulus is present, ECs were observed to migrate individually toward the source of factors instead of migrating collectively. The validity of this method is shown by inducing EC migration with glioma cell coculture and culture media doped with vascular endothelial growth factor (VEGF) 165. A positive correlation between cell displacement and VEGF 165 concentration was observed. Difference in migrating ability among cells was reflected by tracking single cells, which could reveal cell heterogeneity in susceptibility to stimulus.
Collapse
Affiliation(s)
- Tianze Xie
- Department of Chemistry,
Beijing Key Laboratory of Microanalytical Methods and Instrumentation,
MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing 100084, China
| | - Nan Li
- Department of Chemistry,
Beijing Key Laboratory of Microanalytical Methods and Instrumentation,
MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Department of Chemistry,
Beijing Key Laboratory of Microanalytical Methods and Instrumentation,
MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing 100084, China
| | - Qiang Zhang
- Department of Chemistry,
Beijing Key Laboratory of Microanalytical Methods and Instrumentation,
MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Department of Chemistry,
Beijing Key Laboratory of Microanalytical Methods and Instrumentation,
MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical
Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
70
|
Masoumi-Dehghi S, Babashah S, Sadeghizadeh M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways. J Cell Commun Signal 2020; 14:233-244. [PMID: 32034654 DOI: 10.1007/s12079-020-00548-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/20/2020] [Indexed: 12/21/2022] Open
Abstract
Paracrine signaling between tumor and surrounding stromal cells is critical for the maintenance of tumor microenvironment during ovarian cancer progression. Small extracellular vesicles (sEVs; exosomes in particular) are nano-sized vesicles secreted actively by many cells including tumor cells and are found to have fundamental roles in intercellular communication through shuttling functional RNAs. Although microRNAs (also called miRNAs or miRs), small non-coding RNAs regulating gene expression, are selectively accumulated in tumor sEVs and can mediate intercellular communication, the exact biological mechanisms underlying the functions of exosomal miRNAs in ovarian tumor angiogenesis remain unclear. In this study, sEVs were isolated from conditioned medium of the human ovarian carcinoma cell line SKOV-3 using ExoQuick Exosome Precipitation Solution, and characterized by scanning electron microscopy, dynamic light scattering, and immunoblotting. To elucidate the possible paracrine effects on ovarian tumor cell-derived sEVs (TD-sEVs), we investigated the angiogenesis-related signaling events triggered by TD-sEVs in endothelial cells. Due to the possible role in ovarian tumor pathogenesis, we focused on miR-141-3p which was detected to be enriched in TD-sEVs compared with their corresponding donor cells. We identified that sEV transfer of miR-141-3p considerably reduced the expression levels of cytokine-inducible suppressors of cytokine signaling (SOCS)-5 leading to up-regulated JAK-STAT3 pathway in endothelial cells. We also observed that sEV-shuttled miR-141-3p may up-regulate the expression of VEGFR-2 in endothelial cells which leads to promoting endothelial cell migration and angiogenesis. The putative role of miR-141-3p shuttled by TD-sEVs in regulating VEGFR-2 expression was demonstrated by the ability of anti-miR-141-3p to rescue the promoting effects of TD-sEVs on the expression of VEGFR-2 in endothelial cells. Our results also revealed that TD-sEVs trigger the intracellular reactive oxygen species (ROS)-dependent activation of NF-κB signaling in endothelial cells. Taken together, our findings propose a novel model in which sEV transfer of epithelial ovarian cancer-secreted miR-141-3p plays as a significant mediator of intercellular communication, promoting endothelial cell angiogenesis.
Collapse
Affiliation(s)
- Sajjad Masoumi-Dehghi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
71
|
Liu Y, Paterson M, Baumgardt SL, Irwin MG, Xia Z, Bosnjak ZJ, Ge ZD. Vascular endothelial growth factor regulation of endothelial nitric oxide synthase phosphorylation is involved in isoflurane cardiac preconditioning. Cardiovasc Res 2020; 115:168-178. [PMID: 29931049 DOI: 10.1093/cvr/cvy157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
Aims Previous studies indicate that nitric oxide derived from endothelial nitric oxide synthase (eNOS) serves as both trigger and mediator in anaesthetic cardiac preconditioning. The mechanisms underlying regulation of eNOS by volatile anaesthetics have not been fully understood. Therefore, this study examined the role of vascular endothelial growth factor (VEGF) in isoflurane cardiac preconditioning. Methods and results Wistar rats underwent 30 min of coronary artery occlusion followed by 2 h of reperfusion. Isoflurane given prior to ischaemia/reperfusion significantly decreased myocardial infarct size from 60 ± 1% in control to 40 ± 3% (n = 8 rats/group, P < 0.05). The beneficial effects of isoflurane were blocked by neutralizing antibody against VEGF (nVEGF). Coronary arterial endothelial cells (ECs) alone or together with cardiomyocytes (CMs) were subjected to hypoxia/reoxygenation injury. The expression of VEGF and eNOS was analysed by western blot, and nitric oxide was measured by ozone-based chemiluminescence. In co-cultured CMs and ECs, isoflurane administered before hypoxia/reoxygenation attenuated lactate dehydrogenase activity and increased the ratio of phosphorylated eNOS/eNOS and nitric oxide production. The protective effect of isoflurane on CMs was compromised by nVEGF and after VEGF in ECs was inhibited with hypoxia inducible factor-1α short hairpin RNA (shRNA). The negative effect of hypoxia inducible factor-1α shRNA was restored by recombinant VEGF. Conclusion Isoflurane cardiac preconditioning is associated with VEGF regulation of phosphorylation of eNOS and nitric oxide production.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.,Department of Pathology and Cell Biology, Columbia University, 630 W. 168th Street, New York, NY, USA.,Department of Anesthesiology, University of Hong Kong, Hong Kong, China SAR, China
| | - Mark Paterson
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Shelley L Baumgardt
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Michael G Irwin
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China SAR, China
| | - Zhengyuan Xia
- Department of Anesthesiology, University of Hong Kong, Hong Kong, China SAR, China
| | - Zeljko J Bosnjak
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.,Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA
| | - Zhi-Dong Ge
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.,Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Stanford, CA, USA
| |
Collapse
|
72
|
Yang J, Moraga A, Xu J, Zhao Y, Luo P, Lao KH, Margariti A, Zhao Q, Ding W, Wang G, Zhang M, Zheng L, Zhang Z, Hu Y, Wang W, Shen L, Smith A, Shah AM, Wang Q, Zeng L. A histone deacetylase 7-derived peptide promotes vascular regeneration via facilitating 14-3-3γ phosphorylation. Stem Cells 2020; 38:556-573. [PMID: 31721359 PMCID: PMC7187271 DOI: 10.1002/stem.3122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Histone deacetylase 7 (HDAC7) plays a pivotal role in the maintenance of the endothelium integrity. In this study, we demonstrated that the intron-containing Hdac7 mRNA existed in the cytosol and that ribosomes bound to a short open reading frame (sORF) within the 5'-terminal noncoding area of this Hdac7 mRNA in response to vascular endothelial growth factor (VEGF) stimulation in the isolated stem cell antigen-1 positive (Sca1+ ) vascular progenitor cells (VPCs). A 7-amino acid (7A) peptide has been demonstrated to be translated from the sORF in Sca1+ -VPCs in vitro and in vivo. The 7A peptide was shown to receive phosphate group from the activated mitogen-activated protein kinase MEKK1 and transfer it to 14-3-3 gamma protein, forming an MEKK1-7A-14-3-3γ signal pathway downstream VEGF. The exogenous synthetic 7A peptide could increase Sca1+ -VPCs cell migration, re-endothelialization in the femoral artery injury, and angiogenesis in hind limb ischemia. A Hd7-7sFLAG transgenic mice line was generated as the loss-of-function model, in which the 7A peptide was replaced by a FLAG-tagged scrabbled peptide. Loss of the endogenous 7A impaired Sca1+ -VPCs cell migration, re-endothelialization of the injured femoral artery, and angiogenesis in ischemic tissues, which could be partially rescued by the addition of the exogenous 7A/7Ap peptide. This study provides evidence that sORFs can be alternatively translated and the derived peptides may play an important role in physiological processes including vascular remodeling.
