51
|
El Mortaji L, Terrasse R, Dessen A, Vernet T, Di Guilmi AM. Stability and assembly of pilus subunits of Streptococcus pneumoniae. J Biol Chem 2010; 285:12405-15. [PMID: 20147289 DOI: 10.1074/jbc.m109.082776] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pili are surface-exposed virulence factors involved in bacterial adhesion to host cells. The Streptococcus pneumoniae pilus is composed of three structural proteins, RrgA, RrgB, and RrgC and three transpeptidase enzymes, sortases SrtC-1, SrtC-2, and SrtC-3. To gain insights into the mechanism of pilus formation we have exploited biochemical approaches using recombinant proteins expressed in Escherichia coli. Using site-directed mutagenesis, mass spectrometry, limited proteolysis, and thermal stability measurements, we have identified isopeptide bonds in RrgB and RrgC and demonstrate their role in protein stabilization. Co-expression in E. coli of RrgB together with RrgC and SrtC-1 leads to the formation of a covalent RrgB-RrgC complex. Inactivation of SrtC-1 by mutation of the active site cysteine impairs RrgB-RrgC complex formation, indicating that the association between RrgB and RrgC is specifically catalyzed by SrtC-1. Mass spectrometry analyses performed on purified samples of the RrgB-RrgC complex show that the complex has 1:1 stoichiometry. The deletion of the IPQTG RrgB sorting signal, but not the corresponding sequence in RrgC, abolishes complex formation, indicating that SrtC-1 recognizes exclusively the sorting motif of RrgB. Finally, we show that the intramolecular bonds that stabilize RrgB may play a role in its efficient recognition by SrtC-1. The development of a methodology to generate covalent pilin complexes in vitro, facilitating the study of sortase specificity and the importance of isopeptide bond formation for pilus biogenesis, provide key information toward the understanding of this complex macromolecular process.
Collapse
Affiliation(s)
- Lamya El Mortaji
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075 (CEA, CNRS, UJF), Grenoble, France
| | | | | | | | | |
Collapse
|
52
|
Alegre-Cebollada J, Badilla CL, Fernández JM. Isopeptide bonds block the mechanical extension of pili in pathogenic Streptococcus pyogenes. J Biol Chem 2010; 285:11235-42. [PMID: 20139067 DOI: 10.1074/jbc.m110.102962] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
In the early stages of an infection, pathogenic bacteria use long fibrous structures known as pili as adhesive anchors for attachment to the host cells. These structures also play key roles in colony and biofilm formation. In all those processes, pili must withstand large mechanical forces. The pili of the nasty gram-positive human pathogen Streptococcus pyogenes are assembled as single, micrometer long tandem modular proteins of covalently linked repeats of pilin proteins. Here we use single molecule force spectroscopy techniques to study the mechanical properties of the major pilin Spy0128. In our studies, we engineer polyproteins containing repeats of Spy0128 flanked by the well characterized I27 protein which provides an unambiguous mechanical fingerprint. We find that Spy0128 is an inextensible protein, even when pulled at forces of up to 800 pN. We also found that this remarkable mechanical resilience, unique among the modular proteins studied to date, results from the strategically located intramolecular isopeptide bonds recently identified in the x-ray structure of Spy0128. Removal of the isopeptide bonds by mutagenesis readily allowed Spy0128 domains to unfold and extend, albeit at relatively high forces of 172 pN (N-terminal domain) or 250 pN (C-terminal domain). Our results show that in contrast to the elastic roles played by large tandem modular proteins such as titin and fibronectin, the giant pili of S. pyogenes evolved to abrogate mechanical extensibility, a property that may be crucial in the pathogenesis of this most virulent bacterium and, therefore, become the target of new therapeutic approaches against its infections.
