51
|
LRRK2 along the Golgi and lysosome connection: a jamming situation. Biochem Soc Trans 2021; 49:2063-2072. [PMID: 34495322 PMCID: PMC8589420 DOI: 10.1042/bst20201146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder, clinically characterized by bradykinesia, rigidity, and resting tremor. Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multidomain protein containing two enzymatic domains. Missense mutations in its coding sequence are amongst the most common causes of familial PD. The physiological and pathological impact of LRRK2 is still obscure, but accumulating evidence supports a role for LRRK2 in membrane and vesicle trafficking, mainly functioning in the endosome-recycling system, (synaptic) vesicle trafficking, autophagy, and lysosome biology. LRRK2 binds and phosphorylates key regulators of the endomembrane systems and is dynamically localized at the Golgi. The impact of LRRK2 on the Golgi may reverberate throughout the entire endomembrane system and occur in multiple intersecting pathways, including endocytosis, autophagy, and lysosomal function. This would lead to overall dysregulation of cellular homeostasis and protein catabolism, leading to neuronal dysfunction and accumulation of toxic protein species, thus underlying the possible neurotoxic effect of LRRK2 mutations causing PD.
Collapse
|
52
|
Schechter M, Sharon R. An Emerging Role for Phosphoinositides in the Pathophysiology of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2021; 11:1725-1750. [PMID: 34151859 PMCID: PMC8609718 DOI: 10.3233/jpd-212684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Recent data support an involvement of defects in homeostasis of phosphoinositides (PIPs) in the pathophysiology of Parkinson’s disease (PD). Genetic mutations have been identified in genes encoding for PIP-regulating and PIP-interacting proteins, that are associated with familial and sporadic PD. Many of these proteins are implicated in vesicular membrane trafficking, mechanisms that were recently highlighted for their close associations with PD. PIPs are phosphorylated forms of the membrane phospholipid, phosphatidylinositol. Their composition in the vesicle’s membrane of origin, as well as membrane of destination, controls vesicular membrane trafficking. We review the converging evidence that points to the involvement of PIPs in PD. The review describes PD- and PIP-associated proteins implicated in clathrin-mediated endocytosis and autophagy, and highlights the involvement of α-synuclein in these mechanisms.
Collapse
Affiliation(s)
- Meir Schechter
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| | - Ronit Sharon
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Ein Kerem, Jerusalem, Israel
| |
Collapse
|
53
|
Chandler R, Cogo S, Lewis P, Kevei E. Modelling the functional genomics of Parkinson's disease in Caenorhabditis elegans: LRRK2 and beyond. Biosci Rep 2021; 41:BSR20203672. [PMID: 34397087 PMCID: PMC8415217 DOI: 10.1042/bsr20203672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, Parkinson's disease (PD) cases have been genetically categorised into familial, when caused by mutations in single genes with a clear inheritance pattern in affected families, or idiopathic, in the absence of an evident monogenic determinant. Recently, genome-wide association studies (GWAS) have revealed how common genetic variability can explain up to 36% of PD heritability and that PD manifestation is often determined by multiple variants at different genetic loci. Thus, one of the current challenges in PD research stands in modelling the complex genetic architecture of this condition and translating this into functional studies. Caenorhabditis elegans provide a profound advantage as a reductionist, economical model for PD research, with a short lifecycle, straightforward genome engineering and high conservation of PD relevant neural, cellular and molecular pathways. Functional models of PD genes utilising C. elegans show many phenotypes recapitulating pathologies observed in PD. When contrasted with mammalian in vivo and in vitro models, these are frequently validated, suggesting relevance of C. elegans in the development of novel PD functional models. This review will discuss how the nematode C. elegans PD models have contributed to the uncovering of molecular and cellular mechanisms of disease, with a focus on the genes most commonly found as causative in familial PD and risk factors in idiopathic PD. Specifically, we will examine the current knowledge on a central player in both familial and idiopathic PD, Leucine-rich repeat kinase 2 (LRRK2) and how it connects to multiple PD associated GWAS candidates and Mendelian disease-causing genes.
Collapse
Affiliation(s)
| | - Susanna Cogo
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
- Department of Biology, University of Padova, Padova, Via Ugo Bassi 58/B, 35121, Italy
| | - Patrick A. Lewis
- Royal Veterinary College, University of London, London, NW1 0TU, U.K
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, U.K
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, RG6 6AH, U.K
| |
Collapse
|
54
|
Xu L, Nagai Y, Kajihara Y, Ito G, Tomita T. The Regulation of Rab GTPases by Phosphorylation. Biomolecules 2021; 11:biom11091340. [PMID: 34572553 PMCID: PMC8469595 DOI: 10.3390/biom11091340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023] Open
Abstract
Rab proteins are small GTPases that act as molecular switches for intracellular vesicle trafficking. Although their function is mainly regulated by regulatory proteins such as GTPase-activating proteins and guanine nucleotide exchange factors, recent studies have shown that some Rab proteins are physiologically phosphorylated in the switch II region by Rab kinases. As the switch II region of Rab proteins undergoes a conformational change depending on the bound nucleotide, it plays an essential role in their function as a ‘switch’. Initially, the phosphorylation of Rab proteins in the switch II region was shown to inhibit the association with regulatory proteins. However, recent studies suggest that it also regulates the binding of Rab proteins to effector proteins, determining which pathways to regulate. These findings suggest that the regulation of the Rab function may be more dynamically regulated by phosphorylation than just through the association with regulatory proteins. In this review, we summarize the recent findings and discuss the physiological and pathological roles of Rab phosphorylation.
Collapse
Affiliation(s)
- Lejia Xu
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (L.X.); (Y.N.); (Y.K.)
| | - Yuki Nagai
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (L.X.); (Y.N.); (Y.K.)
| | - Yotaro Kajihara
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (L.X.); (Y.N.); (Y.K.)
| | - Genta Ito
- Department of Biomolecular Chemistry, Faculty of Pharma-Science, Teikyo University, Tokyo 173-8605, Japan
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: (G.I.); (T.T.)
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; (L.X.); (Y.N.); (Y.K.)
- Social Cooperation Program of Brain and Neurological Disorders, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: (G.I.); (T.T.)
| |
Collapse
|
55
|
Miyazaki M, Hiramoto M, Takano N, Kokuba H, Takemura J, Tokuhisa M, Hino H, Kazama H, Miyazawa K. Targeted disruption of GAK stagnates autophagic flux by disturbing lysosomal dynamics. Int J Mol Med 2021; 48:195. [PMID: 34468012 PMCID: PMC8416139 DOI: 10.3892/ijmm.2021.5028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
The autophagy-lysosome system allows cells to adapt to environmental changes by regulating the degradation and recycling of cellular components, and to maintain homeostasis by removing aggregated proteins and defective organelles. Cyclin G-associated kinase (GAK) is involved in the regulation of clathrin-dependent endocytosis and cell cycle progression. In addition, a single nucleotide polymorphism at the GAK locus has been reported as a risk factor for Parkinson's disease. However, the roles of GAK in the autophagy-lysosome system are not completely understood, thus the present study aimed to clarify this. In the present study, under genetic disruption or chemical inhibition of GAK, analyzing autophagic flux and observing morphological changes of autophagosomes and autolysosomes revealed that GAK controlled lysosomal dynamics via actomyosin regulation, resulting in a steady progression of autophagy. GAK knockout (KO) in A549 cells impaired autophagosome-lysosome fusion and autophagic lysosome reformation, which resulted in the accumulation of enlarged autophagosomes and autolysosomes during prolonged starvation. The stagnation of autophagic flux accompanied by these phenomena was also observed with the addition of a GAK inhibitor. Furthermore, the addition of Rho-associated protein kinase (ROCK) inhibitor or ROCK1 knockdown mitigated GAK KO-mediated effects. The results suggested a vital role of GAK in controlling lysosomal dynamics via maintaining lysosomal homeostasis during autophagy.
Collapse
Affiliation(s)
- Masaya Miyazaki
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiroko Kokuba
- Laboratory of Electron Microscopy, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Jun Takemura
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Mayumi Tokuhisa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo 160‑8402, Japan
| |
Collapse
|
56
|
Verma A, Ebanks K, Fok CY, Lewis PA, Bettencourt C, Bandopadhyay R. In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Res 2021; 1765:147503. [PMID: 33915162 PMCID: PMC8212912 DOI: 10.1016/j.brainres.2021.147503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/06/2021] [Accepted: 04/23/2021] [Indexed: 01/11/2023]
Abstract
Mutations in LRRK2 are the most frequent cause of familial Parkinson's disease (PD), with common LRRK2 non-coding variants also acting as risk factors for idiopathic PD. Currently, therapeutic agents targeting LRRK2 are undergoing advanced clinical trials in humans, however, it is important to understand the wider implications of LRRK2 targeted treatments given that LRRK2 is expressed in diverse tissues including the brain, kidney and lungs. This presents challenges to treatment in terms of effects on peripheral organ functioning, thus, protein interactors of LRRK2 could be targeted in lieu to optimize therapeutic effects. Herein an in-silico analysis of LRRK2 direct interactors in brain tissue from various brain regionswas conducted along with a comparative analysis of the LRRK2 interactome in the brain, kidney, and lung tissues. This was carried out based on curated protein-protein interaction (PPI) data from protein interaction databases such as HIPPIE, human gene/protein expression databases and Gene ontology (GO) enrichment analysis using Bingo. Seven targets (MAP2K6, MATK, MAPT, PAK6, SH3GL2, CDC42EP3 and CHGB) were found to be viable objectives for LRRK2 based investigations for PD that would have minimal impact on optimal functioning within peripheral organs. Specifically, MAPT, CHGB, PAK6, and SH3GL2 interacted with LRRK2 in the brain and kidney but not in lung tissue whilst LRRK2-MAP2K6 interacted only in the cerebellum and MATK-LRRK2 interaction was absent in kidney tissues. CDC42EP3 expression levels were low in brain tissues compared to kidney/lung. The results of this computational analysis suggest new avenues for experimental investigations towards LRRK2-targeted therapeutics.
