51
|
Viré E, Curtis C, Davalos V, Git A, Robson S, Villanueva A, Vidal A, Barbieri I, Aparicio S, Esteller M, Caldas C, Kouzarides T. The breast cancer oncogene EMSY represses transcription of antimetastatic microRNA miR-31. Mol Cell 2014; 53:806-18. [PMID: 24582497 PMCID: PMC3988886 DOI: 10.1016/j.molcel.2014.01.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 11/11/2013] [Accepted: 01/23/2014] [Indexed: 11/16/2022]
Abstract
Amplification of the EMSY gene in sporadic breast and ovarian cancers is a poor prognostic indicator. Although EMSY has been linked to transcriptional silencing, its mechanism of action is unknown. Here, we report that EMSY acts as an oncogene, causing the transformation of cells in vitro and potentiating tumor formation and metastatic features in vivo. We identify an inverse correlation between EMSY amplification and miR-31 expression, an antimetastatic microRNA, in the METABRIC cohort of human breast samples. Re-expression of miR-31 profoundly reduced cell migration, invasion, and colony-formation abilities of cells overexpressing EMSY or haboring EMSY amplification. We show that EMSY is recruited to the miR-31 promoter by the DNA binding factor ETS-1, and it represses miR-31 transcription by delivering the H3K4me3 demethylase JARID1b/PLU-1/KDM5B. Altogether, these results suggest a pathway underlying the role of EMSY in breast cancer and uncover potential diagnostic and therapeutic targets in sporadic breast cancer.
Collapse
Affiliation(s)
- Emmanuelle Viré
- Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Christina Curtis
- Department of Oncology and Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, CB2 0RE, UK
| | - Veronica Davalos
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain
| | - Anna Git
- Department of Oncology and Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, CB2 0RE, UK
| | - Samuel Robson
- Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Alberto Villanueva
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain
| | - August Vidal
- Department of Pathological Anatomy, Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain
| | | | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Agency, 675 West 10(th) Avenue, V5Z 1L3 Vancouver, Canada
| | - Manel Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08907, Spain
| | - Carlos Caldas
- Department of Oncology and Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, CB2 0RE, UK; Cambridge Breast Unit, Addenbrooke's Hospital, Cambridge University Hospital, NHS Foundation Trust and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 2QQ, UK; Cambridge Experimental Cancer Medicine Centre (ECMC), Cambridge CB2 0RE, UK
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
52
|
Kroczynska B, Mehrotra S, Arslan AD, Kaur S, Platanias LC. Regulation of interferon-dependent mRNA translation of target genes. J Interferon Cytokine Res 2014; 34:289-96. [PMID: 24559173 DOI: 10.1089/jir.2013.0148] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.
Collapse
Affiliation(s)
- Barbara Kroczynska
- 1 Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School , Chicago, Illinois
| | | | | | | | | |
Collapse
|
53
|
Abstract
Constitutive expression of interferons (IFNs) and activation of their signaling pathways have pivotal roles in host responses to malignant cells in the tumor microenvironment. IFNs are induced by the innate immune system and in tumors through stimulation of Toll-like receptors (TLRs) and through other signaling pathways in response to specific cytokines. Although in the oncologic context IFNs have been thought of more as exogenous pharmaceuticals, the autocrine and paracrine actions of endogenous IFNs probably have even more critical effects on neoplastic disease outcomes. Through high-affinity cell surface receptors, IFNs modulate transcriptional signaling, leading to regulation of more than 2,000 genes with varying patterns of temporal expression. Induction of the gene products by both unphosphorylated and phosphorylated STAT1 after ligand binding results in alterations in tumor cell survival, inhibition of angiogenesis, and augmentation of actions of T, natural killer (NK), and dendritic cells. The interferon-stimulated gene (ISG) signature can be a favorable biomarker of immune response but, in a seemingly paradoxical finding, a specific subset of the full ISG signature indicates an unfavorable response to DNA-damaging interventions such as radiation. IFNs in the tumor microenvironment thus can alter the emergence, progression, and regression of malignancies.
