51
|
Faust C, Dobson AP. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium. One Health 2015; 1:66-75. [PMID: 28616467 PMCID: PMC5441356 DOI: 10.1016/j.onehlt.2015.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 12/30/2022] Open
Abstract
Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.
Collapse
Affiliation(s)
- Christina Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
52
|
Howes RE, Reiner Jr. RC, Battle KE, Longbottom J, Mappin B, Ordanovich D, Tatem AJ, Drakeley C, Gething PW, Zimmerman PA, Smith DL, Hay SI. Plasmodium vivax Transmission in Africa. PLoS Negl Trop Dis 2015; 9:e0004222. [PMID: 26587988 PMCID: PMC4654493 DOI: 10.1371/journal.pntd.0004222] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 12/22/2022] Open
Abstract
Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf). Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv) transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health significance of Pv, as well as the other neglected non-Pf parasites, which are currently invisible to most public health authorities in Africa, but which can cause severe clinical illness and require specific control interventions.
Collapse
Affiliation(s)
- Rosalind E. Howes
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| | - Robert C. Reiner Jr.
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, Indiana, United States of America
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine E. Battle
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Joshua Longbottom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Bonnie Mappin
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Dariya Ordanovich
- Department of Geography and Environment, University of Southampton, Highfield, Southampton, United Kingdom
| | - Andrew J. Tatem
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Geography and Environment, University of Southampton, Highfield, Southampton, United Kingdom
- Flowminder Foundation, Stockholm, Sweden
| | - Chris Drakeley
- Malaria Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter W. Gething
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David L. Smith
- Spatial Ecology and Epidemiology Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Sanaria Institute for Global Health and Tropical Medicine, Rockville, Maryland, United States of America
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| | - Simon I. Hay
- Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, United States of America
| |
Collapse
|
53
|
African origin of the malaria parasite Plasmodium vivax. Nat Commun 2015; 5:3346. [PMID: 24557500 PMCID: PMC4089193 DOI: 10.1038/ncomms4346] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/29/2014] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.
Collapse
|
54
|
Siregar JE, Faust CL, Murdiyarso LS, Rosmanah L, Saepuloh U, Dobson AP, Iskandriati D. Non-invasive surveillance for Plasmodium in reservoir macaque species. Malar J 2015; 14:404. [PMID: 26459307 PMCID: PMC4603874 DOI: 10.1186/s12936-015-0857-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/22/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Primates are important reservoirs for human diseases, but their infection status and disease dynamics are difficult to track in the wild. Within the last decade, a macaque malaria, Plasmodium knowlesi, has caused disease in hundreds of humans in Southeast Asia. In order to track cases and understand zoonotic risk, it is imperative to be able to quantify infection status in reservoir macaque species. In this study, protocols for the collection of non-invasive samples and isolation of malaria parasites from naturally infected macaques are optimized. METHODS Paired faecal and blood samples from 60 Macaca fascicularis and four Macaca nemestrina were collected. All animals came from Sumatra or Java and were housed in semi-captive breeding colonies around West Java. DNA was extracted from samples using a modified protocol. Nested polymerase chain reactions (PCR) were run to detect Plasmodium using primers targeting mitochondrial DNA. Sensitivity of screening faecal samples for Plasmodium was compared to other studies using Kruskal Wallis tests and logistic regression models. RESULTS The best primer set was 96.7 % (95 % confidence intervals (CI): 83.3-99.4 %) sensitive for detecting Plasmodium in faecal samples of naturally infected macaques (n = 30). This is the first study to produce definitive estimates of Plasmodium sensitivity and specificity in faecal samples from naturally infected hosts. The sensitivity was significantly higher than some other studies involving wild primates. CONCLUSIONS Faecal samples can be used for detection of malaria infection in field surveys of macaques, even when there are no parasites visible in thin blood smears. Repeating samples from individuals will improve inferences of the epidemiology of malaria in wild primates.