Collapse
Affiliation(s)
- Amrita Verma
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Kirsten Ebanks
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Chi-Yee Fok
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Patrick A Lewis
- Royal Veterinary College, Royal College Street, London NW10TV, United Kingdom; Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Conceicao Bettencourt
- Department of Neurodegenerative Disease and Queen Square Brain Bank, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London WC1N 1PJ, United Kingdom.
| |
Collapse
|
57
|
Bell R, Vendruscolo M. Modulation of the Interactions Between α-Synuclein and Lipid Membranes by Post-translational Modifications. Front Neurol 2021; 12:661117. [PMID: 34335440 PMCID: PMC8319954 DOI: 10.3389/fneur.2021.661117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease is characterised by the presence in brain tissue of aberrant inclusions known as Lewy bodies and Lewy neurites, which are deposits composed by α-synuclein and a variety of other cellular components, including in particular lipid membranes. The dysregulation of the balance between lipid homeostasis and α-synuclein homeostasis is therefore likely to be closely involved in the onset and progression of Parkinson's disease and related synucleinopathies. As our understanding of this balance is increasing, we describe recent advances in the characterisation of the role of post-translational modifications in modulating the interactions of α-synuclein with lipid membranes. We then discuss the impact of these advances on the development of novel diagnostic and therapeutic tools for synucleinopathies.
Collapse
Affiliation(s)
| | - Michele Vendruscolo
- Centre for Misfolding Disease, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
58
|
Beilina A, Bonet-Ponce L, Kumaran R, Kordich JJ, Ishida M, Mamais A, Kaganovich A, Saez-Atienzar S, Gershlick DC, Roosen DA, Pellegrini L, Malkov V, Fell MJ, Harvey K, Bonifacino JS, Moore DJ, Cookson MR. The Parkinson's Disease Protein LRRK2 Interacts with the GARP Complex to Promote Retrograde Transport to the trans-Golgi Network. Cell Rep 2021; 31:107614. [PMID: 32375042 PMCID: PMC7315779 DOI: 10.1016/j.celrep.2020.107614] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). However, the precise function of LRRK2 remains unclear. We report an interaction between LRRK2 and VPS52, a subunit of the Golgi-associated retrograde protein (GARP) complex that identifies a function of LRRK2 in regulating membrane fusion at the trans-Golgi network (TGN). At the TGN, LRRK2 further interacts with the Golgi SNAREs VAMP4 and Syntaxin-6 and acts as a scaffolding platform that stabilizes the GARP-SNAREs complex formation. Therefore, LRRK2 influences both retrograde and post-Golgi trafficking pathways in a manner dependent on its GTP binding and kinase activity. This action is exaggerated by mutations associated with Parkinson's disease and can be blocked by kinase inhibitors. Disruption of GARP sensitizes dopamine neurons to mutant LRRK2 toxicity in C. elegans, showing that these pathways are interlinked in vivo and suggesting a link in PD.
Collapse
Affiliation(s)
- Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Luis Bonet-Ponce
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Jennifer J Kordich
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Morié Ishida
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alice Kaganovich
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Sara Saez-Atienzar
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Dorien A Roosen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AP, UK
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Vlad Malkov
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Matthew J Fell
- Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20814, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
59
|
Sarkar S, Bardai F, Olsen AL, Lohr KM, Zhang YY, Feany MB. Oligomerization of Lrrk controls actin severing and α-synuclein neurotoxicity in vivo. Mol Neurodegener 2021; 16:33. [PMID: 34030727 PMCID: PMC8142648 DOI: 10.1186/s13024-021-00454-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mutations in LRRK2 are the most common cause of familial Parkinson's disease and typically cause disease in the context of abnormal aggregation and deposition of α-synuclein within affected brain tissue. METHODS We combine genetic analysis of Lrrk-associated toxicity in a penetrant Drosophila model of wild type human α-synuclein neurotoxicity with biochemical analyses and modeling of LRRK2 toxicity in human neurons and transgenic mouse models. RESULTS We demonstrate that Lrrk and α-synuclein interact to promote neuronal degeneration through convergent effects on the actin cytoskeleton and downstream dysregulation of mitochondrial dynamics and function. We find specifically that monomers and dimers of Lrrk efficiently sever actin and promote normal actin dynamics in vivo. Oligomerization of Lrrk, which is promoted by dominant Parkinson's disease-causing mutations, reduces actin severing activity in vitro and promotes excess stabilization of F-actin in vivo. Importantly, a clinically protective Lrrk mutant reduces oligomerization and α-synuclein neurotoxicity. CONCLUSIONS Our findings provide a specific mechanistic link between two key molecules in the pathogenesis of Parkinson's disease, α-synuclein and LRRK2, and suggest potential new approaches for therapy development.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Farah Bardai
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Abby L. Olsen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Kelly M. Lohr
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Ying-Yi Zhang
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Massachusetts Boston, USA
| |
Collapse
|
60
|
Boecker CA, Goldsmith J, Dou D, Cajka GG, Holzbaur ELF. Increased LRRK2 kinase activity alters neuronal autophagy by disrupting the axonal transport of autophagosomes. Curr Biol 2021; 31:2140-2154.e6. [PMID: 33765413 PMCID: PMC8154747 DOI: 10.1016/j.cub.2021.02.061] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/14/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease-causing mutations in the leucine-rich repeat kinase 2 (LRRK2) gene hyperactivate LRRK2 kinase activity and cause increased phosphorylation of Rab GTPases, important regulators of intracellular trafficking. We found that the most common LRRK2 mutation, LRRK2-G2019S, dramatically reduces the processivity of autophagosome transport in neurons in a kinase-dependent manner. This effect was consistent across an overexpression model, neurons from a G2019S knockin mouse, and human induced pluripotent stem cell (iPSC)-derived neurons gene edited to express the G2019S mutation, and the effect was reversed by genetic or pharmacological inhibition of LRRK2. Furthermore, LRRK2 hyperactivation induced by overexpression of Rab29, a known activator of LRRK2 kinase, disrupted autophagosome transport to a similar extent. Mechanistically, we found that hyperactive LRRK2 recruits the motor adaptor JNK-interacting protein 4 (JIP4) to the autophagosomal membrane, inducing abnormal activation of kinesin that we propose leads to an unproductive tug of war between anterograde and retrograde motors. Disruption of autophagosome transport correlated with a significant defect in autophagosome acidification, suggesting that the observed transport deficit impairs effective degradation of autophagosomal cargo in neurons. Our results robustly link increased LRRK2 kinase activity to defects in autophagosome transport and maturation, further implicating defective autophagy in the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- C Alexander Boecker
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juliet Goldsmith
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dan Dou
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory G Cajka
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
61
|
Zou L, Tian Y, Zhang Z. Dysfunction of Synaptic Vesicle Endocytosis in Parkinson's Disease. Front Integr Neurosci 2021; 15:619160. [PMID: 34093144 PMCID: PMC8172812 DOI: 10.3389/fnint.2021.619160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease. It is a chronic and progressive disorder estimated to affect at least 4 million people worldwide. Although the etiology of PD remains unclear, it has been found that the dysfunction of synaptic vesicle endocytosis (SVE) in neural terminal happens before the loss of dopaminergic neurons. Recently, accumulating evidence reveals that the PD-linked synaptic genes, including DNAJC6, SYNJ1, and SH3GL2, significantly contribute to the disruptions of SVE, which is vital for the pathogenesis of PD. In addition, the proteins encoded by other PD-associated genes such as SNCA, LRRK2, PRKN, and DJ-1 also play key roles in the regulation of SVE. Here we present the facts about SVE-related genes and discussed their potential relevance to the pathogenesis of PD.
