51
|
Pack CG, Inoue Y, Higurashi T, Kawai-Noma S, Hayashi D, Craig E, Taguchi H. Heterogeneous interaction network of yeast prions and remodeling factors detected in live cells. BMB Rep 2018; 50:478-483. [PMID: 28893371 PMCID: PMC5625696 DOI: 10.5483/bmbrep.2017.50.9.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Indexed: 11/20/2022] Open
Abstract
Budding yeast has dozens of prions, which are mutually dependent on each other for the de novo prion formation. In addition to the interactions among prions, transmissions of prions are strictly dependent on two chaperone systems: the Hsp104 and the Hsp70/Hsp40 (J-protein) systems, both of which cooperatively remodel the prion aggregates to ensure the multiplication of prion entities. Since it has been postulated that prions and the remodeling factors constitute complex networks in cells, a quantitative approach to describe the interactions in live cells would be required. Here, the researchers applied dual-color fluorescence cross-correlation spectroscopy to investigate the molecular network of interaction in single live cells. The findings demonstrate that yeast prions and remodeling factors constitute a network through heterogeneous protein-protein interactions.
Collapse
Affiliation(s)
- Chan-Gi Pack
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yuji Inoue
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | | | - Shigeko Kawai-Noma
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Daigo Hayashi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Elizabeth Craig
- Department of Biochemistry, University of Wisconsin, WI 53706, USA
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
52
|
Hermes Transposon Mutagenesis Shows [URE3] Prion Pathology Prevented by a Ubiquitin-Targeting Protein: Evidence for Carbon/Nitrogen Assimilation Cross Talk and a Second Function for Ure2p in Saccharomyces cerevisiae. Genetics 2018; 209:789-800. [PMID: 29769283 DOI: 10.1534/genetics.118.300981] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022] Open
Abstract
[URE3] is an amyloid-based prion of Ure2p, a regulator of nitrogen catabolism. While most "variants" of the [URE3] prion are toxic, mild variants that only slightly slow growth are more widely studied. The existence of several antiprion systems suggests that some components may be protecting cells from potential detrimental effects of mild [URE3] variants. Our extensive Hermes transposon mutagenesis showed that disruption of YLR352W dramatically slows the growth of [URE3-1] strains. Ylr352wp is an F-box protein, directing selection of substrates for ubiquitination by a "cullin"-containing E3 ligase. For efficient ubiquitylation, cullin-dependent E3 ubiquitin ligases must be NEDDylated, modified by a ubiquitin-related peptide called NEDD8 (Rub1p in yeast). Indeed, we find that disruption of NEDDylation-related genes RUB1, ULA1, UBA3, and UBC12 is also counterselected in our screen. We find that like ylr352wΔ [URE3] strains, ylr352wΔ ure2Δ strains do not grow on nonfermentable carbon sources. Overexpression of Hap4p, a transcription factor stimulating expression of mitochondrial proteins, or mutation of GLN1, encoding glutamine synthetase, allows growth of ylr352w∆ [URE3] strains on glycerol media. Supplying proline as a nitrogen source shuts off the nitrogen catabolite repression (NCR) function of Ure2p, but does not slow growth of ylr352wΔ strains, suggesting a distinct function of Ure2p in carbon catabolism. Also, gln1 mutations impair NCR, but actually relieve the growth defect of ylr352wΔ [URE3] and ylr352wΔ ure2Δ strains, again showing that loss of NCR is not producing the growth defect and suggesting that Ure2p has another function. YLR352W largely protects cells from the deleterious effects of otherwise mild [URE3] variants or of a ure2 mutation (the latter a rarer event), and we name it LUG1 (lets [URE3]/ure2 grow).
Collapse
|
53
|
Wickner RB, Edskes HK, Son M, Bezsonov EE, DeWilde M, Ducatez M. Yeast Prions Compared to Functional Prions and Amyloids. J Mol Biol 2018; 430:3707-3719. [PMID: 29698650 DOI: 10.1016/j.jmb.2018.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 01/25/2023]
Abstract
Saccharomyces cerevisiae is an occasional host to an array of prions, most based on self-propagating, self-templating amyloid filaments of a normally soluble protein. [URE3] is a prion of Ure2p, a regulator of nitrogen catabolism, while [PSI+] is a prion of Sup35p, a subunit of the translation termination factor Sup35p. In contrast to the functional prions, [Het-s] of Podospora anserina and [BETA] of yeast, the amyloid-based yeast prions are rare in wild strains, arise sporadically, have an array of prion variants for a single prion protein sequence, have a folded in-register parallel β-sheet amyloid architecture, are detrimental to their hosts, arouse a stress response in the host, and are subject to curing by various host anti-prion systems. These characteristics allow a logical basis for distinction between functional amyloids/prions and prion diseases. These infectious yeast amyloidoses are outstanding models for the many common human amyloid-based diseases that are increasingly found to have some infectious characteristics.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA.
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Morgan DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| | - Mathieu Ducatez
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda 20892-0830, MD, USA
| |
Collapse
|
54
|
Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in Hsp104-mediated prion elimination. Mol Microbiol 2018; 109:41-62. [PMID: 29633387 PMCID: PMC6099457 DOI: 10.1111/mmi.13966] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2018] [Indexed: 01/02/2023]
Abstract
The amyloid-based prions of Saccharomyces cerevisiae are heritable aggregates of misfolded proteins, passed to daughter cells following fragmentation by molecular chaperones including the J-protein Sis1, Hsp70 and Hsp104. Overexpression of Hsp104 efficiently cures cell populations of the prion [PSI+ ] by an alternative Sis1-dependent mechanism that is currently the subject of significant debate. Here, we broadly investigate the role of J-proteins in this process by determining the impact of amyloid polymorphisms (prion variants) on the ability of well-studied Sis1 constructs to compensate for Sis1 and ask whether any other S. cerevisiae cytosolic J-proteins are also required for this process. Our comprehensive screen, examining all 13 members of the yeast cytosolic/nuclear J-protein complement, uncovered significant variant-dependent genetic evidence for a role of Apj1 (antiprion DnaJ) in this process. For strong, but not weak [PSI+ ] variants, depletion of Apj1 inhibits Hsp104-mediated curing. Overexpression of either Apj1 or Sis1 enhances curing, while overexpression of Ydj1 completely blocks it. We also demonstrated that Sis1 was the only J-protein necessary for the propagation of at least two weak [PSI+ ] variants and no J-protein alteration, or even combination of alterations, affected the curing of weak [PSI+ ] variants, suggesting the possibility of biochemically distinct, variant-specific Hsp104-mediated curing mechanisms.
Collapse
Affiliation(s)
| | - Erina Kamiya
- Department of ChemistryLafayette CollegeEastonPAUSA
| | - Zachary A. Sporn
- Department of ChemistryLafayette CollegeEastonPAUSA
- Present address:
Geisinger Commonwealth School of MedicineScrantonPAUSA
| | | | | |
Collapse
|
55
|
Wickner RB, Bezsonov EE, Son M, Ducatez M, DeWilde M, Edskes HK. Anti-Prion Systems in Yeast and Inositol Polyphosphates. Biochemistry 2018; 57:1285-1292. [PMID: 29377675 PMCID: PMC7321833 DOI: 10.1021/acs.biochem.7b01285] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The amyloid-based yeast prions are folded in-register parallel β-sheet polymers. Each prion can exist in a wide array of variants, with different biological properties resulting from different self-propagating amyloid conformations. Yeast has several anti-prion systems, acting in normal cells (without protein overexpression or deficiency). Some anti-prion proteins partially block prion formation (Ssb1,2p, ribosome-associated Hsp70s); others cure a large portion of prion variants that arise [Btn2p, Cur1p, Hsp104 (a disaggregase), Siw14p, and Upf1,2,3p, nonsense-mediated decay proteins], and others prevent prion-induced pathology (Sis1p, essential cytoplasmic Hsp40). Study of the anti-prion activity of Siw14p, a pyrophosphatase specific for 5-diphosphoinositol pentakisphosphate (5PP-IP5), led to the discovery that inositol polyphosphates, signal transduction molecules, are involved in [PSI+] prion propagation. Either inositol hexakisphosphate or 5PP-IP4 (or 5PP-IP5) can supply a function that is needed by nearly all [PSI+] variants. Because yeast prions are informative models for mammalian prion diseases and other amyloidoses, detailed examination of the anti-prion systems, some of which have close mammalian homologues, will be important for the development of therapeutic measures.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Evgeny E Bezsonov
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Mathieu Ducatez
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Morgan DeWilde
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| | - Herman K Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892-0830, United States
| |
Collapse
|
56
|
Son M, Wickner RB. Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants. Proc Natl Acad Sci U S A 2018; 115:E1184-E1193. [PMID: 29358398 PMCID: PMC5819436 DOI: 10.1073/pnas.1717495115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The yeast prion [PSI+] is a self-propagating amyloid of Sup35p with a folded in-register parallel β-sheet architecture. In a genetic screen for antiprion genes, using the yeast knockout collection, UPF1/NAM7 and UPF3, encoding nonsense-mediated mRNA decay (NMD) factors, were frequently detected. Almost all [PSI+] variants arising in the absence of Upf proteins were eliminated by restored normal levels of these proteins, and [PSI+] arises more frequently in upf mutants. Upf1p, complexed with Upf2p and Upf3p, is a multifunctional protein with helicase, ATP-binding, and RNA-binding activities promoting efficient translation termination and degradation of mRNAs with premature nonsense codons. We find that the curing ability of Upf proteins is uncorrelated with these previously reported functions but does depend on their interaction with Sup35p and formation of the Upf1p-Upf2p-Upf3p complex (i.e., the Upf complex). Indeed, Sup35p amyloid formation in vitro is inhibited by substoichiometric Upf1p. Inhibition of [PSI+] prion generation and propagation by Upf proteins may be due to the monomeric Upf proteins and the Upf complex competing with Sup35p amyloid fibers for available Sup35p monomers. Alternatively, the association of the Upf complex with amyloid filaments may block the addition of new monomers. Our results suggest that maintenance of normal protein-protein interactions prevents prion formation and can even reverse the process.