Collapse
Affiliation(s)
- Junyao Yang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK.,Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ana Moraga
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Jing Xu
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Yue Zhao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Peiyi Luo
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ka Hou Lao
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Andriana Margariti
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Qiang Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Wei Ding
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Gang Wang
- Department of Emergency Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Min Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Lei Zheng
- Southern Medical University, Guangzhou, People's Republic of China
| | - Zhongyi Zhang
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Yanhua Hu
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Wen Wang
- Institute of Bioengineering, Queen Mary University of London, London, UK
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Alberto Smith
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Qian Wang
- Southern Medical University, Guangzhou, People's Republic of China
| | - Lingfang Zeng
- School of Cardiovascular Medicine and Sciences, King's College - London British Heart Foundation Centre of Excellence, Faculty of Life Science and Medicine, King's College London, London, UK
| |
Collapse
|
73
|
Mohana Devi S, Mahalaxmi I, Kaavya J, Chinnkulandhai V, Balachandar V. Does epigenetics have a role in age related macular degeneration and diabetic retinopathy? Genes Dis 2020; 8:279-286. [PMID: 33997175 PMCID: PMC8093576 DOI: 10.1016/j.gendis.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms play an important part in the regulation of gene expression and these alterations may induce long-term changes in gene function and metabolism. They have received extensive attention in bridging the gap between environmental exposures and disease development via their influence on gene expression. DNA methylation is the earliest discovered epigenetic alteration. In this review, we try to examine the role of DNA methylation and histone modification in Age related macular degeneration (AMD) and Diabetic Retinopathy (DR), its vascular complications and recent progress. Given the complex nature of AMD and DR, it is crucial to improve therapeutics which will greatly enhance the quality of life and reduce the burden for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- S Mohana Devi
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, 41/18, College Road, Chennai, 600006, India
| | - I Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - J Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - V Chinnkulandhai
- Department of Biochemistry, Dr.N.G.P Arts and Science College, Coimbatore, Tamil Nadu, 641046, India
| | - V Balachandar
- Human Molecular Genetics and Stem Cells Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
74
|
Dikici S, Aldemir Dikici B, Bhaloo SI, Balcells M, Edelman ER, MacNeil S, Reilly GC, Sherborne C, Claeyssens F. Assessment of the Angiogenic Potential of 2-Deoxy-D-Ribose Using a Novel in vitro 3D Dynamic Model in Comparison With Established in vitro Assays. Front Bioeng Biotechnol 2020; 7:451. [PMID: 32010677 PMCID: PMC6978624 DOI: 10.3389/fbioe.2019.00451] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis is a highly ordered physiological process regulated by the interaction of endothelial cells with an extensive variety of growth factors, extracellular matrix components and mechanical stimuli. One of the most important challenges in tissue engineering is the rapid neovascularization of constructs to ensure their survival after transplantation. To achieve this, the use of pro-angiogenic agents is a widely accepted approach. The study of angiogenesis has gained momentum over the last two decades. Although there are various in vitro, ex vivo, and in vivo angiogenesis models that enable testing of newly discovered pro-angiogenic agents, the problem with researching angiogenesis is the choice of the most appropriate assay. In vivo assays are the most representative and reliable models, but they are expensive, time-consuming and can cause ethical concerns whereas in vitro assays are relatively inexpensive, practical, and reproducible, but they are usually lack of enabling the study of more than one aspect of angiogenesis, and they do not fully represent the complexity of physiological angiogenesis. Therefore, there is a need for the development of an angiogenesis model that allows the study of angiogenesis under physiologically more relevant, dynamic conditions without causing ethical concerns. Accordingly, in this study, we developed 3D in vitro dynamic angiogenesis model, and we tested the angiogenic potential of 2-deoxy-D-ribose (2dDR) in comparison with vascular endothelial growth factor (VEGF) using newly developed in vitro 3D dynamic model and well-established in vitro models. Our results obtained using conventional in vitro assays demonstrated that 2dDR promoted proliferation, migration and tube formation of human aortic endothelial cells (HAECs) in a dose-dependent manner. Then, the angiogenic activity of 2dDR was further assessed using the newly developed 3D in vitro model, which enabled the monitoring of cell proliferation and infiltration simultaneously under dynamic conditions. Our results showed that the administration of 2dDR and VEGF significantly enhanced the outgrowth of HAECs and the cellular density under either static or dynamic conditions.
Collapse
Affiliation(s)
- Serkan Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Shirin Issa Bhaloo
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Mercedes Balcells
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Bioengineering Department, Institut Quimic de Sarria, Ramon Llull University, Barcelona, Spain
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Cardiovascular Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Sheila MacNeil
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Gwendolen C. Reilly
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Colin Sherborne
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
75
|
Wang Y, Hoeppner LH, Angom RS, Wang E, Dutta S, Doeppler HR, Wang F, Shen T, Scarisbrick IA, Guha S, Storz P, Bhattacharya R, Mukhopadhyay D. Protein kinase D up-regulates transcription of VEGF receptor-2 in endothelial cells by suppressing nuclear localization of the transcription factor AP2β. J Biol Chem 2019; 294:15759-15767. [PMID: 31492751 PMCID: PMC6816101 DOI: 10.1074/jbc.ra119.010152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/19/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular endothelial growth factor A (VEGF) signals primarily through its cognate receptor VEGF receptor-2 (VEGFR-2) to control vasculogenesis and angiogenesis, key physiological processes in cardiovascular disease and cancer. In human umbilical vein endothelial cells (HUVECs), knockdown of protein kinase D-1 (PKD1) or PKD2 down-regulates VEGFR-2 expression and inhibits VEGF-induced cell proliferation and migration. However, how PKD regulates VEGF signaling is unclear. Previous bioinformatics analyses have identified binding sites for the transcription factor activating enhancer-binding protein 2 (AP2) in the VEGFR-2 promoter. Using ChIP analyses, here we found that PKD knockdown in HUVECs increases binding of AP2β to the VEGFR-2 promoter. Luciferase reporter assays with serial deletions of AP2-binding sites within the VEGFR-2 promoter revealed that its transcriptional activity negatively correlates with the number of these sites. Next we demonstrated that AP2β up-regulation decreases VEGFR-2 expression and that loss of AP2β enhances VEGFR-2 expression in HUVECs. In vivo experiments confirmed increased VEGFR-2 immunostaining in the spinal cord of AP2β knockout mouse embryos. Mechanistically, we observed that PKD phosphorylates AP2β at Ser258 and Ser277 and suppresses its nuclear accumulation. Inhibition of PKD activity with a pan-PKD inhibitor increased AP2β nuclear localization, and overexpression of both WT and constitutively active PKD1 or PKD2 reduced AP2β nuclear localization through a Ser258- and Ser277-dependent mechanism. Furthermore, substitution of Ser277 in AP2β increased its binding to the VEGFR-2 promoter. Our findings uncover evidence of a molecular pathway that regulates VEGFR-2 expression, insights that may shed light on the etiology of diseases associated with aberrant VEGF/VEGFR signaling.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Luke H Hoeppner
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Ramcharan Singh Angom
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Heike R Doeppler
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Fei Wang
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Neurosurgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Tao Shen
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
- Department of Colorectal Surgery, Third Affiliated Hospital of Kunming Medical University, Kunming 650221, China
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Sushovan Guha
- University of Arizona College of Medicine, Phoenix, Arizona 85004
| | - Peter Storz
- Department of Cancer Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Rochester, Minnesota 55905
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, College of Medicine and Science, Mayo Clinic, Jacksonville, Florida 32224
| |
Collapse
|
76
|
ER Ca 2+ release and store-operated Ca 2+ entry - partners in crime or independent actors in oncogenic transformation? Cell Calcium 2019; 82:102061. [PMID: 31394337 DOI: 10.1016/j.ceca.2019.102061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Ca2+ is a pleiotropic messenger that controls life and death decisions from fertilisation until death. Cellular Ca2+ handling mechanisms show plasticity and are remodelled throughout life to meet the changing needs of the cell. In turn, as the demands on a cell alter, for example through a change in its niche environment or its functional requirements, Ca2+ handling systems may be targeted to sustain the remodelled cellular state. Nowhere is this more apparent than in cancer. Oncogenic transformation is a multi-stage process during which normal cells become progressively differentiated towards a cancerous state that is principally associated with enhanced proliferation and avoidance of death. Ca2+ signalling is intimately involved in almost all aspects of the life of a transformed cell and alterations in Ca2+ handling have been observed in cancer. Moreover, this remodelling of Ca2+ signalling pathways is also required in some cases to sustain the transformed phenotype. As such, Ca2+ handling is hijacked by oncogenic processes to deliver and maintain the transformed phenotype. Central to generation of intracellular Ca2+ signals is the release of Ca2+ from the endoplasmic reticulum intracellular (ER) Ca2+ store via inositol 1,4,5-trisphosphate receptors (InsP3Rs). Upon depletion of ER Ca2+, store-operated Ca2+ entry (SOCE) across the plasma membrane occurs via STIM-gated Orai channels. SOCE serves to both replenish stores but also sustain Ca2+ signalling events. Here, we will discuss the role and regulation of these two signalling pathways and their interplay in oncogenic transformation.