Collapse
Affiliation(s)
- Li Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ye Tian
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
62
|
Koss DJ, Campesan S, Giorgini F, Outeiro TF. Dysfunction of RAB39B-Mediated Vesicular Trafficking in Lewy Body Diseases. Mov Disord 2021; 36:1744-1758. [PMID: 33939203 DOI: 10.1002/mds.28605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Intracellular vesicular trafficking is essential for neuronal development, function, and homeostasis and serves to process, direct, and sort proteins, lipids, and other cargo throughout the cell. This intricate system of membrane trafficking between different compartments is tightly orchestrated by Ras analog in brain (RAB) GTPases and their effectors. Of the 66 members of the RAB family in humans, many have been implicated in neurodegenerative diseases and impairment of their functions contributes to cellular stress, protein aggregation, and death. Critically, RAB39B loss-of-function mutations are known to be associated with X-linked intellectual disability and with rare early-onset Parkinson's disease. Moreover, recent studies have highlighted altered RAB39B expression in idiopathic cases of several Lewy body diseases (LBDs). This review contextualizes the role of RAB proteins in LBDs and highlights the consequences of RAB39B impairment in terms of endosomal trafficking, neurite outgrowth, synaptic maturation, autophagy, as well as alpha-synuclein homeostasis. Additionally, the potential for therapeutic intervention is examined via a discussion of the recent progress towards the development of specific RAB modulators. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- David J Koss
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, UK
| | - Tiago F Outeiro
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Goettingen, Germany.,Max Planck Institute for Experimental Medicine, Goettingen, Germany.,Scientific employee with a honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| |
Collapse
|
63
|
Mazza MC, Nguyen V, Beilina A, Karakoleva E, Coyle M, Ding J, Bishop C, Cookson MR. Combined Knockout of Lrrk2 and Rab29 Does Not Result in Behavioral Abnormalities in vivo. JOURNAL OF PARKINSONS DISEASE 2021; 11:569-584. [PMID: 33523017 DOI: 10.3233/jpd-202172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Coding mutations in the LRRK2 gene, encoding for a large protein kinase, have been shown to cause familial Parkinson's disease (PD). The immediate biological consequence of LRRK2 mutations is to increase kinase activity, suggesting that inhibition of this enzyme might be useful therapeutically to slow disease progression. Genome-wide association studies have identified the chromosomal loci around LRRK2 and one of its proposed substrates, RAB29, as contributors towards the lifetime risk of sporadic PD. OBJECTIVE Considering the evidence for interactions between LRRK2 and RAB29 on the genetic and protein levels, we set out to determine whether there are any consequences on brain function with aging after deletion of both genes. METHODS We generated a double knockout mouse model and performed a battery of motor and non-motor behavioral tests. We then investigated postmortem assays to determine the presence of PD-like pathology, including nigral dopamine cell count, astrogliosis, microgliosis, and striatal monoamine content. RESULTS Behaviorally, we noted only that 18-24-month Rab29-/- and double (Lrrk2-/-/Rab29-/-) knockout mice had diminished locomotor behavior in open field compared to wildtype mice. However, no genotype differences were seen in the outcomes that represented PD-like pathology. CONCLUSION These results suggest that depletion of both LRRK2 and RAB29 is tolerated, at least in mice, and support that this pathway might be able to be safely targeted for therapeutics in humans.
Collapse
Affiliation(s)
- Melissa Conti Mazza
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Victoria Nguyen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.,Howard University, Washington, DC, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ema Karakoleva
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Michael Coyle
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Jinhui Ding
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
64
|
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder resulting from the death of dopamine neurons in the substantia nigra pars compacta. Our understanding of PD biology has been enriched by the identification of genes involved in its rare, inheritable forms, termed PARK genes. These genes encode proteins including α-syn, LRRK2, VPS35, parkin, PINK1, and DJ1, which can cause monogenetic PD when mutated. Investigating the cellular functions of these proteins has been instrumental in identifying signaling pathways that mediate pathology in PD and neuroprotective mechanisms active during homeostatic and pathological conditions. It is now evident that many PD-associated proteins perform multiple functions in PD-associated signaling pathways in neurons. Furthermore, several PARK proteins contribute to non-cell-autonomous mechanisms of neuron death, such as neuroinflammation. A comprehensive understanding of cell-autonomous and non-cell-autonomous pathways involved in PD is essential for developing therapeutics that may slow or halt its progression.
Collapse
Affiliation(s)
- Nikhil Panicker
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Preston Ge
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD.,Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA.,Diana Helis Henry Medical Research Foundation, New Orleans, LA
| |
Collapse
|
65
|
Follett J, Farrer MJ. LRRK2; a dynamic regulator of cellular trafficking. Brain Res 2021; 1761:147394. [PMID: 33662339 DOI: 10.1016/j.brainres.2021.147394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/11/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) represents the second most common neurodegenerative disorder, characterized clinically by bradykinesia, resting tremor, rigidity and postural instability, and a variety of non-motor features. The etiology of PD is unknown, however genetic, environmental and inflammatory factors may influence disease onset and progression. Genetic variability in leucine-rich repeat kinase 2 confers significant genotypic and population-attributable risk for LRRK2-parkinsonism that is clinically indistinguishable from idiopathic PD. Nevertheless, the age-associated midbrain pathology observed post-mortem in LRRK2-parkinsonism may involve the abnormal accumulation of either α-synuclein or tau, or just the loss of dopaminergic neurons and gliosis. While diverse biological functions have been described for this multi-domain protein in many cell types, evidence suggests LRRK2 may sense endosomal trafficking to orchestrate dynamic changes in vesicular flux and cytoskeletal architecture. This review posits the long-held belief that synaptic-axonal dysfunction and terminal degeneration may precede dopaminergic cell loss, and provocatively questions how facets of LRRK2 biology may influence this molecular pathogenesis.
Collapse
Affiliation(s)
- Jordan Follett
- Laboratory of Neurogenetics and Neuroscience, Department of Neurology, University of Florida, Gainesville, FL, USA.
| | - Matthew J Farrer
- Laboratory of Neurogenetics and Neuroscience, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
66
|
McGrath E, Waschbüsch D, Baker BM, Khan AR. LRRK2 binds to the Rab32 subfamily in a GTP-dependent manner via its armadillo domain. Small GTPases 2021; 12:133-146. [PMID: 31552791 PMCID: PMC7849779 DOI: 10.1080/21541248.2019.1666623] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
LRRK2 is a multi-domain Ser/Thr kinase that is associated with inherited and sporadic cases of Parkinson's disease. Many mutations linked to disease are associated within a central ROC-COR regulatory region and the subsequent kinase domain, leading to enhanced catalytic activity. The N-terminus of human LRRK2 consists of armadillo repeat motifs (ARMs) followed by ankyrin repeats (ANKs). Recently, Rab GTPases have emerged as key players in LRRK2 function, both as substrates of the kinase, and as regulators of the catalytic activity. Rabs recruit effector proteins via their GTP-dependent switch 1 and 2 regions to distinct sub-cellular compartments to regulate membrane trafficking. LRRK2 phosphorylates Rab8, Rab10 and Rab12 in switch 2, and this activity is regulated via interactions with Rab29. Furthermore, the related Rab32-subfamily GTPases, Rab32 and Rab38, have also been shown to interact with LRRK2. Here, we have mapped the interactions of the Rab32-subfamily to the ARM domain of LRRK2. The complexes are dependent on the GTP state of the Rabs in vitro, implying that LRRK2 may be an effector of the Rab32-subfamily of small GTPases. X-ray crystal structures of the Rab32-family GTPases and subsequent mutational studies reveal that a positively charged residue in switch 1 is critical for binding of Rab32/38 to LRRK2. Homology modelling and mutational analyses of the ARM domain point to a patch of negatively charged residues that contribute to complex formation. These structural and biochemical studies provide a framework for understanding the molecular basis for Rab regulation of LRRK2 and its role in Parkinson's disease.
Collapse
Affiliation(s)
- Emma McGrath
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Dieter Waschbüsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Brian M. Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN
| | - Amir R. Khan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
67
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
68
|
Sarkar S, Olsen AL, Sygnecka K, Lohr KM, Feany MB. α-synuclein impairs autophagosome maturation through abnormal actin stabilization. PLoS Genet 2021; 17:e1009359. [PMID: 33556113 PMCID: PMC7895402 DOI: 10.1371/journal.pgen.1009359] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/19/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Vesicular trafficking defects, particularly those in the autophagolysosomal system, have been strongly implicated in the pathogenesis of Parkinson’s disease and related α-synucleinopathies. However, mechanisms mediating dysfunction of membrane trafficking remain incompletely understood. Using a Drosophila model of α-synuclein neurotoxicity with widespread and robust pathology, we find that human α-synuclein expression impairs autophagic flux in aging adult neurons. Genetic destabilization of the actin cytoskeleton rescues F-actin accumulation, promotes autophagosome clearance, normalizes the autophagolysosomal system, and rescues neurotoxicity in α-synuclein transgenic animals through an Arp2/3 dependent mechanism. Similarly, mitophagosomes accumulate in human α-synuclein-expressing neurons, and reversal of excessive actin stabilization promotes both clearance of these abnormal mitochondria-containing organelles and rescue of mitochondrial dysfunction. These results suggest that Arp2/3 dependent actin cytoskeleton stabilization mediates autophagic and mitophagic dysfunction and implicate failure of autophagosome maturation as a pathological mechanism in Parkinson’s disease and related α-synucleinopathies. Vesicle trafficking is a central cell biological pathway perturbed in Parkinson’s disease. Here we use a genetic approach to define an underlying mechanism by demonstrating that the key Parkinson’s disease protein α-synuclein impairs maturation of autophagosomes and mitophagosomes through Arp2/3 dependent excess stabilization of cellular actin networks.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Abby L. Olsen
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Katja Sygnecka
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kelly M. Lohr
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- * E-mail:
| |
Collapse
|
69
|
Fais M, Sanna G, Galioto M, Nguyen TTD, Trần MUT, Sini P, Carta F, Turrini F, Xiong Y, Dawson TM, Dawson VL, Crosio C, Iaccarino C. LRRK2 Modulates the Exocyst Complex Assembly by Interacting with Sec8. Cells 2021; 10:203. [PMID: 33498474 PMCID: PMC7909581 DOI: 10.3390/cells10020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking, likely by Rab phosphorylation, that in turn may regulate different aspects of neuronal physiology. Here we show that LRRK2 interacts with Sec8, one of eight subunits of the exocyst complex. The exocyst complex is an evolutionarily conserved multisubunit protein complex mainly involved in tethering secretory vesicles to the plasma membrane and implicated in the regulation of multiple biological processes modulated by vesicle trafficking. Interestingly, Rabs and exocyst complex belong to the same protein network. Our experimental evidence indicates that LRRK2 kinase activity or the presence of the LRRK2 kinase domain regulate the assembly of exocyst subunits and that the over-expression of Sec8 significantly rescues the LRRK2 G2019S mutant pathological effect. Our findings strongly suggest an interesting molecular mechanism by which LRRK2 could modulate vesicle trafficking and may have important implications to decode the complex role that LRRK2 plays in neuronal physiology.