Collapse
|
53
|
Forsgren N, Lamont RJ, Persson K. Two intramolecular isopeptide bonds are identified in the crystal structure of the Streptococcus gordonii SspB C-terminal domain. J Mol Biol 2010; 397:740-51. [PMID: 20138058 DOI: 10.1016/j.jmb.2010.01.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 11/26/2022]
Abstract
Streptococcus gordonii is a primary colonizer and is involved in the formation of dental plaque. This bacterium expresses several surface proteins. One of them is the adhesin SspB, which is a member of the Antigen I/II family of proteins. SspB is a large multi-domain protein that has interactions with surface molecules on other bacteria and on host cells, and is thus a key factor in the formation of biofilms. Here, we report the crystal structure of a truncated form of the SspB C-terminal domain, solved by single-wavelength anomalous dispersion to 1.5 A resolution. The structure represents the first of a C-terminal domain from a streptococcal Antigen I/II protein and is comprised of two structurally related beta-sandwich domains, C2 and C3, both with a Ca(2+) bound in equivalent positions. In each of the domains, a covalent isopeptide bond is observed between a lysine and an asparagine, a feature that is believed to be a common stabilization mechanism in Gram-positive surface proteins. S. gordonii biofilms contain attachment sites for the periodontal pathogen Porphyromonas gingivalis and the SspB C-terminal domain has been shown to have one such recognition motif, the SspB adherence region. The motif protrudes from the protein, and serves as a handle for attachment. The structure suggests several additional putative binding surfaces, and other binding clefts may be created when the full-length protein is folded.
Collapse
Affiliation(s)
- Nina Forsgren
- Department of Odontology, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
54
|
Izoré T, Contreras-Martel C, El Mortaji L, Manzano C, Terrasse R, Vernet T, Di Guilmi AM, Dessen A. Structural Basis of Host Cell Recognition by the Pilus Adhesin from Streptococcus pneumoniae. Structure 2010; 18:106-15. [DOI: 10.1016/j.str.2009.10.019] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 09/29/2009] [Accepted: 10/22/2009] [Indexed: 12/22/2022]
|
55
|
Kang HJ, Middleditch M, Proft T, Baker EN. Isopeptide bonds in bacterial pili and their characterization by X-ray crystallography and mass spectrometry. Biopolymers 2009; 91:1126-34. [DOI: 10.1002/bip.21170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
56
|
Intramolecular amide bonds stabilize pili on the surface of bacilli. Proc Natl Acad Sci U S A 2009; 106:19992-7. [PMID: 19903875 DOI: 10.1073/pnas.0910887106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gram-positive bacteria elaborate pili and do so without the participation of folding chaperones or disulfide bond catalysts. Sortases, enzymes that cut pilin precursors, form covalent bonds that link pilin subunits and assemble pili on the bacterial surface. We determined the x-ray structure of BcpA, the major pilin subunit of Bacillus cereus. The BcpA precursor encompasses 2 Ig folds (CNA(2) and CNA(3)) and one jelly-roll domain (XNA) each of which synthesizes a single intramolecular amide bond. A fourth amide bond, derived from the Ig fold of CNA(1), is formed only after pilin subunits have been incorporated into pili. We report that the domains of pilin precursors have evolved to synthesize a discrete sequence of intramolecular amide bonds, thereby conferring structural stability and protease resistance to pili.
Collapse
|
57
|
The Corynebacterium diphtheriae shaft pilin SpaA is built of tandem Ig-like modules with stabilizing isopeptide and disulfide bonds. Proc Natl Acad Sci U S A 2009; 106:16967-71. [PMID: 19805181 DOI: 10.1073/pnas.0906826106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-surface pili are important virulence factors that enable bacterial pathogens to adhere to specific host tissues and modulate host immune response. Relatively little is known about the structure of Gram-positive bacterial pili, which are built by the sortase-catalyzed covalent crosslinking of individual pilin proteins. Here we report the 1.6-A resolution crystal structure of the shaft pilin component SpaA from Corynebacterium diphtheriae, revealing both common and unique features. The SpaA pilin comprises 3 tandem Ig-like domains, with characteristic folds related to those typically found in non-pilus adhesins. Whereas both the middle and the C-terminal domains contain an intramolecular Lys-Asn isopeptide bond, previously detected in the shaft pilins of Streptococcus pyogenes and Bacillus cereus, the middle Ig-like domain also harbors a calcium ion, and the C-terminal domain contains a disulfide bond. By mass spectrometry, we show that the SpaA monomers are cross-linked in the assembled pili by a Lys-Thr isopeptide bond, as predicted by previous genetic studies. Together, our results reveal that despite profound dissimilarities in primary sequences, the shaft pilins of Gram-positive pathogens have strikingly similar tertiary structures, suggesting a modular backbone construction, including stabilizing intermolecular and intramolecular isopeptide bonds.
