51
|
Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis Shows that WhiB Is a Transcription Factor That Cocontrols Its Regulon with WhiA To Initiate Developmental Cell Division in Streptomyces. mBio 2016; 7:e00523-16. [PMID: 27094333 PMCID: PMC4850268 DOI: 10.1128/mbio.00523-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
WhiB is the founding member of a family of proteins (the WhiB-like [Wbl] family) that carry a [4Fe-4S] iron-sulfur cluster and play key roles in diverse aspects of the biology of actinomycetes, including pathogenesis, antibiotic resistance, and the control of development. In Streptomyces, WhiB is essential for the process of developmentally controlled cell division that leads to sporulation. The biochemical function of Wbl proteins has been controversial; here, we set out to determine unambiguously if WhiB functions as a transcription factor using chromatin immunoprecipitation sequencing (ChIP-seq) in Streptomyces venezuelae. In the first demonstration of in vivo genome-wide Wbl binding, we showed that WhiB regulates the expression of key genes required for sporulation by binding upstream of ~240 transcription units. Strikingly, the WhiB regulon is identical to the previously characterized WhiA regulon, providing an explanation for the identical phenotypes of whiA and whiB mutants. Using ChIP-seq, we demonstrated that in vivo DNA binding by WhiA depends on WhiB and vice versa, showing that WhiA and WhiB function cooperatively to control expression of a common set of WhiAB target genes. Finally, we show that mutation of the cysteine residues that coordinate the [4Fe-4S] cluster in WhiB prevents DNA binding by both WhiB and WhiA in vivo. Despite the central importance of WhiB-like (Wbl) proteins in actinomycete biology, a conclusive demonstration of their biochemical function has been elusive, and they have been difficult to study, particularly in vitro, largely because they carry an oxygen-sensitive [4Fe-4S] cluster. Here we used genome-wide ChIP-seq to investigate the function of Streptomyces WhiB, the founding member of the Wbl family. The advantage of this approach is that the oxygen sensitivity of the [4Fe-4S] cluster becomes irrelevant once the protein has been cross-linked to DNA in vivo. Our data provide the most compelling in vivo evidence to date that WhiB, and, by extension, probably all Wbl proteins, function as transcription factors. Further, we show that WhiB does not act independently but rather coregulates its regulon of sporulation genes with a partner transcription factor, WhiA.
Collapse
|
52
|
Abstract
The cyclic dinucleotides cyclic 3′,5′-diguanylate (c-di-GMP) and cyclic 3′,5′-diadenylate (c-di-AMP) have emerged as key components of bacterial signal transduction networks. These closely related second messengers follow the classical general principles of nucleotide signaling by integrating diverse signals into regulatory pathways that control cellular responses to changing environments. They impact distinct cellular processes, with c-di-GMP having an established role in promoting bacterial adhesion and inhibiting motility and c-di-AMP being involved in cell wall metabolism, potassium homeostasis, and DNA repair. The involvement of c-dinucleotides in the physiology of the filamentous, nonmotile streptomycetes remained obscure until recent discoveries showed that c-di-GMP controls the activity of the developmental master regulator BldD and that c-di-AMP determines the level of the resuscitation-promoting factor A(RpfA) cell wall-remodelling enzyme. Here, I summarize our current knowledge of c-dinucleotide signaling in Streptomyces species and highlight the important roles of c-di-GMP and c-di-AMP in the biology of these antibiotic-producing, multicellular bacteria.
Collapse
|
53
|
Ferguson NL, Peña-Castillo L, Moore MA, Bignell DRD, Tahlan K. Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. ACTA ACUST UNITED AC 2016; 43:537-55. [DOI: 10.1007/s10295-016-1733-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022]
Abstract
Abstract
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.
Collapse
Affiliation(s)
- Nicole L Ferguson
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Lourdes Peña-Castillo
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
- grid.25055.37 0000000091306822 Department of Computer Science Memorial University of Newfoundland A1B 3X5 St. John’s NL Canada
| | - Marcus A Moore
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Dawn R D Bignell
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Kapil Tahlan
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| |
Collapse
|
54
|
Schlimpert S, Flärdh K, Buttner M. Fluorescence Time-lapse Imaging of the Complete S. venezuelae Life Cycle Using a Microfluidic Device. J Vis Exp 2016:53863. [PMID: 26967231 PMCID: PMC4828195 DOI: 10.3791/53863] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Live-cell imaging of biological processes at the single cell level has been instrumental to our current understanding of the subcellular organization of bacterial cells. However, the application of time-lapse microscopy to study the cell biological processes underpinning development in the sporulating filamentous bacteria Streptomyces has been hampered by technical difficulties. Here we present a protocol to overcome these limitations by growing the new model species, Streptomyces venezuelae, in a commercially available microfluidic device which is connected to an inverted fluorescence widefield microscope. Unlike the classical model species, Streptomyces coelicolor, S. venezuelae sporulates in liquid, allowing the application of microfluidic growth chambers to cultivate and microscopically monitor the cellular development and differentiation of S. venezuelae over long time periods. In addition to monitoring morphological changes, the spatio-temporal distribution of fluorescently labeled target proteins can also be visualized by time-lapse microscopy. Moreover, the microfluidic platform offers the experimental flexibility to exchange the culture medium, which is used in the detailed protocol to stimulate sporulation of S. venezuelae in the microfluidic chamber. Images of the entire S. venezuelae life cycle are acquired at specific intervals and processed in the open-source software Fiji to produce movies of the recorded time-series.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park;
| | | | - Mark Buttner
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park
| |
Collapse
|
55
|
Garcia-Garcia T, Poncet S, Derouiche A, Shi L, Mijakovic I, Noirot-Gros MF. Role of Protein Phosphorylation in the Regulation of Cell Cycle and DNA-Related Processes in Bacteria. Front Microbiol 2016; 7:184. [PMID: 26909079 PMCID: PMC4754617 DOI: 10.3389/fmicb.2016.00184] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/02/2016] [Indexed: 11/26/2022] Open
Abstract
In all living organisms, the phosphorylation of proteins modulates various aspects of their functionalities. In eukaryotes, protein phosphorylation plays a key role in cell signaling, gene expression, and differentiation. Protein phosphorylation is also involved in the global control of DNA replication during the cell cycle, as well as in the mechanisms that cope with stress-induced replication blocks. Similar to eukaryotes, bacteria use Hanks-type kinases and phosphatases for signal transduction, and protein phosphorylation is involved in numerous cellular processes. However, it remains unclear whether protein phosphorylation in bacteria can also regulate the activity of proteins involved in DNA-mediated processes such as DNA replication or repair. Accumulating evidence supported by functional and biochemical studies suggests that phospho-regulatory mechanisms also take place during the bacterial cell cycle. Recent phosphoproteomics and interactomics studies identified numerous phosphoproteins involved in various aspect of DNA metabolism strongly supporting the existence of such level of regulation in bacteria. Similar to eukaryotes, bacterial scaffolding-like proteins emerged as platforms for kinase activation and signaling. This review reports the current knowledge on the phosphorylation of proteins involved in the maintenance of genome integrity and the regulation of cell cycle in bacteria that reveals surprising similarities to eukaryotes.