Collapse
Affiliation(s)
- Milena Fais
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Giovanna Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Thi Thanh Duyen Nguyen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Mai Uyên Thi Trần
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Paola Sini
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | | | - Franco Turrini
- Nurex Srl, 07100 Sassari, Italy; (F.C.); (F.T.)
- Department of Oncology, University of Turin, 10126 Turin, Italy
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| |
Collapse
|
70
|
Martinez-Gualda B, Saul S, Froeyen M, Schols D, Herdewijn P, Einav S, De Jonghe S. Discovery of 3-phenyl- and 3-N-piperidinyl-isothiazolo[4,3-b]pyridines as highly potent inhibitors of cyclin G-associated kinase. Eur J Med Chem 2021; 213:113158. [PMID: 33497888 DOI: 10.1016/j.ejmech.2021.113158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 01/26/2023]
Abstract
Structural modifications at position 3 of the isothiazolo[4,3-b]pyridine scaffold afforded a new series of cyclin G-associated kinase (GAK) inhibitors. It was shown that the insertion of a carboxamide residue at position 3 of a phenyl or piperidinyl moiety generated potent GAK inhibitors with IC50 values in a low nanomolar range. This potent GAK binding affinity was rationalized by molecular modelling demonstrating that the carboxamide moiety engages in an extra hydrogen bond with GAK. Moreover, this new series of compounds was also endowed with antiviral activity against dengue virus, highlighting the potential utility of GAK as a target for the development of antiviral drugs.
Collapse
Affiliation(s)
- Belén Martinez-Gualda
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Sirle Saul
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Mathy Froeyen
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Herestraat 49, 3000, Leuven, Belgium
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Steven De Jonghe
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
71
|
Homma Y, Hiragi S, Fukuda M. Rab family of small GTPases: an updated view on their regulation and functions. FEBS J 2021; 288:36-55. [PMID: 32542850 PMCID: PMC7818423 DOI: 10.1111/febs.15453] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
The Rab family of small GTPases regulates intracellular membrane trafficking by orchestrating the biogenesis, transport, tethering, and fusion of membrane-bound organelles and vesicles. Like other small GTPases, Rabs cycle between two states, an active (GTP-loaded) state and an inactive (GDP-loaded) state, and their cycling is catalyzed by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Because an active form of each Rab localizes on a specific organelle (or vesicle) and recruits various effector proteins to facilitate each step of membrane trafficking, knowing when and where Rabs are activated and what effectors Rabs recruit is crucial to understand their functions. Since the discovery of Rabs, they have been regarded as one of the central hubs for membrane trafficking, and numerous biochemical and genetic studies have revealed the mechanisms of Rab functions in recent years. The results of these studies have included the identification and characterization of novel GEFs, GAPs, and effectors, as well as post-translational modifications, for example, phosphorylation, of Rabs. Rab functions beyond the simple effector-recruiting model are also emerging. Furthermore, the recently developed CRISPR/Cas technology has enabled acceleration of knockout analyses in both animals and cultured cells and revealed previously unknown physiological roles of many Rabs. In this review article, we provide the most up-to-date and comprehensive lists of GEFs, GAPs, effectors, and knockout phenotypes of mammalian Rabs and discuss recent findings in regard to their regulation and functions.
Collapse
Affiliation(s)
- Yuta Homma
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking MechanismsDepartment of Integrative Life SciencesGraduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|
72
|
Kapadia M, De Snoo ML, Kalia LV, Kalia SK. Regulation of Parkin-dependent mitophagy by Bcl-2-associated athanogene (BAG) family members. Neural Regen Res 2021; 16:684-685. [PMID: 33063725 PMCID: PMC8067924 DOI: 10.4103/1673-5374.295330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Minesh Kapadia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | | | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network; Faculty of Medicine; Department of Laboratory Medicine and Pathobiology, University of Toronto; Tanz Centre for Research in Neurodegenerative Diseases, Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network; Faculty of Medicine; Department of Laboratory Medicine and Pathobiology, University of Toronto; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
73
|
Gomez RC, Vides EG, Pfeffer SR. Rab29 Fast Exchange Mutants: Characterization of a Challenging Rab GTPase. Methods Mol Biol 2021; 2293:19-25. [PMID: 34453707 DOI: 10.1007/978-1-0716-1346-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rab29 has been implicated in multiple membrane trafficking processes with no described effectors or regulating proteins. Its fast nucleotide exchange rate and inability to bind GDI in cytosol make it a unique and poorly understood Rab. Because the conventional, "GTP-locked" Rab mutation does not have the desired effect in Rab29, we present here the use of a fluorescence-based assay to characterize novel Rab29 mutants (I64T and V156G) that display faster nucleotide exchange rates, allowing for GEF-independent Rab29 activation.
Collapse
Affiliation(s)
- Rachel C Gomez
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Edmundo G Vides
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
74
|
Kalogeropulou AF, Freemantle JB, Lis P, Vides EG, Polinski NK, Alessi DR. Endogenous Rab29 does not impact basal or stimulated LRRK2 pathway activity. Biochem J 2020; 477:4397-4423. [PMID: 33135724 PMCID: PMC7702304 DOI: 10.1042/bcj20200458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Mutations that enhance LRRK2 protein kinase activity cause inherited Parkinson's disease. LRRK2 phosphorylates a group of Rab GTPase proteins, including Rab10 and Rab12, within the effector-binding switch-II motif. Previous work has indicated that the PARK16 locus, which harbors the gene encoding for Rab29, is involved in Parkinson's, and that Rab29 operates in a common pathway with LRRK2. Co-expression of Rab29 and LRRK2 stimulates LRRK2 activity by recruiting LRRK2 to the surface of the trans Golgi network. Here, we report that knock-out of Rab29 does not influence endogenous LRRK2 activity, based on the assessment of Rab10 and Rab12 phosphorylation, in wild-type LRRK2, LRRK2[R1441C] or VPS35[D620N] knock-in mouse tissues and primary cell lines, including brain extracts and embryonic fibroblasts. We find that in brain extracts, Rab12 phosphorylation is more robustly impacted by LRRK2 inhibitors and pathogenic mutations than Rab10 phosphorylation. Transgenic overexpression of Rab29 in a mouse model was also insufficient to stimulate basal LRRK2 activity. We observed that stimulation of Rab10 and Rab12 phosphorylation induced by agents that stress the endolysosomal system (nigericin, monensin, chloroquine and LLOMe) is suppressed by LRRK2 inhibitors but not blocked in Rab29 deficient cells. From the agents tested, nigericin induced the greatest increase in Rab10 and Rab12 phosphorylation (5 to 9-fold). Our findings indicate that basal, pathogenic, as well as nigericin and monensin stimulated LRRK2 pathway activity is not controlled by Rab29. Further work is required to establish how LRRK2 activity is regulated, and whether other Rab proteins can control LRRK2 by targeting it to diverse membranes.
Collapse
Affiliation(s)
- Alexia F. Kalogeropulou
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Jordana B. Freemantle
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| | - Edmundo G. Vides
- Department of Biochemistry, Stanford University School of Medicine, Stanford 94305-5307, U.S.A
| | - Nicole K. Polinski
- Michael J Fox Foundation for Parkinson's Research, Grand Central Station, PO Box 4777, New York, NY 10163, U.S.A
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, U.K
| |
Collapse
|
75
|
The Emerging Role of the Lysosome in Parkinson's Disease. Cells 2020; 9:cells9112399. [PMID: 33147750 PMCID: PMC7692401 DOI: 10.3390/cells9112399] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson’s disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson’s disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.