Collapse
Affiliation(s)
| | - Christina L Faust
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | | | - Lis Rosmanah
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| | - Uus Saepuloh
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| | - Andrew P Dobson
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Diah Iskandriati
- Pusat Studi Satwa Primata, Institut Pertanian Bogor, Bogor, Indonesia.
| |
Collapse
|
55
|
First Detection of an Enterovirus C99 in a Captive Chimpanzee with Acute Flaccid Paralysis, from the Tchimpounga Chimpanzee Rehabilitation Center, Republic of Congo. PLoS One 2015; 10:e0136700. [PMID: 26301510 PMCID: PMC4547728 DOI: 10.1371/journal.pone.0136700] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
Enteroviruses, members of the Picornaviridae family, are ubiquitous viruses responsible for mild to severe infections in human populations around the world. In 2010 Pointe-Noire, Republic of Congo recorded an outbreak of acute flaccid paralysis (AFP) in the humans, caused by wild poliovirus type 1 (WPV1). One month later, in the Tchimpounga sanctuary near Pointe-Noire, a chimpanzee developed signs similar to AFP, with paralysis of the lower limbs. In the present work, we sought to identify the pathogen, including viral and bacterial agents, responsible for this illness. In order to identify the causative agent, we evaluated a fecal specimen by PCR and sequencing. A Human enterovirus C, specifically of the EV-C99 type was potentially responsible for the illness in this chimpanzee. To rule out other possible causative agents, we also investigated the bacteriome and the virome using next generation sequencing. The majority of bacterial reads obtained belonged to commensal bacteria (95%), and the mammalian virus reads matched mainly with viruses of the Picornaviridae family (99%), in which enteroviruses were the most abundant (99.6%). This study thus reports the first identification of a chimpanzee presenting AFP most likely caused by an enterovirus and demonstrates once again the cross-species transmission of a human pathogen to an ape.
Collapse
|
56
|
Délicat-Loembet L, Rougeron V, Ollomo B, Arnathau C, Roche B, Elguero E, Moukodoum ND, Okougha AP, Mve Ondo B, Boundenga L, Houzé S, Galan M, Nkoghé D, Leroy EM, Durand P, Paupy C, Renaud F, Prugnolle F. No evidence for ape Plasmodium infections in humans in Gabon. PLoS One 2015; 10:e0126933. [PMID: 26039338 PMCID: PMC4454650 DOI: 10.1371/journal.pone.0126933] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
African great apes are naturally infected by a multitude of Plasmodium species most of them recently discovered, among which several are closely related to human malaria agents. However, it is still unknown whether these animals can serve as source of infections for humans living in their vicinity. To evaluate this possibility, we analysed the nature of Plasmodium infections from a bank of 4281 human blood samples collected in 210 villages of Gabon, Central Africa. Among them, 2255 were detected positive to Plasmodium using molecular methods (Plasmodium Cytochrome b amplification). A high throughput sequencing technology (454 GS-FLX Titanium technology, Roche) was then used to identify the Plasmodium species present within each positive sample. Overall, we identified with confidence only three species infecting humans in Gabon: P. falciparum, P. malariae and P. ovale. None of the species known to infect non-human primates in Central Africa was found. Our study shows that ape Plasmodium parasites of the subgenus Laverania do not constitute a frequent source of infection for humans. It also suggests that some strong host genetic barriers must exist to prevent the cross species transmission of ape Plasmodium in a context of ever increasing contacts between humans and wildlife.