Collapse
Affiliation(s)
- Hyeonjoo Cheon
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH.
| | - Ernest C Borden
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH
| | - George R Stark
- Lerner Research Institute, Taussig Cancer Institute, and Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
54
|
Sanidas I, Polytarchou C, Hatziapostolou M, Ezell SA, Kottakis F, Hu L, Guo A, Xie J, Comb MJ, Iliopoulos D, Tsichlis PN. Phosphoproteomics screen reveals akt isoform-specific signals linking RNA processing to lung cancer. Mol Cell 2014; 53:577-90. [PMID: 24462114 DOI: 10.1016/j.molcel.2013.12.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/02/2013] [Accepted: 12/18/2013] [Indexed: 01/09/2023]
Abstract
The three Akt isoforms are functionally distinct. Here we show that their phosphoproteomes also differ, suggesting that their functional differences are due to differences in target specificity. One of the top cellular functions differentially regulated by Akt isoforms is RNA processing. IWS1, an RNA processing regulator, is phosphorylated by Akt3 and Akt1 at Ser720/Thr721. The latter is required for the recruitment of SETD2 to the RNA Pol II complex. SETD2 trimethylates histone H3 at K36 during transcription, creating a docking site for MRG15 and PTB. H3K36me3-bound MRG15 and PTB regulate FGFR-2 splicing, which controls tumor growth and invasiveness downstream of IWS1 phosphorylation. Twenty-one of the twenty-four non-small-cell-lung carcinomas we analyzed express IWS1. More importantly, the stoichiometry of IWS1 phosphorylation in these tumors correlates with the FGFR-2 splicing pattern and with Akt phosphorylation and Akt3 expression. These data identify an Akt isoform-dependent regulatory mechanism for RNA processing and demonstrate its role in lung cancer.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Christos Polytarchou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Maria Hatziapostolou
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA; Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Scott A Ezell
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Filippos Kottakis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Lan Hu
- Department of Biostatistics and Computational Biology, Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ailan Guo
- Cell Signaling Technology, Danvers, MA 01923, USA
| | - Jianxin Xie
- Cell Signaling Technology, Danvers, MA 01923, USA
| | | | - Dimitrios Iliopoulos
- Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Philip N Tsichlis
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
55
|
Novel antiviral host factor, TNK1, regulates IFN signaling through serine phosphorylation of STAT1. Proc Natl Acad Sci U S A 2014; 111:1909-14. [PMID: 24449862 DOI: 10.1073/pnas.1314268111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In response to viral infection, the host induces over 300 IFN-stimulated genes (ISGs), which are the central component of intracellular antiviral innate immunity. Inefficient induction of ISGs contributes to poor control and persistence of hepatitis C virus infection. Therefore, further understanding of the hepatocytic ISG regulation machinery will guide us to an improved management strategy against hepatitis C virus infection. In this study, comprehensive genome-wide, high-throughput cDNA screening for genes regulating ISG expression identified a tyrosine kinase nonreceptor 1 (TNK1) as a unique player in the ISG induction pathway. The immune-modulatory function of TNK1 has never been studied, and this study characterizes its significance in antiviral innate immunity. TNK1 is abundantly expressed in hepatocytes and maintains basal ISG expression. More importantly, TNK1 plays a critical role in type I IFN-mediated ISG induction. We discovered that the activated IFN receptor complex recruits TNK1 from the cytoplasm. TNK1 is then phosphorylated to enhance its kinase activity. The activated TNK1 potentiates JAK-STAT signaling through dual phosphorylation of STAT1 at tyrosine 701 and serine 727 amino acid positions. Our loss-of-function approach demonstrated that TNK1 governs a cluster of ISG expression that defines the TNK1 pathway effector genes. More importantly, TNK1 abundance is inversely correlated to viral replication efficiency and is also a determinant factor for the hepatocytic response to antiviral treatment. Taken together, our studies found a critical but unidentified integrated component of the IFN-JAK-STAT signaling cascade.