Collapse
|
77
|
Guo X, Fang ZM, Wei X, Huo B, Yi X, Cheng C, Chen J, Zhu XH, Bokha AOKA, Jiang DS. HDAC6 is associated with the formation of aortic dissection in human. Mol Med 2019; 25:10. [PMID: 30925865 PMCID: PMC6441237 DOI: 10.1186/s10020-019-0080-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathological features of aortic dissection (AD) include vascular smooth muscle cell (VSMC) loss, elastic fiber fraction, and inflammatory responses in the aorta. However, little is known about the post-translational modification mechanisms responsible for these biological processes. METHODS A total of 72 aorta samples, used for protein detection, were collected from 36 coronary artery disease (CAD, served as the control) patients and 36 type A AD (TAAD) patients. Chromatin immunoprecipitation (ChIP)-PCR was used to identify the genes regulated by H3K23ac, and tubastatin A, an inhibitor of HDAC6, was utilized to clarify the downstream mechanisms regulated by HDAC6. RESULTS We found that the protein level of histone deacetylase HDAC6 was reduced in the aortas of patients suffering from TAAD and that the protein levels of H4K12ac, and H3K23ac significantly increased, while H3K18ac, H4K8ac, and H4K5ac dramatically decreased when compared with CAD patients. Although H3K23ac, H3K18ac, and H4K8ac increased in the human VSMCs after treatment with the HDAC6 inhibitor tubastatin A, only H3K23ac showed the same results in human tissues. Notably, the results of ChIP-PCR demonstrated that H3K23ac was enriched in extracellular matrix (ECM)-related genes, including Col1A2, Col3A1, CTGF, POSTN, MMP2, TIMP2, and ACTA2, in the aortic samples of TAAD patients. In addition, our results showed that HDAC6 regulates H4K20me2 and p-MEK1/2 in the pathological process of TAAD. CONCLUSIONS These results indicate that HDAC6 is involved in human TAAD formation by regulating H3K23ac, H4K20me2 and p-MEK1/2, thus, providing a strategy for the treatment of TAAD by targeting protein post-translational modifications (PTMs), chiefly histone PTMs.
Collapse
Affiliation(s)
- Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,NHC Key Laboratory of Organ Transplantation, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
78
|
Bietenbeck M, Engel S, Lamping S, Hansen U, Faber C, Ravoo BJ, Yilmaz A. Functionalization of Clinically Approved MRI Contrast Agents for the Delivery of VEGF. Bioconjug Chem 2019; 30:1042-1047. [PMID: 30860371 DOI: 10.1021/acs.bioconjchem.9b00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In combining the two clinically approved substances ferumoxytol and VEGF-165 via peptide coupling, we propose a straightforward approach to obtain a potentially ready-to-use theranostic contrast agent for specific cardiovascular diseases. Clinical and preclinical magnetic resonance imaging (MRI) studies have shown that intravenously applied superparamagnetic ferumoxytol nanoparticles accumulate in acute ischemic myocardial tissue. On the other hand, growth factors such as VEGF-165 (vascular endothelial growth factor) play a major role during angiogenesis and vasculogenesis. Promising clinical studies with systemic application of VEGF-165 have been performed in the past. However, following untargeted systemic application, the biological half-life of VEGF-165 was too short to develop its full effect. Therefore, we hypothesized that ferumoxytol particles functionalized with VEGF-165 will accumulate in ischemic myocardial regions and can be detected by MRI, while the prolonged retention of VEGF-165 due to ferumoxytol-coupling will help to prevent adverse tissue remodeling. In addition, strategies such as magnetic targeting can be used to enhance targeted local accumulation. As a precondition for further preclinical research, we confirmed the successful coupling between ferumoxytol and VEGF-165 in detail (TEM, XPS, and IR spectroscopy), characterized the functionalized ferumoxytol particles (DLS, TEM, and MRI) and performed in vitro tests that showed their superior effect on cell growth and survival.
Collapse
Affiliation(s)
- Michael Bietenbeck
- Division of Cardiovascular Imaging, Department of Cardiology I , University Hospital Münster , Albert-Schweitzer-Campus 1 , 48149 Münster , Germany
| | - Sabrina Engel
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , 48149 Münster , Germany
| | - Sebastian Lamping
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , 48149 Münster , Germany
| | - Uwe Hansen
- Institute of Musculoskeletal Medicine , University Hospital Münster , Domagkstraße 3 , 48149 Münster , Germany
| | - Cornelius Faber
- Translational Research Imaging Center, Department of Clinical Radiology , University Hospital Münster , Albert-Schweitzer-Campus 1 , 48149 Münster , Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience , Westfälische Wilhelms-Universität Münster , Corrensstrasse 40 , 48149 Münster , Germany
| | - Ali Yilmaz
- Division of Cardiovascular Imaging, Department of Cardiology I , University Hospital Münster , Albert-Schweitzer-Campus 1 , 48149 Münster , Germany
| |
Collapse
|
79
|
Kim I, Lee SS, Kim SHL, Bae S, Lee H, Hwang NS. Osteogenic Effects of VEGF-Overexpressed Human Adipose-Derived Stem Cells with Whitlockite Reinforced Cryogel for Bone Regeneration. Macromol Biosci 2019; 19:e1800460. [PMID: 30821921 DOI: 10.1002/mabi.201800460] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Bone is a vascularized tissue that is comprised of collagen fibers and calcium phosphate crystals such as hydroxyapatite (HAp) and whitlockite (WH). HAp and WH are known to elicit bone regeneration by stimulating osteoblast activities and osteogenic commitment of stem cells. In addition, vascular endothelial growth factor (VEGF) is shown to promote osteogenesis and angiogenesis which is considered as an essential process in bone repair by providing nutrients. In this study, VEGF-secreting human adipose-derived stem cells (VEGF-ADSCs) are developed by transducing ADSCs with VEGF-encoded lentivirus. Additionally, WH-reinforced gelatin/heparin cryogels (WH-C) are fabricated by loading WH into gelatin/heparin cryogels. VEGF-ADSC secrete tenfold more VEGF than ADSC and show increased VEGF secretion with cell growth. Also, incorporation of WH into cryogels provides a mineralized environment with ions secreted from WH. When the VEGF-ADSCs are seeded on WH-C, sustained release of VEGF is observed due to the specific affinity of VEGF to heparin. Finally, the synergistic effect of VEGF-ADSC and WH on osteogenesis is successfully confirmed by alkaline phosphatase and real-time polymerase chain reaction analysis. In vivo bone formation is demonstrated via implantation of VEGF-ADSC seeded WH-C into mouse calvarial bone defect model, resulted in enhanced bone development with the highest bone volume/total volume.