Collapse
|
76
|
Bonet-Ponce L, Beilina A, Williamson CD, Lindberg E, Kluss JH, Saez-Atienzar S, Landeck N, Kumaran R, Mamais A, Bleck CKE, Li Y, Cookson MR. LRRK2 mediates tubulation and vesicle sorting from lysosomes. SCIENCE ADVANCES 2020; 6:6/46/eabb2454. [PMID: 33177079 PMCID: PMC7673727 DOI: 10.1126/sciadv.abb2454] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/24/2020] [Indexed: 05/20/2023]
Abstract
Genetic variation around the LRRK2 gene affects risk of both familial and sporadic Parkinson's disease (PD). However, the biological functions of LRRK2 remain incompletely understood. Here, we report that LRRK2 is recruited to lysosomes after exposure of cells to the lysosome membrane-rupturing agent LLOME. Using an unbiased proteomic screen, we identified the motor adaptor protein JIP4 as an LRRK2 partner at the lysosomal membrane. LRRK2 can recruit JIP4 to lysosomes in a kinase-dependent manner via the phosphorylation of RAB35 and RAB10. Using super-resolution live-cell imaging microscopy and FIB-SEM, we demonstrate that JIP4 promotes the formation of LAMP1-negative tubules that release membranous content from lysosomes. Thus, we describe a new process orchestrated by LRRK2, which we name LYTL (LYsosomal Tubulation/sorting driven by LRRK2), by which lysosomal tubulation is used to release vesicles from lysosomes. Given the central role of the lysosome in PD, LYTL is likely to be disease relevant.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandra Beilina
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad D Williamson
- Cell Biology and Neurobiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eric Lindberg
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jillian H Kluss
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalie Landeck
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ravindran Kumaran
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K E Bleck
- Electron Microscopy Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
77
|
Benn CL, Dawson LA. Clinically Precedented Protein Kinases: Rationale for Their Use in Neurodegenerative Disease. Front Aging Neurosci 2020; 12:242. [PMID: 33117143 PMCID: PMC7494159 DOI: 10.3389/fnagi.2020.00242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Kinases are an intensively studied drug target class in current pharmacological research as evidenced by the large number of kinase inhibitors being assessed in clinical trials. Kinase-targeted therapies have potential for treatment of a broad array of indications including central nervous system (CNS) disorders. In addition to the many variables which contribute to identification of a successful therapeutic molecule, drug discovery for CNS-related disorders also requires significant consideration of access to the target organ and specifically crossing the blood-brain barrier (BBB). To date, only a small number of kinase inhibitors have been reported that are specifically designed to be BBB permeable, which nonetheless demonstrates the potential for success. This review considers the potential for kinase inhibitors in the context of unmet medical need for neurodegenerative disease. A subset of kinases that have been the focus of clinical investigations over a 10-year period have been identified and discussed individually. For each kinase target, the data underpinning the validity of each in the context of neurodegenerative disease is critically evaluated. Selected molecules for each kinase are identified with information on modality, binding site and CNS penetrance, if known. Current clinical development in neurodegenerative disease are summarized. Collectively, the review indicates that kinase targets with sufficient rationale warrant careful design approaches with an emphasis on improving brain penetrance and selectivity.
Collapse
|
78
|
Erb ML, Moore DJ. LRRK2 and the Endolysosomal System in Parkinson's Disease. JOURNAL OF PARKINSONS DISEASE 2020; 10:1271-1291. [PMID: 33044192 PMCID: PMC7677880 DOI: 10.3233/jpd-202138] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) cause autosomal dominant familial Parkinson’s disease (PD), with pathogenic mutations enhancing LRRK2 kinase activity. There is a growing body of evidence indicating that LRRK2 contributes to neuronal damage and pathology both in familial and sporadic PD, making it of particular interest for understanding the molecular pathways that underlie PD. Although LRRK2 has been extensively studied to date, our understanding of the seemingly diverse functions of LRRK2 throughout the cell remains incomplete. In this review, we discuss the functions of LRRK2 within the endolysosomal pathway. Endocytosis, vesicle trafficking pathways, and lysosomal degradation are commonly disrupted in many neurodegenerative diseases, including PD. Additionally, many PD-linked gene products function in these intersecting pathways, suggesting an important role for the endolysosomal system in maintaining protein homeostasis and neuronal health in PD. LRRK2 activity can regulate synaptic vesicle endocytosis, lysosomal function, Golgi network maintenance and sorting, vesicular trafficking and autophagy, with alterations in LRRK2 kinase activity serving to disrupt or regulate these pathways depending on the distinct cell type or model system. LRRK2 is critically regulated by at least two proteins in the endolysosomal pathway, Rab29 and VPS35, which may serve as master regulators of LRRK2 kinase activity. Investigating the function and regulation of LRRK2 in the endolysosomal pathway in diverse PD models, especially in vivo models, will provide critical insight into the cellular and molecular pathophysiological mechanisms driving PD and whether LRRK2 represents a viable drug target for disease-modification in familial and sporadic PD.
Collapse
Affiliation(s)
- Madalynn L Erb
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| |
Collapse
|
79
|
Chen HY, Lin CH, Teng SC. Stress-induced p53 drives BAG5 cochaperone expression to control α-synuclein aggregation in Parkinson's disease. Aging (Albany NY) 2020; 12:20702-20727. [PMID: 33085644 PMCID: PMC7655153 DOI: 10.18632/aging.103998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/01/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder with the pathological hallmark of α-synuclein aggregation. Dysregulation of α-synuclein homeostasis caused by aging, genetic, and environmental factors underlies the pathogenesis of PD. While chaperones are essential for proteostasis, whether modulation of cochaperones may participate in PD formation has not been fully characterized. Here, we assessed the expression of several HSP70- and HSP90-related factors under various stresses and found that BAG5 expression is distinctively elevated in etoposide- or H2O2-treated SH-SY5Y cells. Stress-induced p53 binds to the BAG5 promoter directly to stimulate BAG5. Induced BAG5 binds α-synuclein and HSP70 in both cell cultures and brain lysates from PD patients. Overexpressed BAG5 may result in the loss of its ability to promote HSP70. Importantly, α-synuclein aggregation in SH-SY5Y cells requires BAG5. BAG5 expression is also detected in transgenic SNCA mutant mice and in PD patients. Together, our data reveal stress-induced p53-BAG5-HSP70 regulation that provides a potential therapeutic angle for PD.
Collapse
Affiliation(s)
- Huan-Yun Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Chun Teng
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Center of Precision Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
80
|
Hall A, Bandres-Ciga S, Diez-Fairen M, Quinn JP, Billingsley KJ. Genetic Risk Profiling in Parkinson's Disease and Utilizing Genetics to Gain Insight into Disease-Related Biological Pathways. Int J Mol Sci 2020; 21:E7332. [PMID: 33020390 PMCID: PMC7584037 DOI: 10.3390/ijms21197332] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is a complex disorder underpinned by both environmental and genetic factors. The latter only began to be understood around two decades ago, but since then great inroads have rapidly been made into deconvoluting the genetic component of PD. In particular, recent large-scale projects such as genome-wide association (GWA) studies have provided insight into the genetic risk factors associated with genetically ''complex'' PD (PD that cannot readily be attributed to single deleterious mutations). Here, we discuss the plethora of genetic information provided by PD GWA studies and how this may be utilized to generate polygenic risk scores (PRS), which may be used in the prediction of risk and trajectory of PD. We also comment on how pathway-specific genetic profiling can be used to gain insight into PD-related biological pathways, and how this may be further utilized to nominate causal PD genes and potentially druggable therapeutic targets. Finally, we outline the current limits of our understanding of PD genetics and the potential contribution of variation currently uncaptured in genetic studies, focusing here on uncatalogued structural variants.
Collapse
Affiliation(s)
- Ashley Hall
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, L69 7BE, UK; (A.H.); (J.P.Q.)
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Monica Diez-Fairen
- Neurogenetics Group, University Hospital MutuaTerrassa, Sant Antoni 19, 08221 Terrassa, Barcelona, Spain;
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, L69 7BE, UK; (A.H.); (J.P.Q.)
| | - Kimberley J. Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
81
|
Kuwahara T, Funakawa K, Komori T, Sakurai M, Yoshii G, Eguchi T, Fukuda M, Iwatsubo T. Roles of lysosomotropic agents on LRRK2 activation and Rab10 phosphorylation. Neurobiol Dis 2020; 145:105081. [PMID: 32919031 DOI: 10.1016/j.nbd.2020.105081] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/12/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2), the major causative gene product of autosomal-dominant Parkinson's disease, is a protein kinase that phosphorylates a subset of Rab GTPases. Since pathogenic LRRK2 mutations increase its ability to phosphorylate Rab GTPases, elucidating the mechanisms of how Rab phosphorylation is regulated by LRRK2 is of great importance. We have previously reported that chloroquine-induced lysosomal stress facilitates LRRK2 phosphorylation of Rab10 to maintain lysosomal homeostasis. Here we reveal that Rab10 phosphorylation by LRRK2 is potently stimulated by treatment of cells with a set of lysosome stressors and clinically used lysosomotropic drugs. These agents commonly promoted the formation of LRRK2-coated enlarged lysosomes and extracellular release of lysosomal enzyme cathepsin B, the latter being dependent on LRRK2 kinase activity. In contrast to the increase in Rab10 phosphorylation, treatment with lysosomotropic drugs did not increase the enzymatic activity of LRRK2, as monitored by its autophosphorylation at Ser1292 residue, but rather enhanced the molecular proximity between LRRK2 and its substrate Rab GTPases on the cytosolic surface of lysosomes. Lysosomotropic drug-induced upregulation of Rab10 phosphorylation was likely a downstream event of Rab29 (Rab7L1)-mediated enzymatic activation of LRRK2. These results suggest a regulated process of Rab10 phosphorylation by LRRK2 that is associated with lysosomal overload stress, and provide insights into the novel strategies to halt the aberrant upregulation of LRRK2 kinase activity.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Kai Funakawa
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tadayuki Komori
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Maria Sakurai
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gen Yoshii
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tomoya Eguchi
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
82
|
Kuhlmann N, Milnerwood AJ. A Critical LRRK at the Synapse? The Neurobiological Function and Pathophysiological Dysfunction of LRRK2. Front Mol Neurosci 2020; 13:153. [PMID: 32973447 PMCID: PMC7482583 DOI: 10.3389/fnmol.2020.00153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Since the discovery of LRRK2 mutations causal to Parkinson's disease (PD) in the early 2000s, the LRRK2 protein has been implicated in a plethora of cellular processes in which pathogenesis could occur, yet its physiological function remains elusive. The development of genetic models of LRRK2 PD has helped identify the etiological and pathophysiological underpinnings of the disease, and may identify early points of intervention. An important role for LRRK2 in synaptic function has emerged in recent years, which links LRRK2 to other genetic forms of PD, most notably those caused by mutations in the synaptic protein α-synuclein. This point of convergence may provide useful clues as to what drives dysfunction in the basal ganglia circuitry and eventual death of substantia nigra (SN) neurons. Here, we discuss the evolution and current state of the literature placing LRRK2 at the synapse, through the lens of knock-out, overexpression, and knock-in animal models. We hope that a deeper understanding of LRRK2 neurobiology, at the synapse and beyond, will aid the eventual development of neuroprotective interventions for PD, and the advancement of useful treatments in the interim.