Collapse
|
56
|
|
57
|
Nurminen R, Lehtonen R, Auvinen A, Tammela TLJ, Wahlfors T, Schleutker J. Fine mapping of 11q13.5 identifies regions associated with prostate cancer and prostate cancer death. Eur J Cancer 2013; 49:3335-43. [PMID: 23830236 DOI: 10.1016/j.ejca.2013.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/27/2013] [Accepted: 06/03/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Chromosomal region 11q13-14 associates with prostate cancer (PrCa). Previously, we identified a rare intronic mutation on EMSY (11q13.5) that increases the risk of aggressive PrCa and associates with familial PrCa. Here, we further study the genetic structure and variants of the PrCa susceptibility region 11q13.5. METHODS This study included 2716 unselected hospital-based PrCa cases, 1318 cases of a screening trial and 908 controls of Finnish origin. We imputed single nucleotide polymorphisms (SNPs) and structural variants from the 1000 Genomes Project and validated the associations of the variants in two PrCa patient sets by genotyping. Genetic structure was studied with haplotype analysis. RESULTS Two independent regions at 11q13.5 were associated with PrCa risk. The most significant association was at EMSY (rs10899221, odds ratio (OR) 1.29-1.40, P=3.5 × 10(-4)-0.002) near the previously identified mutation. Correlated intronic SNPs rs10899221 and rs72944758 formed with other EMSY variants common and rare haplotypes that were associated with increased risk (P=4.0 × 10(-4)) and decreased risk (P=0.01) of PrCa, respectively. The other associated region was intergenic. Among the six validated variants, rs12277366 was significant in both patient sets (OR 1.15-1.17, P=0.01). Haplotypes associated with an increased risk (P=0.02) and a decreased risk (P=0.02) were identified. In addition, the intergenic region was strongly associated with PrCa death, with the most significant association at rs12277366 (OR=0.72, P=4.8 × 10(-5)). CONCLUSIONS These findings indicate that 11q13.5 contributes to PrCa predisposition with complex genetic structure and is associated with PrCa death.
Collapse
Affiliation(s)
- Riikka Nurminen
- Institute of Biomedical Technology/BioMediTech and Prostate Cancer Research Center, University of Tampere and Fimlab Laboratories, Biokatu 8, FI-33014 Tampere, Finland
| | | | | | | | | | | |
Collapse
|
58
|
|
59
|
Folic acid and melatonin ameliorate carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Nutr Metab (Lond) 2013; 10:20. [PMID: 23374533 PMCID: PMC3570377 DOI: 10.1186/1743-7075-10-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/22/2013] [Indexed: 12/11/2022] Open
Abstract
This study investigated the protective effects of melatonin and folic acid against carbon tetrachloride (CCl4)-induced hepatic injury in rats. Oxidative stress, liver function, liver histopathology and serum lipid levels were evaluated. The levels of protein kinase B (Akt1), interferon gamma (IFN-γ), programmed cell death-receptor (Fas) and Tumor necrosis factor-alpha (TNF-α) mRNA expression were analyzed. CCl4 significantly elevated the levels of lipid peroxidation (MDA), cholesterol, LDL, triglycerides, bilirubin and urea. In addition, CCl4 was found to significantly suppress the activity of both catalase and glutathione (GSH) and decrease the levels of serum total protein and HDL-cholesterol. All of these parameters were restored to their normal levels by treatment with melatonin, folic acid or their combination. An improvement of the general hepatic architecture was observed in rats that were treated with the combination of melatonin and folic acid along with CCl4. Furthermore, the CCl4-induced upregulation of TNF-α and Fas mRNA expression was significantly restored by the three treatments. Melatonin, folic acid or their combination also restored the baseline levels of IFN-γ and Akt1 mRNA expression. The combination of melatonin and folic acid exhibited ability to reduce the markers of liver injury induced by CCl4 and restore the oxidative stability, the level of inflammatory cytokines, the lipid profile and the cell survival Akt1 signals.