Collapse
Affiliation(s)
- Inseon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghun S Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunghoon Bae
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hoyon Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.,BioMax Institute of Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
80
|
Yang L, Liu N, Zhao W, Li X, Han L, Zhang Z, Wang Y, Mao B. Angiogenic function of astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp Ther Med 2019; 17:2511-2518. [PMID: 30906439 PMCID: PMC6425153 DOI: 10.3892/etm.2019.7273] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 12/13/2018] [Indexed: 12/11/2022] Open
Abstract
The current study aimed to assess the role and mechanism of astragaloside IV (AS-IV) in myocardial infarction. A myocardial infarction model was established via the ligation of the left anterior descending artery. Rats were randomly divided into sham, DMSO, model, AS-IV, AS-IV-CID755673 and CID755673 inhibitor groups. Rats were then sacrificed following 4 weeks of treatment and segmental heart samples were obtained for hematoxylin and eosin, and masson staining. The expression of PKD1, HDAC5 and VEGF were analyzed using immunohistochemistry, reverse transcription polymerase chain reaction and western blotting. Compared with the sham and DMSO groups, the morphology of myocardium in the model and CID755673 inhibitor groups were disordered and exhibited necrotic myocardial cells and collagen tissues. Following treatment with AS-IV, the morphology of the myocardium was markedly improved and the number of new blood vessels increased. However, following treatment with CID755673, the myocardial tissue of rats became disordered, with an increased number of necrotic cells and the closure of certain vessels. The expression of PKD1, HDAC5 and VEGF mRNA and protein in myocardial tissue of model group and CID755673 inhibitor group were significantly lower than the other four groups (P<0.05), whereas these levels in the AS-IV group were significantly higher than those in the other five groups (P<0.01). Additionally, the AS-IV-CID755673 group exhibited significantly higher levels of PKD1, HDAC5 and VEGF mRNA and protein than the sham, DMSO, CID755673 inhibitor and model groups (P<0.05). Furthermore, the protein expression of pS205 PKD1, pS259 HDAC5 and pTyr951 VEGF in the myocardium of rats was comparable with that of PKD1, HDAC5 and VEGF. AS-IV may partly promote the angiogenesis of myocardial tissue in rats with myocardial infarction via the PKD1-HDAC5-VEGF pathway.
Collapse
Affiliation(s)
- Lei Yang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Nuan Liu
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Wei Zhao
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Xing Li
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Li Han
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Zhongming Zhang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Yanke Wang
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| | - Bingyu Mao
- Henan Key Laboratory of Zhang ZhongJing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China.,The Zhang ZhongJing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan 473004, P.R. China
| |
Collapse
|
81
|
Zhou Q, Yu B, Anderson C, Huang ZP, Hanus J, Zhang W, Han Y, Bhattacharjee PS, Srinivasan S, Zhang K, Wang DZ, Wang S. LncEGFL7OS regulates human angiogenesis by interacting with MAX at the EGFL7/miR-126 locus. eLife 2019; 8:e40470. [PMID: 30741632 PMCID: PMC6370342 DOI: 10.7554/elife.40470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/11/2019] [Indexed: 01/02/2023] Open
Abstract
In an effort to identify human endothelial cell (EC)-enriched lncRNAs,~500 lncRNAs were shown to be highly restricted in primary human ECs. Among them, lncEGFL7OS, located in the opposite strand of the EGFL7/miR-126 gene, is regulated by ETS factors through a bidirectional promoter in ECs. It is enriched in highly vascularized human tissues, and upregulated in the hearts of dilated cardiomyopathy patients. LncEGFL7OS silencing impairs angiogenesis as shown by EC/fibroblast co-culture, in vitro/in vivo and ex vivo human choroid sprouting angiogenesis assays, while lncEGFL7OS overexpression has the opposite function. Mechanistically, lncEGFL7OS is required for MAPK and AKT pathway activation by regulating EGFL7/miR-126 expression. MAX protein was identified as a lncEGFL7OS-interacting protein that functions to regulate histone acetylation in the EGFL7/miR-126 promoter/enhancer. CRISPR-mediated targeting of EGLF7/miR-126/lncEGFL7OS locus inhibits angiogenesis, inciting therapeutic potential of targeting this locus. Our study establishes lncEGFL7OS as a human/primate-specific EC-restricted lncRNA critical for human angiogenesis.
Collapse
Affiliation(s)
- Qinbo Zhou
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansUnited States
| | - Bo Yu
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansUnited States
| | - Chastain Anderson
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansUnited States
| | - Zhan-Peng Huang
- Department of CardiologyBoston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Jakub Hanus
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansUnited States
| | - Wensheng Zhang
- Department of Computer ScienceXavier UniversityNew OrleansUnited States
| | - Yu Han
- Aab Cardiovascular Research InstituteUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | | | - Sathish Srinivasan
- Cardiovascular Biology Research ProgramOklahoma Medical Research FoundationOklahomaUnited States
| | - Kun Zhang
- Department of Computer ScienceXavier UniversityNew OrleansUnited States
| | - Da-zhi Wang
- Department of CardiologyBoston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Shusheng Wang
- Department of Cell and Molecular BiologyTulane UniversityNew OrleansUnited States
- Department of OphthalmologyTulane UniversityNew OrleansUnited States
| |
Collapse
|
82
|
Nox1/Ref-1-mediated activation of CREB promotes Gremlin1-driven endothelial cell proliferation and migration. Redox Biol 2019; 22:101138. [PMID: 30802716 PMCID: PMC6395885 DOI: 10.1016/j.redox.2019.101138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a complex degenerative disorder marked by aberrant vascular remodeling associated with hyperproliferation and migration of endothelial cells (ECs). Previous reports implicated bone morphogenetic protein antagonist Gremlin 1 in this process; however, little is known of the molecular mechanisms involved. The current study was designed to test whether redox signaling initiated by NADPH oxidase 1 (Nox1) could promote transcription factor CREB activation by redox factor 1 (Ref-1), transactivation of Gremlin1 transcription, EC migration, and proliferation. Human pulmonary arterial EC (HPAECs) exposed in vitro to hypoxia to recapitulate PAH signaling displayed induced Nox1 expression, reactive oxygen species (ROS) production, PKA activity, CREB phosphorylation, and CREB:CRE motif binding. These responses were abrogated by selective Nox1 inhibitor NoxA1ds and/or siRNA Nox1. Nox1-activated CREB migrated to the nucleus and bound to Ref-1 leading to CREB:CRE binding and Gremlin1 transcription. CHiP assay and CREB gene-silencing illustrated that CREB is pivotal for hypoxia-induced Gremlin1, which, in turn, stimulates EC proliferation and migration. In vivo, participation of Nox1, CREB, and Gremlin1, as well as CREB:CRE binding was corroborated in a rat PAH model. Activation of a previously unidentified Nox1-PKA-CREB/Ref-1 signaling pathway in pulmonary endothelial cells leads to Gremlin1 transactivation, proliferation and migration. These findings reveal a new signaling pathway by which Nox1 via induction of CREB and Gremlin1 signaling contributes to vascular remodeling and provide preclinical indication of its significance in PAH.
Collapse
|
83
|
Wank M, Schilling D, Schmid TE, Meyer B, Gempt J, Barz M, Schlegel J, Liesche F, Kessel KA, Wiestler B, Bette S, Zimmer C, Combs SE. Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers (Basel) 2018; 10:cancers10110456. [PMID: 30463322 PMCID: PMC6266328 DOI: 10.3390/cancers10110456] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/28/2023] Open
Abstract
Gliomas are primary brain tumors that present the majority of malignant adult brain tumors. Gliomas are subdivided into low- and high-grade tumors. Despite extensive research in recent years, the prognosis of malignant glioma patients remains poor. This is caused by naturally highly infiltrative capacities as well as high levels of radio- and chemoresistance. Additionally, it was shown that low linear energy transfer (LET) irradiation enhances migration and invasion of several glioma entities which might counteract today’s treatment concepts. However, this finding is discussed controversially. In the era of personalized medicine, this controversial data might be attributed to the patient-specific heterogeneity that ultimately could be used for treatment. Thus, current developments in glioma therapy should be seen in the context of intrinsic and radiation-enhanced migration and invasion. Due to the natural heterogeneity of glioma cells and different radiation responses, a personalized radiation treatment concept is suggested and alternative radiation concepts are discussed.