Collapse
Affiliation(s)
- Naila Kuhlmann
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Austen J Milnerwood
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
83
|
Abstract
Parkinson's disease (PD) is a leading cause of neurodegeneration that is defined by the selective loss of dopaminergic neurons and the accumulation of protein aggregates called Lewy bodies (LBs). The unequivocal identification of Mendelian inherited mutations in 13 genes in PD has provided transforming insights into the pathogenesis of this disease. The mechanistic analysis of several PD genes, including α-synuclein (α-syn), leucine-rich repeat kinase 2 (LRRK2), PTEN-induced kinase 1 (PINK1), and Parkin, has revealed central roles for protein aggregation, mitochondrial damage, and defects in endolysosomal trafficking in PD neurodegeneration. In this review, we outline recent advances in our understanding of these gene pathways with a focus on the emergent role of Rab (Ras analog in brain) GTPases and vesicular trafficking as a common mechanism that underpins how mutations in PD genes lead to neuronal loss. These advances have led to previously distinct genes such as vacuolar protein-sorting-associated protein 35 (VPS35) and LRRK2 being implicated in a common signaling pathway. A greater understanding of these common nodes of vesicular trafficking will be crucial for linking other PD genes and improving patient stratification in clinical trials underway against α-syn and LRRK2 targets.
Collapse
Affiliation(s)
- Pawan Kishor Singh
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | - Miratul M K Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| |
Collapse
|
84
|
Friesen EL, Zhang YT, Earnshaw R, De Snoo ML, O'Hara DM, Agapova V, Chau H, Ngana S, Chen KS, Kalia LV, Kalia SK. BAG5 Promotes Alpha-Synuclein Oligomer Formation and Functionally Interacts With the Autophagy Adaptor Protein p62. Front Cell Dev Biol 2020; 8:716. [PMID: 32850835 PMCID: PMC7417480 DOI: 10.3389/fcell.2020.00716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Molecular chaperones are critical to maintaining intracellular proteostasis and have been shown to have a protective role against alpha-synuclein-mediated toxicity. Co-chaperone proteins regulate the activity of molecular chaperones and connect the chaperone network to protein degradation and cell death pathways. Bcl-2 associated athanogene 5 (BAG5) is a co-chaperone that modulates proteostasis by inhibiting the activity of Heat shock protein 70 (Hsp70) and several E3 ubiquitin ligases, resulting in enhanced neurodegeneration in models of Parkinson's disease (PD). Here we identify a novel interaction between BAG5 and p62/sequestosome-1 (SQSTM1), suggesting that BAG5 may bridge the chaperone network to autophagy-mediated protein degradation. We found that BAG5 enhanced the formation of pathogenic alpha-synuclein oligomers and regulated the levels and subcellular distribution of p62. These results extend the role of BAG5 in alpha-synuclein processing and intracellular proteostasis.
Collapse
Affiliation(s)
- Erik L Friesen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Yu Tong Zhang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Rebecca Earnshaw
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Mitch L De Snoo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Darren M O'Hara
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Victoria Agapova
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Hien Chau
- Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Sophie Ngana
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Kevin S Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada
| | - Lorraine V Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Genetics and Development, Krembil Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
85
|
Mancini A, Mazzocchetti P, Sciaccaluga M, Megaro A, Bellingacci L, Beccano-Kelly DA, Di Filippo M, Tozzi A, Calabresi P. From Synaptic Dysfunction to Neuroprotective Strategies in Genetic Parkinson's Disease: Lessons From LRRK2. Front Cell Neurosci 2020; 14:158. [PMID: 32848606 PMCID: PMC7399363 DOI: 10.3389/fncel.2020.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is thought to rely on a complex interaction between the patient’s genetic background and a variety of largely unknown environmental factors. In this scenario, the investigation of the genetic bases underlying familial PD could unveil key molecular pathways to be targeted by new disease-modifying therapies, still currently unavailable. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are responsible for the majority of inherited familial PD cases and can also be found in sporadic PD, but the pathophysiological functions of LRRK2 have not yet been fully elucidated. Here, we will review the evidence obtained in transgenic LRRK2 experimental models, characterized by altered striatal synaptic transmission, mitochondrial dysfunction, and α-synuclein aggregation. Interestingly, the processes triggered by mutant LRRK2 might represent early pathological phenomena in the pathogenesis of PD, anticipating the typical neurodegenerative features characterizing the late phases of the disease. A comprehensive view of LRRK2 neuronal pathophysiology will support the possible clinical application of pharmacological compounds targeting this protein, with potential therapeutic implications for patients suffering from both familial and sporadic PD.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Dayne A Beccano-Kelly
- Oxford Parkinson's Disease Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Neuroscience Department, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
86
|
Rivero-Ríos P, Romo-Lozano M, Fernández B, Fdez E, Hilfiker S. Distinct Roles for RAB10 and RAB29 in Pathogenic LRRK2-Mediated Endolysosomal Trafficking Alterations. Cells 2020; 9:cells9071719. [PMID: 32709066 PMCID: PMC7407826 DOI: 10.3390/cells9071719] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Summary Statement Pathogenic LRRK2 expression causes endolysosomal trafficking alterations by impairing RAB10 function, and these alterations are rescued by RAB29 independent of its Golgi localization. Abstract Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson’s disease, and sequence variations are associated with the sporadic form of the disease. LRRK2 phosphorylates a subset of RAB proteins implicated in secretory and recycling trafficking pathways, including RAB8A and RAB10. Another RAB protein, RAB29, has been reported to recruit LRRK2 to the Golgi, where it stimulates its kinase activity. Our previous studies revealed that G2019S LRRK2 expression or knockdown of RAB8A deregulate epidermal growth factor receptor (EGFR) trafficking, with a concomitant accumulation of the receptor in a RAB4-positive recycling compartment. Here, we show that the G2019S LRRK2-mediated EGFR deficits are mimicked by knockdown of RAB10 and rescued by expression of active RAB10. By contrast, RAB29 knockdown is without effect, but expression of RAB29 also rescues the pathogenic LRRK2-mediated trafficking deficits independently of Golgi integrity. Our data suggest that G2019S LRRK2 deregulates endolysosomal trafficking by impairing the function of RAB8A and RAB10, while RAB29 positively modulates non-Golgi-related trafficking events impaired by pathogenic LRRK2.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Romo-Lozano
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
| | - Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
| | - Elena Fdez
- Institute of Parasitology and Biomedicine “López-Neyra”, Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain; (P.R.-R.); (M.R.-L.); (B.F.); (E.F.)
| | - Sabine Hilfiker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence:
| |
Collapse
|
87
|
Seegobin SP, Heaton GR, Liang D, Choi I, Blanca Ramirez M, Tang B, Yue Z. Progress in LRRK2-Associated Parkinson's Disease Animal Models. Front Neurosci 2020; 14:674. [PMID: 32765209 PMCID: PMC7381130 DOI: 10.3389/fnins.2020.00674] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). Several genetic manipulations of the LRRK2 gene have been developed in animal models such as rodents, Drosophila, Caenorhabditis elegans, and zebrafish. These models can help us further understand the biological function and derive potential pathological mechanisms for LRRK2. Here we discuss common phenotypic themes found in LRRK2-associated PD animal models, highlight several issues that should be addressed in future models, and discuss emerging areas to guide their future development.
Collapse
Affiliation(s)
- Steven P. Seegobin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George R. Heaton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dongxiao Liang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
| | - Insup Choi
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marian Blanca Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
88
|
Heaton GR, Landeck N, Mamais A, Nalls MA, Nixon-Abell J, Kumaran R, Beilina A, Pellegrini L, Li Y, Harvey K, Cookson MR. Sequential screening nominates the Parkinson's disease associated kinase LRRK2 as a regulator of Clathrin-mediated endocytosis. Neurobiol Dis 2020; 141:104948. [PMID: 32434048 PMCID: PMC7339134 DOI: 10.1016/j.nbd.2020.104948] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are an established cause of inherited Parkinson's disease (PD). LRRK2 is expressed in both neurons and glia in the central nervous system, but its physiological function(s) in each of these cell types is uncertain. Through sequential screens, we report a functional interaction between LRRK2 and Clathrin adaptor protein complex 2 (AP2). Analysis of LRRK2 KO tissue revealed a significant dysregulation of AP2 complex components, suggesting LRRK2 may act upstream of AP2. In line with this hypothesis, expression of LRRK2 was found to modify recruitment and phosphorylation of AP2. Furthermore, expression of LRRK2 containing the R1441C pathogenic mutation resulted in impaired clathrin-mediated endocytosis (CME). A decrease in activity-dependent synaptic vesicle endocytosis was also observed in neurons harboring an endogenous R1441C LRRK2 mutation. Alongside LRRK2, several PD-associated genes intersect with membrane-trafficking pathways. To investigate the genetic association between Clathrin-trafficking and PD, we used polygenetic risk profiling from IPDGC genome wide association studies (GWAS) datasets. Clathrin-dependent endocytosis genes were found to be associated with PD across multiple cohorts, suggesting common variants at these loci represent a cumulative risk factor for disease. Taken together, these findings suggest CME is a LRRK2-mediated, PD relevant pathway.
