51
|
Goldenring JR. Recycling endosomes. Curr Opin Cell Biol 2015; 35:117-22. [PMID: 26022676 DOI: 10.1016/j.ceb.2015.04.018] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
The endosomal membrane recycling system represents a dynamic conduit for sorting and re-exporting internalized membrane constituents. The recycling system is composed of multiple tubulovesicular recycling pathways that likely confer distinct trafficking pathways for individual cargoes. In addition, elements of the recycling system are responsible for assembly and maintenance of apical membrane specializations including primary cilia and apical microvilli. The existence of multiple intersecting and diverging recycling tracks likely accounts for specificity in plasma membrane recycling trafficking.
Collapse
Affiliation(s)
- James R Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; The Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA; The Nashville VA Medical Center, Nashville, TN, USA.
| |
Collapse
|
52
|
Xia CH, Liu H, Cheung D, Tang F, Chang B, Li M, Gong X. NHE8 is essential for RPE cell polarity and photoreceptor survival. Sci Rep 2015; 5:9358. [PMID: 25791178 PMCID: PMC4366848 DOI: 10.1038/srep09358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022] Open
Abstract
A new N-ethyl-N-nitrosourea (ENU)-induced mouse recessive mutation, identified by fundus examination of the eye, develops depigmented patches, indicating retinal disorder. Histology data show aberrant retinal pigment epithelium (RPE) and late-onset photoreceptor cell loss in the mutant retina. Chromosomal mapping and DNA sequencing reveal a point mutation (T to A) of the Slc9a8 gene, resulting in mutant sodium/proton exchanger 8 (NHE8)-M120K protein. The lysine substitution decreases the probability of forming the 3(rd) transmembrane helix, which impairs the pore structure of the Na(+)/H(+) exchanger. Various RPE defects, including mislocalization of the apical marker ezrin, and disrupted apical microvilli and basal infoldings are observed in mutant mice. We have further generated NHE8 knockout mice and confirmed similar phenotypes, including abnormal RPE cells and late-onset photoreceptor cell loss. Both in vivo and in vitro data indicate that NHE8 co-localizes with ER, Golgi and intracellular vesicles in RPE cells. Thus, NHE8 function is necessary for the survival of photoreceptor cells and NHE8 is important for RPE cell polarity and function. Dysfunctional RPE may ultimately lead to photoreceptor cell death in the NHE8 mutants. Further studies will be needed to elucidate whether or not NHE8 regulates pH homeostasis in the protein secretory pathways of RPE.
Collapse
Affiliation(s)
- Chun-hong Xia
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Haiquan Liu
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Debra Cheung
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felicia Tang
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Mei Li
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaohua Gong
- School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
53
|
Numb regulates the polarized delivery of cyclic nucleotide-gated ion channels in rod photoreceptor cilia. J Neurosci 2015; 34:13976-87. [PMID: 25319694 DOI: 10.1523/jneurosci.1938-14.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development and maintenance of protein compartmentalization is essential for neuronal function. A striking example is observed in light-sensing photoreceptors, in which the apical sensory cilium is subdivided into an inner and outer segment, each containing specific proteins essential for vision. It remains unclear, however, how such polarized protein localization is regulated. We report here that the endocytic adaptor protein Numb localizes to the inner, but not the outer segment of mouse photoreceptor cilia. Rod photoreceptor-specific inactivation of numb in vivo leads to progressive photoreceptor degeneration, indicating an essential role for Numb in photoreceptor cell biology. Interestingly, we report that loss of Numb in photoreceptors does not affect the localization of outer segment disk membrane proteins, such as rhodopsin, Peripherin-rds, Rom-1, and Abca4, but significantly disrupts the localization of the rod cyclic nucleotide-gated (Cng) channels, which accumulates on the inner segment plasma membrane in addition to its normal localization to the outer segments. Mechanistically, we show that Numb interacts with both subunits of the Cng channel and promotes the trafficking of Cnga1 to the recycling endosome. These results suggest a model in which Numb prevents targeting of Cng channels to the inner segment, by promoting their trafficking through the recycling endosome, where they can be sorted for specific delivery to the outer segment. This study uncovers a novel mechanism regulating polarized protein delivery in light-sensing cilia, raising the possibility that Numb plays a part in the regulation of protein trafficking in other types of cilia.