Collapse
Affiliation(s)
- Michaela Wank
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| | - Daniela Schilling
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Thomas E Schmid
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Jens Gempt
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Melanie Barz
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Jürgen Schlegel
- Department of Neuropathology, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Friederike Liesche
- Department of Neuropathology, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Kerstin A Kessel
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Stefanie Bette
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Stephanie E Combs
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| |
Collapse
|
84
|
Roopmani P, Krishnan UM. Harnessing the pleiotropic effects of atorvastatin-fenofibrate combination for cardiovascular stents. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:875-891. [DOI: 10.1016/j.msec.2018.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/23/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022]
|
85
|
Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: a meta-analysis. BMC MEDICAL GENETICS 2018; 19:108. [PMID: 29973139 PMCID: PMC6031176 DOI: 10.1186/s12881-018-0628-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Background Single nucleotide polymorphisms (SNPs) located in the vascular endothelial growth factor (VEGF) gene may be correlated with the susceptibility to coronary artery disease (CAD) – although results have been controversial. The aim of this meta–analysis is to clarify the effects of VEGF –2578A/C (rs699947), −1154G/A (rs1570360), +405C/G (rs2010963), and + 936C/T (rs3025039) polymorphisms on CAD risk. Methods Pooled odds ratio (OR) and corresponding 95% confidence intervals (CIs) were calculated to estimate the strength of the association between VEGF gene polymorphisms and CAD risk. Fixed- or random-effects model was used depending on the heterogeneity between studies. Results In total, 13 eligible articles containing 29 studies were analysed. The pooled analysis indicated that the VEGF gene polymorphisms of rs699947, rs2010963, and rs3025039 were associated with an increased risk of CAD, whereas no significant associations were observed with the rs1570360 polymorphism. A subgroup analysis stratified by ethnicity revealed that the rs699947 and rs3025039 polymorphisms were associated with CAD risk in Asian populations. In addition, stratification by control source indicated an increased risk of CAD susceptibility with the rs699947 polymorphism for population–based studies of reduced heterogeneity. Conclusions In summary, we concluded that the VEGF gene polymorphisms rs699947, rs2010963, and rs3025039 are correlated with an elevated CAD risk. Electronic supplementary material The online version of this article (10.1186/s12881-018-0628-3) contains supplementary material, which is available to authorized users.
Collapse
|
86
|
Xu M, Seas A, Kiyani M, Ji KSY, Bell HN. A temporal examination of calcium signaling in cancer- from tumorigenesis, to immune evasion, and metastasis. Cell Biosci 2018; 8:25. [PMID: 29636894 PMCID: PMC5883416 DOI: 10.1186/s13578-018-0223-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/26/2018] [Indexed: 12/16/2022] Open
Abstract
Background Although the study of calcium (Ca2+) is classically associated with excitable cells such as myocytes or neurons, the ubiquity of this essential element in all cellular processes has led to interest in other cell types. The importance of Ca2+ to apoptosis, cell signaling, and immune activation is of special import in cancer. Main Here we review the current understanding of Ca2+ in each of these processes vital to the initiation, spread, and drug resistance of malignancies. We describe the involvement of Ca2+, and Ca2+ related proteins in cell cycle checkpoints and Ca2+ dependent apoptosis and discuss their roles in cellular immortalization. The role of Ca2+ in inter-cellular communication is also discussed in relevance to tumor-stromal communication, angiogenesis, and tumor microinvasion. The role that Ca2+ plays in immune surveillance and evasion is also addressed. Finally, we discuss the possibility of targeting Ca2+ singling to address the most pressing topics of cancer treatment: metastatic disease and drug resistance. Conclusion This review discusses the current understanding of Ca2+ in cancer. By addressing Ca2+ facilitated angiogenesis, immune evasion, metastasis, and drug resistance, we anticipate future avenues for development of Ca2+ as a nexus of therapy.
Collapse
Affiliation(s)
- MengMeng Xu
- 1Medical-Scientist Training Program, Duke University Medical Center, Durham, NC 27710 USA.,2Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Andreas Seas
- 1Medical-Scientist Training Program, Duke University Medical Center, Durham, NC 27710 USA
| | - Musa Kiyani
- 3School of Medicine, Duke University Medical Center, Durham, NC 27710 USA.,4Duke-NUS Medical School, Singapore, 169857 Singapore
| | - Keven S Y Ji
- 3School of Medicine, Duke University Medical Center, Durham, NC 27710 USA
| | - Hannah N Bell
- 1Medical-Scientist Training Program, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
87
|
Todorich B, Faia LJ, Thanos A, Amin M, Folberg R, Wolfe JD, Todorich KM, Raphtis E, Ruby AJ, Williams GA, Hassan TS. Vancomycin-Associated Hemorrhagic Occlusive Retinal Vasculitis: A Clinical-Pathophysiological Analysis. Am J Ophthalmol 2018; 188:131-140. [PMID: 29425799 DOI: 10.1016/j.ajo.2018.01.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/21/2018] [Accepted: 01/22/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To derive novel insights into the pathophysiology of vancomycin-related hemorrhagic occlusive retinal vasculopathy (HORV) through a careful clinicopathologic correlation. METHODS We retrospectively reviewed the clinical and pathologic course of 2 consecutive patients who developed HORV. The clinical history, multimodal imaging, ultrasound biomicroscopy (UBM), and intraoperative and histologic findings are reported. RESULTS Both patients presented with decreased vision and eye pain within 1 week following otherwise uncomplicated cataract extraction and were diagnosed with HORV after endophthalmitis was ruled out. Both patients presented with significant ocular discomfort that progressively worsened, and both experienced a dismal visual outcome despite early aggressive medical and surgical therapy. One patient requested enucleation for a blind and painful eye. Upon histologic examination of this eye, the iris and ciliary body appeared to be infarcted with separation of the iris and ciliary epithelia from their adjacent stromal components. These findings were corroborated by UBM of the second patient. Histologic examination of the posterior segment demonstrated severe hemorrhagic necrosis of the neurosensory retina and an occlusive nonarteritic vasculopathy of the retina and choroid. The choroid was thickened by prominent nongranulomatous chronic inflammation accompanied by a glomeruloid proliferation of small vessels. The inflammatory infiltrate was almost exclusively confined to the choroid and consisted of predominantly T cells. There was conspicuous absence of inflammatory cells in the retina and no histologic evidence of leukocytoclastic vasculitis. CONCLUSIONS HORV is a rare condition that can lead to profound vision loss. Significant ocular pain can be a presenting sign of HORV in cases with severe iris and ciliary body ischemia. Although it has been suggested that HORV is a form of leukocytoclastic retinal vasculitis, the histologic findings herein indicate that the pathophysiology is more complex. It is grounded in a necrotizing retinal vasculopathy in the absence of retinal vasculitis, chronic nongranulomatous choroiditis, and an unusual glomeruloid proliferation of endothelial cells in the choroid and elsewhere in the eye.
Collapse
Affiliation(s)
- Bozho Todorich
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Lisa J Faia
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Aristomenis Thanos
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Mitual Amin
- Department of Pathology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Robert Folberg
- Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan; Department of Pathology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Jeremy D Wolfe
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Krista M Todorich
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Efthemios Raphtis
- Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan; Balian Eye Center, Rochester, Michigan
| | - Alan J Ruby
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - George A Williams
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Tarek S Hassan
- Associated Retinal Consultants, PC, Royal Oak, Michigan; Department of Ophthalmology, Oakland University William Beaumont School of Medicine, Rochester, Michigan.
| |
Collapse
|
88
|
Wei Y, Zhou F, Zhou H, Huang J, Yu D, Wu G. Endothelial progenitor cells contribute to neovascularization of non-small cell lung cancer via histone deacetylase 7-mediated cytoskeleton regulation and angiogenic genes transcription. Int J Cancer 2018; 143:657-667. [PMID: 29490434 DOI: 10.1002/ijc.31349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/26/2018] [Accepted: 02/15/2018] [Indexed: 12/19/2022]
Abstract
To supply tumor tissues with nutrients and oxygen, endothelial progenitor cells (EPCs) home to tumor sites and contribute to neovascularization. Although the precise mechanism of EPCs-induced neovascularization remains poorly understood in non-small cell lung cancer (NSCLC), histone deacetylase 7 (HDAC7) is considered as a critical regulator. To explore the function of HDAC7 in neovascularization induced by EPCs, tube formation assay, immunofluorescence, microarray, Western blot analysis and animal models were performed. In vitro, HDAC7 abrogation led to the activation of Rho-associated coiled-coil containing protein kinase/myosin light chain 2 pathway concomitant with ERK dephosphorylation, causing the instability of cytoskeleton and collapse of tube formation. In vivo, absence of HDAC7 impaired the vascular lumen integrity and decreased the functional blood perfusion, inhibiting the growth of tumor. At the level of transcription, HDAC7 silencing upregulated antiangiogenic genes and suppressed proangiogenic genes collectively, turning off the angiogenic switch during vessel formation. Taken together, HDAC7 plays a dual role in maintaining the structural and nonstructural functions of EPCs. Our work demonstrates the molecular mechanism by which HDAC7 contributes to the angiogenic property of EPCs and provides a rational basis for specific targeting of antiangiogenic strategies in lung cancer.
