51
|
Wang HC, Bergles DE. Spontaneous activity in the developing auditory system. Cell Tissue Res 2015; 361:65-75. [PMID: 25296716 PMCID: PMC7046314 DOI: 10.1007/s00441-014-2007-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/09/2014] [Indexed: 12/13/2022]
Abstract
Spontaneous electrical activity is a common feature of sensory systems during early development. This sensory-independent neuronal activity has been implicated in promoting their survival and maturation, as well as growth and refinement of their projections to yield circuits that can rapidly extract information about the external world. Periodic bursts of action potentials occur in auditory neurons of mammals before hearing onset. This activity is induced by inner hair cells (IHCs) within the developing cochlea, which establish functional connections with spiral ganglion neurons (SGNs) several weeks before they are capable of detecting external sounds. During this pre-hearing period, IHCs fire periodic bursts of Ca(2+) action potentials that excite SGNs, triggering brief but intense periods of activity that pass through auditory centers of the brain. Although spontaneous activity requires input from IHCs, there is ongoing debate about whether IHCs are intrinsically active and their firing periodically interrupted by external inhibitory input (IHC-inhibition model), or are intrinsically silent and their firing periodically promoted by an external excitatory stimulus (IHC-excitation model). There is accumulating evidence that inner supporting cells in Kölliker's organ spontaneously release ATP during this time, which can induce bursts of Ca(2+) spikes in IHCs that recapitulate many features of auditory neuron activity observed in vivo. Nevertheless, the role of supporting cells in this process remains to be established in vivo. A greater understanding of the molecular mechanisms responsible for generating IHC activity in the developing cochlea will help reveal how these events contribute to the maturation of nascent auditory circuits.
Collapse
Affiliation(s)
- Han Chin Wang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
52
|
Iosub R, Avitabile D, Grant L, Tsaneva-Atanasova K, Kennedy HJ. Calcium-Induced calcium release during action potential firing in developing inner hair cells. Biophys J 2015; 108:1003-12. [PMID: 25762313 PMCID: PMC4375529 DOI: 10.1016/j.bpj.2014.11.3489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022] Open
Abstract
In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights into the calcium signaling mechanisms involved in early developmental processes.
Collapse
Affiliation(s)
- Radu Iosub
- School of Physiology and Pharmcology, University of Bristol, Bristol, United Kingdom
| | - Daniele Avitabile
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Lisa Grant
- School of Physiology and Pharmcology, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Helen J Kennedy
- School of Physiology and Pharmcology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
53
|
Wright S, Hwang Y, Oertel D. Synaptic transmission between end bulbs of Held and bushy cells in the cochlear nucleus of mice with a mutation in Otoferlin. J Neurophysiol 2014; 112:3173-88. [PMID: 25253474 DOI: 10.1152/jn.00522.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mice that carry a mutation in a calcium binding domain of Otoferlin, the putative calcium sensor at hair cell synapses, have normal distortion product otoacoustic emissions (DPOAEs), but auditory brain stem responses (ABRs) are absent. In mutant mice mechanotransduction is normal but transmission of acoustic information to the auditory pathway is blocked even before the onset of hearing. The cross-sectional area of the auditory nerve of mutant mice is reduced by 54%, and the volume of ventral cochlear nuclei is reduced by 46% relative to hearing control mice. While the tonotopic organization was not detectably changed in mutant mice, the axons to end bulbs of Held and the end bulbs themselves were smaller. In mutant mice bushy cells in the anteroventral cochlear nucleus (aVCN) have the electrophysiological hallmarks of control cells. Spontaneous miniature excitatory postsynaptic currents (EPSCs) occur with similar frequencies and have similar shapes in deaf as in hearing animals, but they are 24% larger in deaf mice. Bushy cells in deaf mutant mice are contacted by ∼2.6 auditory nerve fibers compared with ∼2.0 in hearing control mice. Furthermore, each fiber delivers more synaptic current, on average 4.8 nA compared with 3.4 nA, in deaf versus hearing control mice. The quantal content of evoked EPSCs is not different between mutant and control mice; the increase in synaptic current delivered in mutant mice is accounted for by the increased response to the size of the quanta. Although responses to shocks presented at long intervals are larger in mutant mice, they depress more rapidly than in hearing control mice.
