51
|
Leon AE, Hawley DM. Host Responses to Pathogen Priming in a Natural Songbird Host. ECOHEALTH 2017; 14:793-804. [PMID: 28766063 PMCID: PMC5726927 DOI: 10.1007/s10393-017-1261-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Hosts in free-living populations can experience substantial variation in the frequency and dose of pathogen exposure, which can alter disease progression and protection from future exposures. In the house finch-Mycoplasma gallisepticum (MG) system, the pathogen is primarily transmitted via bird feeders, and some birds may be exposed to frequent low doses of MG while foraging. Here we experimentally determined how low dose, repeated exposures of house finches to MG influence host responses and protection from secondary high-dose challenge. MG-naive house finches were given priming exposures that varied in dose and total number. After quantifying host responses to priming exposures, all birds were given a secondary high-dose challenge to assess immunological protection. Dose, but not the number of exposures, significantly predicted both infection and disease severity following priming exposure. Furthermore, individuals given higher priming doses showed stronger protection upon secondary, high-dose challenge. However, even single low-dose exposures to MG, a proxy for what some birds likely experience in the wild while feeding, provided significant protection against a high-dose challenge. Our results suggest that bird feeders, which serve as sources of infection in the wild, may in some cases act as "immunizers," with important consequences for disease dynamics.
Collapse
Affiliation(s)
- Ariel E Leon
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA.
| | - Dana M Hawley
- Department of Biological Sciences, Virginia Tech, 2119 Derring Hall (0406), Blacksburg, VA, 24061, USA
| |
Collapse
|
52
|
Rogalski MA, Gowler CD, Shaw CL, Hufbauer RA, Duffy MA. Human drivers of ecological and evolutionary dynamics in emerging and disappearing infectious disease systems. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0043. [PMID: 27920388 DOI: 10.1098/rstb.2016.0043] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 01/03/2023] Open
Abstract
Humans have contributed to the increased frequency and severity of emerging infectious diseases, which pose a significant threat to wild and domestic species, as well as human health. This review examines major pathways by which humans influence parasitism by altering (co)evolutionary interactions between hosts and parasites on ecological timescales. There is still much to learn about these interactions, but a few well-studied cases show that humans influence disease emergence every step of the way. Human actions significantly increase dispersal of host, parasite and vector species, enabling greater frequency of infection in naive host populations and host switches. Very dense host populations resulting from urbanization and agriculture can drive the evolution of more virulent parasites and, in some cases, more resistant host populations. Human activities that reduce host genetic diversity or impose abiotic stress can impair the ability of hosts to adapt to disease threats. Further, evolutionary responses of hosts and parasites can thwart disease management and biocontrol efforts. Finally, in rare cases, humans influence evolution by eradicating an infectious disease. If we hope to fully understand the factors driving disease emergence and potentially control these epidemics we must consider the widespread influence of humans on host and parasite evolutionary trajectories.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.
Collapse
Affiliation(s)
- Mary A Rogalski
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Camden D Gowler
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Clara L Shaw
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth A Hufbauer
- College of Agricultural Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
53
|
Rolff J, Schmid-Hempel P. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0297. [PMID: 27160599 DOI: 10.1098/rstb.2015.0297] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2016] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides (AMPs) are important elements of the innate immune defence in multicellular organisms that target and kill microbes. Here, we reflect on the various points that are raised by the authors of the 11 contributions to a special issue of Philosophical Transactions on the 'evolutionary ecology of arthropod antimicrobial peptides'. We see five interesting topics emerging. (i) AMP genes in insects, and perhaps in arthropods more generally, evolve much slower than most other immune genes. One explanation refers to the constraints set by AMPs being part of a finely tuned defence system. A new view argues that AMPs are under strong stabilizing selection. Regardless, this striking observation still invites many more questions than have been answered so far. (ii) AMPs almost always are expressed in combinations and sometimes show expression patterns that are dependent on the infectious agent. While it is often assumed that this can be explained by synergistic interactions, such interactions have rarely been demonstrated and need to be studied further. Moreover, how to define synergy in the first place remains difficult and needs to be addressed. (iii) AMPs play a very important role in mediating the interaction between a host and its mutualistic or commensal microbes. This has only been studied in a very small number of (insect) species. It has become clear that the very same AMPs play different roles in different situations and hence are under concurrent selection. (iv) Different environments shape the physiology of organisms; especially the host-associated microbial communities should impact on the evolution host AMPs. Studies in social insects and some organisms from extreme environments seem to support this notion, but, overall, the evidence for adaptation of AMPs to a given environment is scant. (v) AMPs are considered or already developed as new drugs in medicine. However, bacteria can evolve resistance to AMPs. Therefore, in the light of our limited understanding of AMP evolution in the natural context, and also the very limited understanding of the evolution of resistance against AMPs in bacteria in particular, caution is recommended. What is clear though is that study of the ecology and evolution of AMPs in natural systems could inform many of these outstanding questions, including those related to medical applications and pathogen control.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'.
Collapse
Affiliation(s)
- Jens Rolff
- Evolutionary Biology, Institute of Biology, Freie Universität Berlin, Königin-Luise-Strasse 1-3, 14195 Berlin, Germany Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), 14195 Berlin, Germany
| | - Paul Schmid-Hempel
- ETH Zürich, Institute of Integrative Biology (IBZ), ETH-Zentrum CHN, Universitätsstrasse 16, 8092 Zürich, Switzerland
| |
Collapse
|
54
|
Newhouse DJ, Hofmeister EK, Balakrishnan CN. Transcriptional response to West Nile virus infection in the zebra finch ( Taeniopygia guttata). ROYAL SOCIETY OPEN SCIENCE 2017; 4:170296. [PMID: 28680683 PMCID: PMC5493925 DOI: 10.1098/rsos.170296] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/22/2017] [Indexed: 05/04/2023]
Abstract
West Nile virus (WNV) is a widespread arbovirus that imposes a significant cost to both human and wildlife health. WNV exists in a bird-mosquito transmission cycle in which passerine birds act as the primary reservoir host. As a public health concern, the mammalian immune response to WNV has been studied in detail. Little, however, is known about the avian immune response to WNV. Avian taxa show variable susceptibility to WNV and what drives this variation is unknown. Thus, to study the immune response to WNV in birds, we experimentally infected captive zebra finches (Taeniopygia guttata). Zebra finches provide a useful model, as like many natural avian hosts they are moderately susceptible to WNV and thus provide sufficient viremia to infect mosquitoes. We performed RNAseq in spleen tissue during peak viremia to provide an overview of the transcriptional response. In general, we find strong parallels with the mammalian immune response to WNV, including upregulation of five genes in the Rig-I-like receptor signalling pathway, and offer insights into avian-specific responses. Together with complementary immunological assays, we provide a model of the avian immune response to WNV and set the stage for future comparative studies among variably susceptible populations and species.
Collapse
Affiliation(s)
- Daniel J. Newhouse
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Author for correspondence: Daniel J. Newhouse e-mail:
| | - Erik K. Hofmeister
- US Geological Survey, National Wildlife Health Center, 6006 Schroeder Road, Madison, WI 53711, USA
| | | |
Collapse
|
55
|
Gilroy DL, Phillips KP, Richardson DS, van Oosterhout C. Toll-like receptor variation in the bottlenecked population of the Seychelles warbler: computer simulations see the 'ghost of selection past' and quantify the 'drift debt'. J Evol Biol 2017; 30:1276-1287. [PMID: 28370771 DOI: 10.1111/jeb.13077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/21/2017] [Indexed: 01/09/2023]
Abstract
Balancing selection can maintain immunogenetic variation within host populations, but detecting its signal in a postbottlenecked population is challenging due to the potentially overriding effects of drift. Toll-like receptor genes (TLRs) play a fundamental role in vertebrate immune defence and are predicted to be under balancing selection. We previously characterized variation at TLR loci in the Seychelles warbler (Acrocephalus sechellensis), an endemic passerine that has undergone a historical bottleneck. Five of seven TLR loci were polymorphic, which is in sharp contrast to the low genomewide variation observed. However, standard population genetic statistical methods failed to detect a contemporary signature of selection at any TLR locus. We examined whether the observed TLR polymorphism could be explained by neutral evolution, simulating the population's demography in the software DIYABC. This showed that the posterior distributions of mutation rates had to be unrealistically high to explain the observed genetic variation. We then conducted simulations with an agent-based model using typical values for the mutation rate, which indicated that weak balancing selection has acted on the three TLR genes. The model was able to detect evidence of past selection elevating TLR polymorphism in the prebottleneck populations, but was unable to discern any effects of balancing selection in the contemporary population. Our results show drift is the overriding evolutionary force that has shaped TLR variation in the contemporary Seychelles warbler population, and the observed TLR polymorphisms might be merely the 'ghost of selection past'. Forecast models predict immunogenetic variation in this species will continue to be eroded in the absence of contemporary balancing selection. Such 'drift debt' occurs when a gene pool has not yet reached its new equilibrium level of polymorphism, and this loss could be an important threat to many recently bottlenecked populations.