Collapse
Affiliation(s)
- Lucresse Délicat-Loembet
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
- * E-mail: (LDL); (VR); (FP)
| | - Virginie Rougeron
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
- * E-mail: (LDL); (VR); (FP)
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
| | - Céline Arnathau
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
- CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France
| | - Benjamin Roche
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes (UMI IRD/UPMC 209), Institut de Recherche pour le Développement, 32 avenue Henr1 Varagnat, 93140, Bondy, France
| | - Eric Elguero
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
| | | | - Alain-Prince Okougha
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
| | - Bertrand Mve Ondo
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
| | - Sandrine Houzé
- Laboratoire de Parasitologie-Mycologie, Hôpital Bichat-Claude Bernard, 46 rue Henri Huchard, 75018, Paris, France
- Unité Mixte de Recherche 216 IRD, Université Paris Descartes, 12 rue de l’Ecole de Médecine, 75006, Paris, France
| | - Maxime Galan
- INRA, UMR1062 CBGP, avenue du Campus Agropolis, 34980, Montferrier-sur-Lez, France
| | - Dieudonné Nkoghé
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
| | - Eric M. Leroy
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
| | - Patrick Durand
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
- CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France
| | - Christophe Paupy
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
| | - François Renaud
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
- CHRU de Montpellier, 39 Avenue Charles Flahault, 34295, Montpellier, France
| | - Franck Prugnolle
- Centre International de Recherches Médicales de Franceville, CIRMF, BP 769, Franceville, Gabon
- MIVEGEC (UMR CNRS/IRD/UM 5290), 911 avenue Agropolis, 34394, Montpellier, Cedex 5, France
- * E-mail: (LDL); (VR); (FP)
| |
Collapse
|
57
|
Hodgson JA, Pickrell JK, Pearson LN, Quillen EE, Prista A, Rocha J, Soodyall H, Shriver MD, Perry GH. Natural selection for the Duffy-null allele in the recently admixed people of Madagascar. Proc Biol Sci 2015; 281:20140930. [PMID: 24990677 DOI: 10.1098/rspb.2014.0930] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
While gene flow between distantly related populations is increasingly recognized as a potentially important source of adaptive genetic variation for humans, fully characterized examples are rare. In addition, the role that natural selection for resistance to vivax malaria may have played in the extreme distribution of the protective Duffy-null allele, which is nearly completely fixed in mainland sub-Saharan Africa and absent elsewhere, is controversial. We address both these issues by investigating the evolution of the Duffy-null allele in the Malagasy, a recently admixed population with major ancestry components from both East Asia and mainland sub-Saharan Africa. We used genome-wide genetic data and extensive computer simulations to show that the high frequency of the Duffy-null allele in Madagascar can only be explained in the absence of positive natural selection under extreme demographic scenarios involving high genetic drift. However, the observed genomic single nucleotide polymorphism diversity in the Malagasy is incompatible with such extreme demographic scenarios, indicating that positive selection for the Duffy-null allele best explains the high frequency of the allele in Madagascar. We estimate the selection coefficient to be 0.066. Because vivax malaria is endemic to Madagascar, this result supports the hypothesis that malaria resistance drove fixation of the Duffy-null allele in mainland sub-Saharan Africa.
Collapse
Affiliation(s)
- Jason A Hodgson
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Joseph K Pickrell
- New York Genome Center, New York, NY 10013, USA Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Laurel N Pearson
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ellen E Quillen
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78245, USA
| | - António Prista
- Faculdade de Educação Física e Desporto, Universidade Pedagógica, Maputo, Moçambique
| | - Jorge Rocha
- Centro de Investigação em Biodiversidade e Recursos Genéticos da Universidade do Porto (CIBIO), Vairão, Portugal Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Himla Soodyall
- Human Genomic Diversity and Disease Research Unit, Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Mark D Shriver
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA
| | - George H Perry
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
58
|
Hoppe E, Pauly M, Gillespie TR, Akoua-Koffi C, Hohmann G, Fruth B, Karhemere S, Madinda NF, Mugisha L, Muyembe JJ, Todd A, Petrzelkova KJ, Gray M, Robbins M, Bergl RA, Wittig RM, Zuberbühler K, Boesch C, Schubert G, Leendertz FH, Ehlers B, Calvignac-Spencer S. Multiple Cross-Species Transmission Events of Human Adenoviruses (HAdV) during Hominine Evolution. Mol Biol Evol 2015; 32:2072-84. [PMID: 25862141 DOI: 10.1093/molbev/msv090] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human adenoviruses (HAdV; species HAdV-A to -G) are highly prevalent in the human population, and represent an important cause of morbidity and, to a lesser extent, mortality. Recent studies have identified close relatives of these viruses in African great apes, suggesting that some HAdV may be of zoonotic origin. We analyzed more than 800 fecal samples from wild African great apes and humans to further investigate the evolutionary history and zoonotic potential of hominine HAdV. HAdV-B and -E were frequently detected in wild gorillas (55%) and chimpanzees (25%), respectively. Bayesian ancestral host reconstruction under discrete diffusion models supported a gorilla and chimpanzee origin for these viral species. Host switches were relatively rare along HAdV evolution, with about ten events recorded in 4.5 My. Despite presumably rare direct contact between sympatric populations of the two species, transmission events from gorillas to chimpanzees were observed, suggesting that habitat and dietary overlap may lead to fecal-oral cross-hominine transmission of HAdV. Finally, we determined that two independent HAdV-B transmission events to humans occurred more than 100,000 years ago. We conclude that HAdV-B circulating in humans are of zoonotic origin and have probably affected global human health for most of our species lifetime.