Collapse
Affiliation(s)
- Moonil Son
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
57
|
Zhao X, Lanz J, Steinberg D, Pease T, Ahearn JM, Bezsonov EE, Staguhn ED, Eisenberg E, Masison DC, Greene LE. Real-time imaging of yeast cells reveals several distinct mechanisms of curing of the [URE3] prion. J Biol Chem 2018; 293:3104-3117. [PMID: 29330300 DOI: 10.1074/jbc.m117.809079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022] Open
Abstract
The [URE3] yeast prion is the self-propagating amyloid form of the Ure2 protein. [URE3] is cured by overexpression of several yeast proteins, including Ydj1, Btn2, Cur1, Hsp42, and human DnaJB6. To better understand [URE3] curing, we used real-time imaging with a yeast strain expressing a GFP-labeled full-length Ure2 construct to monitor the curing of [URE3] over time. [URE3] yeast cells exhibited numerous fluorescent foci, and expression of the GFP-labeled Ure2 affected neither mitotic stability of [URE3] nor the rate of [URE3] curing by the curing proteins. Using guanidine to cure [URE3] via Hsp104 inactivation, we found that the fluorescent foci are progressively lost as the cells divide until they are cured; the fraction of cells that retained the foci was equivalent to the [URE3] cell fraction measured by a plating assay, indicating that the foci were the prion seeds. During the curing of [URE3] by Btn2, Cur1, Hsp42, or Ydj1 overexpression, the foci formed aggregates, many of which were 0.5 μm or greater in size, and [URE3] was cured by asymmetric segregation of the aggregated seeds. In contrast, DnaJB6 overexpression first caused a loss of detectable foci in cells that were still [URE3] before there was complete dissolution of the seeds, and the cells were cured. We conclude that GFP labeling of full-length Ure2 enables differentiation among the different [URE3]-curing mechanisms, including inhibition of severing followed by seed dilution, seed clumping followed by asymmetric segregation between mother and daughter cells, and seed dissolution.
Collapse
Affiliation(s)
| | - Jenna Lanz
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Tyler Pease
- From the Laboratory of Cell Biology, NHLBI and
| | | | - Evgeny E Bezsonov
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | | | | - Daniel C Masison
- the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0301
| | | |
Collapse
|
58
|
Affiliation(s)
- Andrea N. Killian
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, United States of America
| | - Justin K. Hines
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
59
|
Prion propagation and inositol polyphosphates. Curr Genet 2017; 64:571-574. [PMID: 29243174 DOI: 10.1007/s00294-017-0788-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 01/08/2023]
Abstract
The [PSI+] prion is a folded in-register parallel β-sheet amyloid (filamentous polymer) of Sup35p, a subunit of the translation termination factor. Our searches for anti-prion systems led to our finding that certain soluble inositol polyphosphates (IPs) are important for the propagation of the [PSI+] prion. The IPs affect a wide range of processes, including mRNA export, telomere length, phosphate and polyphosphate metabolism, energy regulation, transcription and translation. We found that 5-diphosphoinositol tetra(or penta)kisphosphate or inositol hexakisphosphate could support [PSI+] prion propagation, and 1-diphosphoinositol pentakisphosphate appears to inhibit the process.
Collapse
|
60
|
Broadening the functionality of a J-protein/Hsp70 molecular chaperone system. PLoS Genet 2017; 13:e1007084. [PMID: 29084221 PMCID: PMC5679652 DOI: 10.1371/journal.pgen.1007084] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/09/2017] [Accepted: 10/18/2017] [Indexed: 12/21/2022] Open
Abstract
By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.
Collapse
|
61
|
Differential effects of chaperones on yeast prions: CURrent view. Curr Genet 2017; 64:317-325. [DOI: 10.1007/s00294-017-0750-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 01/01/2023]
|
62
|
Xue YL, Wang H, Riedy M, Roberts BL, Sun Y, Song YB, Jones GW, Masison DC, Song Y. Molecular dynamics simulations of Hsp40 J-domain mutants identifies disruption of the critical HPD-motif as the key factor for impaired curing in vivo of the yeast prion [URE3]. J Biomol Struct Dyn 2017; 36:1764-1775. [PMID: 28766406 DOI: 10.1080/07391102.2017.1334594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic screens using Saccharomyces cerevisiae have identified an array of Hsp40 (Ydj1p) J-domain mutants that are impaired in the ability to cure the yeast [URE3] prion through disrupting functional interactions with Hsp70. However, biochemical analysis of some of these Hsp40 J-domain mutants has so far failed to provide major insight into the specific functional changes in Hsp40-Hsp70 interactions. To explore the detailed structural and dynamic properties of the Hsp40 J-domain, 20 ns molecular dynamic simulations of 4 mutants (D9A, D36A, A30T, and F45S) and wild-type J-domain were performed, followed by Hsp70 docking simulations. Results demonstrated that although the Hsp70 interaction mechanism of the mutants may vary, the major structural change was targeted to the critical HPD motif of the J-domain. Our computational analysis fits well with previous yeast genetics studies regarding highlighting the importance of J-domain function in prion propagation. During the molecular dynamics simulations several important residues were identified and predicted to play an essential role in J-domain structure. Among these residues, Y26 and F45 were confirmed, using both in silico and in vivo methods, as being critical for Ydj1p function.
Collapse
Affiliation(s)
- You-Lin Xue
- a School of Environmental Science, Liaoning University , Shenyang , China.,d Light Industry College, Liaoning University , Shenyang , China
| | - Hao Wang
- a School of Environmental Science, Liaoning University , Shenyang , China
| | - Michael Riedy
- b Laboratory of Biochemistry and Genetics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Brittany-Lee Roberts
- b Laboratory of Biochemistry and Genetics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Yuna Sun
- a School of Environmental Science, Liaoning University , Shenyang , China
| | - Yong-Bo Song
- e School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University , Shenyang , China
| | - Gary W Jones
- c National University of Ireland Maynooth , Maynooth , Ireland
| | - Daniel C Masison
- b Laboratory of Biochemistry and Genetics , National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda , MD , USA
| | - Youtao Song
- a School of Environmental Science, Liaoning University , Shenyang , China
| |
Collapse
|
63
|
Abstract
Prions are infectious protein polymers that have been found to cause fatal diseases in mammals. Prions have also been identified in fungi (yeast and filamentous fungi), where they behave as cytoplasmic non-Mendelian genetic elements. Fungal prions correspond in most cases to fibrillary β-sheet-rich protein aggregates termed amyloids. Fungal prion models and, in particular, yeast prions were instrumental in the description of fundamental aspects of prion structure and propagation. These models established the "protein-only" nature of prions, the physical basis of strain variation, and the role of a variety of chaperones in prion propagation and amyloid aggregate handling. Yeast and fungal prions do not necessarily correspond to harmful entities but can have adaptive roles in these organisms.
Collapse
|
64
|
Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2017; 7:1941-1954. [PMID: 28450372 PMCID: PMC5473770 DOI: 10.1534/g3.117.042291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations.