Collapse
|
54
|
Boulanger J, Gueudry C, Münch D, Cinquin B, Paul-Gilloteaux P, Bardin S, Guérin C, Senger F, Blanchoin L, Salamero J. Fast high-resolution 3D total internal reflection fluorescence microscopy by incidence angle scanning and azimuthal averaging. Proc Natl Acad Sci U S A 2014; 111:17164-9. [PMID: 25404337 PMCID: PMC4260613 DOI: 10.1073/pnas.1414106111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Total internal reflection fluorescence microscopy (TIRFM) is the method of choice to visualize a variety of cellular processes in particular events localized near the plasma membrane of live adherent cells. This imaging technique not relying on particular fluorescent probes provides a high sectioning capability. It is, however, restricted to a single plane. We present here a method based on a versatile design enabling fast multiwavelength azimuthal averaging and incidence angles scanning to computationally reconstruct 3D images sequences. We achieve unprecedented 50-nm axial resolution over a range of 800 nm above the coverslip. We apply this imaging modality to obtain structural and dynamical information about 3D actin architectures. We also temporally decipher distinct Rab11a-dependent exocytosis events in 3D at a rate of seven stacks per second.
Collapse
Affiliation(s)
| | - Charles Gueudry
- Plateforme Imagerie Cellulaire et Tissulaire-Infrastructure en Biologie Santé et Agronomie Institut Curie, 75005 Paris, France; Roper Scientific SAS, 91017 Evry, France; and
| | - Daniel Münch
- Plateforme Imagerie Cellulaire et Tissulaire-Infrastructure en Biologie Santé et Agronomie Institut Curie, 75005 Paris, France; Roper Scientific SAS, 91017 Evry, France; and
| | | | - Perrine Paul-Gilloteaux
- UMR144 CNRS/Institut Curie, 75005 Paris, France; Plateforme Imagerie Cellulaire et Tissulaire-Infrastructure en Biologie Santé et Agronomie Institut Curie, 75005 Paris, France
| | | | - Christophe Guérin
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Commissariat à l'Energie Atomique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Grenoble 38054, France
| | - Fabrice Senger
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Commissariat à l'Energie Atomique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Grenoble 38054, France
| | - Laurent Blanchoin
- Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Physiologie Cellulaire et Végétale, CNRS/Commissariat à l'Energie Atomique/Institut National de la Recherche Agronomique/Université Joseph Fourier, Grenoble 38054, France
| | - Jean Salamero
- UMR144 CNRS/Institut Curie, 75005 Paris, France; Plateforme Imagerie Cellulaire et Tissulaire-Infrastructure en Biologie Santé et Agronomie Institut Curie, 75005 Paris, France;
| |
Collapse
|
55
|
Lehmann GL, Benedicto I, Philp NJ, Rodriguez-Boulan E. Plasma membrane protein polarity and trafficking in RPE cells: past, present and future. Exp Eye Res 2014; 126:5-15. [PMID: 25152359 DOI: 10.1016/j.exer.2014.04.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/15/2014] [Accepted: 04/24/2014] [Indexed: 10/24/2022]
Abstract
The retinal pigment epithelium (RPE) comprises a monolayer of polarized pigmented epithelial cells that is strategically interposed between the neural retina and the fenestrated choroid capillaries. The RPE performs a variety of vectorial transport functions (water, ions, metabolites, nutrients and waste products) that regulate the composition of the subretinal space and support the functions of photoreceptors (PRs) and other cells in the neural retina. To this end, RPE cells display a polarized distribution of channels, transporters and receptors in their plasma membrane (PM) that is remarkably different from that found in conventional extra-ocular epithelia, e.g. intestine, kidney, and gall bladder. This characteristic PM protein polarity of RPE cells depends on the interplay of sorting signals in the RPE PM proteins and sorting mechanisms and biosynthetic/recycling trafficking routes in the RPE cell. Although considerable progress has been made in our understanding of the RPE trafficking machinery, most available data have been obtained from immortalized RPE cell lines that only partially maintain the RPE phenotype and by extrapolation of data obtained in the prototype Madin-Darby Canine Kidney (MDCK) cell line. The increasing availability of RPE cell cultures that more closely resemble the RPE in vivo together with the advent of advanced live imaging microscopy techniques provides a platform and an opportunity to rapidly expand our understanding of how polarized protein trafficking contributes to RPE PM polarity.