Collapse
Affiliation(s)
| | - Sandrine Poncet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Abderahmane Derouiche
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Lei Shi
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Ivan Mijakovic
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of TechnologyGothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | | |
Collapse
|
56
|
c-di-GMP signalling and the regulation of developmental transitions in streptomycetes. Nat Rev Microbiol 2015; 13:749-60. [PMID: 26499894 DOI: 10.1038/nrmicro3546] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complex life cycle of streptomycetes involves two distinct filamentous cell forms: the growing (or vegetative) hyphae and the reproductive (or aerial) hyphae, which differentiate into long chains of spores. Until recently, little was known about the signalling pathways that regulate the developmental transitions leading to sporulation. In this Review, we discuss important new insights into these pathways that have led to the emergence of a coherent regulatory network, focusing on the erection of aerial hyphae and the synchronous cell division event that produces dozens of unigenomic spores. In particular, we highlight the role of cyclic di-GMP (c-di-GMP) in controlling the initiation of development, and the role of the master regulator BldD in mediating c-di-GMP signalling.
Collapse
|
57
|
Thibessard A, Bertrand C, Hiblot J, Piotrowski E, Leblond P. Construction of pDYN6902, a new Streptomyces integrative expression vector designed for cloning sequences interfering with Escherichia coli viability. Plasmid 2015; 82:43-9. [PMID: 26476355 DOI: 10.1016/j.plasmid.2015.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Annabelle Thibessard
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| | - Claire Bertrand
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| | - Julien Hiblot
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; Ecole Polytechnique Fédérale de Lausanne, Laboratory of Protein Engineering, EPFL SB ISIC LIP1, BCH 4303 (Bât. BCH), CH-1015 Lausanne, Switzerland
| | - Emilie Piotrowski
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| | - Pierre Leblond
- Université de Lorraine, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France; INRA, Dynamique des Génomes et Adaptation Microbienne, UMR 1128, Vandœuvre-lès-Nancy, F-54506, France
| |
Collapse
|
58
|
Li X, Wang J, Li S, Ji J, Wang W, Yang K. ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor. Sci Rep 2015; 5:14831. [PMID: 26442964 PMCID: PMC4595836 DOI: 10.1038/srep14831] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/07/2015] [Indexed: 12/21/2022] Open
Abstract
In model organism Streptomyces coelicolor, γ-butyrolactones (GBLs) and antibiotics were recognized as signalling molecules playing fundamental roles in intra- and interspecies communications. To dissect the GBL and antibiotic signalling networks systematically, the in vivo targets of their respective receptors ScbR and ScbR2 were identified on a genome scale by ChIP-seq. These identified targets encompass many that are known to play important roles in diverse cellular processes (e.g. gap1, pyk2, afsK, nagE2, cdaR, cprA, cprB, absA1, actII-orf4, redZ, atrA, rpsL and sigR), and they formed regulatory cascades, sub-networks and feedforward loops to elaborately control key metabolite processes, including primary and secondary metabolism, morphological differentiation and stress response. Moreover, interplay among ScbR, ScbR2 and other regulators revealed intricate cross talks between signalling pathways triggered by GBLs, antibiotics, nutrient availability and stress. Our work provides a global view on the specific responses that could be triggered by GBL and antibiotic signals in S. coelicolor, among which the main echo was the change of production profile of endogenous antibiotics and antibiotic signals manifested a role to enhance bacterial stress tolerance as well, shedding new light on GBL and antibiotic signalling networks widespread among streptomycetes.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Shanshan Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Junjie Ji
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| |
Collapse
|
59
|
Manuse S, Fleurie A, Zucchini L, Lesterlin C, Grangeasse C. Role of eukaryotic-like serine/threonine kinases in bacterial cell division and morphogenesis. FEMS Microbiol Rev 2015; 40:41-56. [DOI: 10.1093/femsre/fuv041] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2015] [Indexed: 11/14/2022] Open
|
60
|
Li C, Shi L, Chen D, Ren A, Gao T, Zhao M. Functional analysis of the role of glutathione peroxidase (GPx) in the ROS signaling pathway, hyphal branching and the regulation of ganoderic acid biosynthesis in Ganoderma lucidum. Fungal Genet Biol 2015. [PMID: 26216672 DOI: 10.1016/j.fgb.2015.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ganoderma lucidum, a hallmark of traditional Chinese medicine, has been widely used as a pharmacologically active compound. Although numerous research studies have focused on the pharmacological mechanism, fewer studies have explored the basic biological features of this species, restricting the further development and application of this important mushroom. Because of the ability of this mushroom to reduce and detoxify the compounds produced by various metabolic pathways, glutathione peroxidase (GPx) is one of the most important antioxidant enzymes with respect to ROS. Although studies in both animals and plants have suggested many important physiological functions of GPx, there are few systematic research studies concerning the role of this enzyme in fungi, particularly in large basidiomycetes. In the present study, we cloned the GPx gene and created GPx-silenced strains by the down-regulation of GPx gene expression using RNA interference. The results indicated an essential role for GPx in controlling the intracellular H2O2 content, hyphal branching, antioxidant stress tolerance, cytosolic Ca(2+) content and ganoderic acid biosynthesis. Further mechanistic investigation revealed that GPx is regulated by intracellular H2O2 levels and suggested that crosstalk occurs between GPx and intracellular H2O2. Moreover, evidence was obtained indicating that GPx regulation of hyphal branching via ROS might occur independently of the cytosolic Ca(2+) content. Further mechanistic investigation also revealed that the effects of GPx on ganoderic acid synthesis via ROS are regulated by the cytosolic Ca(2+) content. Taken together, these findings indicate that ROS have a complex influence on growth, development and secondary metabolism in fungi and that GPx serves an important function. The present study provides an excellent framework to identify GPx functions and highlights a role for this enzyme in ROS regulation.