Collapse
|
65
|
Overexpression of the essential Sis1 chaperone reduces TDP-43 effects on toxicity and proteolysis. PLoS Genet 2017; 13:e1006805. [PMID: 28531192 PMCID: PMC5460882 DOI: 10.1371/journal.pgen.1006805] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 06/06/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by selective loss of motor neurons with inclusions frequently containing the RNA/DNA binding protein TDP-43. Using a yeast model of ALS exhibiting TDP-43 dependent toxicity, we now show that TDP-43 overexpression dramatically alters cell shape and reduces ubiquitin dependent proteolysis of a reporter construct. Furthermore, we show that an excess of the Hsp40 chaperone, Sis1, reduced TDP-43’s effect on toxicity, cell shape and proteolysis. The strength of these effects was influenced by the presence of the endogenous yeast prion, [PIN+]. Although overexpression of Sis1 altered the TDP-43 aggregation pattern, we did not detect physical association of Sis1 with TDP-43, suggesting the possibility of indirect effects on TDP-43 aggregation. Furthermore, overexpression of the mammalian Sis1 homologue, DNAJB1, relieves TDP-43 mediated toxicity in primary rodent cortical neurons, suggesting that Sis1 and its homologues may have neuroprotective effects in ALS. Many neurodegenerative diseases are associated with aggregation of specific proteins. Thus we are interested in factors that influence the aggregation and how the aggregated proteins are associated with pathology. Here, we study a protein called TDP-43 that is frequently aggregated in the neurons of patients with amyotrophic lateral sclerosis (ALS). TDP-43 aggregates and is toxic when expressed in yeast, providing a useful model for ALS. Remarkably, a protein that modified TDP-43 toxicity in yeast successfully predicted a new ALS susceptibility gene in humans. We now report a new modifier of TDP-43 toxicity, Sis1. We show that expression of TDP-43 in yeast inhibits degradation of damaged protein, while overexpression of Sis1 restores degradation. Thus suggests a link between protein degradation and TDP-43 toxicity. Furthermore we show that a mammalian protein similar to Sis1 reduces TDP-43 toxicity in primary rodent neurons. This identifies the mammalian Sis1-like gene as a new ALS therapeutic target and possible susceptibility gene.
Collapse
|
66
|
Barbitoff YA, Matveenko AG, Moskalenko SE, Zemlyanko OM, Newnam GP, Patel A, Chernova TA, Chernoff YO, Zhouravleva GA. To CURe or not to CURe? Differential effects of the chaperone sorting factor Cur1 on yeast prions are mediated by the chaperone Sis1. Mol Microbiol 2017; 105:242-257. [PMID: 28431189 DOI: 10.1111/mmi.13697] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
Yeast self-perpetuating protein aggregates (prions) provide a convenient model for studying various components of the cellular protein quality control system. Molecular chaperones and chaperone-sorting factors, such as yeast Cur1 protein, play key role in proteostasis via tight control of partitioning and recycling of misfolded proteins. In this study, we show that, despite the previously described ability of Cur1 to antagonize the yeast prion [URE3], it enhances propagation and phenotypic manifestation of another prion, [PSI+ ]. We demonstrate that both curing of [URE3] and enhancement of [PSI+ ] in the presence of excess Cur1 are counteracted by the cochaperone Hsp40-Sis1 in a dosage-dependent manner, and show that the effect of Cur1 on prions parallels effects of the attachment of nuclear localization signal to Sis1, indicating that Cur1 acts on prions via its previously reported ability to relocalize Sis1 from the cytoplasm to nucleus. This shows that the direction in which Cur1 influences a prion depends on how this specific prion responds to relocalization of Sis1.
Collapse
Affiliation(s)
- Yury A Barbitoff
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Andrew G Matveenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Svetlana E Moskalenko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,St. Petersburg Branch, Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Olga M Zemlyanko
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia.,Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Gary P Newnam
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Ayesha Patel
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA
| | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yury O Chernoff
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg 199034, Russia.,School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332-2000, USA.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
67
|
Hsp104 disaggregase at normal levels cures many [ PSI+] prion variants in a process promoted by Sti1p, Hsp90, and Sis1p. Proc Natl Acad Sci U S A 2017; 114:E4193-E4202. [PMID: 28484020 DOI: 10.1073/pnas.1704016114] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Overproduction or deficiency of many chaperones and other cellular components cure the yeast prions [PSI+] (formed by Sup35p) or [URE3] (based on Ure2p). However, at normal expression levels, Btn2p and Cur1p eliminate most newly arising [URE3] variants but do not cure [PSI+], even after overexpression. Deficiency or overproduction of Hsp104 cures the [PSI+] prion. Hsp104 deficiency curing is a result of failure to cleave the Sup35p amyloid filaments to make new seeds, whereas Hsp104 overproduction curing occurs by a different mechanism. Hsp104(T160M) can propagate [PSI+], but cannot cure it by overproduction, thus separating filament cleavage from curing activities. Here we show that most [PSI+] variants arising spontaneously in an hsp104(T160M) strain are cured by restoration of just normal levels of the WT Hsp104. Both strong and weak [PSI+] variants are among those cured by this process. This normal-level Hsp104 curing is promoted by Sti1p, Hsp90, and Sis1p, proteins previously implicated in the Hsp104 overproduction curing of [PSI+]. The [PSI+] prion arises in hsp104(T160M) cells at more than 10-fold the frequency in WT cells. The curing activity of Hsp104 thus constitutes an antiprion system, culling many variants of the [PSI+] prion at normal Hsp104 levels.
Collapse
|
68
|
Oliver EE, Troisi EM, Hines JK. Prion-specific Hsp40 function: The role of the auxilin homolog Swa2. Prion 2017; 11:174-185. [PMID: 28574745 PMCID: PMC5480384 DOI: 10.1080/19336896.2017.1331810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/09/2017] [Accepted: 05/10/2017] [Indexed: 01/14/2023] Open
Abstract
Yeast prions are protein-based genetic elements that propagate through cell populations via cytosolic transfer from mother to daughter cell. Molecular chaperone proteins including Hsp70, the Hsp40/J-protein Sis1, and Hsp104 are required for continued prion propagation, however the specific requirements of chaperone proteins differ for various prions. We recently reported that Swa2, the yeast homolog of the mammalian protein auxilin, is specifically required for the propagation of the prion [URE3]. 1 [URE3] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain of Swa2, but does not require Swa2 clathrin binding. We concluded that the TPR domain determines the specificity of the genetic interaction between Swa2 and [URE3], and that this domain likely interacts with one or more proteins with a C-terminal EEVD motif. Here we extend that analysis to incorporate additional data that supports this hypothesis. We also present new data eliminating Hsp104 as the relevant Swa2 binding partner and discuss our findings in the context of other recent work involving Hsp90. Based on these findings, we propose a new model for Swa2's involvement in [URE3] propagation in which Swa2 and Hsp90 mediate the formation of a multi-protein complex that increases the number of sites available for Hsp104 disaggregation.