Collapse
Affiliation(s)
- D L Gilroy
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - K P Phillips
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Evolutionary Biology Group, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - D S Richardson
- School of Biological Sciences, University of East Anglia, Norwich, UK.,Nature Seychelles, Mahe, Republic of Seychelles
| | - C van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
56
|
McKnight DT, Schwarzkopf L, Alford RA, Bower DS, Zenger KR. Effects of emerging infectious diseases on host population genetics: a review. CONSERV GENET 2017. [DOI: 10.1007/s10592-017-0974-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
57
|
Robertson S, Bradley JE, MacColl ADC. No evidence of local adaptation of immune responses to Gyrodactylus in three-spined stickleback (Gasterosteus aculeatus). FISH & SHELLFISH IMMUNOLOGY 2017; 60:275-281. [PMID: 27913248 DOI: 10.1016/j.fsi.2016.11.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 06/06/2023]
Abstract
Parasitism represents one of the most widespread lifestyles in the animal kingdom, with the potential to drive coevolutionary dynamics with their host population. Where hosts and parasites evolve together, we may find local adaptation. As one of the main host defences against infection, there is the potential for the immune response to be adapted to local parasites. In this study, we used the three-spined stickleback and its Gyrodactylus parasites to examine the extent of local adaptation of parasite infection dynamics and the immune response to infection. We took two geographically isolated host populations infected with two distinct Gyrodactylus species and performed a reciprocal cross-infection experiment in controlled laboratory conditions. Parasite burdens were monitored over the course of the infection, and individuals were sampled at multiple time points for immune gene expression analysis. We found large differences in virulence between parasite species, irrespective of host, and maladaptation of parasites to their sympatric host. The immune system responded to infection, with a decrease in expression of innate and Th1-type adaptive response genes in fish infected with the less virulent parasite, representing a marker of a possible resistance mechanism. There was no evidence of local adaptation in immune gene expression levels. Our results add to the growing understanding of the extent of host-parasite local adaptation, and demonstrate a systemic immune response during infection with a common ectoparasite. Further immunological studies using the stickleback-Gyrodactylus system can continue to contribute to our understanding of the function of the immune response in natural populations.
Collapse
Affiliation(s)
- Shaun Robertson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Janette E Bradley
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Andrew D C MacColl
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
58
|
Shin J, MacCarthy T. Potential for evolution of complex defense strategies in a multi-scale model of virus-host coevolution. BMC Evol Biol 2016; 16:233. [PMID: 27784264 PMCID: PMC5080737 DOI: 10.1186/s12862-016-0804-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/14/2016] [Indexed: 01/17/2023] Open
Abstract
Background Host resistance and viral pathogenicity are determined by molecular interactions that are part of the evolutionary arms race between viruses and their hosts. Viruses are obligate intracellular parasites and entry to the host cell is the first step of any virus infection. Commonly, viruses enter host cells by binding cell surface receptors. We adopt a computational modeling approach to study the evolution of the first infection step, where we consider two possible levels of resistance mechanism: at the level of the binding interaction between the host receptor and a virus binding protein, and at the level of receptor protein expression where we use a standard gene regulatory network model. At the population level we adopted the Susceptible-Infected-Susceptible (SIS) model. We used our multi-scale model to understand what conditions might determine the balance between use of resistance mechanisms at the two different levels. Results We explored a range of different conditions (model parameters) that affect host evolutionary dynamics and, in particular, the balance between the use of different resistance mechanisms. These conditions include the complexity of the receptor binding protein-protein interaction, selection pressure on the host population (pathogenicity), and the number of expressed cell-surface receptors. In particular, we found that as the receptor binding complexity (understood as the number of amino acids involved in the interaction between the virus entry protein and the host receptor) increases, viruses tend to become specialists and target one specific receptor. At the same time, on the host side, the potential for resistance shifts from the changes at the level of receptor binding (protein-protein) interaction towards changes at the level of gene regulation, suggesting a mechanism for increased biological complexity. Conclusions Host resistance and viral pathogenicity depend on quite different evolutionary conditions. Viruses may evolve cell entry strategies that use small receptor binding regions, represented by low complexity binding in our model. Our modeling results suggest that if the virus adopts a strategy based on binding to low complexity sites on the host receptor, the host will select a defense strategy at the protein (receptor) level, rather than at the level of the regulatory network - a virus-host strategy that appears to have been selected most often in nature. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0804-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeewoen Shin
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA. .,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
59
|
Uddin MI, Abid MH, Islam MS, Rakib TM, Sen AB, Chowdhury SMZH, Anwar MN, Kamaruddin KM. Molecular identification of Mycoplasma synoviae from seroprevalent commercial breeder farms at Chittagong district, Bangladesh. Vet World 2016; 9:1063-1069. [PMID: 27847414 PMCID: PMC5104713 DOI: 10.14202/vetworld.2016.1063-1069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 08/26/2016] [Indexed: 11/30/2022] Open
Abstract
Aim: Worldwide, Mycoplasma synoviae (MS) is an important pathogen of poultry, especially for chicken and turkey. It causes respiratory tract infection and infectious sinusitis. The study was conducted to determine the seroprevalence of MS infection with associated risk factors and identification of MS organism in unvaccinated flocks of commercial breeder farms of the Chittagong district, Bangladesh. Materials and Methods: A total of 365 serum samples were collected and tested for MS using serum plate agglutination (SPA) test for determination of MS seroprevalence. On the other hand, tracheal swabs were collected from each seropositive flocks for polymerase chain reaction (PCR) to determine the presence of MS organism. Results: Among the farms, the highest prevalence was found to be 69% and the lowest prevalence was 28% with the average 60%. The seroprevalence of MS infection in breeder farms was highest 70% with the flock size >10,000 birds, whereas it was lowest 57% in the flocks ranging from 4000 to 7000. According to age group, the prevalence was found highest 70% in >60 weeks age group of birds and lowest 42% in 10-19 weeks group. The seroprevalence of MS in winter season was found as highest as 64%, whereas it was found lowest 60% in the summer season. There was a statistically significant difference (p<0.01) among the seroprevalence of MS in different breeder farms, flock size, and age groups, but there was no significant (p>0.05) difference in the winter, summer, and rainy season. To confirm the presence of MS in the samples, PCR test was applied using specific primers to amplify a 214 bp region of the 16S rRNA gene of the organism. In PCR, all seropositive flocks showed a positive result for MS. Conclusion: As the plate agglutination test result showed 100% similar with PCR result, it can be suggested that agglutination test is better than molecular and culture techniques for MS detection and it is also cheaper and less time-consuming method.
Collapse
Affiliation(s)
- Md Inkeyas Uddin
- Poultry Research and Training Centre, Chittagong Veterinary and Animal Sciences University, Khulshi - 4225, Chittagong, Bangladesh
| | - Md Harisul Abid
- Department of Livestock Services, People's Republic of Bangladesh
| | - Md Shafiqul Islam
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Khulshi - 4225, Chittagong, Bangladesh
| | - Tofazzal Md Rakib
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Khulshi - 4225, Chittagong, Bangladesh
| | - Ashim Baran Sen
- Department of Livestock Services, People's Republic of Bangladesh
| | | | - Md Nurul Anwar
- Port City International University, Chittagong, Bangladesh
| | - Kazi Md Kamaruddin
- Livestock Division, Bangladesh Agricultural Research Council, Dhaka - 1202, Bangladesh
| |
Collapse
|
60
|
Shultz AJ, Baker AJ, Hill GE, Nolan PM, Edwards SV. SNPs across time and space: population genomic signatures of founder events and epizootics in the House Finch ( Haemorhous mexicanus). Ecol Evol 2016; 6:7475-7489. [PMID: 28725414 PMCID: PMC5513257 DOI: 10.1002/ece3.2444] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.