Collapse
Affiliation(s)
- Eileen Hoppe
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Berlin, Germany
| | - Maude Pauly
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Berlin, Germany Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Thomas R Gillespie
- Department of Environmental Sciences and Program in Population Biology, Ecology and Evolution, Emory University Department of Environmental Health, Rollins School of Public Health, Emory University
| | - Chantal Akoua-Koffi
- Centre de Recherche pour le Développement, Université Alassane Ouattara de Bouake, Bouake, Côte d'Ivoire
| | - Gottfried Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Barbara Fruth
- Division of Neurobiology, Ludwig-Maximilians-University, Munich, Germany Centre for Research and Conservation, Royal Zooological Society of Antwerp, Antwerp, Belgium
| | - Stomy Karhemere
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Nadège F Madinda
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany Institut de Recherche en Ecologie Tropicale, Libreville, Gabon
| | - Lawrence Mugisha
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
| | - Jean-Jacques Muyembe
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Angelique Todd
- World Wildlife Foundation (WWF), Dzanga Sangha Protected Areas, Bangui, Central African Republic
| | - Klara J Petrzelkova
- Institute of Vertebrate Biology, Academy of Sciences, Brno, Czech Republic Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic Biology Centre, Institute of Parasitology, Academy of Sciences of the Czech Republic, Ceske Budejovice, Czech Republic Liberec Zoo, Liberec, Czech Republic
| | - Maryke Gray
- International Gorilla Conservation Program, Kigali, Rwanda
| | - Martha Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Roman M Wittig
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Côte d'Ivoire
| | - Klaus Zuberbühler
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland Budongo Conservation Field Station, Masindi, Uganda School of Psychology, University of St. Andrews, St. Andrews, Scotland, United Kingdom
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Grit Schubert
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Fabian H Leendertz
- Epidemiology of highly pathogenic microorganisms, Robert Koch Institute, Berlin, Germany
| | - Bernhard Ehlers
- Division 12 "Measles, Mumps, Rubella and Viruses affecting immunocompromised patients", Robert Koch Institute, Berlin, Germany
| | | |
Collapse
|
59
|
Boundenga L, Ollomo B, Rougeron V, Mouele LY, Mve-Ondo B, Delicat-Loembet LM, Moukodoum ND, Okouga AP, Arnathau C, Elguero E, Durand P, Liégeois F, Boué V, Motsch P, Le Flohic G, Ndoungouet A, Paupy C, Ba CT, Renaud F, Prugnolle F. Diversity of malaria parasites in great apes in Gabon. Malar J 2015; 14:111. [PMID: 25889049 PMCID: PMC4364493 DOI: 10.1186/s12936-015-0622-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/22/2015] [Indexed: 12/25/2022] Open
Abstract
Background Until 2009, the Laverania subgenus counted only two representatives: Plasmodium falciparum and Plasmodium reichenowi. The recent development of non-invasive methods allowed re-exploration of plasmodial diversity in African apes. Although a large number of great ape populations have now been studied regarding Plasmodium infections in Africa, there are still vast areas of their distribution that remained unexplored. Gabon constitutes an important part of the range of western central African great ape subspecies (Pan troglodytes troglodytes and Gorilla gorilla gorilla), but has not been studied so far. In the present study, the diversity of Plasmodium species circulating in great apes in Gabon was analysed. Methods The analysis of 1,261 faecal samples from 791 chimpanzees and 470 gorillas collected from 24 sites all over Gabon was performed. Plasmodium infections were characterized by amplification and sequencing of a portion of the Plasmodium cytochrome b gene. Results The analysis of the 1,261 samples revealed that at least six Plasmodium species circulate in great apes in Gabon (Plasmodium praefalciparum, Plasmodium gorA (syn Plasmodium adleri), Plasmodium gorB (syn Plasmodium blacklocki) in gorillas and Plasmodium gaboni, P. reichenowi and Plasmodium billcollinsi in chimpanzees). No new phylogenetic lineages were discovered. The average infection rate was 21.3% for gorillas and 15.4% for chimpanzees. A logistic regression showed that the probability of infection was significantly dependent on the freshness of the droppings but not of the host species or of the average pluviometry of the months of collection.