Collapse
|
69
|
Sharma J, Wisniewski BT, Paulson E, Obaoye JO, Merrill SJ, Manogaran AL. De novo [PSI +] prion formation involves multiple pathways to form infectious oligomers. Sci Rep 2017; 7:76. [PMID: 28250435 PMCID: PMC5427932 DOI: 10.1038/s41598-017-00135-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
Prion and other neurodegenerative diseases are associated with misfolded protein assemblies called amyloid. Research has begun to uncover common mechanisms underlying transmission of amyloids, yet how amyloids form in vivo is still unclear. Here, we take advantage of the yeast prion, [PSI +], to uncover the early steps of amyloid formation in vivo. [PSI +] is the prion form of the Sup35 protein. While [PSI +] formation is quite rare, the prion can be greatly induced by overexpression of the prion domain of the Sup35 protein. This de novo induction of [PSI +] shows the appearance of fluorescent cytoplasmic rings when the prion domain is fused with GFP. Our current work shows that de novo induction is more complex than previously thought. Using 4D live cell imaging, we observed that fluorescent structures are formed by four different pathways to yield [PSI +] cells. Biochemical analysis of de novo induced cultures indicates that newly formed SDS resistant oligomers change in size over time and lysates made from de novo induced cultures are able to convert [psi -] cells to [PSI +] cells. Taken together, our findings suggest that newly formed prion oligomers are infectious.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Brett T Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Joanna O Obaoye
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
70
|
Chernova TA, Wilkinson KD, Chernoff YO. Prions, Chaperones, and Proteostasis in Yeast. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a023663. [PMID: 27815300 DOI: 10.1101/cshperspect.a023663] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Prions are alternatively folded, self-perpetuating protein isoforms involved in a variety of biological and pathological processes. Yeast prions are protein-based heritable elements that serve as an excellent experimental system for studying prion biology. The propagation of yeast prions is controlled by the same Hsp104/70/40 chaperone machinery that is involved in the protection of yeast cells against proteotoxic stress. Ribosome-associated chaperones, proteolytic pathways, cellular quality-control compartments, and cytoskeletal networks influence prion formation, maintenance, and toxicity. Environmental stresses lead to asymmetric prion distribution in cell divisions. Chaperones and cytoskeletal proteins mediate this effect. Overall, this is an intimate relationship with the protein quality-control machinery of the cell, which enables prions to be maintained and reproduced. The presence of many of these same mechanisms in higher eukaryotes has implications for the diagnosis and treatment of mammalian amyloid diseases.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Keith D Wilkinson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-2000.,Laboratory of Amyloid Biology and Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
71
|
Nizhnikov AA, Ryzhova TA, Volkov KV, Zadorsky SP, Sopova JV, Inge-Vechtomov SG, Galkin AP. Interaction of Prions Causes Heritable Traits in Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006504. [PMID: 28027291 PMCID: PMC5189945 DOI: 10.1371/journal.pgen.1006504] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
The concept of "protein-based inheritance" defines prions as epigenetic determinants that cause several heritable traits in eukaryotic microorganisms, such as Saccharomyces cerevisiae and Podospora anserina. Previously, we discovered a non-chromosomal factor, [NSI+], which possesses the main features of yeast prions, including cytoplasmic infectivity, reversible curability, dominance, and non-Mendelian inheritance in meiosis. This factor causes omnipotent suppression of nonsense mutations in strains of S. cerevisiae bearing a deleted or modified Sup35 N-terminal domain. In this work, we identified protein determinants of [NSI+] using an original method of proteomic screening for prions. The suppression of nonsense mutations in [NSI+] strains is determined by the interaction between [SWI+] and [PIN+] prions. Using genetic and biochemical methods, we showed that [SWI+] is the key determinant of this nonsense suppression, whereas [PIN+] does not cause nonsense suppression by itself but strongly enhances the effect of [SWI+]. We demonstrated that interaction of [SWI+] and [PIN+] causes inactivation of SUP45 gene that leads to nonsense suppression. Our data show that prion interactions may cause heritable traits in Saccharomyces cerevisiae. The data presented in the paper deepens and enriches the concept of protein-based inheritance. According to this concept, prion conformational switches change protein functional activity, and such changes are inherited. Here, for the first time, we demonstrate that heritable traits may appear not only due to a conformational switch of one protein but also can be caused by interactions between different prions. To identify the novel epigenetic factor that causes suppression of nonsense mutations in yeast, we applied our original method of proteomic screening of prions. We have shown that two yeast proteins, which normally do not interact, in prion form demonstrate genetic interaction: one is the key determinant of the suppression of nonsense mutation, while the second enhances this effect. Thus, by analogy with monogenic and polygenic inheritance, in the framework of the prion concept, we can distinguish “monoprionic” and “polyprionic” inheritance. We assume that new examples of polyprionic inheritance will be revealed using modern proteomic methods for identification of prions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Tatyana A Ryzhova
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Kirill V Volkov
- St. Petersburg State University, Research Park, Research Resource Center "Molecular and Cell Technologies", St. Petersburg, Russian Federation
| | - Sergey P Zadorsky
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Julia V Sopova
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Sergey G Inge-Vechtomov
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| | - Alexey P Galkin
- St. Petersburg State University, Department of Genetics and Biotechnology, 199034 St. Petersburg, Russian Federation.,Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russian Federation
| |
Collapse
|
72
|
Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo. PLoS Genet 2016; 12:e1006417. [PMID: 27814358 PMCID: PMC5096688 DOI: 10.1371/journal.pgen.1006417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
Prions are a group of proteins that can adopt a spectrum of metastable conformations in vivo. These alternative states change protein function and are self-replicating and transmissible, creating protein-based elements of inheritance and infectivity. Prion conformational flexibility is encoded in the amino acid composition and sequence of the protein, which dictate its ability not only to form an ordered aggregate known as amyloid but also to maintain and transmit this structure in vivo. But, while we can effectively predict amyloid propensity in vitro, the mechanism by which sequence elements promote prion propagation in vivo remains unclear. In yeast, propagation of the [PSI+] prion, the amyloid form of the Sup35 protein, has been linked to an oligopeptide repeat region of the protein. Here, we demonstrate that this region is composed of separable functional elements, the repeats themselves and a repeat proximal region, which are both required for efficient prion propagation. Changes in the numbers of these elements do not alter the physical properties of Sup35 amyloid, but their presence promotes amyloid fragmentation, and therefore maintenance, by molecular chaperones. Rather than acting redundantly, our observations suggest that these sequence elements make complementary contributions to prion propagation, with the repeat proximal region promoting chaperone binding to and the repeats promoting chaperone processing of Sup35 amyloid. Protein misfolding and assembly into ordered aggregates known as amyloid has emerged as a novel mechanism for regulation of protein function. In the case of prion proteins, the resulting amyloid is transmissible, creating protein-based elements of infectivity and inheritance. These unusual properties are linked to the amino acid composition and sequence of the protein, which confer both conformational flexibility and persistence in vivo, the latter of which occurs through mechanisms that are currently poorly understood. Here, we address this open question by studying a region of the yeast prion Sup35 that has been genetically linked to persistence. We find that this region is composed of two separable elements that are both required for efficient persistence of the amyloid. These elements do not contribute to amyloid stability. Rather, they promote distinct aspects of its functional interactions with molecular chaperones, which are required for efficient conformational self-replication and transmission.
Collapse
|
73
|
Matveenko AG, Drozdova PB, Belousov MV, Moskalenko SE, Bondarev SA, Barbitoff YA, Nizhnikov AA, Zhouravleva GA. SFP1-mediated prion-dependent lethality is caused by increased Sup35 aggregation and alleviated by Sis1. Genes Cells 2016; 21:1290-1308. [DOI: 10.1111/gtc.12444] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew G. Matveenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Polina B. Drozdova
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Mikhail V. Belousov
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Svetlana E. Moskalenko
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| | - Yury A. Barbitoff
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
| | - Anton A. Nizhnikov
- St Petersburg Branch; Vavilov Institute of General Genetics of the Russian Academy of Sciences; St Petersburg Russia
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- All-Russia Research Institute for Agricultural Microbiology; Pushkin St Petersburg Russia
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology; Saint Petersburg State University; St Petersburg Russia
- Laboratory of Amyloid Biology; Saint Petersburg State University; St Petersburg Russia
| |
Collapse
|
74
|
Kummer E, Szlachcic A, Franke KB, Ungelenk S, Bukau B, Mogk A. Bacterial and Yeast AAA + Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70. J Mol Biol 2016; 428:4378-4391. [DOI: 10.1016/j.jmb.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 11/28/2022]
|
75
|
Abstract
Yeast and fungal prions are infectious proteins, most being self-propagating amyloids of normally soluble proteins. Their effects range from a very mild detriment to lethal, with specific effects dependent on the prion protein and the specific prion variant ("prion strain"). The prion amyloids of Sup35p, Ure2p, and Rnq1p are in-register, parallel, folded β-sheets, an architecture that naturally suggests a mechanism by which a protein can template its conformation, just as DNA or RNA templates its sequence. Prion propagation is critically affected by an array of chaperone systems, most notably the Hsp104/Hsp70/Hsp40 combination, which is responsible for generating new prion seeds from old filaments. The Btn2/Cur1 antiprion system cures most [URE3] prions that develop, and the Ssb antiprion system blocks [PSI+] generation.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830
| |
Collapse
|
76
|
Sporn ZA, Hines JK. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone functional complexity. Prion 2016; 9:80-9. [PMID: 25738774 PMCID: PMC4601347 DOI: 10.1080/19336896.2015.1020268] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Yeast prions are heritable protein-based elements, most of which are formed of amyloid aggregates that rely on the action of molecular chaperones for transmission to progeny. Prions can form distinct amyloid structures, known as 'strains' in mammalian systems, that dictate both pathological progression and cross-species infection barriers. In yeast these same amyloid structural polymorphisms, called 'variants', dictate the intensity of prion-associated phenotypes and stability in mitosis. We recently reported that [PSI(+)] prion variants differ in the fundamental domain requirements for one chaperone, the Hsp40/J-protein Sis1, which are mutually exclusive between 2 different yeast prions, demonstrating a functional plurality for Sis1. Here we extend that analysis to incorporate additional data that collectively support the hypothesis that Sis1 has multiple functional roles that can be accomplished by distinct sets of domains. These functions are differentially required by distinct prions and prion variants. We also present new data regarding Hsp104-mediated prion elimination and show that some Sis1 functions, but not all, are conserved in the human homolog Hdj1/DNAJB1. Importantly, of the 10 amyloid-based prions indentified to date in Saccharomyces cerevisiae, the chaperone requirements of only 4 are known, leaving a great diversity of amyloid structures, and likely modes of amyloid-chaperone interaction, largely unexplored.
Collapse
Affiliation(s)
- Zachary A Sporn
- a Department of Chemistry ; Lafayette College ; Easton , PA USA
| | | |
Collapse
|
77
|
Wickner RB, Edskes HK, Gorkovskiy A, Bezsonov EE, Stroobant EE. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology. ADVANCES IN GENETICS 2016; 93:191-236. [PMID: 26915272 PMCID: PMC9432818 DOI: 10.1016/bs.adgen.2015.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far.