Collapse
Affiliation(s)
- Allison J Shultz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| | - Allan J Baker
- Department of Natural History, Royal Ontario Museum Department of Ecology and Evolutionary Biology University of Toronto Toronto ON Canada
| | - Geoffrey E Hill
- Department of Biological Sciences Auburn University Auburn AL USA
| | - Paul M Nolan
- Department of Biology The Citadel Charleston SC USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology Harvard University Cambridge MA USA
| |
Collapse
|
61
|
Todd EV, Black MA, Gemmell NJ. The power and promise of RNA-seq in ecology and evolution. Mol Ecol 2016; 25:1224-41. [DOI: 10.1111/mec.13526] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/05/2015] [Accepted: 12/27/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Erica V. Todd
- Department of Anatomy; University of Otago; PO Box 913 Dunedin 9054 New Zealand
| | - Michael A. Black
- Department of Biochemistry; University of Otago; PO Box 56 Dunedin 9054 New Zealand
| | - Neil J. Gemmell
- Department of Anatomy; University of Otago; PO Box 913 Dunedin 9054 New Zealand
| |
Collapse
|
62
|
Edwards SV, Shultz AJ, Campbell-Staton SC. Next-generation sequencing and the expanding domain of phylogeography. FOLIA ZOOLOGICA 2015. [DOI: 10.25225/fozo.v64.i3.a2.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Scott V. Edwards
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| | - Shane C. Campbell-Staton
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, U.S.A.
| |
Collapse
|
63
|
Russell RE, Thogmartin WE, Erickson RA, Szymanski J, Tinsley K. Estimating the short-term recovery potential of little brown bats in the eastern United States in the face of White-nose syndrome. Ecol Modell 2015. [DOI: 10.1016/j.ecolmodel.2015.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
64
|
Dargent F, Rolshausen G, Hendry AP, Scott ME, Fussmann GF. Parting ways: parasite release in nature leads to sex-specific evolution of defence. J Evol Biol 2015; 29:23-34. [PMID: 26356531 DOI: 10.1111/jeb.12758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 01/16/2023]
Abstract
We evaluated the extent to which males and females evolve along similar or different trajectories in response to the same environmental shift. Specifically, we used replicate experimental introductions in nature to consider how release from a key parasite (Gyrodactylus) generates similar or different defence evolution in male vs. female guppies (Poecilia reticulata). After 4-8 generations of evolution, guppies were collected from the ancestral (parasite still present) and derived (parasite now absent) populations and bred for two generations in the laboratory to control for nongenetic effects. These F2 guppies were then individually infected with Gyrodactylus, and infection dynamics were monitored on each fish. We found that parasite release in nature led to sex-specific evolutionary responses: males did not show much evolution of resistance, whereas females showed the evolution of increased resistance. Given that male guppies in the ancestral population had greater resistance to Gyrodactylus than did females, evolution in the derived populations led to reduction of sexual dimorphism in resistance. We argue that previous selection for high resistance in males constrained (relative to females) further evolution of the trait. We advocate more experiments considering sex-specific evolutionary responses to environmental change.
Collapse
Affiliation(s)
- F Dargent
- Department of Biology, McGill University, Montreal, QC, Canada
| | - G Rolshausen
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - A P Hendry
- Redpath Museum, McGill University, Montreal, QC, Canada
| | - M E Scott
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Montreal, QC, Canada
| | - G F Fussmann
- Department of Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
65
|
Transcriptomic Characterization of Innate and Acquired Immune Responses in Red-Legged Partridges (Alectoris rufa): A Resource for Immunoecology and Robustness Selection. PLoS One 2015; 10:e0136776. [PMID: 26331304 PMCID: PMC4557936 DOI: 10.1371/journal.pone.0136776] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/07/2015] [Indexed: 12/27/2022] Open
Abstract
Present and future challenges for wild partridge populations include the resistance against possible disease transmission after restocking with captive-reared individuals, and the need to cope with the stress prompted by new dynamic and challenging scenarios. Selection of individuals with the best immune ability may be a good strategy to improve general immunity, and hence adaptation to stress. In this study, non-infectious challenges with phytohemagglutinin (PHA) and sheep red blood cells allowed the classification of red-legged partridges (Alectoris rufa) according to their overall immune responses (IR). Skin from the area of injection of PHA and spleen, both from animals showing extreme high and low IR, were selected to investigate the transcriptional profiles underlying the different ability to cope with pathogens and external aggressions. RNA-seq yielded 97 million raw reads from eight sequencing libraries and approximately 84% of the processed reads were mapped to the reference chicken genome. Differential expression analysis identified 1488 up- and 107 down-regulated loci in individuals with high IR versus low IR. Partridges displaying higher innate IR show an enhanced activation of host defence gene pathways complemented with a tightly controlled desensitization that facilitates the return to cellular homeostasis. These findings indicate that the immune system ability to respond to aggressions (either diseases or stress produced by environmental changes) involves extensive transcriptional and post-transcriptional regulations, and expand our understanding on the molecular mechanisms of the avian immune system, opening the possibility of improving disease resistance or robustness using genome assisted selection (GAS) approaches for increased IR in partridges by using genes such as AVN or BF2 as markers. This study provides the first transcriptome sequencing data of the Alectoris genus, a resource for molecular ecology that enables integration of genomic tools in further studies.
Collapse
|
66
|
Staley M, Bonneaud C. Immune responses of wild birds to emerging infectious diseases. Parasite Immunol 2015; 37:242-54. [PMID: 25847450 DOI: 10.1111/pim.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 12/17/2022]
Abstract
Over the past several decades, outbreaks of emerging infectious diseases (EIDs) in wild birds have attracted worldwide media attention, either because of their extreme virulence or because of alarming spillovers into agricultural animals or humans. The pathogens involved have been found to infect a variety of bird hosts ranging from relatively few species (e.g. Trichomonas gallinae) to hundreds of species (e.g. West Nile Virus). Here we review and contrast the immune responses that wild birds are able to mount against these novel pathogens. We discuss the extent to which these responses are associated with reduced clinical symptoms, pathogen load and mortality, or conversely, how they can be linked to worsened pathology and reduced survival. We then investigate how immune responses to EIDs can evolve over time in response to pathogen-driven selection using the illustrative case study of the epizootic outbreak of Mycoplasma gallisepticum in wild North American house finches (Haemorhous mexicanus). We highlight the need for future work to take advantage of the substantial inter- and intraspecific variation in disease progression and outcome following infections with EID to elucidate the extent to which immune responses confer increased resistance through pathogen clearance or may instead heighten pathogenesis.
Collapse
Affiliation(s)
- M Staley
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
67
|
McTaggart SJ, Cézard T, Garbutt JS, Wilson PJ, Little TJ. Transcriptome profiling during a natural host-parasite interaction. BMC Genomics 2015; 16:643. [PMID: 26311167 PMCID: PMC4551569 DOI: 10.1186/s12864-015-1838-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Infection outcome in some coevolving host-pathogens is characterised by host-pathogen genetic interactions, where particular host genotypes are susceptible only to a subset of pathogen genotypes. To identify candidate genes responsible for the infection status of the host, we exposed a Daphnia magna host genotype to two bacterial strains of Pasteuria ramosa, one of which results in infection, while the other does not. At three time points (four, eight and 12 h) post pathogen exposure, we sequenced the complete transcriptome of the hosts using RNA-Seq (Illumina). RESULTS We observed a rapid and transient response to pathogen treatment. Specifically, at the four-hour time point, eight genes were differentially expressed. At the eight-hour time point, a single gene was differentially expressed in the resistant combination only, and no genes were differentially expressed at the 12-h time point. CONCLUSIONS We found that pathogen-associated transcriptional activity is greatest soon after exposure. Genome-wide resistant combinations were more likely to show upregulation of genes, while susceptible combinations were more likely to be downregulated, relative to controls. Our results also provide several novel candidate genes that may play a pivotal role in determining infection outcomes.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Timothée Cézard
- Edinburgh Genomics, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Jennie S Garbutt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Phil J Wilson
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. .,Centre for Immunity, Infection and Evolution, School of Biological Sciences; Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK.
| |
Collapse
|
68
|
Balenger SL, Bonneaud C, Sefick SA, Edwards SV, Hill GE. Plumage color and pathogen-induced gene expression in a wild bird. Behav Ecol 2015. [DOI: 10.1093/beheco/arv055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
69
|
Abstract
Disease is a ubiquitous and powerful evolutionary force. Hosts have evolved behavioural and physiological responses to disease that are associated with increased survival. Behavioural modifications, known as 'sickness behaviours', frequently involve symptoms such as lethargy, somnolence and anorexia. Current research has demonstrated that the social environment is a potent modulator of these behaviours: when conflicting social opportunities arise, animals can decrease or entirely forgo experiencing sickness symptoms. Here, I review how different social contexts, such as the presence of mates, caring for offspring, competing for territories or maintaining social status, affect the expression of sickness behaviours. Exploiting the circumstances that promote this behavioural plasticity will provide new insights into the evolutionary ecology of social behaviours. A deeper understanding of when and how this modulation takes place may lead to better tools to treat symptoms of infection and be relevant for the development of more efficient disease control programmes.