Collapse
Affiliation(s)
- Chenyang Li
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Liang Shi
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Dongdong Chen
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Ang Ren
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Tan Gao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
61
|
Wang F, Liu K, Han L, Jiang B, Wang M, Fang X. Function of a p24 Heterodimer in Morphogenesis and Protein Transport in Penicillium oxalicum. Sci Rep 2015; 5:11875. [PMID: 26149342 PMCID: PMC4493713 DOI: 10.1038/srep11875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 12/11/2022] Open
Abstract
The lignocellulose degradation capacity of filamentous fungi has been widely studied because of their cellulase hypersecretion. The p24 proteins in eukaryotes serve important functions in this secretory pathway. However, little is known about the functions of the p24 proteins in filamentous fungi. In this study, four p24 proteins were identified in Penicillium oxalicum. Six p24 double-deletion strains were constructed, and further studies were carried out with the ΔerpΔpδ strain. The experimental results suggested that Erp and Pδ form a p24 heterodimer in vivo. This p24 heterodimer participates in important morphogenetic events, including sporulation, hyphal growth, and lateral branching. The results suggested that the p24 heterodimer mediates protein transport, particularly that of cellobiohydrolase. Analysis of the intracellular proteome revealed that the ΔerpΔpδ double mutant is under secretion stress due to attempts to remove proteins that are jammed in the endomembrane system. These results suggest that the p24 heterodimer participates in morphogenesis and protein transport. Compared with P. oxalicum Δerp, a greater number of cellular physiological pathways were impaired in ΔerpΔpδ. This finding may provide new insights into the secretory pathways of filamentous fungi.
Collapse
Affiliation(s)
- Fangzhong Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Lijuan Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
62
|
Pompeo F, Foulquier E, Serrano B, Grangeasse C, Galinier A. Phosphorylation of the cell division protein GpsB regulates PrkC kinase activity through a negative feedback loop in Bacillus subtilis. Mol Microbiol 2015; 97:139-50. [PMID: 25845974 DOI: 10.1111/mmi.13015] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 01/12/2023]
Abstract
Although many membrane Ser/Thr-kinases with PASTA motifs have been shown to control bacterial cell division and morphogenesis, inactivation of the Ser/Thr-kinase PrkC does not impact Bacillus subtilis cell division. In this study, we show that PrkC localizes at the division septum. In addition, three proteins involved in cell division/elongation, GpsB, DivIVA and EzrA are required for stimulating PrkC activity in vivo. We show that GpsB interacts with the catalytic subunit of PrkC that, in turn, phosphorylates GpsB. These observations are not made with DivIVA and EzrA. Consistent with the phosphorylated residue previously detected for GpsB in a high-throughput phosphoproteomic analysis of B. subtilis, we show that threonine 75 is the single PrkC-mediated phosphorylation site in GpsB. Importantly, the substitution of this threonine by a phospho-mimetic residue induces a loss of PrkC kinase activity in vivo and a reduced growth under high salt conditions as observed for gpsB and prkC null mutants. Conversely, substitution of threonine 75 by a phospho-ablative residue does not induce such growth and PrkC kinase activity defects. Altogether, these data show that proteins of the divisome control PrkC activity and thereby phosphorylation of PrkC substrates through a negative feedback loop in B. subtilis.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, Marseille, 13009, France
| | - Elodie Foulquier
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, Marseille, 13009, France
| | - Bastien Serrano
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, Marseille, 13009, France
| | - Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, CNRS, UMR, Université Lyon 1, Lyon, 5086, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR 7283, IMM, CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, Marseille, 13009, France
| |
Collapse
|
63
|
Jiang C, Caccamo PD, Brun YV. Mechanisms of bacterial morphogenesis: evolutionary cell biology approaches provide new insights. Bioessays 2015; 37:413-25. [PMID: 25664446 DOI: 10.1002/bies.201400098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.
Collapse
Affiliation(s)
- Chao Jiang
- Department of Biology, Indiana University, Bloomington, IN, USA
| | | | | |
Collapse
|
64
|
Berisio R, Squeglia F, Ruggiero A, Petraccone L, Stellato MI, Del Vecchio P. Differential thermodynamic behaviours of the extra-cellular regions of two Ser/Thr PrkC kinases revealed by calorimetric studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:402-9. [PMID: 25668224 DOI: 10.1016/j.bbapap.2015.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/13/2015] [Accepted: 02/03/2015] [Indexed: 10/24/2022]
Abstract
Eukaryotic-type Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases (STPK) are widespread in gram positive bacteria, where they regulate several cellular functions. STPKs belong to the protein kinase family named as one-component signal transduction systems, which combine both sensing and regulating properties. Thermodynamic investigations of sensing extra-cellular portions of two important Ser-Thr kinases, PrkC, from Staphylococcus aureus and Bacillus subtilis were conducted by differential scanning calorimetry (DSC) and circular dichroism (CD) melting measurements, coupled with modelling studies. The study of thermodynamic properties of the two domains is challenging since they share a modular domain organization. Consistently, DSC and CD data show that they present similar thermodynamic behaviours and that folding/unfolding transitions do not fit a two-state folding model. However, the thermal unfolding of the two proteins is differentially sensitive to pH. In particular, their unfolding is characteristic of modular structures at the neutral pH, with independent contributions of individual domains to folding. Differently, a cooperative unfolding is evidenced at acidic pH for the B. subtilis member, suggesting that a significant interaction between domains becomes valuable.
Collapse
Affiliation(s)
- Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy.
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, via Mezzocannone 16, Napoli, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Marco Ignazio Stellato
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia, 80126 Napoli, Italy.
| |
Collapse
|
65
|
The essential features and modes of bacterial polar growth. Trends Microbiol 2015; 23:347-53. [PMID: 25662291 DOI: 10.1016/j.tim.2015.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/19/2014] [Accepted: 01/07/2015] [Indexed: 01/25/2023]
Abstract
Polar growth represents a surprising departure from the canonical dispersed cell growth model. However, we know relatively little of the underlying mechanisms governing polar growth or the requisite suite of factors that direct polar growth. Underscoring how classic doctrine can be turned on its head, the peptidoglycan layer of polar-growing bacteria features unusual crosslinks and in some species the quintessential cell division proteins FtsA and FtsZ are recruited to the growing poles. Remarkably, numerous medically important pathogens utilize polar growth, accentuating the need for intensive research in this area. Here we review models of polar growth in bacteria based on recent research in the Actinomycetales and Rhizobiales, with emphasis on Mycobacterium and Agrobacterium species.
Collapse
|
66
|
Ausmees N. Coiled coil cytoskeletons collaborate in polar growth of Streptomyces. BIOARCHITECTURE 2015; 3:110-2. [PMID: 24002529 DOI: 10.4161/bioa.26194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Streptomyces is a multicellular mycelial bacterium, which exhibits pronounced cell polarity and grows by extension of the hyphal tips. Similarly to other polarly growing walled cells, such as filamentous fungi or pollen tubes, Streptomyces hyphae face an intrinsic problem: addition of new cell wall material causes structural weakness of the elongating tip. Cellular strategies employed by walled cells to cope with this problem are not well understood. We have identified a coiled coil protein FilP, with properties similar to those of animal intermediate filament (IF) proteins, which somehow confers rigidity and elasticity to the Streptomyces hyphae. In a recent publication we showed that FilP forms extensive cis-interconnected networks, which likely explain its biological function in determining the mechanical properties of the cells. Surprisingly, the intrinsically non-dynamic cytoskeletal network of FilP exhibits a dynamic behavior in vivo and assembles into growth-dependent polar gradients. We show that apical accumulation of FilP is dependent on its interaction with the main component of the Streptomyces polarisome, DivIVA. Thus, the same polarisome complex that orchestrates cell elongation, also recruits an additional stress-bearing structure to the growing tips with an intrinsically weak cell wall. Similar strategy might be used by all polarly growing walled cells.