Collapse
|
58
|
Kang HJ, Paterson NG, Baker EN. Expression, purification, crystallization and preliminary crystallographic analysis of SpaA, a major pilin from Corynebacterium diphtheriae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:802-4. [PMID: 19652344 PMCID: PMC2720338 DOI: 10.1107/s1744309109027596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 07/14/2009] [Indexed: 11/10/2022]
Abstract
Bacterial pili are cell-surface organelles that are critically involved in adhesion to host cells, leading to the colonization of host tissues and the establishment of infections. Whereas the pili of Gram-negative bacteria have been extensively studied, those of Gram-positive bacteria came to light only recently after the discovery and characterization of Corynebacterium diphtheriae pili. These newly discovered pili are formed by the covalent polymerization of pilin subunits catalyzed by sortase enzymes, making them fundamentally different from the noncovalent pilin assemblies of Gram-negative bacteria. Here, the expression, crystallization and preliminary crystallographic analysis of SpaA, which forms the shaft of one of the three types of pili expressed by C. diphtheriae, are reported. SpaA(53-486) crystals diffracted to 1.6 A resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 34.9, b = 64.1, c = 198.7 A, alpha = beta = gamma = 90 degrees .
Collapse
Affiliation(s)
- Hae Joo Kang
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Neil G. Paterson
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Edward N. Baker
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
- Department of Chemistry, University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
59
|
Kang HJ, Baker EN. Intramolecular isopeptide bonds give thermodynamic and proteolytic stability to the major pilin protein of Streptococcus pyogenes. J Biol Chem 2009; 284:20729-37. [PMID: 19497855 PMCID: PMC2742838 DOI: 10.1074/jbc.m109.014514] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/28/2009] [Indexed: 11/06/2022] Open
Abstract
The pili expressed by Streptococcus pyogenes and certain other Gram-positive bacterial pathogens are based on a polymeric backbone in which individual pilin subunits are joined end-to-end by covalent isopeptide bonds through the action of sortase enzymes. The crystal structure of the major pilin of S. pyogenes, Spy0128, revealed that each domain of the two domain protein contained an intramolecular isopeptide bond cross-link joining a Lys side chain to an Asn side chain. In the present work, mutagenesis was used to create mutant proteins that lacked either one isopeptide bond (E117A, N168A, and E258A mutants) or both isopeptide bonds (E117A/E258A). Both the thermal stability and proteolytic stability of Spy0128 were severely compromised by loss of the isopeptide bonds. Unfolding experiments, monitored by circular dichroism, revealed a transition temperature T(m) of 85 degrees C for the wild type protein. In contrast, mutants with only one isopeptide bond showed biphasic unfolding, with the domain lacking an isopeptide bond having a T(m) that was approximately 30 degrees C lower than the unaltered domain. High resolution crystal structures of the E117A and N168A mutants showed that the loss of an isopeptide bond did not change the overall pilin structure but caused local disturbance of the protein core that was greater for E117A than for N168A. These effects on stability appear also to be important for pilus assembly.