Collapse
Affiliation(s)
- Ye Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangzheng Zhou
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei, China
| | - Haibo Zhou
- The First College of Clinical Medical Science, China Three Gorges University and Department of Oncology, Yichang Central People's Hospital, Yichang, Hubei, People's Republic of China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Yu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
89
|
Han YD, Bai Y, Yan XL, Ren J, Zeng Q, Li XD, Pei XT, Han Y. Co-transplantation of exosomes derived from hypoxia-preconditioned adipose mesenchymal stem cells promotes neovascularization and graft survival in fat grafting. Biochem Biophys Res Commun 2018; 497:305-312. [PMID: 29428734 DOI: 10.1016/j.bbrc.2018.02.076] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adipose-derived stromal cells (ADSCs)-derived exosomes (ADSC-Exos) account for the proangiogenic potential of stem cell. This study aimed to investigate the effect of ADSC-derived exosomes (ADSC-Exos) on the survival in fat grafting. METHODS A nude mouse model of subcutaneous fat grafting was adopted. Hypoxic preconditioned ADSC-Exos and ADSC-Exos were injected around the grafted tissue. The fat graft sample was weighed and examined by hematoxylin and eosin (H&E) staining and immunohistochemistry. Laser Doppler flowmetry and CD31 immunofluorescence staining were used to analyze neovascularization. RESULTS ADSC-Exo and hypoxic ADSC-Exo groups had a significantly higher weight of fat graft and more perilipin-positive adipocytes than the control groups from 2 to 8 weeks after grafting, and the hypoxic ADSC-Exo group had better outcomes (all P < 0.05). H&E staining showed that ADSC-Exos attenuated infiltration of inflammatory cells around the fat grafts. Laser Doppler flowmetry showed that the two ADSC-Exo groups had better blood perfusion in the graft tissue than the control groups (all P < 0.05). Immunofluorescence demonstrated that the hypoxic ADSC-Exo group had significantly more CD31-positive cells than the ADSC-Exo group. In vitro study showed that hypoxic ADSC-Exos treatment significantly increased the migration (at 12 and 24 h) and in vitro capillary network formation (at 12 h) in the human umbilical vein endothelial cells (HUVECs) as compared with the ADSC-Exo group and control group (all P < 0.05). CONCLUSIONS Co-transplantation of ADSC-Exos can effectively promote the survival of graft, neovascularization and attenuated inflammation in the fat grafts. Hypoxia treatment can further enhance the beneficial effect of ADSC-Exos.
Collapse
Affiliation(s)
- Yu-di Han
- Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing 100853, PR China; Medical School of Chinese PLA, Beijing 100853, PR China
| | - Yun Bai
- Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing 100853, PR China; Nankai University School of Medicine, Tianjin 300000, PR China
| | - Xin-Long Yan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China; Life Science and Bioengineering Department, Beijing University of Technology, Beijing 100124, PR China
| | - Jing Ren
- Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing 100853, PR China; Medical School of Chinese PLA, Beijing 100853, PR China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China
| | - Xiao-Dong Li
- Medical School of Chinese PLA, Beijing 100853, PR China; Burn and Plastic Surgery, Bethune International Peace Hospital, Shijiazhuang 050000, Hebei, PR China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China.
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing 100853, PR China; Medical School of Chinese PLA, Beijing 100853, PR China.
| |
Collapse
|
90
|
Ali MM, H Borai I, Ghanem HM, H Abdel-Halim A, Mousa FM. The prophylactic and therapeutic effects of Momordica charantia methanol extract through controlling different hallmarks of the hepatocarcinogenesis. Biomed Pharmacother 2017; 98:491-498. [PMID: 29287196 DOI: 10.1016/j.biopha.2017.12.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 02/08/2023] Open
Abstract
Inspite of the wide facilities for controlling cancer growth, there are little drugs to inhibit its metastasis or prevent its angiogenesis. Discovering such natural or synthetic multi-targeted agent that might strike different targets is considered as a vital goal for tumor controlling. In a previous study, the chemoprotective effect of methanol extract of Momordicacharantia (MEMC) on albino western rats bearing hepatocarcinogenesis was evaluated. The mechanism by which MEMC exert its anticancer properties was unknown. Therefore, we aimed in this study to investigate the possible role of MEMC as anti-proliferative, anti-angiogenic and anti-metastatic agent to exert its chemoprotective effect. The study was conducted on sixty albino western rats divided into six groups, 10 rats each. Diethylnitrosamine (DENA) was injected intraperitoneally (i.p.) at a dose of 200 mg/kg body weight once, 2 weeks later rats were received carbon tetrachloride (CCl4) subcutaneously (3 ml/kg/week) continued for 10 weeks. MEMC was orally produced to rats (40 mg/kg) alone, as well as before, at the same time and after DENA injection. Cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), caspase-3,-8 (Casp-3,-8), histone deacetylase (HDAC) and matrixmetalloproteinases-2,-9 (MMP-2,-9) were evaluated. MEMC treatment significantly decreased Cox-2, VEGF, HDAC and MMP-2,-9 and increased Casp-3,-8 as compared to DENAgroup,which demonstrated that the anticancer effect of MEMC may be through the inhibition of angiogenesis, proliferation and metastasis and the activation of apoptosis. The improvement in before-treated group was more pronounced than that in after- and simultaneous-treated groups, indicating thatMEMC may act as a prophylactic agent more than being a therapeutic agent.
Collapse
Affiliation(s)
- Mamdouh M Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt.
| | - Ibrahim H Borai
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hala M Ghanem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abeer H Abdel-Halim
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Fatma M Mousa
- Biochemistry Department, Division of Genetic Engineering and Biotechnology, National Research Centre, Dokki, 12622, Giza, Egypt
| |
Collapse
|
91
|
Lei Y, Liu L, Zhang S, Guo S, Li X, Wang J, Su B, Fang Y, Chen X, Ke H, Tao W. Hdac7 promotes lung tumorigenesis by inhibiting Stat3 activation. Mol Cancer 2017; 16:170. [PMID: 29126425 PMCID: PMC5681774 DOI: 10.1186/s12943-017-0736-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/20/2017] [Indexed: 11/29/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer death worldwide. However, the molecular mechanisms underlying lung cancer development have not been fully understood. The functions of histone deacetylases (HDACs), a class of total eighteen proteins (HDAC1–11 and SIRT1–7 in mammals) that deacetylate histones and non-histone proteins, in cancers are largely unknown. Methods Hdac7+/−/K-Ras mice and HDAC7-depleted human lung cancer cell lines were used as models for studying the function of Hdac7 gene in lung cancer. Kaplan-Meier survival analysis was performed to explore the relationship between HDAC7 expression and prognosis of human lung cancers. Recombinant lentivirus-mediated in vivo gene expression or knockdown, Western blotting, and pull-down assay were applied to investigate the underlying molecular mechanism by which Hdac7 promotes lung tumorigenesis. Results The number and burden of lung tumor were dramatically reduced in Hdac7+/−/K-Ras mice compared to control K-Ras mice. Also, in Hdac7+/−/K-Ras mice, cell proliferation was significantly inhibited and apoptosis in lung tumors was greatly enhanced. Similarly, cell proliferation and anchorage-independent growth of human lung cancer cell lines expressing shHDAC7 were also significantly suppressed and apoptosis was dramatically elevated respectively. Mechanistic study revealed that Hdac7 mutation in mouse lung tumors or HDAC7 depletion in human tumor cell lines resulted in significantly enhanced acetylation and tyrosine-phosphorylation of Stat3 and HDAC7 protein directly interacted with and deacetylateed STAT3. The Hdac7 mutant-mediated inhibitory effects on lung tumorigenesis in mice and cell proliferation/soft agar colony formation of human lung cancer cell lines were respectively reversed by expressing dnStat3. Finally, the high HDAC7 mRNA level was found to be correlated with poor prognosis of human lung cancer patients. Conclusion Our study suggests that Hdac7 promotes lung tumorigenesis by inhibiting Stat3 activation via deacetylating Stat3 and may shed a light on the design of new therapeutic strategies for human lung cancer. Electronic supplementary material The online version of this article (10.1186/s12943-017-0736-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yubin Lei
- Obstetrics & Gynecology Hospital and State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lingling Liu
- Obstetrics & Gynecology Hospital and State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shujing Zhang
- Obstetrics & Gynecology Hospital and State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Shicheng Guo
- MOE Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoqing Li
- Obstetrics & Gynecology Hospital and State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- MOE Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Bo Su
- Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Yuchao Fang
- Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Chen
- Huashan Hospital, Fudan University, Shanghai, China.