Collapse
Affiliation(s)
- Samantha Wright
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
| | - Youngdeok Hwang
- I.B.M. Thomas J. Watson Research Center, Yorktown Heights, New York
| | - Donata Oertel
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; and
| |
Collapse
|
54
|
Kölliker's organ and the development of spontaneous activity in the auditory system: implications for hearing dysfunction. BIOMED RESEARCH INTERNATIONAL 2014; 2014:367939. [PMID: 25210710 PMCID: PMC4156998 DOI: 10.1155/2014/367939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/07/2014] [Indexed: 11/25/2022]
Abstract
Prior to the “onset of hearing,” developing cochlear inner hair cells (IHCs) and primary auditory neurons undergo experience-independent activity, which is thought to be important in retaining and refining neural connections in the absence of sound. One of the major hypotheses regarding the origin of such activity involves a group of columnar epithelial supporting cells forming Kölliker's organ, which is only present during this critical period of auditory development. There is strong evidence for a purinergic signalling mechanism underlying such activity. ATP released through connexin hemichannels may activate P2 purinergic receptors in both Kölliker's organ and the adjacent IHCs, leading to generation of electrical activity throughout the auditory system. However, recent work has suggested an alternative origin, by demonstrating the ability of IHCs to generate this spontaneous activity without activation by ATP. Regardless, developmental abnormalities of Kölliker's organ may lead to congenital hearing loss, considering that mutations in ion channels (hemichannels, gap junctions, and calcium channels) involved in Kölliker's organ activity share strong links with such types of deafness.
Collapse
|
55
|
Clause A, Kim G, Sonntag M, Weisz CJC, Vetter DE, Rűbsamen R, Kandler K. The precise temporal pattern of prehearing spontaneous activity is necessary for tonotopic map refinement. Neuron 2014; 82:822-35. [PMID: 24853941 DOI: 10.1016/j.neuron.2014.04.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Patterned spontaneous activity is a hallmark of developing sensory systems. In the auditory system, rhythmic bursts of spontaneous activity are generated in cochlear hair cells and propagated along central auditory pathways. The role of these activity patterns in the development of central auditory circuits has remained speculative. Here we demonstrate that blocking efferent cholinergic neurotransmission to developing hair cells in mice that lack the α9 subunit of nicotinic acetylcholine receptors (α9 KO mice) altered the temporal fine structure of spontaneous activity without changing activity levels. KO mice showed a severe impairment in the functional and structural sharpening of an inhibitory tonotopic map, as evidenced by deficits in synaptic strengthening and silencing of connections and an absence in axonal pruning. These results provide evidence that the precise temporal pattern of spontaneous activity before hearing onset is crucial for the establishment of precise tonotopy, the major organizing principle of central auditory pathways.
Collapse
Affiliation(s)
- Amanda Clause
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gunsoo Kim
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Mandy Sonntag
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Catherine J C Weisz
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Douglas E Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rudolf Rűbsamen
- Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, 04103 Leipzig, Germany
| | - Karl Kandler
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
56
|
Yin Y, Huang P, Han Z, Wei G, Zhou C, Wen J, Su B, Wang X, Wang Y. Collagen nanofibers facilitated presynaptic maturation in differentiated neurons from spinal-cord-derived neural stem cells through MAPK/ERK1/2-Synapsin I signaling pathway. Biomacromolecules 2014; 15:2449-60. [PMID: 24955924 DOI: 10.1021/bm500321h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neural stem cells (NSCs) are deemed to be a potential cell therapy for brain and spinal cord reconstruction and regeneration following injury. In this study, we investigated the role of nanofibrous scaffolds on NSCs-derived neurons in the formation of neural networks. Miniature excitatory postsynaptic currents (mEPSCs) were recorded using the whole-cell patch clamp recording method after the spinal cord-derived NSCs were differentiated into neurons and cultured in vitro for 10-14 days. It was observed that the frequency of mEPSCs in the differentiated neurons cultured on both randomly oriented and aligned collagen nanofibrous scaffolds was higher than that on the collagen-coated control and can be inhibited by an ERK inhibitor (PD98059), indicating that the collagen nanofibers affected the maturation of the synapses from presynaptic sites via the MAPK/ERK1/2 pathway. In addition, both of the collagen nanofibers increased the phosphorylation of Synapsin I and facilitated the interaction of p-ERK1/2 and p-Synapsin I. All these results suggested that the collagen nanofibrous scaffolds contributed to the presynaptic maturation via the ERK1/2-Synapsin I signaling pathway.