Collapse
|
67
|
Sieger B, Bramkamp M. Interaction sites of DivIVA and RodA from Corynebacterium glutamicum. Front Microbiol 2015; 5:738. [PMID: 25709601 PMCID: PMC4285798 DOI: 10.3389/fmicb.2014.00738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022] Open
Abstract
Elongation growth in actinobacteria is localized at the cell poles. This is in contrast to many classical model organisms where insertion of new cell wall material is localized around the lateral site. We previously described a role of RodA from Corynebacterium glutamicum in apical cell growth and morphogenesis. Deletion of rodA had drastic effects on morphology and growth, likely a result from misregulation of penicillin-binding proteins and cell wall precursor delivery. We identified the interaction of RodA with the polar scaffold protein DivIVA, thus explaining subcellular localization of RodA to the cell poles. In this study, we describe this interaction in detail and map the interaction sites of DivIVA and RodA. A single amino acid residue in the N-terminal domain of DivIVA was found to be crucial for the interaction with RodA. The interaction site of RodA was mapped to its cytoplasmic, C-terminal domain, in a region encompassing the last 10 amino acids (AAs). Deletion of these 10 AAs significantly decreased the interaction efficiency with DivIVA. Our results corroborate the interaction of DivIVA and RodA, underscoring the important role of DivIVA as a spatial organizer of the elongation machinery in Corynebacterineae.
Collapse
Affiliation(s)
- Boris Sieger
- Biocenter - Ludwig-Maximilians-University Munich Munich, Germany
| | - Marc Bramkamp
- Biocenter - Ludwig-Maximilians-University Munich Munich, Germany
| |
Collapse
|
68
|
Sigle S, Ladwig N, Wohlleben W, Muth G. Synthesis of the spore envelope in the developmental life cycle of Streptomyces coelicolor. Int J Med Microbiol 2014; 305:183-9. [PMID: 25595023 DOI: 10.1016/j.ijmm.2014.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Members of the family of Streptomycetaceae, the main producer of antibiotics and other secondary metabolites, are Gram-positive multi-cellular soil bacteria with a complex life cycle. By apical tip extension Streptomyces coelicolor forms a multiply branching vegetative mycelium penetrating the substrate. Upon nutrient limitation, a hydrophobic aerial mycelium is erected, which eventually develops into a regular chain of spores that are able to survive detrimental environmental conditions. Morphological differentiation involves a switch in the peptidoglycan synthesizing machinery. Whereas apical tip extension is directed by the so-called polarisome, sporulation septation and synthesis of the thickened spore wall involves a multi-protein complex, which resembles the elongasome of rod-shaped bacteria. The Streptomyces spore wall synthesizing complex (SSSC) does not only direct synthesis of the peptidoglycan layer but is also involved in the incorporation of anionic spore wall glycopolymers, which contribute to the resistance of spores. The SSSC also contains eukaryotic type serine/threonine kinases which might control its activity by protein-phosphorylation.
Collapse
Affiliation(s)
- Steffen Sigle
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Nils Ladwig
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Wolfgang Wohlleben
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
| | - Guenther Muth
- Interfakultaeres Institut für Mikrobiologie und Infektionsmedizin Tuebingen IMIT, Mikrobiologie/Biotechnologie, Eberhard Karls Universitaet Tuebingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany.
| |
Collapse
|
69
|
van Dissel D, Claessen D, van Wezel GP. Morphogenesis of Streptomyces in submerged cultures. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:1-45. [PMID: 25131399 DOI: 10.1016/b978-0-12-800259-9.00001-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the genus Streptomyces are mycelial bacteria that undergo a complex multicellular life cycle and propagate via sporulation. Streptomycetes are important industrial microorganisms, as they produce a plethora of medically relevant natural products, including the majority of clinically important antibiotics, as well as a wide range of enzymes with industrial application. While development of Streptomyces in surface-grown cultures is well studied, relatively little is known of the parameters that determine morphogenesis in submerged cultures. Here, growth is characterized by the formation of mycelial networks and pellets. From the perspective of industrial fermentations, such mycelial growth is unattractive, as it is associated with slow growth, heterogeneous cultures, and high viscosity. Here, we review the current insights into the genetic and environmental factors that determine mycelial growth and morphology in liquid-grown cultures. The genetic factors include cell-matrix proteins and extracellular polymers, morphoproteins with specific roles in liquid-culture morphogenesis, with the SsgA-like proteins as well-studied examples, and programmed cell death. Environmental factors refer in particular to those dictated by process engineering, such as growth media and reactor set-up. These insights are then integrated to provide perspectives as to how this knowledge can be applied to improve streptomycetes for industrial applications.
Collapse
Affiliation(s)
- Dino van Dissel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Dennis Claessen
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Gilles P van Wezel
- Molecular Biotechnology, Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
70
|
Production of specialized metabolites by Streptomyces coelicolor A3(2). ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:217-66. [PMID: 25131404 DOI: 10.1016/b978-0-12-800259-9.00006-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The actinomycetes are well-known bioactive natural product producers, comprising the Streptomycetes, the richest drug-prolific family in all kingdoms, producing therapeutic compounds for the areas of infection, cancer, circulation, and immunity. Completion and annotation of many actinomycete genomes has highlighted further how proficient these bacteria are in specialized metabolism, which have been largely underexploited in traditional screening programs. The genome sequence of the model strain Streptomyces coelicolor A3(2), and subsequent development of genomics-driven approaches to understand its large specialized metabolome, has been key in unlocking the high potential of specialized metabolites for natural product genomics-based drug discovery. This review discusses systematically the biochemistry and genetics of each of the specialized metabolites of S. coelicolor and describes metabolite transport processes for excretion and complex regulatory patterns controlling biosynthesis.