Collapse
Affiliation(s)
- George R Heaton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Natalie Landeck
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Adamantios Mamais
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Jonathon Nixon-Abell
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0XY, UK
| | - Ravindran Kumaran
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Laura Pellegrini
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA
| | - Yan Li
- Mass spectrometry Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 20814, USA
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
89
|
O'Hara DM, Pawar G, Kalia SK, Kalia LV. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson's Disease? Front Neurosci 2020; 14:577. [PMID: 32625052 PMCID: PMC7311858 DOI: 10.3389/fnins.2020.00577] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized by prominent degeneration of dopaminergic neurons in the substantia nigra and aggregation of the protein α-synuclein within intraneuronal inclusions known as Lewy bodies. Ninety percent of PD cases are idiopathic while the remaining 10% are associated with gene mutations that affect cellular functions ranging from kinase activity to mitochondrial quality control, hinting at a multifactorial disease process. Mutations in LRRK2 and SNCA (the gene coding for α-synuclein) cause monogenic forms of autosomal dominant PD, and polymorphisms in either gene are also associated with increased risk of idiopathic PD. Although Lewy bodies are a defining neuropathological feature of PD, an appreciable subset of patients with LRRK2 mutations present with a clinical phenotype indistinguishable from idiopathic PD but lack Lewy pathology at autopsy, suggesting that LRRK2-mediated PD may occur independently of α-synuclein aggregation. Here, we examine whether LRRK2 and α-synuclein, as mediators of neurodegeneration in PD, exist in common or distinct pathways. Specifically, we review evidence from preclinical models and human neuropathological studies examining interactions between the two proteins. Elucidating the degree of interplay between LRRK2 and α-synuclein will be necessary for treatment stratification once effective targeted disease-modifying therapies are developed.
Collapse
Affiliation(s)
- Darren M O'Hara
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Grishma Pawar
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
90
|
Marchand A, Drouyer M, Sarchione A, Chartier-Harlin MC, Taymans JM. LRRK2 Phosphorylation, More Than an Epiphenomenon. Front Neurosci 2020; 14:527. [PMID: 32612495 PMCID: PMC7308437 DOI: 10.3389/fnins.2020.00527] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene are linked to autosomal dominant Parkinson's disease (PD), and genetic variations at the LRRK2 locus are associated with an increased risk for sporadic PD. This gene encodes a kinase that is physiologically multiphosphorylated, including clusters of both heterologous phosphorylation and autophosphorylation sites. Several pieces of evidence indicate that LRRK2's phosphorylation is important for its pathological and physiological functioning. These include a reduced LRRK2 heterologous phosphorylation in PD brains or after pharmacological inhibition of LRRK2 kinase activity as well as the appearance of subcellular LRRK2 accumulations when this protein is dephosphorylated at heterologous phosphosites. Nevertheless, the regulatory mechanisms governing LRRK2 phosphorylation levels and the cellular consequences of changes in LRRK2 phosphorylation remain incompletely understood. In this review, we present current knowledge on LRRK2 phosphorylation, LRRK2 phosphoregulation, and how LRRK2 phosphorylation changes affect cellular processes that may ultimately be linked to PD mechanisms.
Collapse
Affiliation(s)
- Antoine Marchand
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Matthieu Drouyer
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Alessia Sarchione
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Marie-Christine Chartier-Harlin
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| | - Jean-Marc Taymans
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
- Inserm, UMR-S 1172, Team “Brain Biology and Chemistry”, Lille, France
| |
Collapse
|
91
|
Obergasteiger J, Frapporti G, Lamonaca G, Pizzi S, Picard A, Lavdas AA, Pischedda F, Piccoli G, Hilfiker S, Lobbestael E, Baekelandt V, Hicks AA, Corti C, Pramstaller PP, Volta M. Kinase inhibition of G2019S-LRRK2 enhances autolysosome formation and function to reduce endogenous alpha-synuclein intracellular inclusions. Cell Death Discov 2020; 6:45. [PMID: 32550012 PMCID: PMC7280235 DOI: 10.1038/s41420-020-0279-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022] Open
Abstract
The Parkinson's disease (PD)-associated kinase Leucine-Rich Repeat Kinase 2 (LRRK2) is a crucial modulator of the autophagy-lysosome pathway, but unclarity exists on the precise mechanics of its role and the direction of this modulation. In particular, LRRK2 is involved in the degradation of pathological alpha-synuclein, with pathogenic mutations precipitating neuropathology in cellular and animal models of PD, and a significant proportion of LRRK2 patients presenting Lewy neuropathology. Defects in autophagic processing and lysosomal degradation of alpha-synuclein have been postulated to underlie its accumulation and onset of neuropathology. Thus, it is critical to obtain a comprehensive knowledge on LRRK2-associated pathology. Here, we investigated a G2019S-LRRK2 recombinant cell line exhibiting accumulation of endogenous, phosphorylated alpha-synuclein. We found that G2019S-LRRK2 leads to accumulation of LC3 and abnormalities in lysosome morphology and proteolytic activity in a kinase-dependent fashion, but independent from constitutively active Rab10. Notably, LRRK2 inhibition was ineffective upon upstream blockade of autophagosome-lysosome fusion events, highlighting this step as critical for alpha-synuclein clearance.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Giulia Lamonaca
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Anne Picard
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Alexandros A. Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Francesca Pischedda
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Giovanni Piccoli
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Via Sommarive 9, 38123 Povo, TN Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers University - New Jersey Medical School, Medical Science Building, 185 South Orange Avenue, Newark, NJ 07103 USA
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000 Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000 Leuven, Belgium
| | - Andrew A. Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| | - Peter P. Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
- Department of Neurology, General Central Hospital, Via Böhler 5, 39100 Bolzano, Italy
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck - Via Galvani 31, 39100 Bolzano, Italy
| |
Collapse
|
92
|
Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson's Disease Due to Altered Endolysosomal Biology With Variable Lewy Body Pathology: A Hypothesis. Front Neurosci 2020; 14:556. [PMID: 32581693 PMCID: PMC7287096 DOI: 10.3389/fnins.2020.00556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in the gene encoding for leucine-rich repeat kinase 2 (LRRK2) are associated with both familial and sporadic Parkinson's disease (PD). LRRK2 encodes a large protein comprised of a GTPase and a kinase domain. All pathogenic variants converge on enhancing LRRK2 kinase substrate phosphorylation, and distinct LRRK2 kinase inhibitors are currently in various stages of clinical trials. Although the precise pathophysiological functions of LRRK2 remain largely unknown, PD-associated mutants have been shown to alter various intracellular vesicular trafficking pathways, especially those related to endolysosomal protein degradation events. In addition, biochemical studies have identified a subset of Rab proteins, small GTPases required for all vesicular trafficking steps, as substrate proteins for the LRRK2 kinase activity in vitro and in vivo. Therefore, it is crucial to evaluate the impact of such phosphorylation on neurodegenerative mechanisms underlying LRRK2-related PD, especially with respect to deregulated Rab-mediated endolysosomal membrane trafficking and protein degradation events. Surprisingly, a significant proportion of PD patients due to LRRK2 mutations display neuronal cell loss in the substantia nigra pars compacta in the absence of any apparent α-synuclein-containing Lewy body neuropathology. These findings suggest that endolysosomal alterations mediated by pathogenic LRRK2 per se are not sufficient to cause α-synuclein aggregation. Here, we will review current knowledge about the link between pathogenic LRRK2, Rab protein phosphorylation and endolysosomal trafficking alterations, and we will propose a testable working model whereby LRRK2-related PD may present with variable LB pathology.
Collapse
Affiliation(s)
- Pilar Rivero-Ríos
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - María Romo-Lozano
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - Rachel Fasiczka
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yahaira Naaldijk
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Sabine Hilfiker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
93
|
Petridi S, Middleton CA, Ugbode C, Fellgett A, Covill L, Elliott CJH. In Vivo Visual Screen for Dopaminergic Rab ↔ LRRK2-G2019S Interactions in Drosophila Discriminates Rab10 from Rab3. G3 (BETHESDA, MD.) 2020; 10:1903-1914. [PMID: 32321836 PMCID: PMC7263684 DOI: 10.1534/g3.120.401289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
LRRK2 mutations cause Parkinson's, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson's.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - C Adam Middleton
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Chris Ugbode
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Alison Fellgett
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Laura Covill
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Christopher J H Elliott
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| |
Collapse
|
94
|
Shani V, Safory H, Szargel R, Wang N, Cohen T, Elghani FA, Hamza H, Savyon M, Radzishevsky I, Shaulov L, Rott R, Lim KL, Ross CA, Bandopadhyay R, Zhang H, Engelender S. Physiological and pathological roles of LRRK2 in the nuclear envelope integrity. Hum Mol Genet 2020; 28:3982-3996. [PMID: 31626293 DOI: 10.1093/hmg/ddz245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 01/28/2023] Open
Abstract
Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson's disease, but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 -/- mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss-of-function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations.