Collapse
Affiliation(s)
| | - Edward N. Baker
- From the School of Biological Sciences and
- the Department of Chemistry, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
60
|
Acyl enzyme intermediates in sortase-catalyzed pilus morphogenesis in gram-positive bacteria. J Bacteriol 2009; 191:5603-12. [PMID: 19592583 DOI: 10.1128/jb.00627-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In gram-positive bacteria, covalently linked pilus polymers are assembled by a specific transpeptidase enzyme called pilus-specific sortase. This sortase is postulated to cleave the LPXTG motif of a pilin precursor between threonine and glycine and to form an acyl enzyme intermediate with the substrate. Pilus polymerization is believed to occur through the resolution of this intermediate upon specific nucleophilic attack by the conserved lysine located within the pilin motif of another pilin monomer, which joins two pilins with an isopeptide bond formed between threonine and lysine. Here, we present evidence for sortase reaction intermediates in Corynebacterium diphtheriae. We show that truncated SrtA mutants that are loosely bound to the cytoplasmic membrane form high-molecular-weight complexes with SpaA polymers secreted into the extracellular milieu. These complexes are not formed with SpaA pilin mutants that have alanine substitutions in place of threonine in the LPXTG motif or lysine in the pilin motif. The same phenotype is observed with alanine substitutions of either the conserved cysteine or histidine residue of SrtA known to be required for catalysis. Remarkably, the assembly of SpaA pili, or the formation of intermediates, is abolished with a SrtA mutant missing the membrane-anchoring domain. We infer that pilus polymerization involves the formation of covalent pilin-sortase intermediates, which occurs within a molecular platform on the exoplasmic face of the cytoplasmic membrane that brings together both sortase and its cognate substrates in close proximity to each other, likely surrounding a secretion apparatus. We present electron microscopic data in support of this picture.
Collapse
|
61
|
Budzik JM, Oh SY, Schneewind O. Sortase D forms the covalent bond that links BcpB to the tip of Bacillus cereus pili. J Biol Chem 2009; 284:12989-97. [PMID: 19269972 PMCID: PMC2676031 DOI: 10.1074/jbc.m900927200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 03/05/2009] [Indexed: 11/06/2022] Open
Abstract
Bacillus cereus and other Gram-positive bacteria elaborate pili via a sortase D-catalyzed transpeptidation mechanism from major and minor pilin precursor substrates. After cleavage of the LPXTG sorting signal of the major pilin, BcpA, sortase D forms an amide bond between the C-terminal threonine and the amino group of lysine within the YPKN motif of another BcpA subunit. Pilus assembly terminates upon sortase A cleavage of the BcpA sorting signal, resulting in a covalent bond between BcpA and the cell wall cross-bridge. Here, we show that the IPNTG sorting signal of BcpB, the minor pilin, is cleaved by sortase D but not by sortase A. The C-terminal threonine of BcpB is amide-linked to the YPKN motif of BcpA, thereby positioning BcpB at the tip of pili. Thus, unique attributes of the sorting signals of minor pilins provide Gram-positive bacteria with a universal mechanism ordering assembly of pili.
Collapse
Affiliation(s)
- Jonathan M Budzik
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
62
|
Quigley BR, Zähner D, Hatkoff M, Thanassi DG, Scott JR. Linkage of T3 and Cpa pilins in the Streptococcus pyogenes M3 pilus. Mol Microbiol 2009; 72:1379-94. [PMID: 19432798 DOI: 10.1111/j.1365-2958.2009.06727.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The important human pathogen Streptococcus pyogenes (group A streptococcus, GAS) initiates infection by pilus-mediated attachment to host tissue. Thus, the pilus is an excellent target for design of anti-infective strategies. The T3 pilus of GAS is composed of multiple covalently linked subunits of the T3 protein to which the two minor pilins, Cpa and OrfB, are covalently attached. Because the proteins of GAS pili do not contain either of the motifs required for pilus polymerization in other Gram-positive bacteria, we investigated the residues involved in their linkage. We show that linkage of Cpa to T3 by the sortase family transpeptidase SrtC2 requires the VPPTG motif in the cell wall-sorting signal of Cpa. We also demonstrate that K173 of T3 is required both for T3 polymerization and for attachment of Cpa to T3. Therefore, attachment of Cpa to K173 of a T3 subunit would block further addition of T3 subunits to this end of the growing pilus. This implies that Cpa is located exclusively at the pilus tip, a location supported by immunogold electron microscopy, and suggests that, as for well-studied pili on Gram-negative bacteria, the role of the pilus is to present the adhesin external to the bacterial capsule.