Collapse
Affiliation(s)
- Larson Boundenga
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,Laboratoire d'Écologie et Biologie évolutive, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, BP5005, Sénégal.
| | - Benjamin Ollomo
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Virginie Rougeron
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Lauriane Yacka Mouele
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Bertrand Mve-Ondo
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | | | | | - Alain Prince Okouga
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Céline Arnathau
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Eric Elguero
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Patrick Durand
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Florian Liégeois
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,TransVIHMI (Recherche Translationnelle sur le VIH et les Maladies Infectieuses), UMI 233, Institut de Recherche pour le Développement (IRD) and Université Montpellier 1, Montpellier, France.
| | - Vanina Boué
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Peggy Motsch
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Guillaume Le Flohic
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Alphonse Ndoungouet
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon.
| | - Christophe Paupy
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Cheikh Tidiane Ba
- Laboratoire d'Écologie et Biologie évolutive, Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, BP5005, Sénégal.
| | - Francois Renaud
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| | - Franck Prugnolle
- Centre International de Recherche Médicale de Franceville, BP 769, Franceville-Gabon, Gabon. .,MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle), UMR CNRS 5290 / IRD 224, Université Montpellier 1, Montpellier, France.
| |
Collapse
|
60
|
Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology 2015; 142:890-900. [PMID: 25736484 DOI: 10.1017/s0031182015000086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
African great apes are susceptible to infections with several species of Plasmodium, including the predecessor of Plasmodium falciparum. Little is known about the ecology of these pathogens in gorillas. A total of 131 gorilla fecal samples were collected from Dzanga-Sangha Protected Areas to study the diversity and prevalence of Plasmodium species. The effects of sex and age as factors influencing levels of infection with Plasmodium in habituated gorilla groups were assessed. Ninety-five human blood samples from the same locality were also analysed to test for cross-transmission between humans and gorillas. According to a cytB PCR assay 32% of gorilla's fecal samples and 43·1% human individuals were infected with Plasmodium spp. All Laverania species, Plasmodium vivax, and for the first time Plasmodium ovale were identified from gorilla samples. Plasmodium praefalciparum was present only from habituated individuals and P. falciparum was detected from human samples. Although few P. vivax and P. ovale sequences were obtained from gorillas, the evidence for cross-species transmission between humans and gorillas requires more in depth analysis. No association was found between malaria infection and sex, however, younger individuals aged ≤6 years were more susceptible. Switching between two different Plasmodium spp. was observed in three individuals. Prolonged monitoring of Plasmodium infection during various seasons and recording behavioural data is necessary to draw a precise picture about the infection dynamics.