Collapse
|
71
|
Penicillin-binding proteins in Actinobacteria. J Antibiot (Tokyo) 2014; 68:223-45. [DOI: 10.1038/ja.2014.148] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/24/2014] [Accepted: 09/30/2014] [Indexed: 11/09/2022]
|
72
|
Shi L, Pigeonneau N, Ventroux M, Derouiche A, Bidnenko V, Mijakovic I, Noirot-Gros MF. Protein-tyrosine phosphorylation interaction network in Bacillus subtilis reveals new substrates, kinase activators and kinase cross-talk. Front Microbiol 2014; 5:538. [PMID: 25374563 PMCID: PMC4205851 DOI: 10.3389/fmicb.2014.00538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/26/2014] [Indexed: 01/28/2023] Open
Abstract
Signal transduction in eukaryotes is generally transmitted through phosphorylation cascades that involve a complex interplay of transmembrane receptors, protein kinases, phosphatases and their targets. Our previous work indicated that bacterial protein-tyrosine kinases and phosphatases may exhibit similar properties, since they act on many different substrates. To capture the complexity of this phosphorylation-based network, we performed a comprehensive interactome study focused on the protein-tyrosine kinases and phosphatases in the model bacterium Bacillus subtilis. The resulting network identified many potential new substrates of kinases and phosphatases, some of which were experimentally validated. Our study highlighted the role of tyrosine and serine/threonine kinases and phosphatases in DNA metabolism, transcriptional control and cell division. This interaction network reveals significant crosstalk among different classes of kinases. We found that tyrosine kinases can bind to several modulators, transmembrane or cytosolic, consistent with a branching of signaling pathways. Most particularly, we found that the division site regulator MinD can form a complex with the tyrosine kinase PtkA and modulate its activity in vitro. In vivo, it acts as a scaffold protein which anchors the kinase at the cell pole. This network highlighted a role of tyrosine phosphorylation in the spatial regulation of the Z-ring during cytokinesis.
Collapse
Affiliation(s)
- Lei Shi
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Nathalie Pigeonneau
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France
| | - Magali Ventroux
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France
| | - Abderahmane Derouiche
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Vladimir Bidnenko
- Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | - Ivan Mijakovic
- Institut National de la Recherche Agronomique, UMR1319 Micalis Jouy-en-Josas, France ; Systems and Synthetic Biology, Department of Chemical and Biological Engineering, Chalmers University of Technology Gothenburg, Sweden
| | | |
Collapse
|
73
|
Mekterović I, Mekterović D, Maglica Z. BactImAS: a platform for processing and analysis of bacterial time-lapse microscopy movies. BMC Bioinformatics 2014; 15:251. [PMID: 25059528 PMCID: PMC4122790 DOI: 10.1186/1471-2105-15-251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 07/17/2014] [Indexed: 12/04/2022] Open
Abstract
Background The software available to date for analyzing image sequences from time-lapse microscopy works only for certain bacteria and under limited conditions. These programs, mostly MATLAB-based, fail for microbes with irregular shape, indistinct cell division sites, or that grow in closely packed microcolonies. Unfortunately, many organisms of interest have these characteristics, and analyzing their image sequences has been limited to time consuming manual processing. Results Here we describe BactImAS – a modular, multi-platform, open-source, Java-based software delivered both as a standalone program and as a plugin for Icy. The software is designed for extracting and visualizing quantitative data from bacterial time-lapse movies. BactImAS uses a semi-automated approach where the user defines initial cells, identifies cell division events, and, if necessary, manually corrects cell segmentation with the help of user-friendly GUI and incorporated ImageJ application. The program segments and tracks cells using a newly-developed algorithm designed for movies with difficult-to-segment cells that exhibit small frame-to-frame differences. Measurements are extracted from images in a configurable, automated fashion and an SQLite database is used to store, retrieve, and exchange all acquired data. Finally, the BactImAS can generate configurable lineage tree visualizations and export data as CSV files. We tested BactImAS on time-lapse movies of Mycobacterium smegmatis and achieved at least 10-fold reduction of processing time compared to manual analysis. We illustrate the power of the visualization tool by showing heterogeneity of both icl expression and cell growth atop of a lineage tree. Conclusions The presented software simplifies quantitative analysis of time-lapse movies overall and is currently the only available software for the analysis of mycobacteria-like cells. It will be of interest to the community of both end-users and developers of time-lapse microscopy software. Electronic supplementary material The online version of this article (doi:10.1186/1471-2105-15-251) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Zeljka Maglica
- School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
74
|
Abstract
Mycobacteria are surrounded by a complex multilayered envelope and elongate at the poles. The principles that organize the coordinated addition of chemically diverse cell wall layers during polar extension remain unclear. We show that enzymes mediating the terminal cytosolic steps of peptidoglycan, arabinogalactan, and mycolic acid synthesis colocalize at sites of cell growth or division. The tropomyosin-like protein, DivIVA, is targeted to the negative curvature of the pole, is enriched at the growing end, and determines cell shape from this site. In contrast, cell wall synthetic complexes are concentrated at a distinct subpolar location. When viewed at subdiffraction resolution, new peptidoglycan is deposited at this subpolar site, and inert cell wall covers the DivIVA-marked tip. The differentiation between polar tip and cell wall synthetic complexes is also apparent at the biochemical level. Enzymes that generate mycolate precursors interact with DivIVA, but the final condensation of mycolic acids occurs in a distinct protein complex at the site of nascent cell wall addition. We propose an ultrastructural model of mycobacterial polar growth where new cell wall is added in an annular zone below the cell tip. This model may be broadly applicable to other bacterial and fungal organisms that grow via polar extension.
Collapse
|
75
|
Chandra G, Chater KF. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences. FEMS Microbiol Rev 2014; 38:345-79. [PMID: 24164321 PMCID: PMC4255298 DOI: 10.1111/1574-6976.12047] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/06/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes.
Collapse
|
76
|
Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C, Lavergne JP, Freton C, Combet C, Guiral S, Soufi B, Macek B, Kuru E, VanNieuwenhze MS, Brun YV, Di Guilmi AM, Claverys JP, Galinier A, Grangeasse C. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLoS Genet 2014; 10:e1004275. [PMID: 24722178 PMCID: PMC3983041 DOI: 10.1371/journal.pgen.1004275] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/16/2014] [Indexed: 01/17/2023] Open
Abstract
Despite years of intensive research, much remains to be discovered to understand the regulatory networks coordinating bacterial cell growth and division. The mechanisms by which Streptococcus pneumoniae achieves its characteristic ellipsoid-cell shape remain largely unknown. In this study, we analyzed the interplay of the cell division paralogs DivIVA and GpsB with the ser/thr kinase StkP. We observed that the deletion of divIVA hindered cell elongation and resulted in cell shortening and rounding. By contrast, the absence of GpsB resulted in hampered cell division and triggered cell elongation. Remarkably, ΔgpsB elongated cells exhibited a helical FtsZ pattern instead of a Z-ring, accompanied by helical patterns for DivIVA and peptidoglycan synthesis. Strikingly, divIVA deletion suppressed the elongated phenotype of ΔgpsB cells. These data suggest that DivIVA promotes cell elongation and that GpsB counteracts it. Analysis of protein-protein interactions revealed that GpsB and DivIVA do not interact with FtsZ but with the cell division protein EzrA, which itself interacts with FtsZ. In addition, GpsB interacts directly with DivIVA. These results are consistent with DivIVA and GpsB acting as a molecular switch to orchestrate peripheral and septal PG synthesis and connecting them with the Z-ring via EzrA. The cellular co-localization of the transpeptidases PBP2x and PBP2b as well as the lipid-flippases FtsW and RodA in ΔgpsB cells further suggest the existence of a single large PG assembly complex. Finally, we show that GpsB is required for septal localization and kinase activity of StkP, and therefore for StkP-dependent phosphorylation of DivIVA. Altogether, we propose that the StkP/DivIVA/GpsB triad finely tunes the two modes of peptidoglycan (peripheral and septal) synthesis responsible for the pneumococcal ellipsoid cell shape.