Collapse
Affiliation(s)
- Patricia C Lopes
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
70
|
Martin LB, Liebl AL, Kilvitis HJ. Covariation in stress and immune gene expression in a range expanding bird. Gen Comp Endocrinol 2015; 211:14-9. [PMID: 25448257 DOI: 10.1016/j.ygcen.2014.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/21/2014] [Accepted: 11/02/2014] [Indexed: 11/23/2022]
Abstract
The enemy release hypothesis (ERH) posits that hosts encounter fewer infectious parasites when they arrive in new areas, so individuals that adjust their immune defenses most effectively should thrive and even expand the range of that species. An important aspect of vertebrate immune defense is inflammation, as it provides rapid defense against diverse parasites. Glucocorticoids (GCs) are integral to the regulation of inflammation, so here we investigated whether and how covariation in the expression of genes affecting the regulation of inflammation and GCs might have impacted the house sparrow (Passer domesticus) invasion of Kenya. Toll-like receptors 2 and 4 (TLRs) detect microbial threats and instigate inflammatory responses, whereas the glucocorticoid receptor (GR) is integral to resolving inflammation via both local and systemic pathways. As with a previous study on circulating leukocytes, we found that splenic TLR-4 and TLR-2 (the latter marginally non-significant) expression was higher in younger than older populations but only when differences in spleen size were considered; birds at the range edge had larger spleens. In regards to covariation, we found that TLR-2, TLR-4 and GR expression were closely inter-related within individuals, but covariation did not differ among populations. Subsequently, our data suggest that house sparrows are using variants of a common stress-immune regulatory mechanism to expand their Kenyan range.
Collapse
Affiliation(s)
- Lynn B Martin
- University of South Florida, Department of Integrative Biology, SCA 110, Tampa, FL 33620, United States.
| | - Andrea L Liebl
- Centre for Ecology and Conservation, University of Exeter, Cornwall, Penryn TR10 9EZ, UK
| | - Holly J Kilvitis
- University of South Florida, Department of Integrative Biology, SCA 110, Tampa, FL 33620, United States
| |
Collapse
|
71
|
Adelman JS, Moore IT, Hawley DM. House finch responses to Mycoplasma gallisepticum infection do not vary with experimentally increased aggression. ACTA ACUST UNITED AC 2014; 323:39-51. [PMID: 25387693 DOI: 10.1002/jez.1894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aggression can alter infectious disease dynamics through two, non-exclusive mechanisms: 1) increasing direct contact among hosts and 2) altering hosts' physiological response to pathogens. Here we examined the latter mechanism in a social songbird by manipulating intraspecific aggression in the absence of direct physical contact. We asked whether the extent of aggression an individual experiences alters glucocorticoid levels, androgen levels, and individual responses to infection in an ecologically relevant disease model: house finches (Haemorhous mexicanus) infected with Mycoplasma gallisepticum (MG). Wild-caught male finches were housed in one of three settings, designed to produce increasing levels of aggression: 1) alone, with no neighbor ("no neighbor"), 2) next to a sham-implanted stimulus male ("sham neighbor"), or 3) next to a testosterone-implanted stimulus male ("testosterone neighbor"). Following one week of social treatment, focal males were experimentally infected with MG, which causes severe conjunctivitis and induces sickness behaviors such as lethargy and anorexia. While social treatment increased aggression as predicted, there were no differences among groups in baseline corticosterone levels, total circulating androgens, or responses to infection. Across all focal individuals regardless of social treatment, pre-infection baseline corticosterone levels were negatively associated with the severity of conjunctivitis and sickness behaviors, suggesting that corticosterone may dampen inflammatory responses in this host-pathogen system. However, because corticosterone levels differed based upon population of origin, caution must be taken in interpreting this result. Taken together, these results suggest that in captivity, although aggression does not alter individual responses to MG, corticosterone may play a role in this disease.
Collapse
|
72
|
Dhondt AA, DeCoste JC, Ley DH, Hochachka WM. Diverse wild bird host range of Mycoplasma gallisepticum in eastern North America. PLoS One 2014; 9:e103553. [PMID: 25061684 PMCID: PMC4111589 DOI: 10.1371/journal.pone.0103553] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/03/2014] [Indexed: 01/12/2023] Open
Abstract
Emerging infectious diseases often result from pathogens jumping to novel hosts. Identifying possibilities and constraints on host transfer is therefore an important facet of research in disease ecology. Host transfers can be studied for the bacterium Mycoplasma gallisepticum, predominantly a pathogen of poultry until its 1994 appearance and subsequent epidemic spread in a wild songbird, the house finch Haemorhous mexicanus and some other wild birds. We screened a broad range of potential host species for evidence of infection by M. gallisepticum in order to answer 3 questions: (1) is there a host phylogenetic constraint on the likelihood of host infection (house finches compared to other bird species); (2) does opportunity for close proximity (visiting bird feeders) increase the likelihood of a potential host being infected; and (3) is there seasonal variation in opportunity for host jumping (winter resident versus summer resident species). We tested for pathogen exposure both by using PCR to test for the presence of M. gallisepticum DNA and by rapid plate agglutination to test for the presence of antibodies. We examined 1,941 individual birds of 53 species from 19 avian families. In 27 species (15 families) there was evidence for exposure with M. gallisepticum although conjunctivitis was very rare in non-finches. There was no difference in detection rate between summer and winter residents, nor between feeder birds and species that do not come to feeders. Evidence of M. gallisepticum infection was found in all species for which at least 20 individuals had been sampled. Combining the present results with those of previous studies shows that a diverse range of wild bird species may carry or have been exposed to M. gallisepticum in the USA as well as in Europe and Asia.
Collapse
Affiliation(s)
- André A. Dhondt
- Bird Population Studies, Laboratory of Ornithology, Cornell University, Ithaca, New York, United States of America
| | - Jonathan C. DeCoste
- Bird Population Studies, Laboratory of Ornithology, Cornell University, Ithaca, New York, United States of America
| | - David H. Ley
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Wesley M. Hochachka
- Bird Population Studies, Laboratory of Ornithology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
73
|
Meitern R, Andreson R, Hõrak P. Profile of whole blood gene expression following immune stimulation in a wild passerine. BMC Genomics 2014; 15:533. [PMID: 24972896 PMCID: PMC4092216 DOI: 10.1186/1471-2164-15-533] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
Abstract
Background Immunoecology aims to explain variation among hosts in the strength and efficacy of immunological defences in natural populations. This requires development of biomarkers of the activation of the immune system so that they can be collected non-lethally and sampled from small amounts of easily obtainable tissue. We used transcriptome profiling in wild greenfinches (Carduelis chloris) to detect whole blood transcripts that most profoundly indicate upregulation of antimicrobial defences during acute phase response. The more general aim of this study was to obtain a functional annotation of a substantial portion of the greenfinch transcriptome that would enable to gain access to more specific genomic tools in subsequent studies. The birds received either bacterial lipopolysaccharide or saline injections and RNA-seq transcriptional profiling was performed 12 h after treatment to provide initial functional annotation of the transcriptome and assess whole blood response to immune stimulation. Results A total of 66,084 transcripts were obtained from de novo Trinty assembly, out of which 23,153 could be functionally annotated. Only 1,911 of these were significantly upregulated or downregulated. The manipulation caused marked upregulation of several transcripts related to immune activation. These included avian-specific antimicrobial agents avidin and gallinacin, but also some more general host response genes, such as serum amyloid A protein, lymphocyte antigen 75 and copper-transporting ATPase 1. However, links with avian immunity for most differentially regulated transcripts remained rather hypothetical, as a large set of differentially expressed transcripts lacked functional annotation. Conclusions This appears to be the first large scale transcriptional profiling of immune function in passerine birds. The transcriptomic data obtained suggest novel markers for the assessment of the immunological state of wild passerines. Characterizing the function of those possible novel infection markers would assist future vertebrate genome annotation. The extensive sequence information collected enables to identify possible target and housekeeping genes needed to gain access to more specific genomic tools in future studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-533) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Richard Meitern
- Department of Zoology, Institute of Ecology and Earth Sciences, Tartu University, Vanemuise 46, 51014 Tartu, Estonia.
| | | | | |
Collapse
|
74
|
Downs CJ, Adelman JS, Demas GE. Mechanisms and methods in ecoimmunology: integrating within-organism and between-organism processes. Integr Comp Biol 2014; 54:340-52. [PMID: 24944113 DOI: 10.1093/icb/icu082] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ecoimmunology utilizes techniques from traditionally laboratory-based disciplines--for example, immunology, genomics, proteomics, neuroendocrinology, and cell biology--to reveal how the immune systems of wild organisms both shape and respond to ecological and evolutionary pressures. Immunological phenotypes are embedded within a mechanistic pathway leading from genotype through physiology to shape higher-order biological phenomena. As such, "mechanisms" in ecoimmunology can refer to both the within-host processes that shape immunological phenotypes, or it can refer the ways in which different immunological phenotypes alter between-organism processes at ecological and evolutionary scales. The mechanistic questions ecoimmunologists can ask, both within-organisms and between-organisms, however, often have been limited by techniques that do not easily transfer to wild, non-model systems. Thus, a major focus in ecoimmunology has been developing and refining the available toolkit. Recently, this toolkit has been expanding at an unprecedented rate, bringing new challenges to choosing techniques and standardizing protocols across studies. By confronting these challenges, we will be able to enhance ecoimmunological inquiries into the physiological basis of life-history trade-offs; the development of low-cost biomarkers for susceptibility to disease; and the investigation of the ecophysiological underpinnings of disease ecology, behavior, and the coevolution of host-parasite systems. The technical advances in, and crossover technologies from, disciplines associated with ecoimmunology and how these advances can help us understand the mechanistic basis of immunological variability in wild species were the focus of the symposium, Methods and Mechanisms in Ecoimmunology.