Collapse
Affiliation(s)
- Vered Shani
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hazem Safory
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Raymonde Szargel
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ninghan Wang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tsipora Cohen
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Fatimah Abd Elghani
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Haya Hamza
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mor Savyon
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inna Radzishevsky
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Lihi Shaulov
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ruth Rott
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Christopher A Ross
- Department of Psychiatry, The Johns Hopkins Medical School, Baltimore, MD, USA
| | | | - Hui Zhang
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Simone Engelender
- Dept. of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
95
|
Madureira M, Connor-Robson N, Wade-Martins R. "LRRK2: Autophagy and Lysosomal Activity". Front Neurosci 2020; 14:498. [PMID: 32523507 PMCID: PMC7262160 DOI: 10.3389/fnins.2020.00498] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/21/2020] [Indexed: 01/07/2023] Open
Abstract
It has been 15 years since the Leucine-rich repeat kinase 2 (LRRK2) gene was identified as the most common genetic cause for Parkinson's disease (PD). The two most common mutations are the LRRK2-G2019S, located in the kinase domain, and the LRRK2-R1441C, located in the ROC-COR domain. While the LRRK2-G2019S mutation is associated with increased kinase activity, the LRRK2-R1441C exhibits a decreased GTPase activity and altered kinase activity. Multiple lines of evidence have linked the LRRK2 protein with a role in the autophagy pathway and with lysosomal activity in neurons. Neurons rely heavily on autophagy to recycle proteins and process cellular waste due to their post-mitotic state. Additionally, lysosomal activity decreases with age which can potentiate the accumulation of α-synuclein, the pathological hallmark of PD, and subsequently lead to the build-up of Lewy bodies (LBs) observed in this disorder. This review provides an up to date summary of the LRRK2 field to understand its physiological role in the autophagy pathway in neurons and related cells. Careful assessment of how LRRK2 participates in the regulation of phagophore and autophagosome formation, autophagosome and lysosome fusion, lysosomal maturation, maintenance of lysosomal pH and calcium levels, and lysosomal protein degradation are addressed. The autophagy pathway is a complex cellular process and due to the variety of LRRK2 models studied in the field, associated phenotypes have been reported to be seemingly conflicting. This review provides an in-depth discussion of different models to assess the normal and disease-associated role of the LRRK2 protein on autophagic function. Given the importance of the autophagy pathway in Parkinson's pathogenesis it is particularly relevant to focus on the role of LRRK2 to discover novel therapeutic approaches that restore lysosomal protein degradation homeostasis.
Collapse
Affiliation(s)
- Marta Madureira
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
- Graduate Program in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Natalie Connor-Robson
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
96
|
Gloeckner CJ, Porras P. Guilt-by-Association - Functional Insights Gained From Studying the LRRK2 Interactome. Front Neurosci 2020; 14:485. [PMID: 32508578 PMCID: PMC7251075 DOI: 10.3389/fnins.2020.00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
The Parkinson's disease-associated Leucine-rich repeat kinase 2 (LRRK2) is a complex multi-domain protein belonging to the Roco protein family, a unique group of G-proteins. Variants of this gene are associated with an increased risk of Parkinson's disease. Besides its well-characterized enzymatic activities, conferred by its GTPase and kinase domains, and a central dimerization domain, it contains four predicted repeat domains, which are, based on their structure, commonly involved in protein-protein interactions (PPIs). In the past decades, tremendous progress has been made in determining comprehensive interactome maps for the human proteome. Knowledge of PPIs has been instrumental in assigning functions to proteins involved in human disease and helped to understand the connectivity between different disease pathways and also significantly contributed to the functional understanding of LRRK2. In addition to an increased kinase activity observed for proteins containing PD-associated variants, various studies helped to establish LRRK2 as a large scaffold protein in the interface between cytoskeletal dynamics and the vesicular transport. This review first discusses a number of specific LRRK2-associated PPIs for which a functional consequence can at least be speculated upon, and then considers the representation of LRRK2 protein interactions in public repositories, providing an outlook on open research questions and challenges in this field.
Collapse
Affiliation(s)
- Christian Johannes Gloeckner
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Core Facility for Medical Bioanalytics, University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cherry Hinton, United Kingdom
| |
Collapse
|
97
|
Bandres-Ciga S, Diez-Fairen M, Kim JJ, Singleton AB. Genetics of Parkinson's disease: An introspection of its journey towards precision medicine. Neurobiol Dis 2020; 137:104782. [PMID: 31991247 PMCID: PMC7064061 DOI: 10.1016/j.nbd.2020.104782] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/15/2022] Open
Abstract
A substantial proportion of risk for Parkinson's disease (PD) is driven by genetics. Progress in understanding the genetic basis of PD has been significant. So far, highly-penetrant rare genetic alterations in SNCA, LRRK2, VPS35, PRKN, PINK1, DJ-1 and GBA have been linked with typical familial PD and common genetic variability at 90 loci have been linked to risk for PD. In this review, we outline the journey thus far of PD genetics, highlighting how significant advances have improved our knowledge of the genetic basis of PD risk, onset and progression. Despite remarkable progress, our field has yet to unravel how genetic risk variants disrupt biological pathways and molecular networks underlying the pathobiology of the disease. We highlight that currently identified genetic risk factors only represent a fraction of the likely genetic risk for PD. Identifying the remaining genetic risk will require us to diversify our efforts, performing genetic studies across different ancestral groups. This work will inform us on the varied genetic basis of disease across populations and also aid in fine mapping discovered loci. If we are able to take this course, we foresee that genetic discoveries in PD will directly influence our ability to predict disease and aid in defining etiological subtypes, critical steps for the implementation of precision medicine for PD.
Collapse
Affiliation(s)
- Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada 18016, Spain.
| | - Monica Diez-Fairen
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; Fundació Docència i Recerca Mútua Terrassa and Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa 08221, Barcelona, Spain
| | - Jonggeol Jeff Kim
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
98
|
Autophagy lysosomal pathway dysfunction in Parkinson's disease; evidence from human genetics. Parkinsonism Relat Disord 2020; 73:60-71. [DOI: 10.1016/j.parkreldis.2019.11.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023]
|
99
|
Kuwahara T, Iwatsubo T. The Emerging Functions of LRRK2 and Rab GTPases in the Endolysosomal System. Front Neurosci 2020; 14:227. [PMID: 32256311 PMCID: PMC7095371 DOI: 10.3389/fnins.2020.00227] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 12/25/2022] Open
Abstract
The leucine-rich repeat kinase 2 (LRRK2), the most common causative gene for autosomal-dominant familial Parkinson’s disease, encodes a large protein kinase harboring multiple characteristic domains. LRRK2 phosphorylates a set of Rab GTPases in cells, which is enhanced by the Parkinson-associated LRRK2 mutations. Accumulating evidence suggests that LRRK2 regulates intracellular vesicle trafficking and organelle maintenance including Golgi, endosomes and lysosomes. Furthermore, genetic knockout or inhibition of LRRK2 cause lysosomal abnormalities in rodents and primates, and cells from Parkinson’s patients with LRRK2 mutations also exhibit altered lysosome morphology. Cell biological studies on LRRK2 in a diverse cellular context further strengthen the potential connection between LRRK2 and regulation of the endolysosomal system, part of which is mediated by Rab phosphorylation by LRRK2. We will focus on the latest advances on the role of LRRK2 and Rab in relation to the endolysosomal system, and discuss the possible link to the pathomechanism of Parkinson’s disease.
Collapse
Affiliation(s)
- Tomoki Kuwahara
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
100
|
Cunningham LA, Moore DJ. Endosomal sorting pathways in the pathogenesis of Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2020; 252:271-306. [PMID: 32247367 PMCID: PMC7206894 DOI: 10.1016/bs.pbr.2020.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The identification of Parkinson's disease (PD)-associated genes has created a powerful platform to begin to understand and nominate pathophysiological disease mechanisms. Herein, we discuss the genetic and experimental evidence supporting endolysosomal dysfunction as a major pathway implicated in PD. Well-studied familial PD-linked gene products, including LRRK2, VPS35, and α-synuclein, demonstrate how disruption of different aspects of endolysosomal sorting pathways by disease-causing mutations may manifest into PD-like phenotypes in many disease models. Newly-identified PD-linked genes, including auxilin, synaptojanin-1 and Rab39b, as well as putative risk genes for idiopathic PD (endophilinA1, Rab29, GAK), further support endosomal sorting deficits as being central to PD. LRRK2 may represent a nexus by regulating many distinct features of endosomal sorting, potentially via phosphorylation of key endocytosis machinery (i.e., auxilin, synaptojanin-1, endoA1) and Rab GTPases (i.e., Rab29, Rab8A, Rab10) that function within these pathways. In turn, LRRK2 kinase activity is critically regulated by Rab29 at the Golgi complex and retromer-associated VPS35 at endosomes. Taken together, the known functions of PD-associated gene products, the impact of disease-linked mutations, and the emerging functional interactions between these proteins points to endosomal sorting pathways as a key point of convergence in the pathogenesis of PD.
Collapse
Affiliation(s)
- Lindsey A Cunningham
- Van Andel Institute Graduate School, Grand Rapids, MI, United States; Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Darren J Moore
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|