Collapse
Affiliation(s)
- R B Wickner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - H K Edskes
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - A Gorkovskiy
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - E E Bezsonov
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - E E Stroobant
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
78
|
Reidy M, Sharma R, Roberts BL, Masison DC. Human J-protein DnaJB6b Cures a Subset of Saccharomyces cerevisiae Prions and Selectively Blocks Assembly of Structurally Related Amyloids. J Biol Chem 2015; 291:4035-47. [PMID: 26702057 DOI: 10.1074/jbc.m115.700393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Human chaperone DnaJB6, an Hsp70 co-chaperone whose defects cause myopathies, protects cells from polyglutamine toxicity and prevents purified polyglutamine and Aβ peptides from forming amyloid. Yeast prions [URE3] and [PSI(+)] propagate as amyloid forms of Ure2 and Sup35 proteins, respectively. Here we find DnaJB6-protected yeast cells from polyglutamine toxicity and cured yeast of both [URE3] prions and weak variants of [PSI(+)] prions but not strong [PSI(+)] prions. Weak and strong variants of [PSI(+)] differ only in the structural conformation of their amyloid cores. In line with its anti-prion effects, DnaJB6 prevented purified Sup35NM from forming amyloids at 37 °C, which produce predominantly weak [PSI(+)] variants when used to infect yeast, but not at 4 °C, which produces mostly strong [PSI(+)] variants. Thus, structurally distinct amyloids composed of the same protein were differentially sensitive to the anti-amyloid activity of DnaJB6 both in vitro and in vivo. These findings have important implications for strategies using DnaJB6 as a target for therapy in amyloid disorders.
Collapse
Affiliation(s)
- Michael Reidy
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Ruchika Sharma
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Brittany-Lee Roberts
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel C Masison
- From the Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
79
|
Bui Q, Sherma J, Fried B, Hines J. Determination of Growth-Phase Dependent Influences Exerted by Prions on Yeast Lipid Content Using HPTLC-Densitometry. ACTA CHROMATOGR 2015; 28:373-385. [PMID: 27974871 PMCID: PMC5152692 DOI: 10.1556/1326.2016.28.3.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prions of the baker's yeast Saccharomyces cerevisiae allow for the inheritance of complex traits based solely on the acquisition of cytoplasmic protein aggregates and confer distinctive phenotypes to the cells which harbor them, creating heterogeneity within an otherwise clonal cell population. These phenotypes typically arise from a loss-of-function of the prion-forming protein that is unable to perform its normal cellular function(s) while sequestered in prion amyloid aggregates, but the specific biochemical consequences of prion infection are poorly understood. To begin to address this issue, we initiated a direct investigation into the potential control that yeast prions exert over fungal lipid content by utilizing the prions [URE3] and [PSI+], the first two prions discovered in yeast. We utilized silica gel high-performance thin-layer chromatography (HPTLC)-densitometry to conduct pair-wise quantifications of the relative levels of free sterols, free fatty acids, and triacylglycerols [petroleum ether-diethyl ether-acetic acid (80:20:1) mobile phase, phosphomolybdic acid (PMA) detection reagent]; steryl esters and squalene (hexane-petroleum ether-diethyl ether-acetic acid (50:20;5:1), PMA]; and phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol (chloroform-diethyl ether-acetic acid (65:25:4.5), cupric sulfate-phosphoric acid) in otherwise clonal prion-infected ([PSI+] or [URE3]) and prion-free ([psi-] or [ure-o]) cells in two growth phases: log-phase and stationary phase. Our analysis revealed multiple statistically significant differences (p < 0.00625) between prion-infected and prion-free cells. Interestingly, prion-induced changes varied dramatically by growth phase, indicating that prions exert differential influences on cell physiology between log and stationary growth. Further experimental replication and extension of the analysis to other prions is expected to resolve additional physiological effects of prion infection. This investigation demonstrates that HPTLC-densitometry is an effective method for studying prion-induced alterations in lipid content in yeast.
Collapse
Affiliation(s)
- Q. Bui
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, United States of America
| | - J. Sherma
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, United States of America
| | - B. Fried
- Department of Biology, Lafayette College, Easton, Pennsylvania, United States of America
| | - J.K. Hines
- Department of Chemistry, Lafayette College, Easton, Pennsylvania, United States of America
| |
Collapse
|
80
|
O'Driscoll J, Clare D, Saibil H. Prion aggregate structure in yeast cells is determined by the Hsp104-Hsp110 disaggregase machinery. J Cell Biol 2015; 211:145-58. [PMID: 26438827 PMCID: PMC4602031 DOI: 10.1083/jcb.201505104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/08/2015] [Indexed: 12/31/2022] Open
Abstract
3D structural analysis of a yeast [PSI+] prion model by correlative fluorescence and electron tomography reveals that prion aggregate structure depends on the levels of Hsp70 chaperones, the protein remodeling ATPase Hsp104, and the Hsp70 nucleotide exchange factor/disaggregase Sse1 (yeast Hsp110). Prions consist of misfolded proteins that have adopted an infectious amyloid conformation. In vivo, prion biogenesis is intimately associated with the protein quality control machinery. Using electron tomography, we probed the effects of the heat shock protein Hsp70 chaperone system on the structure of a model yeast [PSI+] prion in situ. Individual Hsp70 deletions shift the balance between fibril assembly and disassembly, resulting in a variable shell of nonfibrillar, but still immobile, aggregates at the surface of the [PSI+] prion deposits. Both Hsp104 (an Hsp100 disaggregase) and Sse1 (the major yeast form of Hsp110) were localized to this surface shell of [PSI+] deposits in the deletion mutants. Elevation of Hsp104 expression promoted the appearance of this novel, nonfibrillar form of the prion aggregate. Moreover, Sse1 was found to regulate prion fibril length. Our studies reveal a key role for Sse1 (Hsp110), in cooperation with Hsp104, in regulating the length and assembly state of [PSI+] prion fibrils in vivo.
Collapse
Affiliation(s)
- Jonathan O'Driscoll
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Daniel Clare
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Helen Saibil
- Crystallography, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| |
Collapse
|
81
|
Troisi EM, Rockman ME, Nguyen PP, Oliver EE, Hines JK. Swa2, the yeast homolog of mammalian auxilin, is specifically required for the propagation of the prion variant [URE3-1]. Mol Microbiol 2015; 97:926-41. [PMID: 26031938 PMCID: PMC4689296 DOI: 10.1111/mmi.13076] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2015] [Indexed: 01/09/2023]
Abstract
Yeast prions require a core set of chaperone proteins including Sis1, Hsp70 and Hsp104 to generate new amyloid templates for stable propagation, yet emerging studies indicate that propagation of some prions requires additional chaperone activities, demonstrating chaperone specificity beyond the common amyloid requirements. To comprehensively assess such prion-specific requirements for the propagation of the [URE3] prion variant [URE3-1], we screened 12 yeast cytosolic J-proteins, and here we report a novel role for the J-protein Swa2/Aux1. Swa2 is the sole yeast homolog of the mammalian protein auxilin, which, like Swa2, functions in vesicle-mediated endocytosis by disassembling the structural lattice formed by the protein clathrin. We found that, in addition to Sis1, [URE3-1] is specifically dependent upon Swa2, but not on any of the 11 other J-proteins. Further, we show that [URE3-1] propagation requires both a functional J-domain and the tetratricopeptide repeat (TPR) domain, but surprisingly does not require Swa2-clathrin binding. Because the J-domain of Swa2 can be replaced with the J-domains of other proteins, our data strongly suggest that prion-chaperone specificity arises from the Swa2 TPR domain and supports a model where Swa2 acts through Hsp70, most likely to provide additional access points for Hsp104 to promote prion template generation.
Collapse
Affiliation(s)
| | | | - Phil P Nguyen
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Emily E Oliver
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | - Justin K Hines
- Department of Chemistry, Lafayette College, Easton, PA, USA
| |
Collapse
|
82
|
Mokry DZ, Abrahão J, Ramos CH. Disaggregases, molecular chaperones that resolubilize protein aggregates. ACTA ACUST UNITED AC 2015; 87:1273-92. [DOI: 10.1590/0001-3765201520140671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The process of folding is a seminal event in the life of a protein, as it is essential for proper protein function and therefore cell physiology. Inappropriate folding, or misfolding, can not only lead to loss of function, but also to the formation of protein aggregates, an insoluble association of polypeptides that harm cell physiology, either by themselves or in the process of formation. Several biological processes have evolved to prevent and eliminate the existence of non-functional and amyloidogenic aggregates, as they are associated with several human pathologies. Molecular chaperones and heat shock proteins are specialized in controlling the quality of the proteins in the cell, specifically by aiding proper folding, and dissolution and clearance of already formed protein aggregates. The latter is a function of disaggregases, mainly represented by the ClpB/Hsp104 subfamily of molecular chaperones, that are ubiquitous in all organisms but, surprisingly, have no orthologs in the cytosol of metazoan cells. This review aims to describe the characteristics of disaggregases and to discuss the function of yeast Hsp104, a disaggregase that is also involved in prion propagation and inheritance.