Collapse
Affiliation(s)
- C J Downs
- *Department of Natural Resources and Environmental Sciences, University of Nevada, 1664 North Virginia Street, MS 168, Reno, NV 89557, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - J S Adelman
- *Department of Natural Resources and Environmental Sciences, University of Nevada, 1664 North Virginia Street, MS 168, Reno, NV 89557, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| | - G E Demas
- *Department of Natural Resources and Environmental Sciences, University of Nevada, 1664 North Virginia Street, MS 168, Reno, NV 89557, USA; Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA; Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
75
|
Balenger SL, Zuk M. Testing the Hamilton-Zuk hypothesis: past, present, and future. Integr Comp Biol 2014; 54:601-13. [PMID: 24876194 DOI: 10.1093/icb/icu059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hamilton and Zuk proposed a good-genes model of sexual selection in which genetic variation can be maintained when females prefer ornaments that indicate resistance to parasites. When trait expression depends on a male's resistance, the co-adaptive cycles between host resistance and parasite virulence provide a mechanism in which genetic variation for fitness is continually renewed. The model made predictions at both the intraspecific and interspecific levels. In the three decades since its publication, these predictions have been theoretically examined in models of varying complexity, and empirically tested across many vertebrate and invertebrate taxa. Despite such prolonged interest, however, it has turned out to be extremely difficult to empirically demonstrate the process described, in part because we have not been able to test the underlying mechanisms that would unequivocally identify how parasites act as mediators of sexual selection. Here, we discuss how the use of high-throughput sequencing datasets available from modern genomic approaches might improve our ability to test this model. We expect that important contributions will come through the ability to identify and quantify the suite of parasites likely to influence the evolution of hosts' resistance, to confidently reconstruct phylogenies of both host and parasite taxa, and, perhaps most exciting, to detect generational cycles of heritable variants in populations of hosts and parasites. Integrative approaches, building on systems undergoing parasite-mediated selection with genomic resources already available, will be particularly useful in moving toward robust tests of this hypothesis. We finish by presenting case studies of well-studied host-parasite relationships that represent promising avenues for future research.
Collapse
Affiliation(s)
- Susan L Balenger
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Marlene Zuk
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
76
|
Zhang Q, Hill GE, Edwards SV, Backström N. A house finch (Haemorhous mexicanus) spleen transcriptome reveals intra- and interspecific patterns of gene expression, alternative splicing and genetic diversity in passerines. BMC Genomics 2014; 15:305. [PMID: 24758272 PMCID: PMC4235107 DOI: 10.1186/1471-2164-15-305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/15/2014] [Indexed: 12/18/2022] Open
Abstract
Background With its plumage color dimorphism and unique history in North America, including a recent population expansion and an epizootic of Mycoplasma gallisepticum (MG), the house finch (Haemorhous mexicanus) is a model species for studying sexual selection, plumage coloration and host-parasite interactions. As part of our ongoing efforts to make available genomic resources for this species, here we report a transcriptome assembly derived from genes expressed in spleen. Results We characterize transcriptomes from two populations with different histories of demography and disease exposure: a recently founded population in the eastern US that has been exposed to MG for over a decade and a native population from the western range that has never been exposed to MG. We utilize this resource to quantify conservation in gene expression in passerine birds over approximately 50 MY by comparing splenic expression profiles for 9,646 house finch transcripts and those from zebra finch and find that less than half of all genes expressed in spleen in either species are expressed in both species. Comparative gene annotations from several vertebrate species suggest that the house finch transcriptomes contain ~15 genes not yet found in previously sequenced vertebrate genomes. The house finch transcriptomes harbour ~85,000 SNPs, ~20,000 of which are non-synonymous. Although not yet validated by biological or technical replication, we identify a set of genes exhibiting differences between populations in gene expression (n = 182; 2% of all transcripts), allele frequencies (76 FST ouliers) and alternative splicing as well as genes with several fixed non-synonymous substitutions; this set includes genes with functions related to double-strand break repair and immune response. Conclusions The two house finch spleen transcriptome profiles will add to the increasing data on genome and transcriptome sequence information from natural populations. Differences in splenic expression between house finch and zebra finch imply either significant evolutionary turnover of splenic expression patterns or different physiological states of the individuals examined. The transcriptome resource will enhance the potential to annotate an eventual house finch genome, and the set of gene-based high-quality SNPs will help clarify the genetic underpinnings of host-pathogen interactions and sexual selection.
Collapse
Affiliation(s)
| | | | | | - Niclas Backström
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
77
|
Williams PD, Dobson AP, Dhondt KV, Hawley DM, Dhondt AA. Evidence of trade-offs shaping virulence evolution in an emerging wildlife pathogen. J Evol Biol 2014; 27:1271-8. [PMID: 24750277 DOI: 10.1111/jeb.12379] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/25/2014] [Accepted: 03/24/2014] [Indexed: 01/24/2023]
Abstract
In the mid-1990s, the common poultry pathogen Mycoplasma gallisepticum (MG) made a successful species jump to the eastern North American house finch Haemorhous mexicanus (HM). Subsequent strain diversification allows us to directly quantify, in an experimental setting, the transmission dynamics of three sequentially emergent geographic isolates of MG, which differ in the levels of pathogen load they induce. We find significant among-strain variation in rates of transmission as well as recovery. Pathogen strains also differ in their induction of host morbidity, measured as the severity of eye lesions due to infection. Relationships between pathogen traits are also investigated, with transmission and recovery rates being significantly negatively correlated, whereas transmission and virulence, measured as average eye lesion score over the course of infection, are positively correlated. By quantifying these disease-relevant parameters and their relationships, we provide the first analysis of the trade-offs that shape the evolution of this important emerging pathogen.
Collapse
Affiliation(s)
- P D Williams
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | | | | | | |
Collapse
|
78
|
Zylberberg M, Klasing KC, Hahn TP. In house finches, Haemorhous mexicanus, risk takers invest more in innate immune function. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
79
|
Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system. Proc Natl Acad Sci U S A 2014; 111:3496-501. [PMID: 24550506 DOI: 10.1073/pnas.1318628111] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In many systems, host-parasite evolutionary dynamics have led to the emergence and maintenance of diverse parasite and host genotypes within the same population. Genotypes vary in key attributes: Parasite genotypes vary in ability to infect, host genotypes vary in susceptibility, and infection outcome is frequently the result of both parties' genotypic identities. These host-parasite genotype-by-genotype (GH × GP) interactions influence evolutionary and ecological dynamics in important ways. Interactions can be produced through genetic variation; however, here, we assess the role of variable gene expression as an additional source of GH × GP interactions. The bumblebee Bombus terrestris and its trypanosome gut parasite Crithidia bombi are a model system for host-parasite matching. Full-transcriptome sequencing of the bumblebee host revealed that different parasite genotypes indeed induce fundamentally different host expression responses and host genotypes vary in their responses to the infecting parasite genotype. It appears that broadly and successfully infecting parasite genotypes lead to reduced host immune gene expression relative to unexposed bees but induce the expression of genes responsible for controlling gene expression. Contrastingly, a poorly infecting parasite genotype induced the expression of immunologically important genes, including antimicrobial peptides. A targeted expression assay confirmed the transcriptome results and also revealed strong host genotype effects. In all, the expression of a number of genes depends on the host genotype and the parasite genotype and the interaction between both host and parasite genotypes. These results suggest that alongside sequence variation in coding immunological genes, variation that controls immune gene expression can also produce patterns of host-parasite specificity.