Collapse
Affiliation(s)
- Aurore Fleurie
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Sylvie Manuse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Chao Zhao
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
- Key laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Caroline Cluzel
- Laboratoire de Biologie Tissulaire et d'Ingénierie Thérapeutique, IBCP, Université Lyon 1, CNRS, UMR5305, Lyon, France
| | - Jean-Pierre Lavergne
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Céline Freton
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Christophe Combet
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Sébastien Guiral
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| | - Boumediene Soufi
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Proteome Center Tuebingen, Interdepartmental Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany
| | - Erkin Kuru
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Michael S. VanNieuwenhze
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Yves V. Brun
- Departments of Biology and Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Anne-Marie Di Guilmi
- Institut de Biologie Structurale, UMR 5075, Université Joseph Fourier, CNRS, CEA, Grenoble, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, Toulouse, France
- Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, Toulouse, France
| | - Anne Galinier
- Laboratoire de Chimie Bactérienne, UMR7283, IMM, CNRS, Aix-Marseille Université, Marseille, France
| | - Christophe Grangeasse
- Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, Université Lyon 1, CNRS, UMR 5086, Lyon, France
| |
Collapse
|
77
|
Bach JN, Albrecht N, Bramkamp M. Imaging DivIVA dynamics using photo-convertible and activatable fluorophores in Bacillus subtilis. Front Microbiol 2014; 5:59. [PMID: 24600441 PMCID: PMC3927310 DOI: 10.3389/fmicb.2014.00059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/29/2014] [Indexed: 01/03/2023] Open
Abstract
Most rod-shape model organisms such as Escherichia coli or Bacillus subtilis utilize two inhibitory systems for correct positioning of the cell division apparatus. While the nucleoid occlusion system acts in vicinity of the nucleoid, the Min system was thought to protect the cell poles from futile division leading to DNA-free miniature cells. The Min system is composed of an inhibitory protein, MinC, which acts at the level of the FtsZ ring formation. MinC is recruited to the membrane by MinD, a member of the MinD/ParA family of Walker-ATPases. Topological positioning of the MinCD complex depends on MinE in E. coli and MinJ/DivIVA in B. subtilis. While MinE drives an oscillation of MinCD in the E. coli cell with a time-dependent minimal concentration at midcell, the B. subtilis system was thought to be stably tethered to the cell poles by MinJ/DivIVA. Recent developments revealed that the Min system in B. subtilis mainly acts at the site of division, where it seems to prevent reinitiation of the division machinery. Thus, MinCD describe a dynamic behavior in B. subtilis. This is somewhat inconsistent with a stable localization of DivIVA at the cell poles. High resolution imaging of ongoing divisions show that DivIVA also enriches at the site of division. Here we analyze whether polar localized DivIVA is partially mobile and can contribute to septal DivIVA and vice versa. For this purpose we use fusions with green to red photoconvertible fluorophores, Dendra2 and photoactivatable PA-GFP. These techniques have proven very powerful to discriminate protein relocalization in vivo. Our results show that B. subtilis DivIVA is indeed dynamic and moves from the poles to the new septum.
Collapse
Affiliation(s)
- Juri N Bach
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nadine Albrecht
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
78
|
Abstract
It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles - the ends of rod-shaped cells - constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole 'recognition' can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|
79
|
How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat Rev Microbiol 2013; 11:601-14. [PMID: 23949602 DOI: 10.1038/nrmicro3088] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bacteria come in a range of shapes, including round, rod-shaped, curved and spiral cells. This morphological diversity implies that different mechanisms exist to guide proper cell growth, division and chromosome segregation. Although the majority of studies on cell division have focused on rod-shaped cells, the development of new genetic and cell biology tools has provided mechanistic insight into the cell cycles of bacteria with different shapes, allowing us to appreciate the underlying molecular basis for their morphological diversity. In this Review, we discuss recent progress that has advanced our knowledge of the complex mechanisms for chromosome segregation and cell division in bacteria which have, deceptively, the simplest possible shape: the cocci.
Collapse
|
80
|
Yoon V, Nodwell JR. Activating secondary metabolism with stress and chemicals. J Ind Microbiol Biotechnol 2013; 41:415-24. [PMID: 24326978 DOI: 10.1007/s10295-013-1387-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/22/2013] [Indexed: 10/25/2022]
Abstract
The available literature on the secondary or nonessential metabolites of the streptomycetes bacteria suggests that there may be poorly expressed or "cryptic" compounds that have yet to be identified and that may have significant medical utility. In addition, it is clear that there is a large and complex regulatory network that controls the production of these molecules in the laboratory and in nature. Two approaches that have been taken to manipulating the yields of secondary metabolites are the use of various stress responses and, more recently, the use of precision chemical probes. Here, we review the status of this work and outline the challenges and opportunities afforded by each of them.
Collapse
Affiliation(s)
- Vanessa Yoon
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | |
Collapse
|
81
|
Salerno P, Persson J, Bucca G, Laing E, Ausmees N, Smith CP, Flärdh K. Identification of new developmentally regulated genes involved in Streptomyces coelicolor sporulation. BMC Microbiol 2013; 13:281. [PMID: 24308424 PMCID: PMC3878966 DOI: 10.1186/1471-2180-13-281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/26/2013] [Indexed: 11/10/2022] Open
Abstract
Background The sporulation of aerial hyphae of Streptomyces coelicolor is a complex developmental process. Only a limited number of the genes involved in this intriguing morphological differentiation programme are known, including some key regulatory genes. The aim of this study was to expand our knowledge of the gene repertoire involved in S. coelicolor sporulation. Results We report a DNA microarray-based investigation of developmentally controlled gene expression in S. coelicolor. By comparing global transcription patterns of the wild-type parent and two mutants lacking key regulators of aerial hyphal sporulation, we found a total of 114 genes that had significantly different expression in at least one of the two mutants compared to the wild-type during sporulation. A whiA mutant showed the largest effects on gene expression, while only a few genes were specifically affected by whiH mutation. Seven new sporulation loci were investigated in more detail with respect to expression patterns and mutant phenotypes. These included SCO7449-7451 that affect spore pigment biogenesis; SCO1773-1774 that encode an L-alanine dehydrogenase and a regulator-like protein and are required for maturation of spores; SCO3857 that encodes a protein highly similar to a nosiheptide resistance regulator and affects spore maturation; and four additional loci (SCO4421, SCO4157, SCO0934, SCO1195) that show developmental regulation but no overt mutant phenotype. Furthermore, we describe a new promoter-probe vector that takes advantage of the red fluorescent protein mCherry as a reporter of cell type-specific promoter activity. Conclusion Aerial hyphal sporulation in S. coelicolor is a technically challenging process for global transcriptomic investigations since it occurs only as a small fraction of the colony biomass and is not highly synchronized. Here we show that by comparing a wild-type to mutants lacking regulators that are specifically affecting processes in aerial hypha, it is possible to identify previously unknown genes with important roles in sporulation. The transcriptomic data reported here should also serve as a basis for identification of further developmentally important genes in future functional studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Klas Flärdh
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden.