Collapse
Affiliation(s)
| | - Josielle Abrahão
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| | | |
Collapse
|
83
|
A mathematical model of the dynamics of prion aggregates with chaperone-mediated fragmentation. J Math Biol 2015; 72:1555-78. [PMID: 26297259 PMCID: PMC4823377 DOI: 10.1007/s00285-015-0921-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/22/2015] [Indexed: 11/18/2022]
Abstract
Prions are proteins most commonly associated with fatal neurodegenerative diseases in mammals but are also responsible for a number of harmless heritable phenotypes in yeast. These states arise when a misfolded form of a protein appears and, rather than be removed by cellular quality control mechanisms, persists. The misfolded prion protein forms aggregates and is capable of converting normally folded protein to the misfolded state through direct interaction between the two forms. The dominant mathematical model for prion aggregate dynamics has been the nucleated polymerization model (NPM) which considers the dynamics of only the normal protein and the aggregates. However, for yeast prions the molecular chaperone Hsp104 is essential for prion propagation. Further, although mammals do not express Hsp104, experimental assays have shown Hsp104 also interacts with mammalian prion aggregates. In this study, we generalize the NPM to account for molecular chaperones and develop what we call the enzyme-limited nucleated polymerization model (ELNPM). We discuss existence, uniqueness and stability of solutions to our model and demonstrate that the NPM represents a quasi-steady-state reduction of our model. We validate the ELNPM by demonstrating agreement with experimental results on the yeast prion \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$[$$\end{document}[PSI\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${}^{+}]$$\end{document}+] that could not be supported by the NPM. Finally, we demonstrate that, in contrast to the NPM, the ELNPM permits the coexistence of multiple prion strains.
Collapse
|
84
|
Abstract
A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.
Collapse
|
85
|
Reidy M, Masison DC. Yeast prions help identify and define chaperone interaction networks. Curr Pharm Biotechnol 2015; 15:1008-18. [PMID: 25373385 DOI: 10.2174/1389201015666141103021035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 07/22/2014] [Accepted: 10/05/2014] [Indexed: 11/22/2022]
Abstract
Proteins in the cell experience various stressful conditions that can affect their ability to attain and maintain the structural conformations they need to perform effectively. Protein chaperones are an important part of a cellular protein quality control system that protects the integrity of the proteome in the face of such challenges. Chaperones from different conserved families have multiple members that cooperate to regulate each other's activity and produce machines that perform a variety of tasks. The large numbers of related chaperones with both functionally overlapping and distinct activities allows fine-tuning of the machinery for specific tasks, but presents a daunting degree of complexity. Yeast prions are misfolded forms of cellular proteins whose propagation depends on the action of protein chaperones. Studying how propagation of yeast prions is affected by alterations in functions of various chaperones provides an approach to understanding this complexity.
Collapse
Affiliation(s)
| | - Daniel C Masison
- Building 8, Room 225, 8 Center Drive, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
86
|
Mogk A, Kummer E, Bukau B. Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2015; 2:22. [PMID: 26042222 PMCID: PMC4436881 DOI: 10.3389/fmolb.2015.00022] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/04/2015] [Indexed: 11/13/2022] Open
Abstract
Unicellular and sessile organisms are particularly exposed to environmental stress such as heat shock causing accumulation and aggregation of misfolded protein species. To counteract protein aggregation, bacteria, fungi, and plants encode a bi-chaperone system composed of ATP-dependent Hsp70 and hexameric Hsp100 (ClpB/Hsp104) chaperones, which rescue aggregated proteins and provide thermotolerance to cells. The partners act in a hierarchic manner with Hsp70 chaperones coating first the surface of protein aggregates and next recruiting Hsp100 through direct physical interaction. Hsp100 proteins bind to the ATPase domain of Hsp70 via their unique M-domain. This extra domain functions as a molecular toggle allosterically controlling ATPase and threading activities of Hsp100. Interactions between neighboring M-domains and the ATPase ring keep Hsp100 in a repressed state exhibiting low ATP turnover. Breakage of intermolecular M-domain interactions and dissociation of M-domains from the ATPase ring relieves repression and allows for Hsp70 interaction. Hsp70 binding in turn stabilizes Hsp100 in the activated state and primes Hsp100 ATPase domains for high activity upon substrate interaction. Hsp70 thereby couples Hsp100 substrate binding and motor activation. Hsp100 activation presumably relies on increased subunit cooperation leading to high ATP turnover and threading power. This Hsp70-mediated activity control of Hsp100 is crucial for cell viability as permanently activated Hsp100 variants are toxic. Hsp100 activation requires simultaneous binding of multiple Hsp70 partners, restricting high Hsp100 activity to the surface of protein aggregates and ensuring Hsp100 substrate specificity.
Collapse
Affiliation(s)
- Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Eva Kummer
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance Heidelberg, Germany
| |
Collapse
|
87
|
The biological functions of Naa10 - From amino-terminal acetylation to human disease. Gene 2015; 567:103-31. [PMID: 25987439 DOI: 10.1016/j.gene.2015.04.085] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/20/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
N-terminal acetylation (NTA) is one of the most abundant protein modifications known, and the N-terminal acetyltransferase (NAT) machinery is conserved throughout all Eukarya. Over the past 50 years, the function of NTA has begun to be slowly elucidated, and this includes the modulation of protein-protein interaction, protein-stability, protein function, and protein targeting to specific cellular compartments. Many of these functions have been studied in the context of Naa10/NatA; however, we are only starting to really understand the full complexity of this picture. Roughly, about 40% of all human proteins are substrates of Naa10 and the impact of this modification has only been studied for a few of them. Besides acting as a NAT in the NatA complex, recently other functions have been linked to Naa10, including post-translational NTA, lysine acetylation, and NAT/KAT-independent functions. Also, recent publications have linked mutations in Naa10 to various diseases, emphasizing the importance of Naa10 research in humans. The recent design and synthesis of the first bisubstrate inhibitors that potently and selectively inhibit the NatA/Naa10 complex, monomeric Naa10, and hNaa50 further increases the toolset to analyze Naa10 function.
Collapse
|
88
|
Stein KC, Bengoechea R, Harms MB, Weihl CC, True HL. Myopathy-causing mutations in an HSP40 chaperone disrupt processing of specific client conformers. J Biol Chem 2015; 289:21120-30. [PMID: 24920671 DOI: 10.1074/jbc.m114.572461] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone network protects against the toxic misfolding and aggregation of proteins. Disruption of this network leads to a variety of protein conformational disorders. One such example recently discovered is limb-girdle muscular dystrophy type 1D (LGMD1D), which is caused by mutation of the HSP40 chaperone DNAJB6. All LGMD1D-associated mutations localize to the conserved G/F domain of DNAJB6, but the function of this domain is largely unknown. Here, we exploit the yeast HSP40 Sis1, which has known aggregation-prone client proteins, to gain insight into the role of the G/F domain and its significance in LGMD1D pathogenesis. Strikingly, we demonstrate that LGMD1D mutations in a Sis1-DNAJB6 chimera differentially impair the processing of specific conformers of two yeast prions, [RNQ+] and [PSI+]. Importantly, these differences do not simply correlate to the sensitivity of these prion strains to changes in chaperone levels. Additionally, we analyzed the effect of LGMD1D-associated DNAJB6 mutations on TDP-43, a protein known to form inclusions in LGMD1D. We show that the DNAJB6 G/F domain mutants disrupt the processing of nuclear TDP-43 stress granules in mammalian cells. These data suggest that the G/F domain mediates chaperone-substrate interactions in a manner that extends beyond recognition of a particular client and to a subset of client conformers. We propose that such selective chaperone disruption may lead to the accumulation of toxic aggregate conformers and result in the development of LGMD1D and perhaps other protein conformational disorders.
Collapse
|
89
|
Abstract
A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.
Collapse
|
90
|
Jeng W, Lee S, Sung N, Lee J, Tsai FT. Molecular chaperones: guardians of the proteome in normal and disease states. F1000Res 2015; 4:F1000 Faculty Rev-1448. [PMID: 26918154 PMCID: PMC4754035 DOI: 10.12688/f1000research.7214.1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Proteins must adopt a defined three-dimensional structure in order to gain functional activity, or must they? An ever-increasing number of intrinsically disordered proteins and amyloid-forming polypeptides challenge this dogma. While molecular chaperones and proteases are traditionally associated with protein quality control inside the cell, it is now apparent that molecular chaperones not only promote protein folding in the "forward" direction by facilitating folding and preventing misfolding and aggregation, but also facilitate protein unfolding and even disaggregation resulting in the recovery of functional protein from aggregates. Here, we review our current understanding of ATP-dependent molecular chaperones that harness the energy of ATP binding and hydrolysis to fuel their chaperone functions. An emerging theme is that most of these chaperones do not work alone, but instead function together with other chaperone systems to maintain the proteome. Hence, molecular chaperones are the major component of the proteostasis network that guards and protects the proteome from damage. Furthermore, while a decline of this network is detrimental to cell and organismal health, a controlled perturbation of the proteostasis network may offer new therapeutic avenues against human diseases.