| | - Hengning Ke
- Cancer Research Institute, General Hospital, Ningxia Medical University, Yinchuan, China.
| | - Wufan Tao
- Obstetrics & Gynecology Hospital and State Key Laboratory of Genetic Engineering and Institute of Developmental Biology and Molecular Medicine, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Cancer Research Institute, General Hospital, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
92
|
Ouro A, Arana L, Riazy M, Zhang P, Gomez-Larrauri A, Steinbrecher U, Duronio V, Gomez-Muñoz A. Vascular endothelial growth factor mediates ceramide 1-phosphate-stimulated macrophage proliferation. Exp Cell Res 2017; 361:277-283. [PMID: 29080796 DOI: 10.1016/j.yexcr.2017.10.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/07/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
The bioactive sphingolipid ceramide 1-phosphate (C1P) regulates cell division in a variety of cell types including macrophages. However, the mechanisms involved in this action are not completely understood. In the present work we show that C1P stimulates the release of vascular endothelial growth factor (VEGF) in RAW264.7 macrophages, and that this growth factor is essential for stimulation of cell proliferation by C1P. The stimulation of VEGF release was dependent upon activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB-1 also known as Akt-1), and mitogen-activated protein kinase-kinase (MEK)/extracellularly regulated kinase-2 (ERK-2) pathways, as inhibition of these kinases with selective pharmacological inhibitors or with specific gene silencing siRNA, abrogated VEGF release. A key observation was that sequestration of VEGF with a neutralizing antibody, or treatment with VEGF siRNA abolished C1P-stimulated macrophage growth. Also, inhibition of the pathways involved in C1P-stimulated VEGF release inhibited the stimulation of macrophage growth by C1P. Moreover, blockade of VEGF receptor-2 (VEGFR-2), which is the primary receptor for VEGF, with the pharmacological inhibitor DMH4, or with specific VEGFR-2 siRNA, substantially inhibited C1P-stimulated cell growth. It can be concluded that stimulation of VEGF release is a key factor in the promotion of macrophage proliferation by C1P.
Collapse
Affiliation(s)
- Alberto Ouro
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Lide Arana
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Maziar Riazy
- Department of Medicine. University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Peng Zhang
- Department of Medicine. University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Ana Gomez-Larrauri
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Urs Steinbrecher
- Department of Medicine. University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Vincent Duronio
- Department of Medicine. University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Antonio Gomez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain.
| |
Collapse
|
93
|
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N, Javan M. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr) 2017; 40:457-470. [PMID: 28741069 DOI: 10.1007/s13402-017-0335-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (MSCs) have been shown to be involved in the formation and modulation of tumor stroma and in interacting with tumor cells, partly through their secretome. Exosomes are nano-sized intraluminal multi-vesicular bodies secreted by most types of cells and have been found to mediate intercellular communication through the transfer of genetic information via coding and non-coding RNAs to recipient cells. Since exosomes are considered as protective and enriched sources of shuttle microRNAs (miRNAs), we hypothesized that exosomal transfer of miRNAs from MSCs may affect tumor cell behavior, particularly angiogenesis. METHODS Exosomes derived from MSCs were isolated and characterized by scanning electron microscopy analyses, dynamic light scattering measurements, and Western blotting. Fold changes in miR-100 expression levels were calculated in exosomes and their corresponding donor cells by qRT-PCR. The effects of exosomal transfer of miR-100 from MSCs were assessed by qRT-PCR and Western blotting of the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. The quantification of secreted VEGF protein was determined by enzyme-linked immunosorbent assay. The putative paracrine effects of MSC-derived exosomes on tumor angiogenesis were explored by in vitro angiogenesis assays including endothelial cell proliferation, migration and tube formation assays. RESULTS We found that MSC-derived exosomes induce a significant and dose-dependent decrease in the expression and secretion of vascular endothelial growth factor (VEGF) through modulating the mTOR/HIF-1α signaling axis in breast cancer-derived cells. We also found that miR-100 is enriched in MSC-derived exosomes and that its transfer to breast cancer-derived cells is associated with the down-regulation of VEGF in a time-dependent manner. The putative role of exosomal miR-100 transfer in regulating VEGF expression was substantiated by the ability of anti-miR-100 to rescue the inhibitory effects of MSC-derived exosomes on the expression of VEGF in breast cancer-derived cells. In addition, we found that down-regulation of VEGF mediated by MSC-derived exosomes can affect the vascular behavior of endothelial cells in vitro. CONCLUSIONS Overall, our findings suggest that exosomal transfer of miR-100 may be a novel mechanism underlying the paracrine effects of MSC-derived exosomes and may provide a means by which these vesicles can modulate vascular responses within the microenvironment of breast cancer cells.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | | | - Farangis Ataei
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
94
|
Qiu MK, Wang SQ, Pan C, Wang Y, Quan ZW, Liu YB, Ou JM. ROCK inhibition as a potential therapeutic target involved in apoptosis in hemangioma. Oncol Rep 2017; 37:2987-2993. [PMID: 28339093 DOI: 10.3892/or.2017.5515] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Gene expression was examined in hemangiomas (HA), benign, birthmark-like tumors occurring in infancy, and confirmed in HA-derived endothelial cells (HDEC), for which cell proliferation and apoptosis were also assessed. Protein and mRNA accumulation of Rho-associated protein kinase (ROCK), vascular endothelial growth factor (VEGF), Ki-67 and proliferating cell nuclear antigen was significantly higher in proliferating phase HAs than in involuting phase HAs. In contrast, p53 and caspase-3 exhibited higher levels of accumulation in involuting than proliferating HAs. Cell apoptotic indexes were low in proliferating phase HAs and increased in involuting phase HAs. HDECs were treated with the ROCK inhibitor Y-27632. Y-27632 induced p53 expression and downregulated VEGF expression, significantly inhibited cell proliferation, and induced cell apoptosis in HA cells. The inhibitor effects were confirmed in HAs from HDEC-injected nude mice. These results indicated that ROCK is involved in p53-mediated apoptosis and VEGF expression in HA cells and suggested that such inhibition may be exploited for future HA therapies.