| |
Collapse
|
82
|
Cava F, Kuru E, Brun YV, de Pedro MA. Modes of cell wall growth differentiation in rod-shaped bacteria. Curr Opin Microbiol 2013; 16:731-7. [PMID: 24094807 DOI: 10.1016/j.mib.2013.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/21/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
A bacterial cell takes on the challenge to preserve and reproduce its shape at every generation against a substantial internal pressure by surrounding itself with a mechanical support, a peptidoglycan cell wall. The enlargement of the cell wall via net incorporation of precursors into the pre-existing wall conditions bacterial growth and morphology. However, generation, reproduction and/or modification of a specific shape requires that the incorporation takes place at precise locations for a defined time period. Much has been learnt in the past few years about the biochemistry of the peptidoglycan synthesis process, but topological approaches to the understanding of shape generation have been hindered by a lack of appropriate techniques. Recent technological advances are paving the way for substantial progress in understanding the mechanisms of bacterial morphogenesis. Here we review the latest developments, focusing on the impact of new techniques on the precise mapping of cell wall growth sites.
Collapse
Affiliation(s)
- Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| | | | | | | |
Collapse
|
83
|
Ruggiero A, De Simone P, Smaldone G, Squeglia F, Berisio R. Bacterial cell division regulation by Ser/Thr kinases: a structural perspective. Curr Protein Pept Sci 2013; 13:756-66. [PMID: 23305362 PMCID: PMC3601408 DOI: 10.2174/138920312804871201] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/16/2012] [Accepted: 08/03/2012] [Indexed: 12/17/2022]
Abstract
Recent genetic, biochemical and structural studies have established that eukaryotic-like Ser/Thr protein-kinases are critical mediators of developmental changes and host pathogen interactions in bacteria. Although with lower abundance compared to their homologues from eukaryotes, Ser/Thr protein-kinases are widespread in gram-positive bacteria. These data underline a key role of reversible Ser/Thr phosphorylation in bacterial physiology and virulence. Numerous studies have revealed how phosphorylation/dephosphorylation of Ser/Thr protein-kinases governs cell division and cell wall biosynthesis and that Ser/Thr protein kinases are responsible for distinct phenotypes, dependent on different environmental signals. In this review we discuss the current understandings of Ser/Thr protein-kinases functional processes based on structural data.
Collapse
Affiliation(s)
- Alessia Ruggiero
- Institute of Biostructure and Bioimaging, CNR, Via Mezzocannone, 16. I-80134, Napoli, Italy.
| | | | | | | | | |
Collapse
|
84
|
Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ. Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. mBio 2013; 4:e00684-13. [PMID: 24065632 PMCID: PMC3781837 DOI: 10.1128/mbio.00684-13] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 01/12/2023] Open
Abstract
UNLABELLED WhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacterium Streptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA in Streptomyces development and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus, Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed that whiA is required for the initiation of sporulation septation and chromosome segregation in S. venezuelae, and several genes encoding key proteins of the Streptomyces cell division machinery, such as ftsZ, ftsW, and ftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σ(WhiG) and the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, and filP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation. IMPORTANCE Since the initial identification of the genetic loci required for Streptomyces development, all of the bld and whi developmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction of Streptomyces venezuelae as a new model system for the genus, a species that sporulates in liquid culture. Taking advantage of S. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.
Collapse
Affiliation(s)
- Matthew J Bush
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.
| | | | | | | | | |
Collapse
|
85
|
Lin L, Thanbichler M. Nucleotide-independent cytoskeletal scaffolds in bacteria. Cytoskeleton (Hoboken) 2013; 70:409-23. [PMID: 23852773 DOI: 10.1002/cm.21126] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/28/2013] [Accepted: 07/03/2013] [Indexed: 11/11/2022]
Abstract
Bacteria possess a diverse set of cytoskeletal proteins that mediate key cellular processes such as morphogenesis, cell division, DNA segregation, and motility. Similar to eukaryotic actin or tubulin, many of them require nucleotide binding and hydrolysis for proper polymerization and function. However, there is also a growing number of bacterial cytoskeletal elements that assemble in a nucleotide-independent manner, including intermediate filament-like structures as well several classes of bacteria-specific polymers. The members of this group form stable scaffolds that have architectural roles or act as localization factors recruiting other proteins to distinct positions within the cell. Here, we highlight the elements that constitute the nucleotide-independent cytoskeleton of bacteria and discuss their biological functions in different species.
Collapse
Affiliation(s)
- Lin Lin
- Max Planck Research Group "Prokaryotic Cell Biology", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Faculty of Biology, Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
86
|
Saalbach G, Hempel AM, Vigouroux M, Flärdh K, Buttner MJ, Naldrett MJ. Determination of phosphorylation sites in the DivIVA cytoskeletal protein of Streptomyces coelicolor by targeted LC-MS/MS. J Proteome Res 2013; 12:4187-92. [PMID: 23905541 PMCID: PMC3787806 DOI: 10.1021/pr400524d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
filamentous bacterium Streptomyces coelicolor modulates
polar growth and branching by phosphorylating the cytoskeletal
protein DivIVA. Previous MALDI-TOF analysis of DivIVA showed that
a large 7.2 kDa tryptic peptide was multiply phosphorylated. To aid
localization of the phosphorylation sites, we introduced additional
tryptic cleavage sites into DivIVA, and the resulting phosphopeptides
were analyzed by LC–MS/MS. Phosphopeptide isomers could be
separated chromatographically, but because of overlapping elution
and spectrum quality, site assignment by standard software tools was
ambiguous. Because fragment ions carrying the phosphate group are
essential for confident localization, large numbers of spectra were
collected using targeted LC–MS/MS, and a special script was
developed for plotting the elution of site-determining fragments from
those spectra under the XIC of the parent ions. Where multiple phosphopeptide
isomers were present, the elution of the site-determining y-ions perfectly
coincided with the elution of the corresponding phosphopeptide isomer.
This method represents a useful tool for user inspection of spectra
derived from phosphopeptide isomers and significantly increases confidence
when defining phosphorylation sites. In this way, we show that DivIVA
is phosphorylated in vivo on five sites in the C-terminal part of
the protein (T304, S309, S338, S344, and S355). The data have been
deposited to the ProteomeXchange Consortium with identifier PXD000095.