Collapse
Affiliation(s)
- Wilson Jeng
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sukyeong Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Nuri Sung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jungsoon Lee
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Francis T.F. Tsai
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
91
|
Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality control bypasses cell-based limitations on proteostasis to promote prion curing. eLife 2014; 3. [PMID: 25490068 PMCID: PMC4270096 DOI: 10.7554/elife.04288] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 01/16/2023] Open
Abstract
The proteostasis network has evolved to support protein folding under normal conditions and to expand this capacity in response to proteotoxic stresses. Nevertheless, many pathogenic states are associated with protein misfolding, revealing in vivo limitations on quality control mechanisms. One contributor to these limitations is the physical characteristics of misfolded proteins, as exemplified by amyloids, which are largely resistant to clearance. However, other limitations imposed by the cellular environment are poorly understood. To identify cell-based restrictions on proteostasis capacity, we determined the mechanism by which thermal stress cures the [PSI(+)]/Sup35 prion. Remarkably, Sup35 amyloid is disassembled at elevated temperatures by the molecular chaperone Hsp104. This process requires Hsp104 engagement with heat-induced non-prion aggregates in late cell-cycle stage cells, which promotes its asymmetric retention and thereby effective activity. Thus, cell division imposes a potent limitation on proteostasis capacity that can be bypassed by the spatial engagement of a quality control factor.
Collapse
Affiliation(s)
- Courtney L Klaips
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Megan L Hochstrasser
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Christine R Langlois
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, United States
| | - Tricia R Serio
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, United States
| |
Collapse
|
92
|
Reidy M, Sharma R, Shastry S, Roberts BL, Albino-Flores I, Wickner S, Masison DC. Hsp40s specify functions of Hsp104 and Hsp90 protein chaperone machines. PLoS Genet 2014; 10:e1004720. [PMID: 25329162 PMCID: PMC4199505 DOI: 10.1371/journal.pgen.1004720] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/29/2014] [Indexed: 12/21/2022] Open
Abstract
Hsp100 family chaperones of microorganisms and plants cooperate with the Hsp70/Hsp40/NEF system to resolubilize and reactivate stress-denatured proteins. In yeast this machinery also promotes propagation of prions by fragmenting prion polymers. We previously showed the bacterial Hsp100 machinery cooperates with the yeast Hsp40 Ydj1 to support yeast thermotolerance and with the yeast Hsp40 Sis1 to propagate [PSI+] prions. Here we find these Hsp40s similarly directed specific activities of the yeast Hsp104-based machinery. By assessing the ability of Ydj1-Sis1 hybrid proteins to complement Ydj1 and Sis1 functions we show their C-terminal substrate-binding domains determined distinctions in these and other cellular functions of Ydj1 and Sis1. We find propagation of [URE3] prions was acutely sensitive to alterations in Sis1 activity, while that of [PIN+] prions was less sensitive than [URE3], but more sensitive than [PSI+]. These findings support the ideas that overexpressing Ydj1 cures [URE3] by competing with Sis1 for interaction with the Hsp104-based disaggregation machine, and that different prions rely differently on activity of this machinery, which can explain the various ways they respond to alterations in chaperone function. The cellular chaperone machinery helps proteins adopt and maintain native conformations and protects cells from stress. The yeast Hsp40s Ydj1 and Sis1 are co-chaperones that regulate Hsp70s, which are key components of many chaperone complexes. Both of these Hsp40s are crucial for growth and Ydj1 directs disaggregation activity of the Hsp100-based machinery to provide stress protection while Sis1 directs this activity to promote prion replication. Ydj1 also cures yeast of certain prions when overexpressed. We show that C-terminal domains that possess substrate-binding function of Ydj1 and Sis1 can mediate these and other functional distinctions and that the degree that prions depend on Sis1 activities could underlie differences in how they respond to alterations of chaperones. These findings support a view that Hsp40s regulate and specify functions of the chaperone machinery through substrate discrimination and cooperation with Hsp70. The disproportionate evolutionary expansion of Hsp40s (J-proteins) relative to their Hsp70 partners led to a proposal that this amplification allows increased regulation and fine-tuning of chaperone machines for increasingly complex processes. Our findings support this idea and provide insight into fundamental aspects of this cooperation.
Collapse
Affiliation(s)
- Michael Reidy
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Ruchika Sharma
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Shankar Shastry
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brittany-Lee Roberts
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Ivan Albino-Flores
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Sue Wickner
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
93
|
Stein KC, True HL. Structural variants of yeast prions show conformer-specific requirements for chaperone activity. Mol Microbiol 2014; 93:1156-71. [PMID: 25060529 DOI: 10.1111/mmi.12725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2014] [Indexed: 02/03/2023]
Abstract
Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1 and its human orthologue Hdj1 had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation.
Collapse
Affiliation(s)
- Kevin C Stein
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | |
Collapse
|
94
|
Yuan AH, Garrity SJ, Nako E, Hochschild A. Prion propagation can occur in a prokaryote and requires the ClpB chaperone. eLife 2014; 3:e02949. [PMID: 25122461 PMCID: PMC4150125 DOI: 10.7554/elife.02949] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prions are self-propagating protein aggregates that are characteristically transmissible. In mammals, the PrP protein can form a prion that causes the fatal transmissible spongiform encephalopathies. Prions have also been uncovered in fungi, where they act as heritable, protein-based genetic elements. We previously showed that the yeast prion protein Sup35 can access the prion conformation in Escherichia coli. Here, we demonstrate that E. coli can propagate the Sup35 prion under conditions that do not permit its de novo formation. Furthermore, we show that propagation requires the disaggregase activity of the ClpB chaperone. Prion propagation in yeast requires Hsp104 (a ClpB ortholog), and prior studies have come to conflicting conclusions about ClpB's ability to participate in this process. Our demonstration of ClpB-dependent prion propagation in E. coli suggests that the cytoplasmic milieu in general and a molecular machine in particular are poised to support protein-based heredity in the bacterial domain of life. DOI:http://dx.doi.org/10.7554/eLife.02949.001 Unlike most infectious agents—such as viruses or bacteria—that contain genetic material in the form of DNA or RNA, a prion is simply an aggregate of misfolded proteins. Although they are not living organisms, these prion aggregates can self-propagate; when they enter a healthy organism, they cause existing, correctly folded proteins to adopt the prion fold. Within the aggregate, the prion proteins have a corrugated structure that allows them to stack together tightly, which in turn makes the aggregates very stable. As more prions are formed, they then trigger other protein molecules to misfold and join the aggregates, and the aggregates continue to grow and spread within the infected organism causing tissue damage and cell death. Prion diseases are well known in mammals, where the prion aggregates typically destroy tissue within the brain or nervous system. Bovine spongiform encephalopathy (also commonly known as BSE or ‘mad cow disease’) is an example of a prion disease that affects cattle and can be transmitted to humans by eating infected meat. Prions also form in yeast and other fungi. These prions, however, do not cause disease or cell death; instead, yeast prions act as protein-based elements that can be inherited over multiple generations and which provide the yeast with new traits or characteristics. Although prions can form spontaneously in yeast cells, their stable propagation depends on so-called chaperone proteins that help to remodel the prion aggregates. Previous work has shown that bacterial cells can also support the formation of prion-like aggregates. The bacteria were engineered to produce two yeast prion proteins—one of which spontaneously formed aggregates that were needed to trigger the conversion of the other to its prion form. However, it was not known if bacterial cells could support the stable propagation of prions if the initial trigger for prion conversion was removed. Yuan et al. now reveal that the bacterium Escherichia coli can propagate a yeast prion for over a hundred generations, even when the cells can no longer make the protein that serves as the trigger for the initial conversion. This propagation depends on a bacterial chaperone protein called ClpB, which is related to another chaperone protein that is required for stable prion propagation in yeast. As such, the findings of Yuan et al. raise the possibility that, even though a prion specific to bacteria has yet to be identified, prions or prion-like proteins might also contribute to the diversity of traits found in bacteria. Furthermore, since both yeast and bacteria form and propagate prions in similar ways, such protein-based inheritance might have evolved in these organisms' common ancestor over two billion years ago. DOI:http://dx.doi.org/10.7554/eLife.02949.002