Collapse
Affiliation(s)
- Bernard R Quigley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
63
|
Antos JM, Popp MWL, Ernst R, Chew GL, Spooner E, Ploegh HL. A straight path to circular proteins. J Biol Chem 2009; 284:16028-36. [PMID: 19359246 DOI: 10.1074/jbc.m901752200] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Folding and stability are parameters that control protein behavior. The possibility of conferring additional stability on proteins has implications for their use in vivo and for their structural analysis in the laboratory. Cyclic polypeptides ranging in size from 14 to 78 amino acids occur naturally and often show enhanced resistance toward denaturation and proteolysis when compared with their linear counterparts. Native chemical ligation and intein-based methods allow production of circular derivatives of larger proteins, resulting in improved stability and refolding properties. Here we show that circular proteins can be made reversibly with excellent efficiency by means of a sortase-catalyzed cyclization reaction, requiring only minimal modification of the protein to be circularized.
Collapse
Affiliation(s)
- John M Antos
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
64
|
Mechanism for sortase localization and the role of sortase localization in efficient pilus assembly in Enterococcus faecalis. J Bacteriol 2009; 191:3237-47. [PMID: 19286802 DOI: 10.1128/jb.01837-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic streptococci and enterococci primarily rely on the conserved secretory (Sec) pathway for the translocation and secretion of virulence factors out of the cell. Since many secreted virulence factors in gram-positive organisms are subsequently attached to the bacterial cell surface via sortase enzymes, we sought to investigate the spatial relationship between secretion and cell wall attachment in Enterococcus faecalis. We discovered that sortase A (SrtA) and sortase C (SrtC) are colocalized with SecA at single foci in the enterococcus. The SrtA-processed substrate aggregation substance accumulated in single foci when SrtA was deleted, implying a single site of secretion for these proteins. Furthermore, in the absence of the pilus-polymerizing SrtC, pilin subunits also accumulate in single foci. Proteins that localized to single foci in E. faecalis were found to share a positively charged domain flanking a transmembrane helix. Mutation or deletion of this domain in SrtC abolished both its retention at single foci and its function in efficient pilus assembly. We conclude that this positively charged domain can act as a localization retention signal for the focal compartmentalization of membrane proteins.
Collapse
|
65
|
Budzik JM, Oh SY, Schneewind O. Cell wall anchor structure of BcpA pili in Bacillus anthracis. J Biol Chem 2008; 283:36676-86. [PMID: 18940793 PMCID: PMC2605976 DOI: 10.1074/jbc.m806796200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Indexed: 11/06/2022] Open
Abstract
Assembly of pili in Gram-positive bacteria and their attachment to the cell wall envelope are mediated by sortases. In Bacillus cereus and its close relative Bacillus anthracis, the major pilin protein BcpA is cleaved between the threonine and the glycine of its C-terminal LPXTG motif sorting signal by the pilin-specific sortase D. The resulting acyl enzyme intermediate is relieved by the nucleophilic attack of the side-chain amino group of lysine within the YPKN motif of another BcpA subunit. Cell wall anchoring of assembled BcpA pili requires sortase A, which also cleaves the LPXTG sorting signal of BcpA between its threonine and glycine residues. We show here that sortases A and D require only the C-terminal sorting signal of BcpA for substrate cleavage. Unlike sortase D, which accepts the YPKN motif as a nucleophile, sortase A forms an amide bond between the BcpA C-terminal carboxyl group of threonine and the side-chain amino group of diaminopimelic acid within the cell wall peptidoglycan of bacilli. These results represent the first demonstration of a cell wall anchor structure for pili, which are deposited by sortase A into the envelope of many different microbes.
Collapse
Affiliation(s)
- Jonathan M Budzik
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
66
|
Sortase-Mediated Pilus Fiber Biogenesis in Streptococcus pneumoniae. Structure 2008; 16:1838-48. [DOI: 10.1016/j.str.2008.10.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/03/2008] [Accepted: 10/09/2008] [Indexed: 11/20/2022]
|
67
|
|
68
|
|