Collapse
Affiliation(s)
- Guillermo L Lehmann
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA
| | - Ignacio Benedicto
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA
| | - Nancy J Philp
- Thomas Jefferson University, Department of Pathology, Anatomy, and Cell Biology, Philadelphia, PA 19107, USA.
| | - Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, 1300 York Ave, New York, NY 100652, USA.
| |
Collapse
|
56
|
Thuenauer R, Rodriguez-Boulan E, Römer W. Microfluidic approaches for epithelial cell layer culture and characterisation. Analyst 2014; 139:3206-18. [PMID: 24668405 PMCID: PMC4286366 DOI: 10.1039/c4an00056k] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In higher eukaryotes, epithelial cell layers line most body cavities and form selective barriers that regulate the exchange of solutes between compartments. In order to fulfil these functions, the cells assume a polarised architecture and maintain two distinct plasma membrane domains, the apical domain facing the lumen and the basolateral domain facing other cells and the extracellular matrix. Microfluidic biochips offer the unique opportunity to establish novel in vitro models of epithelia in which the in vivo microenvironment of epithelial cells is precisely reconstituted. In addition, analytical tools to monitor biologically relevant parameters can be directly integrated on-chip. In this review we summarise recently developed biochip designs for culturing epithelial cell layers. Since endothelial cell layers, which line blood vessels, have similar barrier functions and polar organisation as epithelial cell layers, we also discuss biochips for culturing endothelial cell layers. Furthermore, we review approaches to integrate tools to analyse and manipulate epithelia and endothelia in microfluidic biochips; including methods to perform electrical impedance spectroscopy; methods to detect substances undergoing trans-epithelial transport via fluorescence, spectrophotometry, and mass spectrometry; techniques to mechanically stimulate cells via stretching and fluid flow-induced shear stress; and methods to carry out high-resolution imaging of vesicular trafficking using light microscopy. Taken together, this versatile microfluidic toolbox enables novel experimental approaches to characterise epithelial monolayers.
Collapse
Affiliation(s)
- Roland Thuenauer
- Institute of Biology II, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
57
|
Valenzuela JI, Jaureguiberry-Bravo M, Salas DA, Ramírez OA, Cornejo VH, Lu HE, Blanpied TA, Couve A. Transport along the dendritic endoplasmic reticulum mediates the trafficking of GABAB receptors. J Cell Sci 2014; 127:3382-95. [PMID: 24895402 DOI: 10.1242/jcs.151092] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurons, secretory organelles within the cell body are complemented by the dendritic endoplasmic reticulum (ER) and Golgi outposts (GOPs), whose role in neurotransmitter receptor trafficking is poorly understood. γ-aminobutyric acid (GABA) type B metabotropic receptors (GABABRs) regulate the efficacy of synaptic transmission throughout the brain. Their plasma membrane availability is controlled by mechanisms involving an ER retention motif and assembly-dependent ER export. Thus, they constitute an ideal molecular model to study ER trafficking, but the extent to which the dendritic ER participates in GABABR biosynthesis has not been thoroughly explored. Here, we show that GABAB1 localizes preferentially to the ER in dendrites and moves long distances within this compartment. Not only diffusion but also microtubule and dynein-dependent mechanisms control dendritic ER transport. GABABRs insert throughout the somatodendritic plasma membrane but dendritic post-ER carriers containing GABABRs do not fuse selectively with GOPs. This study furthers our understanding of the spatial selectivity of neurotransmitter receptors for dendritic organelles.
Collapse
Affiliation(s)
- José I Valenzuela
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Matías Jaureguiberry-Bravo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Daniela A Salas
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Omar A Ramírez
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Program of Anatomy and Development, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Víctor H Cornejo
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| | - Hsiangmin E Lu
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrés Couve
- Program of Physiology and Biophysics, ICBM, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago CP8380453, Chile
| |
Collapse
|
58
|
Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Biol 2014; 15:225-42. [PMID: 24651541 DOI: 10.1038/nrm3775] [Citation(s) in RCA: 509] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells require apical-basal plasma membrane polarity to carry out crucial vectorial transport functions and cytoplasmic polarity to generate different cell progenies for tissue morphogenesis. The establishment and maintenance of a polarized epithelial cell with apical, basolateral and ciliary surface domains is guided by an epithelial polarity programme (EPP) that is controlled by a network of protein and lipid regulators. The EPP is organized in response to extracellular cues and is executed through the establishment of an apical-basal axis, intercellular junctions, epithelial-specific cytoskeletal rearrangements and a polarized trafficking machinery. Recent studies have provided insight into the interactions of the EPP with the polarized trafficking machinery and how these regulate epithelial polarization and depolarization.
Collapse
Affiliation(s)
- Enrique Rodriguez-Boulan
- Margaret Dyson Vision Research Institute, Weill Cornell Medical College, 1300 York Avenue, LC-301 New York City, New York 10065, USA
| | - Ian G Macara
- Department of Cell & Developmental Biology, Vanderbilt University Medical Center, 465 21st Avenue South, U 3209 MRB III, Nashville Tennessee 37232, USA
| |
Collapse
|