Collapse
|
60
|
Malilas W, Koh SS, Srisuttee R, Boonying W, Cho IR, Jeong CS, Johnston RN, Chung YH. Cancer upregulated gene 2, a novel oncogene, confers resistance to oncolytic vesicular stomatitis virus through STAT1-OASL2 signaling. Cancer Gene Ther 2013; 20:125-32. [PMID: 23306614 DOI: 10.1038/cgt.2012.96] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently found a novel oncogene, named cancer upregulated gene 2 (CUG2), which activates Ras and mitogen-activated protein kinases (MAPKs), including ERK, JNK and p38 MAPK. Because activation of these signaling pathways has previously been shown to enhance cancer cell susceptibility to oncolysis by certain viruses, we examined whether vesicular stomatitis virus (VSV) could function as a potential therapeutic agent by efficiently inducing cytolysis in cells transformed by CUG2. Unexpectedly, NIH3T3 cells stably expressing CUG2 (NIH-CUG2) were resistant to VSV because of the activation of signal transducers and activators of transcription 1 (STAT1). The result was supported by evidence showing that suppression of STAT1 with short interference RNA (siRNA) renders cells susceptible to VSV. Furthermore, 2'-5' oligoadenylate synthetase-like (OASL) 2 was the most affected by STAT1 expression level among anti-viral proteins and furthermore suppression of OASL2 mRNA level caused NIH-CUG2 cells to succumb to VSV as seen in NIH-CUG2 cells treated with STAT1 siRNA. In addition, Colon26L5 carcinoma cells stably expressing CUG2 (Colon26L5-CUG2) exhibited resistance to VSV, whereas Colon26L5 stably expressing a control vector yielded to VSV infection. Moreover, Colon26L5-CUG2 cells stably suppressing STAT1 succumbed to VSV infection, resulting in apoptosis. Taken together, we propose that VSV treatment combined with the selective regulation of genes such as STAT1 and OASL2 will improve therapeutic outcomes for CUG2-overexpressing tumors.
Collapse
Affiliation(s)
- W Malilas
- WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Ezell SA, Tsichlis PN. Akt1, EMSY, BRCA2 and type I IFN signaling: a novel arm of the IFN response. Transcription 2012; 3:305-9. [PMID: 23117821 DOI: 10.4161/trns.21904] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Interferon-stimulated transcription is thought to occur mainly through the action of the JAK/STAT pathway. However, recent findings revealed an additional PI3K/Akt-dependent pathway, which contributes to the induction of a set of interferon-stimulated genes (ISGs) through the regulation of the transcriptional repressor EMSY.
Collapse
Affiliation(s)
- Scott A Ezell
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | | |
Collapse
|
62
|
Ebaid H, Al-Khalifa M, Isa AM, Gadoa S. Bioactivity of Samsum ant (Pachycondyla sennaarensis) venom against lipopolysaccharides through antioxidant and upregulation of Akt1 signaling in rats. Lipids Health Dis 2012; 11:93. [PMID: 22824368 PMCID: PMC3416678 DOI: 10.1186/1476-511x-11-93] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/03/2012] [Indexed: 11/20/2022] Open
Abstract
Background This study aimed at investigating the oxidative stress ameliorating effect, lipids profile restoration, and the anti-inflammatory effect of Samsum Ant Venom (SAV) in induced endotoxemic male rats, injected with bacterial lipopolysaccharides (LPS). Results Results revealed that LPS significantly increased the oxidative stress indications in LPS-injected rats. A significant increase of both malondialdehyde (MDA), and advanced oxidative protein products (AOPP), as well as a significant suppression of glutathione were all detected. Treatment with 100 μg/kg dose of SAV significantly restored the oxidative stress normal indications and increased the total glutathione levels. Treatment of the LPS-rats with 100 μg/kg dose of SAV showed a clear anti-inflammatory function; as the histological architecture of the hepatic tissue was partially recovered, along with a valuable decrease in the leukocytes infiltrated the hepatic tissues. Treatment of some rat groups with 600 μg/kg dose of SAV after LPS injection induced a severe endotoxemia that resulted in very high mortality rates. SAV versus the effects of LPS on AKT1, Fas, TNF-α and IFN-γ mRNA expression. SAV was found to significantly lower Fas gene expression comparing to the LPS group and restore the level of IFN-γ mRNA expression to that of the control group. Conclusion In conclusion, SAV, at the dose of 100 μg/kg body weight, maintained and restored the oxidative stability, the anti-inflammatory, and the hypolipidemic bioactivity in rats after induced disruption of these parameters by LPS injection. This improvement by SAV was mediated by upregulation of AKT1.
Collapse
Affiliation(s)
- Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P,O,Box 2455, Riyadh, 11451, Saudi Arabia.
| | | | | | | |
Collapse
|