Collapse
|
61
|
Muehlenbein MP, Pacheco MA, Taylor JE, Prall SP, Ambu L, Nathan S, Alsisto S, Ramirez D, Escalante AA. Accelerated diversification of nonhuman primate malarias in Southeast Asia: adaptive radiation or geographic speciation? Mol Biol Evol 2015; 32:422-39. [PMID: 25389206 PMCID: PMC4298170 DOI: 10.1093/molbev/msu310] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although parasitic organisms are found worldwide, the relative importance of host specificity and geographic isolation for parasite speciation has been explored in only a few systems. Here, we study Plasmodium parasites known to infect Asian nonhuman primates, a monophyletic group that includes the lineage leading to the human parasite Plasmodium vivax and several species used as laboratory models in malaria research. We analyze the available data together with new samples from three sympatric primate species from Borneo: The Bornean orangutan and the long-tailed and the pig-tailed macaques. We find several species of malaria parasites, including three putatively new species in this biodiversity hotspot. Among those newly discovered lineages, we report two sympatric parasites in orangutans. We find no differences in the sets of malaria species infecting each macaque species indicating that these species show no host specificity. Finally, phylogenetic analysis of these data suggests that the malaria parasites infecting Southeast Asian macaques and their relatives are speciating three to four times more rapidly than those with other mammalian hosts such as lemurs and African apes. We estimate that these events took place in approximately a 3-4-Ma period. Based on the genetic and phenotypic diversity of the macaque malarias, we hypothesize that the diversification of this group of parasites has been facilitated by the diversity, geographic distributions, and demographic histories of their primate hosts.
Collapse
Affiliation(s)
| | - M Andreína Pacheco
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe
| | - Jesse E Taylor
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe
| | - Sean P Prall
- Department of Anthropology, Indiana University, Bloomington
| | | | | | - Sylvia Alsisto
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | - Diana Ramirez
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | - Ananias A Escalante
- Center for Evolutionary Medicine and Informatics, The Biodesign Institute, Arizona State University, Tempe School of Life Sciences, Arizona State University, Tempe
| |
Collapse
|
62
|
Genetic diversity of Plasmodium Vivax in South of Iran: A cross-sectional study. J Med Life 2015; 8:14-18. [PMID: 28255391 PMCID: PMC5327707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Despite declining the number of malaria cases in Iran, increased prevalence of malaria is supposed to be due to migration from eastern neighboring countries of Iran, which are abundant in Plasmodium vivax (P. vivax). The circumsporozoite protein (CSP) of the P. vivax, is one of the candidate antigens for antimalaria vaccine. The diversity of P. vivax populations circulating in Iran has been investigated by using circumsporozoite protein (CSP) in this study. A hundred and eighteen blood samples were collected from patients diagnosed with P. vivax malaria from south of Iran during 2007-2008. All samples were analyzed by using nested PCR/ RFLP and 18 were sequenced. Genotyping of Pvcsp gene showed that VK210 type was predominant (95%) in south of Iran. Sequence analysis of Pvcsp gene revealed 6 distinct allelic variants in VK210 type. The present data indicate that there is some degree of genetic diversity among P. vivax populations in Hormozgan province of Iran. It seems that in neighbors of Iran, VK210 type is predominant, probably due to similar vector of malaria in these regions.
Collapse
|
63
|
Rahola N, Makanga B, Yangari P, Jiolle D, Fontenille D, Renaud F, Ollomo B, Ayala D, Prugnolle F, Paupy C. Description of Anopheles gabonensis, a new species potentially involved in rodent malaria transmission in Gabon, Central Africa. INFECTION GENETICS AND EVOLUTION 2014; 28:628-34. [DOI: 10.1016/j.meegid.2014.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
|
64
|
Ramasamy R. Zoonotic malaria - global overview and research and policy needs. Front Public Health 2014; 2:123. [PMID: 25184118 PMCID: PMC4135302 DOI: 10.3389/fpubh.2014.00123] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/05/2014] [Indexed: 12/24/2022] Open
Abstract
The four main Plasmodium species that cause human malaria, Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale, are transmitted between humans by mosquito vectors belonging to the genus Anopheles. It has recently become evident that Plasmodium knowlesi, a parasite that typically infects forest macaque monkeys, can be transmitted by anophelines to cause malaria in humans in Southeast Asia. Plasmodium knowlesi infections are frequently misdiagnosed microscopically as P. malariae. Direct human to human transmission of P. knowlesi by anophelines has not yet been established to occur in nature. Knowlesi malaria must therefore be presently considered a zoonotic disease. Polymerase chain reaction is now the definitive method for differentiating P. knowlesi from P. malariae and other human malaria parasites. The origin of P. falciparum and P. vivax in African apes are examples of ancient zoonoses that may be continuing at the present time with at least P. vivax, and possibly P. malariae and P. ovale. Other non-human primate malaria species, e.g., Plasmodium cynomolgi in Southeast Asia and Plasmodium brasilianum and Plasmodium simium in South America, can be transmitted to humans by mosquito vectors further emphasizing the potential for continuing zoonoses. The potential for zoonosis is influenced by human habitation and behavior as well as the adaptive capabilities of parasites and vectors. There is insufficient knowledge of the bionomics of Anopheles vector populations relevant to the cross-species transfer of malaria parasites and the real extent of malaria zoonoses. Appropriate strategies, based on more research, need to be developed for the prevention, diagnosis, and treatment of zoonotic malaria.