Collapse
|
80
|
Monello RJ, Powers JG, Hobbs NT, Spraker TR, Watry MK, Wild MA. Survival and population growth of a free-ranging elk population with a long history of exposure to chronic wasting disease. J Wildl Manage 2014. [DOI: 10.1002/jwmg.665] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ryan J. Monello
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| | - Jenny G. Powers
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| | - N. Thompson Hobbs
- Natural Resource Ecology Laboratory and Graduate Degree Program in Ecology; Colorado State University; Fort Collins CO 80523
| | - Terry R. Spraker
- Colorado State Diagnostic Laboratory; College of Veterinary Medicine; Colorado State University; Fort Collins CO 80523
| | - Mary Kay Watry
- Rocky Mountain National Park; National Park Service; Estes Park CO 80517
| | - Margaret A. Wild
- Biological Resource Management Division; National Park Service; 1201 Oakridge STE 200 Fort Collins CO 80525
| |
Collapse
|
81
|
Ekblom R, Wennekes P, Horsburgh GJ, Burke T. Characterization of the house sparrow (Passer domesticus) transcriptome: a resource for molecular ecology and immunogenetics. Mol Ecol Resour 2014; 14:636-46. [PMID: 24345231 DOI: 10.1111/1755-0998.12213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/04/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022]
Abstract
The house sparrow (Passer domesticus) is an important model species in ecology and evolution. However, until recently, genomic resources for molecular ecological projects have been lacking in this species. Here, we present transcriptome sequencing data (RNA-Seq) from three different house sparrow tissues (spleen, blood and bursa). These tissues were specifically chosen to obtain a diverse representation of expressed genes and to maximize the yield of immune-related gene functions. After de novo assembly, 15,250 contigs were identified, representing sequence data from a total of 8756 known avian genes (as inferred from the closely related zebra finch). The transcriptome assembly contain sequence data from nine manually annotated MHC genes, including an almost complete MHC class I coding sequence. There were 407, 303 and 68 genes overexpressed in spleen, blood and bursa, respectively. Gene ontology terms related to ribosomal function were associated with overexpression in spleen and oxygen transport functions with overexpression in blood. In addition to the transcript sequences, we provide 327 gene-linked microsatellites (SSRs) with sufficient flanking sequences for primer design, and 3177 single-nucleotide polymorphisms (SNPs) within genes, that can be used in follow-up molecular ecology studies of this ecological well-studied species.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18 D, Uppsala, SE-75236, Sweden; Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
82
|
Martin LB, Coon CAC, Liebl AL, Schrey AW. Surveillance for microbes and range expansion in house sparrows. Proc Biol Sci 2013; 281:20132690. [PMID: 24258722 DOI: 10.1098/rspb.2013.2690] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interactions between hosts and parasites influence the success of host introductions and range expansions post-introduction. However, the physiological mechanisms mediating these outcomes are little known. In some vertebrates, variation in the regulation of inflammation has been implicated, perhaps because inflammation imparts excessive costs, including high resource demands and collateral damage upon encounter with novel parasites. Here, we tested the hypothesis that variation in the regulation of inflammation contributed to the spread of house sparrows (Passer domesticus) across Kenya, one of the world's most recent invasions of this species. Specifically, we asked whether inflammatory gene expression declines with population age (i.e. distance from Mombasa (dfM), the site of introduction around 1950). We compared expression of two microbe surveillance molecules (Toll-like receptors, TLRs-2 and 4) and a proinflammatory cytokine (interleukin-6, IL-6) before and after an injection of an immunogenic component of Gram-negative bacteria (lipopolysaccharide, LPS) among six sparrow populations. We then used a best-subset model selection approach to determine whether population age (dfM) or other factors (e.g. malaria or coccidian infection, sparrow density or genetic group membership) best-explained gene expression. For baseline expression of TLR-2 and TLR-4, population age tended to be the best predictor with expression decreasing with population age, although other factors were also important. Induced expression of TLRs was affected by LPS treatment alone. For induced IL-6, only LPS treatment reliably predicted expression; baseline expression was not explained by any factor. These data suggest that changes in microbe surveillance, more so than downstream control of inflammation via cytokines, might have been important to the house sparrow invasion of Kenya.
Collapse
Affiliation(s)
- Lynn B Martin
- Department of Integrative Biology, University of South Florida, , SCA 110, Tampa, FL 33620, USA, Department of Biology, Armstrong Atlantic State University, , Savannah, GA 31419, USA
| | | | | | | |
Collapse
|
83
|
Dargent F, Scott ME, Hendry AP, Fussmann GF. Experimental elimination of parasites in nature leads to the evolution of increased resistance in hosts. Proc Biol Sci 2013; 280:20132371. [PMID: 24197417 DOI: 10.1098/rspb.2013.2371] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A reduction in the strength of selection is expected to cause the evolution of reduced trait expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that parasite. To test this prediction in nature, we studied the fourth- and eighth-generation descendants of guppies (Poecilia reticulata) introduced into four natural streams following experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two generations of laboratory rearing to control for plasticity and maternal effects, we infected individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the introduced guppy populations had rapidly and repeatably evolved increased resistance to the now-absent parasite. This evolution was not owing to a resistance-tolerance trade-off, nor to differences in productivity among the sites. Instead, a leading candidate hypothesis is that the rapid life-history evolution typical in such introductions pleiotropically increases parasite resistance. Our study adds a new dimension to the growing evidence for contemporary evolution in the wild, and also points to the need for a re-consideration of simple expectations from host-parasite theory. In particular, our results highlight the need for increased consideration of multiple sources of selection and pleiotropy when studying evolution in natural contexts.
Collapse
Affiliation(s)
- Felipe Dargent
- Department of Biology, McGill University, , 1205 Doctor Penfield Avenue, Montreal, Québec, Canada , H3A 1B1, Institute of Parasitology, McGill University, , 21,111 Lakeshore Road, Ste-Anne de Bellevue, Québec, Canada , H9X 3V9, Redpath Museum, McGill University, , 859 Sherbrooke Street West, Montreal, Québec, Canada , H3A 2K6
| | | | | | | |
Collapse
|
84
|
Maizels RM, Nussey DH. Into the wild: digging at immunology's evolutionary roots. Nat Immunol 2013; 14:879-83. [PMID: 23959175 DOI: 10.1038/ni.2643] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The two pillars of modern immunology have been man and mouse; in both settings, investigators seek to reduce complexity and control environmental conditions. However, the world outside the laboratory is immensely variable; this is not 'noise' but represents the genetic and environmental framework in which the immune system evolved and functions. Placing the ever-growing understanding of immunological mechanisms in wider real-world contexts is a massive but fundamentally important challenge.
Collapse
Affiliation(s)
- Rick M Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, UK.
| | | |
Collapse
|
85
|
McGraw KJ, Giraudeau M, Hill GE, Toomey MB, Staley M. Ketocarotenoid circulation, but not retinal carotenoid accumulation, is linked to eye disease status in a wild songbird. Arch Biochem Biophys 2013; 539:156-62. [DOI: 10.1016/j.abb.2013.09.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
|
86
|
Davis AK, Hood WR, Hill GE. Prevalence of blood parasites in eastern versus Western house finches: are eastern birds resistant to infection? ECOHEALTH 2013; 10:290-297. [PMID: 23807632 DOI: 10.1007/s10393-013-0852-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
The rapid spread of the bacterial disease, Mycoplasma gallisepticum (MG), throughout the introduced range of house finches (Carpodacus mexicanus) in eastern North America, compared to its slower spread through the native western range, has puzzled researchers and highlights the need to understand the relative differences in health state of finches from both populations. We conducted a light-microscope survey of hemoparasites in populations of finches from Arizona (within the western range) and from Alabama (within the eastern range), and compared our estimates of prevalence to published reports from house finches sampled in both ranges. Of the 33 Arizona birds examined, we recorded hematozoan infections in 16 (48.5%) individuals, compared to 1 infected Alabama bird out of 30 birds examined (3.3%). Based on independent surveys of seven western North American and five eastern North American populations of house finches the average prevalence of blood parasites in western populations is 38.8% (±17.9 SD), while the average prevalence within the eastern range is only 5.9% (±6.1 SD). The average rate of infection among all songbirds sampled in the east is 34.2% (±4.8 SD). Thus, our surveys of wild birds as well as previously published observations point to eastern house finches having a much lower prevalence of blood parasite infections than their western counterparts. Combined with the fact that eastern finches also tend to have lower rates of avian pox infections than do western birds (based on a literature review), these observations suggest that eastern birds have either strong resistance to these infections or high susceptibility and associated mortality.