Collapse
Affiliation(s)
- Yanling Yin
- Department of Neurobiology and Beijing Institute for Brain Disorders, School of Basic Medical Sciences, Capital Medical University , Beijing 100069, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Johnson SL, Wedemeyer C, Vetter DE, Adachi R, Holley MC, Elgoyhen AB, Marcotti W. Cholinergic efferent synaptic transmission regulates the maturation of auditory hair cell ribbon synapses. Open Biol 2014; 3:130163. [PMID: 24350389 PMCID: PMC3843824 DOI: 10.1098/rsob.130163] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spontaneous electrical activity generated by developing sensory cells and neurons is crucial for the maturation of neural circuits. The full maturation of mammalian auditory inner hair cells (IHCs) depends on patterns of spontaneous action potentials during a ‘critical period’ of development. The intrinsic spiking activity of IHCs can be modulated by inhibitory input from cholinergic efferent fibres descending from the brainstem, which transiently innervate immature IHCs. However, it remains unknown whether this transient efferent input to developing IHCs is required for their functional maturation. We used a mouse model that lacks the α9-nicotinic acetylcholine receptor subunit (α9nAChR) in IHCs and another lacking synaptotagmin-2 in the efferent terminals to remove or reduce efferent input to IHCs, respectively. We found that the efferent system is required for the developmental linearization of the Ca2+-sensitivity of vesicle fusion at IHC ribbon synapses, without affecting their general cell development. This provides the first direct evidence that the efferent system, by modulating IHC electrical activity, is required for the maturation of the IHC synaptic machinery. The central control of sensory cell development is unique among sensory systems.
Collapse
Affiliation(s)
- Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- e-mail:
| | - Carolina Wedemeyer
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Douglas E. Vetter
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Roberto Adachi
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr Héctor N. Torres, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- e-mail:
| |
Collapse
|
58
|
α2δ3 is essential for normal structure and function of auditory nerve synapses and is a novel candidate for auditory processing disorders. J Neurosci 2014; 34:434-45. [PMID: 24403143 DOI: 10.1523/jneurosci.3085-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The auxiliary subunit α2δ3 modulates the expression and function of voltage-gated calcium channels. Here we show that α2δ3 mRNA is expressed in spiral ganglion neurons and auditory brainstem nuclei and that the protein is required for normal acoustic responses. Genetic deletion of α2δ3 led to impaired auditory processing, with reduced acoustic startle and distorted auditory brainstem responses. α2δ3(-/-) mice learned to discriminate pure tones, but they failed to discriminate temporally structured amplitude-modulated tones. Light and electron microscopy analyses revealed reduced levels of presynaptic Ca(2+) channels and smaller auditory nerve fiber terminals contacting cochlear nucleus bushy cells. Juxtacellular in vivo recordings of sound-evoked activity in α2δ3(-/-) mice demonstrated impaired transmission at these synapses. Together, our results identify a novel role for the α2δ3 auxiliary subunit in the structure and function of specific synapses in the mammalian auditory pathway and in auditory processing disorders.