Collapse
Affiliation(s)
- Ranjan Ramasamy
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine , London , UK
| |
Collapse
|
65
|
Abstract
SUMMARY Malaria remains one of the most significant global public health burdens, with nearly half of the world's population at risk of infection. Malaria is not however a monolithic disease - it can be caused by multiple different parasite species of the Plasmodium genus, each of which can induce different symptoms and pathology, and which pose quite different challenges for control. Furthermore, malaria is in no way restricted to humans. There are Plasmodium species that have adapted to infect most warm-blooded vertebrate species, and the genus as a whole is both highly successful and highly diverse. How, where and when human malaria parasites originated from within this diversity has long been a subject of fascination and sometimes also controversy. The past decade has seen the publication of a number of important discoveries about malaria parasite origins, all based on the application of molecular diagnostic tools to new sources of samples. This review summarizes some of those recent discoveries and discusses their implication for our current understanding of the origin and evolution of the Plasmodium genus. The nature of these discoveries and the manner in which they are made are then used to lay out a series of opportunities and challenges for the next wave of parasite hunters.
Collapse
|
66
|
Arnott A, Wapling J, Mueller I, Ramsland PA, Siba PM, Reeder JC, Barry AE. Distinct patterns of diversity, population structure and evolution in the AMA1 genes of sympatric Plasmodium falciparum and Plasmodium vivax populations of Papua New Guinea from an area of similarly high transmission. Malar J 2014; 13:233. [PMID: 24930015 PMCID: PMC4085730 DOI: 10.1186/1475-2875-13-233] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
Background As Plasmodium falciparum and Plasmodium vivax co-exist in most malaria-endemic regions outside sub-Saharan Africa, malaria control strategies in these areas must target both species in order to succeed. Population genetic analyses can predict the effectiveness of interventions including vaccines, by providing insight into patterns of diversity and evolution. The aim of this study was to investigate the population genetics of leading malaria vaccine candidate AMA1 in sympatric P. falciparum and P. vivax populations of Papua New Guinea (PNG), an area of similarly high prevalence (Pf = 22.3 to 38.8%, Pv = 15.3 to 31.8%). Methods A total of 72 Pfama1 and 102 Pvama1 sequences were collected from two distinct areas, Madang and Wosera, on the highly endemic PNG north coast. Results Despite a greater number of polymorphic sites in the AMA1 genes of P. falciparum (Madang = 52; Wosera = 56) compared to P. vivax (Madang = 36, Wosera = 34), the number of AMA1 haplotypes, haplotype diversity (Hd) and recombination (R) was far lower for P. falciparum (Madang = 12, Wosera = 20; Hd ≤0.92, R ≤45.8) than for P. vivax (Madang = 50, Wosera = 38; Hd = 0.99, R = ≤70.9). Balancing selection was detected only within domain I of AMA1 for P. vivax, and in both domains I and III for P. falciparum. Conclusions Higher diversity in the genes encoding P. vivax AMA1 than in P. falciparum AMA1 in this highly endemic area has important implications for development of AMA1-based vaccines in PNG and beyond. These results also suggest a smaller effective population size of P. falciparum compared to P. vivax, a finding that warrants further investigation. Differing patterns of selection on the AMA1 genes indicate that critical antigenic sites may differ between the species, highlighting the need for independent investigations of these two leading vaccine candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia.
| |
Collapse
|