Collapse
Affiliation(s)
- Andrew K Davis
- Odum School of Ecology, The University of Georgia, Athens, GA, 30602, USA,
| | | | | |
Collapse
|
87
|
Cheatsazan H, de Almedia APLG, Russell AF, Bonneaud C. Experimental evidence for a cost of resistance to the fungal pathogen, Batrachochytrium dendrobatidis, for the palmate newt, Lissotriton helveticus. BMC Ecol 2013; 13:27. [PMID: 23866033 PMCID: PMC3722082 DOI: 10.1186/1472-6785-13-27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/20/2013] [Indexed: 11/13/2022] Open
Abstract
Background Batrachochytrium dendrobatidis (Bd), the causative agent of chytridiomycosis, is decimating amphibians worldwide. Unsurprisingly, the majority of studies have therefore concentrated on documenting morbidity and mortality of susceptible species and projecting population consequences as a consequence of this emerging infectious disease. Currently, there is a paucity of studies investigating the sub-lethal costs of Bd in apparently asymptomatic species, particularly in controlled experimental conditions. Here we report the consequences of a single dose of B. dendrobatidis zoospores on captive adult palmate newts (Lissotriton helveticus) for morphological and behavioural traits that associate with reproductive success. Results A single exposure to ~2000 zoospores induced a subclinical Bd infection. One week after inoculation 84% of newts tested positive for Bd, and of those, 98% had apparently lost the infection by the day 30. However, exposed newts suffered significant mass loss compared with control newts, and those experimental newts removing higher levels of Bd lost most mass. We found no evidence to suggest that three secondary sexual characteristics (areas of dorsal crest and rear foot webbing, and length of tail filament) were reduced between experimental versus control newts; in fact, rear foot webbing was 26% more expansive at the end of the experiment in exposed newts. Finally, compared with unexposed controls, exposure to Bd was associated with a 50% earlier initiation of the non-reproductive terrestrial phase. Conclusions Our results suggest that Bd has measureable, but sub-lethal effects, on adult palmate newts, at least under the laboratory conditions presented. We conclude that the effects reported are most likely to be mediated through the initiation of costly immune responses and/or tissue repair mechanisms. Although we found no evidence of hastened secondary sexual trait regression, through reducing individual body condition and potentially, breeding season duration, we predict that Bd exposure might have negative impacts on populations of palmate newts through reducing individual reproductive success and adult recruitment.
Collapse
|
88
|
Hawley DM, Osnas EE, Dobson AP, Hochachka WM, Ley DH, Dhondt AA. Parallel patterns of increased virulence in a recently emerged wildlife pathogen. PLoS Biol 2013; 11:e1001570. [PMID: 23723736 PMCID: PMC3665845 DOI: 10.1371/journal.pbio.1001570] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 04/17/2013] [Indexed: 11/18/2022] Open
Abstract
A bacterial pathogen of wild songbirds evolved higher virulence following its emergence in two separate regions of the host range. The evolution of higher virulence during disease emergence has been predicted by theoretical models, but empirical studies of short-term virulence evolution following pathogen emergence remain rare. Here we examine patterns of short-term virulence evolution using archived isolates of the bacterium Mycoplasma gallisepticum collected during sequential emergence events in two geographically distinct populations of the host, the North American house finch (Haemorhous [formerly Carpodacus] mexicanus). We present results from two complementary experiments, one that examines the trend in pathogen virulence in eastern North American isolates over the course of the eastern epidemic (1994–2008), and the other a parallel experiment on Pacific coast isolates of the pathogen collected after M. gallisepticum established itself in western North American house finch populations (2006–2010). Consistent with theoretical expectations regarding short-term or dynamic evolution of virulence, we show rapid increases in pathogen virulence on both coasts following the pathogen's establishment in each host population. We also find evidence for positive genetic covariation between virulence and pathogen load, a proxy for transmission potential, among isolates of M. gallisepticum. As predicted by theory, indirect selection for increased transmission likely drove the evolutionary increase in virulence in both geographic locations. Our results provide one of the first empirical examples of rapid changes in virulence following pathogen emergence, and both the detected pattern and mechanism of positive genetic covariation between virulence and pathogen load are consistent with theoretical expectations. Our study provides unique empirical insight into the dynamics of short-term virulence evolution that are likely to operate in other emerging pathogens of wildlife and humans. A long-standing paradox in the study of infectious diseases is why pathogens evolve to cause harm to the very hosts they depend on to survive and reproduce. Research over several decades suggests that this harm, or virulence, is an inevitable by-product of the pathogen replication needed to maximize the chance that a given pathogen will be transmitted to another host. Here we demonstrate that a recently emerged bacterial pathogen of a North American songbird species has gradually become more virulent during each of two emergence events in different regions of the host range. This evolution of higher virulence appears to have been driven by selection for high rates of pathogen replication, because bacterial isolates that are more virulent in finches also attain the highest loads in infected host tissues. Overall, our results indicate that emerging pathogens can evolve to become more virulent in their hosts, at least in the short term, when an increase in the pathogen's ability to replicate is linked with higher virulence. Our findings have important implications for understanding and predicting the severity of disease caused by emerging pathogens in wildlife, domestic animals, and humans.
Collapse
Affiliation(s)
- Dana M Hawley
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol 2013; 22:2841-7. [PMID: 23711105 DOI: 10.1111/mec.12350] [Citation(s) in RCA: 348] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/12/2022]
|
90
|
Mycoplasmas and their host: emerging and re-emerging minimal pathogens. Trends Microbiol 2013; 21:196-203. [DOI: 10.1016/j.tim.2013.01.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 01/22/2023]
|
91
|
Adelman JS, Kirkpatrick L, Grodio JL, Hawley DM. House finch populations differ in early inflammatory signaling and pathogen tolerance at the peak of Mycoplasma gallisepticum infection. Am Nat 2013; 181:674-89. [PMID: 23594550 DOI: 10.1086/670024] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Host individuals and populations often vary in their responses to infection, with direct consequences for pathogen spread and evolution. While considerable work has focused on the mechanisms underlying differences in resistance-the ability to kill pathogens-we know little about the mechanisms underlying tolerance-the ability to minimize fitness losses per unit pathogen. Here, we examine patterns and mechanisms of tolerance between two populations of house finches (Haemorhous [formerly Carpodacus] mexicanus) with different histories with the bacterial pathogen Mycoplasma gallisepticum (MG). After infection in a common environment, we assessed two metrics of pathology, mass loss and eye lesion severity, as proxies for fitness. We calculated tolerance using two methods, one based on pathology and pathogen load at the peak of infection (point tolerance) and the other based on the integrals of these metrics over time (range tolerance). Alabama birds, which have a significantly longer history of exposure to MG, showed more pronounced point tolerance than Arizona birds, while range tolerance did not differ between populations. Alabama birds also displayed lower inflammatory cytokine signaling and lower fever early in infection. These results suggest that differences in inflammatory processes, which can significantly damage host tissues, may contribute to variation in tolerance among house finch individuals and populations. Such variation can affect pathogen spread and evolution in ways not predictable by resistance alone and sheds light on the costs and benefits of inflammation in wild animals.
Collapse
Affiliation(s)
- James S Adelman
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
92
|
Backström N, Shipilina D, Blom MPK, Edwards SV. Cis-regulatory sequence variation and association with Mycoplasma load in natural populations of the house finch (Carpodacus mexicanus). Ecol Evol 2013; 3:655-66. [PMID: 23532859 PMCID: PMC3605853 DOI: 10.1002/ece3.484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/17/2012] [Accepted: 12/24/2012] [Indexed: 01/19/2023] Open
Abstract
Characterization of the genetic basis of fitness traits in natural populations is important for understanding how organisms adapt to the changing environment and to novel events, such as epizootics. However, candidate fitness-influencing loci, such as regulatory regions, are usually unavailable in nonmodel species. Here, we analyze sequence data from targeted resequencing of the cis-regulatory regions of three candidate genes for disease resistance (CD74, HSP90α, and LCP1) in populations of the house finch (Carpodacus mexicanus) historically exposed (Alabama) and naïve (Arizona) to Mycoplasma gallisepticum. Our study, the first to quantify variation in regulatory regions in wild birds, reveals that the upstream regions of CD74 and HSP90α are GC-rich, with the former exhibiting unusually low sequence variation for this species. We identified two SNPs, located in a GC-rich region immediately upstream of an inferred promoter site in the gene HSP90α, that were significantly associated with Mycoplasma pathogen load in the two populations. The SNPs are closely linked and situated in potential regulatory sequences: one in a binding site for the transcription factor nuclear NFYα and the other in a dinucleotide microsatellite ((GC)6). The genotype associated with pathogen load in the putative NFYα binding site was significantly overrepresented in the Alabama birds. However, we did not see strong effects of selection at this SNP, perhaps because selection has acted on standing genetic variation over an extremely short time in a highly recombining region. Our study is a useful starting point to explore functional relationships between sequence polymorphisms, gene expression, and phenotypic traits, such as pathogen resistance that affect fitness in the wild.