Collapse
|
59
|
Olt J, Johnson SL, Marcotti W. In vivo and in vitro biophysical properties of hair cells from the lateral line and inner ear of developing and adult zebrafish. J Physiol 2014; 592:2041-58. [PMID: 24566541 PMCID: PMC4027864 DOI: 10.1113/jphysiol.2013.265108] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Hair cells detect and process sound and movement information, and transmit this with remarkable precision and efficiency to afferent neurons via specialized ribbon synapses. The zebrafish is emerging as a powerful model for genetic analysis of hair cell development and function both in vitro and in vivo. However, the full exploitation of the zebrafish is currently limited by the difficulty in obtaining systematic electrophysiological recordings from hair cells under physiological recording conditions. Thus, the biophysical properties of developing and adult zebrafish hair cells are largely unknown. We investigated potassium and calcium currents, voltage responses and synaptic activity in hair cells from the lateral line and inner ear in vivo and using near-physiological in vitro recordings. We found that the basolateral current profile of hair cells from the lateral line becomes more segregated with age, and that cells positioned in the centre of the neuromast show more mature characteristics and those towards the edge retain a more immature phenotype. The proportion of mature-like hair cells within a given neuromast increased with zebrafish development. Hair cells from the inner ear showed a developmental change in current profile between the juvenile and adult stages. In lateral line hair cells from juvenile zebrafish, exocytosis also became more efficient and required less calcium for vesicle fusion. In hair cells from mature zebrafish, the biophysical characteristics of ion channels and exocytosis resembled those of hair cells from other lower vertebrates and, to some extent, those in the immature mammalian vestibular and auditory systems. We show that although the zebrafish provides a suitable animal model for studies on hair cell physiology, it is advisable to consider that the age at which the majority of hair cells acquire a mature-type configuration is reached only in the juvenile lateral line and in the inner ear from >2 months after hatching.
Collapse
Affiliation(s)
- Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
60
|
Kirkby LA, Sack GS, Firl A, Feller MB. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron 2014; 80:1129-44. [PMID: 24314725 DOI: 10.1016/j.neuron.2013.10.030] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
Abstract
Before the onset of sensory transduction, developing neural circuits spontaneously generate correlated activity in distinct spatial and temporal patterns. During this period of patterned activity, sensory maps develop and initial coarse connections are refined, which are critical steps in the establishment of adult neural circuits. Over the last decade, there has been substantial evidence that altering the pattern of spontaneous activity disrupts refinement, but the mechanistic understanding of this process remains incomplete. In this review, we discuss recent experimental and theoretical progress toward the process of activity-dependent refinement, focusing on circuits in the visual, auditory, and motor systems. Although many outstanding questions remain, the combination of several novel approaches has brought us closer to a comprehensive understanding of how complex neural circuits are established by patterned spontaneous activity during development.
Collapse
Affiliation(s)
- Lowry A Kirkby
- Biophysics Graduate Group, UC Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
61
|
Morphological and physiological development of auditory synapses. Hear Res 2014; 311:3-16. [PMID: 24508369 DOI: 10.1016/j.heares.2014.01.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 01/13/2014] [Accepted: 01/20/2014] [Indexed: 02/07/2023]
Abstract
Acoustic communication requires gathering, transforming, and interpreting diverse sound cues. To achieve this, all the spatial and temporal features of complex sound stimuli must be captured in the firing patterns of the primary sensory neurons and then accurately transmitted along auditory pathways for additional processing. The mammalian auditory system relies on several synapses with unique properties in order to meet this task: the auditory ribbon synapses, the endbulb of Held, and the calyx of Held. Each of these synapses develops morphological and electrophysiological characteristics that enable the remarkably precise signal transmission necessary for conveying the miniscule differences in timing that underly sound localization. In this article, we review the current knowledge of how these synapses develop and mature to acquire the specialized features necessary for the sense of hearing.
Collapse
|
62
|
Abstract
Throughout development, the nervous system produces patterned spontaneous activity. Research over the past two decades has revealed a core group of mechanisms that mediate spontaneous activity in diverse circuits. Many circuits engage several of these mechanisms sequentially to accommodate developmental changes in connectivity. In addition to shared mechanisms, activity propagates through developing circuits and neuronal pathways (i.e., linked circuits in different brain areas) in stereotypic patterns. Increasing evidence suggests that spontaneous network activity shapes synaptic development in vivo Variations in activity-dependent plasticity may explain how similar mechanisms and patterns of activity can be employed to establish diverse circuits. Here, I will review common mechanisms and patterns of spontaneous activity in emerging neural networks and discuss recent insights into their contribution to synaptic development.
Collapse
Affiliation(s)
- Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, USA Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|