Collapse
Affiliation(s)
- Ming-Ke Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Shu-Qing Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Chang Pan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Yang Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Zhi-Wei Quan
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ying-Bin Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Jing-Min Ou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
95
|
Hargreaves A, Bigley A, Price S, Kendrew J, Barry ST. Automated image analysis of intra-tumoral and peripheral endocrine organ vascular bed regression using 'Fibrelength' as a novel structural biomarker. J Appl Toxicol 2017; 37:902-912. [PMID: 28186326 DOI: 10.1002/jat.3438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Abstract
The study of vascular modulation has received a great deal of attention in recent years as knowledge has increased around the role of angiogenesis within disease contexts such as cancer. Despite rapidly expanding insights into the molecular processes involved and the concomitant generation of a number of anticancer vascular modulating chemotherapeutics, techniques used in the measurement of structural vascular change have advanced more modestly, particularly with regard to the preclinical quantification of off-target vascular regression within systemic, notably endocrine, blood vessels. Such changes translate into a number of major clinical side effects and there remains a need for improved preclinical screening and analysis. Here we present the generation of a novel structural biomarker, which can be incorporated into a number of contemporary image analysis platforms and used to compare tumour versus systemic host tissue vascularity. By contrasting the measurements obtained, the preclinical efficacy of vascular modulating chemotherapies can be evaluated in light of the predicted therapeutic window. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adam Hargreaves
- PathCelerate Ltd, The BioHub, Alderley Park, Mereside, Alderley Edge, Cheshire, UK
| | - Alison Bigley
- Oraclebio Ltd, BioCity Scotland, North Lanarkshire, Scotland, UK
| | - Shirley Price
- University of Surrey, 3660 Office of the Vice-Provost, Guildford, Surrey, UK
| | - Jane Kendrew
- AstraZeneca PLC, Oncology iMED, Alderley Edge, Cheshire, UK
| | - Simon T Barry
- AstraZeneca PLC, Oncology iMED, Alderley Edge, Cheshire, UK
| |
Collapse
|
96
|
Worthington J, Spain G, Timms JF. Effects of ErbB2 Overexpression on the Proteome and ErbB Ligand-specific Phosphosignaling in Mammary Luminal Epithelial Cells. Mol Cell Proteomics 2017; 16:608-621. [PMID: 28174229 PMCID: PMC5383782 DOI: 10.1074/mcp.m116.061267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
Most breast cancers arise from luminal epithelial cells, and 25–30% of these tumors overexpress the ErbB2/HER2 receptor that correlates with disease progression and poor prognosis. The mechanisms of ErbB2 signaling and the effects of its overexpression are not fully understood. Herein, stable isotope labeling by amino acids in cell culture (SILAC), expression profiling, and phosphopeptide enrichment of a relevant, non-transformed, and immortalized human mammary luminal epithelial cell model were used to profile ErbB2-dependent differences in protein expression and phosphorylation events triggered via EGF receptor (EGF treatment) and ErbB3 (HRG1β treatment) in the context of ErbB2 overexpression. Bioinformatics analysis was used to infer changes in cellular processes and signaling events. We demonstrate the complexity of the responses to oncogene expression and growth factor signaling, and we identify protein changes relevant to ErbB2-dependent altered cellular phenotype, in particular cell cycle progression and hyper-proliferation, reduced adhesion, and enhanced motility. Moreover, we define a novel mechanism by which ErbB signaling suppresses basal interferon signaling that would promote the survival and proliferation of mammary luminal epithelial cells. Numerous novel sites of growth factor-regulated phosphorylation were identified that were enhanced by ErbB2 overexpression, and we putatively link these to altered cell behavior and also highlight the importance of performing parallel protein expression profiling alongside phosphoproteomic analysis.
Collapse
Affiliation(s)
- Jenny Worthington
- From the ‡Women's Cancer, Institute for Women's Health, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Georgia Spain
- From the ‡Women's Cancer, Institute for Women's Health, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - John F Timms
- From the ‡Women's Cancer, Institute for Women's Health, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW The objective of this literature review is to determine whether there are indications that microvascular complications occur in diabetic bone. Evidence definitively linking diabetic skeletal fragility with microvascular complications in bone remains elusive. RECENT FINDINGS Circumstantial evidence, some recent and some lost to time, suggests that atherosclerotic vascular diseases such as peripheral arterial disease cause poor blood perfusion of bone and subsequent hypoxia and contribute to low bone density and high cortical porosity, patterns similar to some recently observed in diabetic subjects. Evidence also exists to suggest that potentially anti-angiogenic conditions, such as impaired vascular endothelial growth factor (VEGF) signaling, predominate in diabetic bone. Microvascular complications may contribute, in part, to diabetic skeletal fragility but data supporting this interpretation are primarily circumstantial at this time. This review highlights gaps in our knowledge and hopefully spurs further discussions and research on this topic.
Collapse
Affiliation(s)
- Roberto Jose Fajardo
- Department of Orthopaedics, University of Texas Health Science Center at San Antonio, Med 518C, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA.
| |
Collapse
|
98
|
Role of Phosphorylated HDAC4 in Stroke-Induced Angiogenesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2957538. [PMID: 28127553 PMCID: PMC5239970 DOI: 10.1155/2017/2957538] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 12/01/2016] [Indexed: 12/30/2022]
Abstract
Acetylation or deacetylation of chromatin proteins and transcription factors is part of a complex signaling system that is involved in the control of neurological disorders. Recent studies have demonstrated that histone deacetylases (HDACs) exert protective effects in attenuating neuronal injury after ischemic insults. Class IIa HDAC4 is highly expressed in the brain, and neuronal activity depends on the nucleocytoplasmic shuttling of HDAC4. However, little is known about HDAC4 and its roles in ischemic stroke. In this study, we report that phosphorylation of HDAC4 was remarkably upregulated after stroke and blockade of HDAC4 phosphorylation with GÖ6976 repressed stroke-induced angiogenesis. Phosphorylation of HDAC4 was also increased in endothelial cells hypoxia model and suppression of HDAC4 phosphorylation inhibited the tube formation and migration of endothelial cells in vitro. Furthermore, in addition to the inhibition of angiogenesis, blockade of HDAC4 phosphorylation suppressed the expression of genes downstream of HIF-VEGF signaling in vitro and in vivo. These data indicate that phosphorylated HDAC4 may serve as an important regulator in stroke-induced angiogenesis. The protective mechanism of phosphorylated HDAC4 is associated with HIF-VEGF signaling, implicating a novel therapeutic target in stroke.
Collapse
|
99
|
Osteopontin facilitates tumor metastasis by regulating epithelial-mesenchymal plasticity. Cell Death Dis 2016; 7:e2564. [PMID: 28032860 PMCID: PMC5261026 DOI: 10.1038/cddis.2016.422] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/03/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
Abstract
Tumor metastasis leads to high mortality; therefore, understanding the mechanisms that underlie tumor metastasis is crucial. Generally seen as a secretory protein, osteopontin (OPN) is involved in multifarious pathophysiological events. Here, we present a novel pro-metastatic role of OPN during metastatic colonization. Unlike secretory OPN (sOPN), which triggers the epithelial–mesenchymal transition (EMT) to initiate cancer metastasis, intracellular/nuclear OPN (iOPN) induces the mesenchymal–epithelial transition (MET) to facilitate the formation of metastases. Nuclear OPN is found to interact with HIF2α and impact the subsequent AKT1/miR-429/ZEB cascade. In vivo assays confirm that the progression of metastatic colonization is accompanied by the nuclear accumulation of OPN and the MET process. Furthermore, evidence of nuclear OPN in the lung metastases is exhibited in clinical specimens. Finally, VEGF in the microenvironment was shown to induce the translocation of OPN into the nucleus through a KDR/PLCγ/PKC-dependent pathway. Taken together, our results describe the pleiotropic roles of OPN in the tumor metastasis cascade, which indicate its potential as an effective target for both early and advanced tumors.
Collapse
|
100
|
Promoting angiogenesis with mesoporous microcarriers through a synergistic action of delivered silicon ion and VEGF. Biomaterials 2016; 116:145-157. [PMID: 27918936 DOI: 10.1016/j.biomaterials.2016.11.053] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/26/2016] [Accepted: 11/27/2016] [Indexed: 01/07/2023]
Abstract
Angiogenic capacity of biomaterials is a key asset to drive vascular ingrowth during tissue repair and regeneration. Here we design a unique angiogenic microcarrier based on sol-gel derived mesoporous silica. The microspheres offer a potential angiogenic stimulator, Si ion, 'intrinsically' within the chemical structure. Furthermore, the highly mesoporous nature allows the loading and release of angiogenic growth factor 'extrinsically'. The Si ion is released from the microcarriers at therapeutic ranges (over a few ppm per day), which indeed up-regulates the expression of hypoxia inducing factor 1α (HIF1α) and stabilizes it by blocking HIF-prolyl hydroxylase 2 (PHD2) in HUVECs. This in turn activates the expression of a series of proangiogenic molecules, including bFGF, VEGF, and eNOS. VEGF is incorporated effectively within the mesopores of microcarriers and is then released continuously over a couple of weeks. The Si ion and VEGF released from the microcarriers synergistically stimulate endothelial cell functions, such as cell migration, chemotactic homing, and tubular networking. Furthermore, in vivo neo-blood vessel sprouting in chicken chorioallantoic membrane model is significantly promoted by the Si/VEGF releasing microcarriers. The current study demonstrates the synergized effects of Si ion and angiogenic growth factor through a biocompatible mesoporous microsphere delivery platform, and the concept provided here may open the door to a new co-delivery system of utilizing ions with growth factors for tissue repair and regeneration.
Collapse
|