Collapse
Affiliation(s)
- Niclas Backström
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Daria Shipilina
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Mozes P K Blom
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology (OEB), Museum of Comparative Zoology (MCZ), Harvard University26 Oxford Street, Cambridge, MA, 02138
| |
Collapse
|
93
|
Backström N, Zhang Q, Edwards SV. Evidence from a House Finch (Haemorhous mexicanus) Spleen Transcriptome for Adaptive Evolution and Biased Gene Conversion in Passerine Birds. Mol Biol Evol 2013; 30:1046-50. [DOI: 10.1093/molbev/mst033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
94
|
Ekblom R, Farrell LL, Lank DB, Burke T. Gene expression divergence and nucleotide differentiation between males of different color morphs and mating strategies in the ruff. Ecol Evol 2012; 2:2485-505. [PMID: 23145334 PMCID: PMC3492775 DOI: 10.1002/ece3.370] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/01/2012] [Accepted: 08/08/2012] [Indexed: 12/16/2022] Open
Abstract
By next generation transcriptome sequencing, it is possible to obtain data on both nucleotide sequence variation and gene expression. We have used this approach (RNA-Seq) to investigate the genetic basis for differences in plumage coloration and mating strategies in a non-model bird species, the ruff (Philomachus pugnax). Ruff males show enormous variation in the coloration of ornamental feathers, used for individual recognition. This polymorphism is linked to reproductive strategies, with dark males (Independents) defending territories on leks against other Independents, whereas white morphs (Satellites) co-occupy Independent's courts without agonistic interactions. Previous work found a strong genetic component for mating strategy, but the genes involved were not identified. We present feather transcriptome data of more than 6,000 de-novo sequenced ruff genes (although with limited coverage for many of them). None of the identified genes showed significant expression divergence between males, but many genetic markers showed nucleotide differentiation between different color morphs and mating strategies. These include several feather keratin genes, splicing factors, and the Xg blood-group gene. Many of the genes with significant genetic structure between mating strategies have not yet been annotated and their functions remain to be elucidated. We also conducted in-depth investigations of 28 pre-identified coloration candidate genes. Two of these (EDNRB and TYR) were specifically expressed in black- and rust-colored males, respectively. We have demonstrated the utility of next generation transcriptome sequencing for identifying and genotyping large number of genetic markers in a non-model species without previous genomic resources, and highlight the potential of this approach for addressing the genetic basis of ecologically important variation.
Collapse
Affiliation(s)
- Robert Ekblom
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University Norbyvägen 18 D, SE-75236, Uppsala, Sweden ; Department of Animal and Plant Sciences, University of Sheffield Sheffield, S10 2TN, UK
| | | | | | | |
Collapse
|
95
|
Bonneaud C, Balenger SL, Hill GE, Russell AF. Experimental evidence for distinct costs of pathogenesis and immunity against a natural pathogen in a wild bird. Mol Ecol 2012; 21:4787-96. [PMID: 22924889 DOI: 10.1111/j.1365-294x.2012.05736.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022]
Abstract
Protective immunity is expected to evolve when the costs of mounting an immune response are less than those of harbouring pathogens. Estimating the costs of immunity vs. pathogenesis in natural systems is challenging, however, because they are typically closely linked. Here we attempt to disentangle the relative cost of each using experimental infections in a natural host-parasite system in which hosts (house finches, Carpodacus mexicanus) differ in resistance to a bacterium (Mycoplasma gallisepticum, MG), depending on whether they originate from co-evolved or unexposed populations. Experimental infection with a 2007-strain of MG caused finches from co-evolved populations to lose significantly more mass relative to controls, than those from unexposed populations. In addition, infected co-evolved finches that lost the most mass harboured the least amounts of MG, whereas the reverse was true in finches from unexposed populations. Finally, within co-evolved populations, individuals that displayed transcriptional evidence of higher protective immune activity, as indicated by changes in the expression of candidate immune and immune-related genes in a direction consistent with increased resistance to MG, showed greater mass loss and lower MG load. Thus, mass loss appeared to reflect the costs of immunity vs. pathogenesis in co-evolved and unexposed populations, respectively. Our results suggest that resistance can evolve even when the short-term energetic costs of protective immunity exceed those of pathogenesis, providing the longer-term fitness costs of infection are sufficiently high.
Collapse
Affiliation(s)
- Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS USR 2936, Moulis, 09200, France.
| | | | | | | |
Collapse
|
96
|
BONNEAUD CAMILLE, BALENGER SUSANL, ZHANG JIANGWEN, EDWARDS SCOTTV, HILL GEOFFREYE. Innate immunity and the evolution of resistance to an emerging infectious disease in a wild bird. Mol Ecol 2012; 21:2628-39. [DOI: 10.1111/j.1365-294x.2012.05551.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
97
|
Hawley DM, Fleischer RC. Contrasting epidemic histories reveal pathogen-mediated balancing selection on class II MHC diversity in a wild songbird. PLoS One 2012; 7:e30222. [PMID: 22291920 PMCID: PMC3264569 DOI: 10.1371/journal.pone.0030222] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022] Open
Abstract
The extent to which pathogens maintain the extraordinary polymorphism at vertebrate Major Histocompatibility Complex (MHC) genes via balancing selection has intrigued evolutionary biologists for over half a century, but direct tests remain challenging. Here we examine whether a well-characterized epidemic of Mycoplasmal conjunctivitis resulted in balancing selection on class II MHC in a wild songbird host, the house finch (Carpodacus mexicanus). First, we confirmed the potential for pathogen-mediated balancing selection by experimentally demonstrating that house finches with intermediate to high multi-locus MHC diversity are more resistant to challenge with Mycoplasma gallisepticum. Second, we documented sequence and diversity-based signatures of pathogen-mediated balancing selection at class II MHC in exposed host populations that were absent in unexposed, control populations across an equivalent time period. Multi-locus MHC diversity significantly increased in exposed host populations following the epidemic despite initial compromised diversity levels from a recent introduction bottleneck in the exposed host range. We did not observe equivalent changes in allelic diversity or heterozygosity across eight neutral microsatellite loci, suggesting that the observations reflect selection rather than neutral demographic processes. Our results indicate that a virulent pathogen can exert sufficient balancing selection on class II MHC to rescue compromised levels of genetic variation for host resistance in a recently bottlenecked population. These results provide evidence for Haldane's long-standing hypothesis that pathogens directly contribute to the maintenance of the tremendous levels of genetic variation detected in natural populations of vertebrates.
Collapse
Affiliation(s)
- Dana M Hawley
- Center for Conservation and Evolutionary Genetics, Smithsonian Institution, Washington DC, United States of America.
| | | |
Collapse
|
98
|
Koskella B, Lin DM, Buckling A, Thompson JN. The costs of evolving resistance in heterogeneous parasite environments. Proc Biol Sci 2011; 279:1896-903. [PMID: 22171085 DOI: 10.1098/rspb.2011.2259] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of host resistance to parasites, shaped by associated fitness costs, is crucial for epidemiology and maintenance of genetic diversity. Selection imposed by multiple parasites could be a particularly strong constraint, as hosts either accumulate costs of multiple specific resistances or evolve a more costly general resistance mechanism. We used experimental evolution to test how parasite heterogeneity influences the evolution of host resistance. We show that bacterial host populations evolved specific resistance to local bacteriophage parasites, regardless of whether they were in single or multiple-phage environments, and that hosts evolving with multiple phages were no more resistant to novel phages than those evolving with single phages. However, hosts from multiple-phage environments paid a higher cost, in terms of population growth in the absence of phage, for their evolved specific resistances than those from single-phage environments. Given that in nature host populations face selection pressures from multiple parasite strains and species, our results suggest that costs may be even more critical in shaping the evolution of resistance than previously thought. Furthermore, our results highlight that a better understanding of resistance costs under combined control strategies could lead to a more 'evolution-resistant' treatment of disease.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.
| | | | | | | |
Collapse
|
99
|
Balenger SL, McClure CJW, Hill GE. Primer design and transcript quantification of a highly multiplexed RT-PCR for a nonmodel avian species. Mol Ecol Resour 2011; 12:116-22. [PMID: 21848525 DOI: 10.1111/j.1755-0998.2011.03058.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multiplexed qRT-PCR assays are currently lacking for nearly all species without genome or transcriptome resources. Here, we present a strategy for primer design of highly multiplexed qRT-PCR assays, evaluate Beckman Coulter's Quant Tool gene expression quantification software and provide details of our assay for the North American songbird Carpodacus mexicanus (house finch), for which only small sections of genome sequence are available. We combined Beckman Coulter's eXpress Designer module for creating custom multiplex primers with the free, online program Amplify 3 to design and evaluate primers computationally before testing them empirically. We also generated a standard curve for each gene included in the final multiplex. We compared models using cubic and quadratic polynomial estimators that did and did not force the intercept through zero. Ultimately, we used the sequences available for 316 clones differentially expressed in cDNA macroarray and microarray comparisons, and from these sequences, we were able to generate a set of transcript-specific primers for use with the GeXP analyser for 20 house finch genes.
Collapse
Affiliation(s)
- Susan L Balenger
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA.
| | | | | |
Collapse
|