Collapse
Affiliation(s)
- Gerhard Saalbach
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
87
|
Kysela DT, Brown PJB, Huang KC, Brun YV. Biological consequences and advantages of asymmetric bacterial growth. Annu Rev Microbiol 2013; 67:417-35. [PMID: 23808335 DOI: 10.1146/annurev-micro-092412-155622] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.
Collapse
Affiliation(s)
- David T Kysela
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | | | | | | |
Collapse
|
88
|
Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 2013; 346:11-9. [PMID: 23731382 DOI: 10.1111/1574-6968.12189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes. We argue that bacterial serine/threonine and tyrosine kinases have a distinctive feature of phosphorylating multiple substrates and might thus represent integration nodes in the signaling network. Some open questions regarding the evolutionary benefits of relaxed substrate selectivity of these kinases are treated, as well as the notion of nonfunctional 'background' phosphorylation of cellular proteins. We also argue that phosphorylation events for which an immediate regulatory effect is not clearly established should not be dismissed as unimportant, as they may have a role in cross-talk with other post-translational modifications. Finally, recently developed methods for studying protein phosphorylation networks in bacteria are briefly discussed.
Collapse
|
89
|
Dynamic gradients of an intermediate filament-like cytoskeleton are recruited by a polarity landmark during apical growth. Proc Natl Acad Sci U S A 2013; 110:E1889-97. [PMID: 23641002 DOI: 10.1073/pnas.1305358110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intermediate filament (IF)-like cytoskeleton emerges as a versatile tool for cellular organization in all kingdoms of life, underscoring the importance of mechanistically understanding its diverse manifestations. We showed previously that, in Streptomyces (a bacterium with a mycelial lifestyle similar to that of filamentous fungi, including extreme cell and growth polarity), the IF protein FilP confers rigidity to the hyphae by an unknown mechanism. Here, we provide a possible explanation for the IF-like function of FilP by demonstrating its ability to self-assemble into a cis-interconnected regular network in vitro and its localization into structures consistent with a cytoskeletal network in vivo. Furthermore, we reveal that a spatially restricted interaction between FilP and DivIVA, the main component of the Streptomyces polarisome complex, leads to formation of apical gradients of FilP in hyphae undergoing active tip extension. We propose that the coupling between the mechanism driving polar growth and the assembly of an IF cytoskeleton provides each new hypha with an additional stress-bearing structure at its tip, where the nascent cell wall is inevitably more flexible and compliant while it is being assembled and matured. Our data suggest that recruitment of cytoskeleton around a cell polarity landmark is a broadly conserved strategy in tip-growing cells.
Collapse
|
90
|
Tenconi E, Guichard P, Motte P, Matagne A, Rigali S. Use of red autofluorescence for monitoring prodiginine biosynthesis. J Microbiol Methods 2013; 93:138-43. [DOI: 10.1016/j.mimet.2013.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
|
91
|
Liu G, Chater KF, Chandra G, Niu G, Tan H. Molecular regulation of antibiotic biosynthesis in streptomyces. Microbiol Mol Biol Rev 2013; 77:112-43. [PMID: 23471619 PMCID: PMC3591988 DOI: 10.1128/mmbr.00054-12] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Streptomycetes are the most abundant source of antibiotics. Typically, each species produces several antibiotics, with the profile being species specific. Streptomyces coelicolor, the model species, produces at least five different antibiotics. We review the regulation of antibiotic biosynthesis in S. coelicolor and other, nonmodel streptomycetes in the light of recent studies. The biosynthesis of each antibiotic is specified by a large gene cluster, usually including regulatory genes (cluster-situated regulators [CSRs]). These are the main point of connection with a plethora of generally conserved regulatory systems that monitor the organism's physiology, developmental state, population density, and environment to determine the onset and level of production of each antibiotic. Some CSRs may also be sensitive to the levels of different kinds of ligands, including products of the pathway itself, products of other antibiotic pathways in the same organism, and specialized regulatory small molecules such as gamma-butyrolactones. These interactions can result in self-reinforcing feed-forward circuitry and complex cross talk between pathways. The physiological signals and regulatory mechanisms may be of practical importance for the activation of the many cryptic secondary metabolic gene cluster pathways revealed by recent sequencing of numerous Streptomyces genomes.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Microbial Resources
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F. Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Govind Chandra
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | | | | |
Collapse
|
92
|
Coiled-coil protein Scy is a key component of a multiprotein assembly controlling polarized growth in Streptomyces. Proc Natl Acad Sci U S A 2013; 110:E397-406. [PMID: 23297235 DOI: 10.1073/pnas.1210657110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polarized growth in eukaryotes requires polar multiprotein complexes. Here, we establish that selection and maintenance of cell polarity for growth also requires a dedicated multiprotein assembly in the filamentous bacterium, Streptomyces coelicolor. We present evidence for a tip organizing center and confirm two of its main components: Scy (Streptomyces cytoskeletal element), a unique bacterial coiled-coil protein with an unusual repeat periodicity, and the known polarity determinant DivIVA. We also establish a link between the tip organizing center and the filament-forming protein FilP. Interestingly, both deletion and overproduction of Scy generated multiple polarity centers, suggesting a mechanism wherein Scy can both promote and limit the number of emerging polarity centers via the organization of the Scy-DivIVA assemblies. We propose that Scy is a molecular "assembler," which, by sequestering DivIVA, promotes the establishment of new polarity centers for de novo tip formation during branching, as well as supporting polarized growth at existing hyphal tips.
Collapse
|
93
|
Ahmed S, Craney A, Pimentel-Elardo SM, Nodwell JR. A Synthetic, Species-Specific Activator of Secondary Metabolism and Sporulation inStreptomyces coelicolor. Chembiochem 2012; 14:83-91. [DOI: 10.1002/cbic.201200619] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Indexed: 11/07/2022]
|
94
|
Flärdh K, Richards DM, Hempel AM, Howard M, Buttner MJ. Regulation of apical growth and hyphal branching in Streptomyces. Curr Opin Microbiol 2012; 15:737-43. [PMID: 23153774 DOI: 10.1016/j.mib.2012.10.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 01/19/2023]
Abstract
The filamentous bacteria Streptomyces grow by tip extension and through the initiation of new branches, and this apical growth is directed by a polarisome-like complex involving the essential polarity protein DivIVA. New branch sites must be marked de novo and, until recently, there was no understanding of how these new sites are selected. Equally, hyphal branching patterns are affected by environmental conditions, but there was no insight into how polar growth and hyphal branching might be regulated in response to external or internal cues. This review focuses on recent discoveries that reveal the principal mechanism of branch site selection in Streptomyces, and the first mechanism to be identified that regulates polarisome behaviour to modulate polar growth and hyphal branching.
Collapse
Affiliation(s)
- Klas Flärdh
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|