Collapse
Affiliation(s)
- Andy H Yuan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States Whitehead Institute for Biomedical Research, Cambridge, United States
| | - Sean J Garrity
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Entela Nako
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Ann Hochschild
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
95
|
Yang Z, Stone DE, Liebman SW. Prion-promoted phosphorylation of heterologous amyloid is coupled with ubiquitin-proteasome system inhibition and toxicity. Mol Microbiol 2014; 93:1043-56. [PMID: 25039275 DOI: 10.1111/mmi.12716] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 11/30/2022]
Abstract
Many neurodegenerative diseases are associated with conversion of a soluble protein into amyloid deposits, but how this is connected to toxicity remains largely unknown. Here, we explore mechanisms of amyloid associated toxicity using yeast. [PIN(+)], the prion form of the Q/N-rich Rnq1 protein, was known to enhance aggregation of heterologous proteins, including the overexpressed Q/N-rich amyloid forming domain of Pin4 (Pin4C), and Pin4C aggregates were known to attract chaperones, including Sis1. Here we show that in [PIN(+)] but not [pin(-)] cells, overexpression of Pin4C is deadly and linked to hyperphosphorylation of aggregated Pin4C. Furthermore, Pin4C aggregation, hyperphosphorylation and toxicity are simultaneously reversed by Sis1 overexpression. Toxicity may result from proteasome overload because hyperphosphorylated Pin4C aggregation is associated with reduced degradation of a ubiquitin-protein degradation reporter. Finally, hyperphosphorylation of endogenous full-length Pin4 was also facilitated by [PIN(+)], revealing that a prion can regulate post-translational modification of another protein.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | | |
Collapse
|
96
|
Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection. PLoS Genet 2014; 10:e1004510. [PMID: 25058638 PMCID: PMC4109904 DOI: 10.1371/journal.pgen.1004510] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/30/2014] [Indexed: 01/22/2023] Open
Abstract
Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have been maintained in eukaryotic chaperone evolution. Multiple neurodegenerative disorders such as Alzheimer's, Parkinson's and Creutzfeldt-Jakob disease are associated with the accumulation of fibrous protein aggregates collectively termed ‘amyloid.’ In the baker's yeast Saccharomyces cerevisiae, multiple proteins form intracellular amyloid aggregates known as yeast prions. Yeast prions minimally require a core set of chaperone proteins for stable propagation in yeast, including the J-protein Sis1, which appears to be required for the propagation of all yeast prions and functioning similarly in each case. Here we present evidence which challenges the notion of a universal function for Sis1 in prion propagation and asserts instead that Sis1's function in the maintenance of at least two prions, [RNQ+] and [PSI+], is distinct and mutually exclusive for some prion variants. We also find that the human homolog of Sis1, called Hdj1, has retained the ability to support some, but not all yeast prions, indicating a partial conservation of function. Because yeast chaperones have the ability to both bind and fragment amyloids in vivo, further investigations into these prion-specific properties of Sis1 and Hdj1 will likely lead to new insights into the biological management of protein misfolding.
Collapse
|
97
|
Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proc Natl Acad Sci U S A 2014; 111:E2711-20. [PMID: 24938787 DOI: 10.1073/pnas.1409582111] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
[URE3] is an amyloid prion of the Saccharomyces cerevisiae Ure2p, a regulator of nitrogen catabolism. Overproduction of Btn2p, involved in late endosome to Golgi protein transport, or its paralog Cur1p, cures [URE3]. Btn2p, in curing, is colocalized with Ure2p in a single locus, suggesting sequestration of Ure2p amyloid filaments. We find that most [URE3] variants generated in a btn2 cur1 double mutant are cured by restoring normal levels of Btn2p and Cur1p, with both proteins needed for efficient curing. The [URE3] variants cured by normal levels of Btn2p and Cur1p all have low seed number, again suggesting a seed sequestration mechanism. Hsp42 overproduction also cures [URE3], and Hsp42p aids Btn2 overproduction curing. Cur1p is needed for Hsp42 overproduction curing of [URE3], but neither Btn2p nor Cur1p is needed for overproduction curing by the other. Although hsp42Δ strains stably propagate [URE3-1], hsp26Δ destabilizes this prion. Thus, Btn2p and Cur1p are antiprion system components at their normal levels, acting with Hsp42. Btn2p is related in sequence to human Hook proteins, involved in aggresome formation and other transport activities.
Collapse
|
98
|
Holmes WM, Klaips CL, Serio TR. Defining the limits: Protein aggregation and toxicity in vivo. Crit Rev Biochem Mol Biol 2014; 49:294-303. [PMID: 24766537 DOI: 10.3109/10409238.2014.914151] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract others complementary, to resolve mis-folded proteins when they arise, ranging from refolding through the action of molecular chaperones to elimination through regulated proteolytic mechanisms. These protein quality control pathways are sufficient, under normal conditions, to maintain a functioning proteome, but in response to diverse environmental, genetic and/or stochastic events, protein mis-folding exceeds the corrective capacity of these pathways, leading to the accumulation of aggregates and ultimately toxicity. Particularly devastating examples of these effects include certain neurodegenerative diseases, such as Huntington's Disease, which are associated with the expansion of polyglutamine tracks in proteins. In these cases, protein mis-folding and aggregation are clear contributors to pathogenesis, but uncovering the precise mechanistic links between the two events remains an area of active research. Studies in the yeast Saccharomyces cerevisiae and other model systems have uncovered previously unanticipated complexity in aggregation pathways, the contributions of protein quality control processes to them and the cellular perturbations that result from them. Together these studies suggest that aggregate interactions and localization, rather than their size, are the crucial considerations in understanding the molecular basis of toxicity.
Collapse
Affiliation(s)
- William M Holmes
- Biology Department, College of the Holy Cross , Worcester, MA , USA and
| | | | | |
Collapse
|
99
|
Dulle JE, True HL. Low activity of select Hsp104 mutants is sufficient to propagate unstable prion variants. Prion 2013; 7:394-403. [PMID: 24064980 DOI: 10.4161/pri.26547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The molecular chaperone network plays a critical role in the formation and propagation of self-replicating yeast prions. Not only do individual prions differ in their requirements for certain chaperones, but structural variants of the same prion can also display distinct dependences on the chaperone machinery, specifically Hsp104. The AAA+ ATPase Hsp104 is a disaggregase required for the maintenance of most known yeast prions. As a key component in the propagation of prions, understanding how Hsp104 differs in its interaction with specific variants is crucial to understanding how prion variants may be selected or evolve. Here, we investigate two novel mutations in Hsp104, hsp104-G254D, and hsp104-G730D, which allow us to elucidate some mechanistic features of Hsp104 disaggregation and its requirement for activity in propagating specific prion variants. Both Hsp104 mutants propagate the [PSI+] prion to some extent, but show a high rate of prion loss. Both Hsp104-G254D and Hsp104-G730D display reduced biochemical activity, yet differ in their ability to efficiently resolubilize disordered, heat-aggregated substrates. Additionally, both mutants impair weak [PSI+] propagation, but are capable of propagating the less stable strong [PSI+] variant to some extent. One of the Hsp104 mutants also has the ability to propagate one variant of the [RNQ+] prion. Thus, our data suggest that changes in Hsp104 activity limit substrate disaggregation in a manner that depends more on the stability of the substrate than the nature of the aggregated species.
Collapse
Affiliation(s)
- Jennifer E Dulle
- Department of Cell Biology and Physiology; Washington University in St. Louis; St. Louis, MO USA
| | - Heather L True
- Department of Cell Biology and Physiology; Washington University in St. Louis; St. Louis, MO USA
| |
Collapse
|
100
|
Exploring the basis of [PIN(+)] variant differences in [PSI(+)] induction. J Mol Biol 2013; 425:3046-59. [PMID: 23770111 DOI: 10.1016/j.jmb.2013.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Certain soluble proteins can form amyloid-like prion aggregates. Indeed, the same protein can make different types of aggregates, called variants. Each variant is heritable because it attracts soluble homologous protein to join its aggregate, which is then broken into seeds (propagons) and transmitted to daughter cells. [PSI(+)] and [PIN(+)] are respectively prion forms of Sup35 and Rnq1. Curiously, [PIN(+)] enhances the de novo induction of [PSI(+)]. Different [PIN(+)] variants do this to dramatically different extents. Here, we investigate the mechanism underlying this effect. Consistent with a heterologous prion cross-seeding model, different [PIN(+)] variants preferentially promoted the appearance of different variants of [PSI(+)]. However, we did not detect this specificity in vitro. Also, [PIN(+)] variant cross-seeding efficiencies were not proportional to the level of Rnq1 coimmunocaptured with Sup35 or to the number of [PIN(+)] propagons characteristic for that variant. This leads us to propose that [PIN(+)] variants differ in the cross-seeding quality of their seeds, following the Sup35/[PIN(+)] binding step.
Collapse
|